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Abstract: Residuals are essential in regression analysis for evaluating model adequacy, validating
assumptions, and detecting outliers or influential data. While traditional residuals perform well
in linear regression, they face limitations in exponential family models, such as those based on the
binomial and Poisson distributions, due to heteroscedasticity and dependence among observations.
This article introduces a novel standardized combined residual for linear and nonlinear regression
models within the exponential family. By integrating information from both the mean and dispersion
sub-models, the new residual provides a unified diagnostic tool that enhances computational effi-
ciency and eliminates the need for projection matrices. Simulation studies and real-world applications
demonstrate its advantages in efficiency and interpretability over traditional residuals.

Keywords: advanced residual analysis; computational efficiency; exponential family models; Fisher
scoring; mean and dispersion integration; model adequacy; regression diagnostics
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1. Introduction

Evaluating model adequacy in regression analysis is essential as it directly impacts the
validity of the inferences made. Residuals, traditionally stated as the difference between
observed and predicted values, serve as key diagnostic tools, offering insights into model
assumptions, outliers, and overall specification [1–6]. Residual analysis can uncover model
flaws that might provide misleading conclusions.

Linear regression models, which assume normally distributed errors, are commonly
used due to their simplicity. However, many real phenomena do not meet this assumption.
Generalized linear models (GLMs) extend linear models by accommodating a wider class
of probability laws from the exponential family, including binomial, gamma, and Pois-
son distributions [7–9]. Nevertheless, this extension complicates the residual analysis.
The assumptions of constant variance and independence of errors are more nuanced in
GLM, requiring more sophisticated residuals tailored to the specific distribution [10–14].
For example, in binary or count models, the variance depends on the mean, complicating
interpretation of the residuals [15–17]. Recent studies have applied GLM to diverse con-
texts, such as economic data [18], quantile regression [19], and environmental data through
Birnbaum-Saunders regression models [20–22].
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Residuals are crucial in various analytical techniques, including variable selection,
screening, and machine learning [23]. They help to identify predictor contributions by
highlighting patterns, guiding feature selection in high-dimensional data, and improving
model performance in methods like gradient boosting [24–26]. Moreover, diagnostic
methods, such as those discussed in [27–29], expand on how residuals can be used for
goodness-of-fit tests and model adequacy checks, further demonstrating their versatility.
The statistic named predicted residual error sum of squares, based on residuals, is also
used to assess predictive performance through cross-validation [30].

Despite their importance, traditional residuals, like studentized or deviance, have lim-
itations when applied to GLM. Advanced methods are needed to address these limitations,
especially in handling heteroscedasticity and dependencies [31–33]. Recent studies have ex-
plored alternative approaches, such as skew-normal inflated models [34] and semi-parametric
additive modeling with Birnbaum-Saunders distributions [35]. These approaches contribute
to the development of more accurate diagnostic tools in complex settings.

Standardizing residuals in GLM often involve projection matrices, derived from the
likelihood maximization process [1,5]. Nonetheless, these matrices can be computationally
demanding, particularly for large datasets, decreasing their practical use [16,17,36]. Moreover,
projection matrices may not fully capture data variability when changes in the dispersion
exist, complicating diagnostics [17,34,37]. Recent research has addressed the above-mentioned
limitations and proposed methods to improve residual analysis in GLM. Alternative residuals
tailored to specific distributions within the exponential family were investigated in [37,38].
However, these proposals often involve complex calculations or are restricted to specific
data types, reducing their broader applicability [39].

Modern approaches, presented in studied for semi-parametric additive models with
complex data structures [35] as well as continuous Bernoulli [40] and quasi-Cauchy [41]
quantile regression models, underscore the need for innovative diagnostic methods and
demonstrate the challenges in dealing with data supported within specific intervals, em-
phasizing the restrictions of traditional approaches. While these studies represent advance-
ments, important gaps in residual analysis for GLMs remain. Proposed methods, such as
skew-normal inflated [34] and semi-parametric additive [35] models, focus on either mean
or dispersion models without considering both simultaneously. Moreover, several methods
rely on computationally intensive procedures, such as projection matrices, which reduces
their applicability in large datasets or models with varying dispersion.

In response to the earlier-mentioned limitations, the standardized combined resid-
ual integrates information from both mean and dispersion models. Unlike methods that
focus on a single model, this integration offers a more comprehensive approach to resid-
ual analysis, improving both computational efficiency and interpretability. Importantly,
the standardized combined residuals avoid the need for projection matrices, so reducing
computational cost and complexity, particularly for large datasets. Thus, one can propose
a methodology that enhances the detection of model inadequacies, particularly in sce-
narios involving heteroscedasticity or interdependence between observations. Therefore,
the present study proposes a novel standardized combined residual that provides both
theoretical advancements and practical improvements over existing residuals, including a
more efficient computational behavior and enhanced diagnostic capabilities.

The main objectives of this study are: (i) to develop a unified framework for residual
analysis in GLMs that integrates both mean and dispersion sub-models, (ii) to assess the
computational efficiency of the proposed residual in comparison with traditional methods,
and (iii) to evaluate the performance of the proposed residual through extensive simulations
and applications to real-world datasets. To achieve these objectives, we employ the Fisher
scoring iterative method for parameter estimation in GLMs, which allows the simultaneous
modeling of both mean and dispersion effects. The new residual is specifically designed to
accommodate this without the need for projection matrices, as mentioned, offering both
computational efficiency and clearer interpretation.
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The structure of the article is as follows. Section 2 covers the framework for modeling
and parameter estimation in the exponential family, emphasizing the relationship between
mean and variance. In Section 3, nonlinear models within the exponential family are
discussed, exploring both general structure and specific cases. In Section 4, we introduce
standardized combined residuals, which integrate information from both mean and disper-
sion sub-models. The proposed residual effectiveness is demonstrated through simulations
and two empirical applications, highlighting its utility in practical contexts. Specifically,
Section 5 provides methods for evaluating model fit using simulated envelopes, offering a
robust approach to residual analysis. In Section 6, empirical applications of the proposed
residual to real datasets are presented, demonstrating its practical utility, while Section 7
provides concluding remarks and future research directions.

Additionally, this article includes appendices that provide detailed mathematical
derivations (Appendix A); a description of the Fisher scoring iterative method (Appendix B);
a complete example in R code [42] to show the implementation of the proposed methods
(Appendixes C and D) containing the results of extensive Monte Carlo simulations, further
elucidating the performance of the proposed methods.

2. Modeling and Estimation in Exponential Family Distributions

This section presents the framework for modeling and parameter estimation within
the exponential family of distributions, emphasizing the critical relationship between the
mean and variance. Understanding this relationship is essential for constructing regression
models that accurately capture the variability in real-world data, especially when the
variability is not constant but depends on the magnitude of the mean.

2.1. Simultaneous Modeling of the Mean and Dispersion in the Exponential Family

The mean and variance are fundamental characteristics that describe the behavior
of a random variable within a distribution, assuming that these moments exist. In many
distributions belonging to the exponential family, a specific functional relationship exists
between the mean and variance. Accurately modeling this relationship is crucial when
the variance changes with the mean, which is often the case in practical applications.
Such modeling ensures that the variability observed in the data is properly accounted
for, particularly in contexts where the dispersion (or spread) of the data is not constant
but varies proportionally with the mean. Let Y1, . . . , Yn be independent random variables,
where each Yi, for i ∈ {1, . . . , n}, has a probability density function that can be expressed in
the canonical form of the exponential family [5,43,44] as

f (yi; θi, ϕi) = exp(ϕi(yiθi − b(θi)) + c(yi; ϕi)), i ∈ {1, . . . , n}, (1)

with θi being the canonical parameter, which uniquely determines the distribution of Yi
within the exponential family; ϕ−1

i > 0 being the dispersion parameter, which scales the
variance independently of the mean, capturing additional variability in the data; b(θi) being
the cumulant function, crucial for determining the mean and variance of the distribution,
as well as for deriving higher-order cumulants and moments; and c(yi; ϕi) being the
normalizing function, ensuring that the probability density function integrates to one.

The mean and variance of the distribution with density described in (1) are given by

E(Yi) = µi = b′(θi), Var(Yi) = ϕ−1
i b′′(θi), i ∈ {1, . . . , n}, (2)

where b′′(θi) is the variance function, denoted as V(µi), which depends only on the mean
µi. The function V(µi) describes the theoretical variance of Yi under the assumption of
constant dispersion. However, the true variance observed in the data, Var(Yi) namely, is
influenced by the dispersion parameter ϕi. This parameter ϕi allows the model to adjust
for overdispersion (where the observed variance is greater than the theoretical variance) or
underdispersion (where the observed variance is less than the theoretical variance), thereby
providing a more accurate reflection of the data variability compared to the standard
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exponential family model. The flexibility of the exponential family of distributions in
modeling is crucial in practical applications, as it enables the model to more accurately
reflect the true variability present in the data, particularly in situations where the variability
cannot be fully explained by the mean alone. Such flexibility is evident across various
distributions within the exponential family, each with its own distinct relationship between
the mean, variance, and dispersion parameters.

Table 1 summarizes some common distributions within the exponential family. In this
table, CV denotes the coefficient of variation, defined as CV =

√
Var(Yi)/E(Yi), and Γ

represents the Euler gamma function, which generalizes the factorial function to real
and complex numbers [45,46]. Understanding these parameters is crucial for accurately
modeling the dispersion and shape characteristics of different distributions, which play an
important role in the analysis of real-world data.

Table 1. Examples of distributions belonging to the exponential family with their indicated parameter.

Distribution θ b(θ) ϕ V(µ) c(y; ϕ)

Normal µ θ2/2 1/σ2 1 −(1/2) log(2π/ϕ)− ϕy2/2
Gamma −1/µ − log(−θ) 1/CV2 µ2 (ϕ − 1) log(y) + ϕ log(ϕ)− log(Γ(ϕ))
Inverse Gaussian −1/2µ2 −

√
−2θ ϕ µ3 log(ϕ/(2πy3))/2 − ϕ/(2y)

Poisson log(µ) exp(θ) 1 µ − log(y!)
Binomial log(µ/(1 − µ)) log(1 + exp(θ)) n µ(1 − µ) log(( ϕ

ϕy/n))

CV is the variation coefficient of the gamma distribution and Γ is the standard gamma function.

The theoretical framework outlined above provides a foundation for understanding
how the mean and variance interact within the exponential family of distributions. How-
ever, applying this framework in practice requires defining a regression structure that
incorporates both the mean and dispersion parameters effectively.

2.2. Regression Structure and Parameter Estimation in Exponential Family Models

Let xi = (xi1, . . . , xik)
⊤ represent values of the set of k covariates associated with

the mean response µi for observation i, and zi = (zi1, . . . , ziq)
⊤ be the values of the set

of q covariates related to the dispersion parameter ϕi for the same observation, where
i ∈ {1, . . . , n}. These values of covariates capture the effect of different predictors on the
mean and dispersion, respectively. Importantly, xi and zi can, but do not have to, be the
same, depending on the model specification. This modeling allows for different sets of
covariates to influence the mean and the dispersion independently, which is an advantage
in modeling with the exponential family.

We assume that the mean µi and the dispersion ϕi, as defined in (2), satisfy the
relationships stated as

g(µi) = η1i = x⊤i β =
k

∑
j=1

xijβ j, (3)

h(ϕi) = η2i = z⊤i γ =
q

∑
j=1

zijγj, i ∈ {1, . . . , n}, (4)

where β ∈ Rk and γ ∈ Rq are unknown parameter vectors.
The functions g presented in (3) and h in (4) are known as link functions, which are

assumed to be monotonic, twice differentiable, and chosen based on the nature of the
response variable as well as in the desired relationship between the predictors and the
mean or dispersion. The linear predictors established as η1i in (3) and as η2i in (4), formed
by linear combinations of the covariates with their respective coefficients, encapsulate the
effects of the covariates on the mean and dispersion, respectively.
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Let θ = (β⊤, γ⊤)⊤ represent the full parameter vector of the model to be estimated,
combining both the coefficients related to the mean and dispersion. The log-likelihood
function for the model, which forms the basis for parameter estimation, is expressed as

ℓ(θ) =
n

∑
i=1

ℓi(µi; ϕi), i ∈ {1, . . . , n}, (5)

where ℓi is the log-likelihood contribution of observation i formulated as

ℓi(µi; ϕi) = ϕi(yiθi − b(θi)) + c(yi; ϕi), i ∈ {1, . . . , n},

with θi, b(θi), and c(yi; ϕi) being defined as in (1). Parameter estimation in GLM is typically
performed using the method of maximum likelihood (ML), which involves solving the
score equations derived by taking the partial derivatives of the log-likelihood function
presented in (5) with respect to the parameters. The ML estimates β̂ and γ̂ are generated by
solving the system of score equations given by

Uβ = 0, Uγ = 0.

If the dispersion parameter ϕi is known and constant, the probability density function
obtained in (1) defines the class of exponential family models with the canonical param-
eter θi. However, when ϕi is unknown, the expression established in (1) defines a valid
exponential family model only if the function c(yi; ϕi) takes the specific form stated as

c(yi; ϕi) = d(ϕi) + ϕia(yi) + u(yi), i ∈ {1, . . . , n},

where d(ϕi), a(yi), and u(yi) are arbitrary functions that ensure the model adheres to the
exponential family structure. The specific form of c(yi; ϕi) is crucial because it maintains the
tractability of the likelihood function and the validity of the model within the exponential
family. For further details, see [38].

In many cases, a closed-form solution is not feasible, necessitating the use of numerical
optimization methods. A commonly employed approach to obtain the mentioned solution
is the Fisher scoring iterative method, which is presented generically as

β(m+1) = β(m) +
(
K(m)

ββ

)−1U(m)
β , (6)

γ(m+1) = γ(m) +
(
K(m)

γγ

)−1U(m)
γ , (7)

where m denotes the iteration number; β(m) and γ(m) represent the parameter estimates
at the mth iteration; U(m)

β and U(m)
γ are the score function components corresponding to

β and γ, respectively; whereas K(m)
ββ and K(m)

γγ are the Fisher information matrices at the
mth iteration, which represent the curvature of the log-likelihood function stated in (5)
with respect to the parameters. This curvature refers to the negative expected value
of the second derivative (Hessian matrix) of the log-likelihood function with respect to
the parameters. It captures how sensitive the likelihood function is to changes in the
parameters. The Fisher information matrices measure the curvature by quantifying the rate
at which the slope of the log-likelihood function changes with respect to the parameters.
A higher curvature indicates that the log-likelihood function has a sharper peak around the
parameter estimates, leading to more precise estimates.

By substituting the necessary quantities (see Appendix B), the iterative formulas
established in (6) and (7) can be rewritten as a weighted least squares process presented as

β(m+1) =
(
X⊤Φ(m)W (m)X

)−1X⊤Φ(m)W (m)u(m)
1 ,

γ(m+1) =
(
Z⊤P(m)Z

)−1Z⊤P(m)u(m)
2 , (8)
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where

• X and Z are the design matrices corresponding to the values of covariates associated
with the mean µi and dispersion ϕi, respectively;

• Φ(m) and P(m) are diagonal matrices, where Φ(m) = diag{ϕ
(m)
i } and P(m) depends on

the variance function related to the dispersion model, capturing the structure of the
data variability at mth iteration;

• W (m) is a weight matrix that typically depends on the variance function V(µ(m)) at
mth iteration, adjusting for the variability of the response variable;

• u(m)
1 = η

(m)
1 + W1/2(m)V−1/2(m)(y − µ(m)), where η

(m)
1 is the linear predictor for the

mean model, Vγ = diag{−d′′(ϕ1), . . . ,−d′′(ϕn)}, y is the vector of observed responses,
and µ(m) is the vector of fitted values at mth iteration;

• u(m)
2 = η

(m)
2 + V−1(m)

γ H(m)
γ (t − µ∗(m)), where η

(m)
2 is the linear predictor for the dis-

persion model, Hγ = diag{h′(ϕ1), . . . , h′(ϕn)}, with h′(ϕi) = ∂η2i/∂ϕit being the
response variable associated with the dispersion, and µ∗(m) is the fitted value for the
dispersion at mth iteration.

Upon convergence of the iterative process stated in (8), we obtain the estimates given by

β̂ =
(
X⊤Φ̂ŴX

)−1X⊤Φ̂Ŵu1, (9)

γ̂ =
(
Z⊤P̂Z

)−1Z⊤P̂u2, (10)

where u1 = η̂1 + Ŵ1/2V̂−1/2(y − µ̂) and u2 = η̂2 + V̂−1
γ Ĥγ(t − µ̂∗). The expressions

defined in (9) and (10) can be interpreted as ordinary least squares (OLS) estimators after
applying appropriate weights and transformations. Specifically, to reach β̂, we regress the
auxiliary variable Φ̂1/2Ŵ1/2u1 on the covariate matrix Φ̂1/2Ŵ1/2X. Similarly, to get γ̂, we
perform a regression of the auxiliary variable P̂1/2u2 on the covariate matrix P̂1/2Z.

2.3. Residuals

The corresponding residuals from the above-mentioned weighted regressions are
given by

rβ = Φ̂1/2Ŵ1/2(u1 − η̂1), rγ = P̂1/2(u2 − η̂2), rβ
i =

yi − µ̂i√
ϕ̂−1

i V̂i

, rγ
i =

ti − µ̂∗
i√

−d′′(ϕ̂i)
, i ∈ {1, . . . , n},

where V̂i = ∂µ̂i/∂θ̂i. These residuals can be standardized using the projection matrix
derived from the OLS solution, which normalizes them for better comparability across ob-
servations. Standardization is particularly important when dealing with heteroscedasticity,
as it ensures that the residuals have consistent variability, making them more effective for
model diagnostics. For each component, the projection matrices are formulated as

Ŝβ = Φ̂1/2Ŵ1/2X
(
X⊤Φ̂ŴX

)−1X⊤Ŵ1/2Φ̂1/2, (11)

Ŝγ = P̂1/2Z
(
Z⊤P̂Z

)−1Z⊤P̂1/2. (12)

Then, the standardized ordinary residuals are defined as

rβ
si =

yi − µ̂i√
ϕ̂−1

i V̂i(1 − ŝβ
ii)

, rγ
si =

ti − µ̂∗
i√

−d′′(ϕ̂i)(1 − ŝγ
ii)

, i ∈ {1, . . . , n},

where ŝβ
ii and ŝγ

ii are the diagonal elements of the projection matrices Ŝβ and Ŝγ, respectively.

The calculation of rβ
si depends on obtaining the projection matrix Ŝβ. After assessing the

residuals, another important statistic to consider in evaluating the model fit within the
exponential family is the deviance, which is a key metric used for assessing how well the
model fits the data. The deviance was first translated as deviation in [47].
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The deviance function for the mean is established as the difference between the log-
likelihood function of the saturated model (with n parameters) and the model of interest
(with k parameters, where k < n), evaluated at the ML estimate β̂, and is given by

D∗(y, µ̂) = 2
n

∑
i=1

ϕi
(
yi(θ̃i − θ̂i)− b(θ̃i) + b(θ̂i)

)
,

where θ̃i = θ(yi) and θ̂i = θ(µ̂i) represent the ML estimates of θ for the saturated model
(with n parameters) and the model under study (with k < n parameters), respectively.
Similarly, the deviance function for the dispersion can be defined as

D∗(y, ϕ̂, µ̂) = 2
n

∑
i=1

(
ti(ϕ̃i − ϕ̂i) + (d(ϕ̃i)− d(ϕ̂i))

)
,

where ϕ̃i is the solution to d′(ϕ̃i) = −ti. For further details on the deviance, see [1,5].
The deviance residuals are commonly used in GLM to assess the contribution of each

observation to the overall model fit. The standardized deviance residuals for the mean and
dispersion are given, respectively, by

dµ(µ̂i, ϕ̂i) =
d∗µ(µ̂i, ϕ̂i)√

1 − ŝβ
ii

, dϕ(µ̂i, ϕ̂i) =
d∗ϕ(µ̂i, ϕ̂i)√

1 − ŝγ
ii

, i ∈ {1, . . . , n}, (13)

where ŝβ
ii and ŝγ

ii are the ith diagonal elements of the projection matrices defined in (11) and
(12), respectively. The terms d∗µ(µ̂i, ϕ̂i) and d∗ϕ(µ̂i, ϕ̂i) represent the signed square roots of
the deviance components for the mean and dispersion, respectively, and are established,
for i ∈ {1, . . . , n}, as

d∗µ(µ̂i, ϕ̂i) = sign(yi − µ̂i)(2yi(θ̃i − θ̂i)− 2(b(θ̃i)− b(θ̂i)))
1/2,

d∗ϕ(µ̂i, ϕ̂i) = sign(t̂i + d′(ϕ̂i))(2ti(ϕ̃i − ϕ̂i) + 2(d(ϕ̃i)− d(ϕ̂i)))
1/2.

These terms capture the contribution of each observation to the deviance, with the sign
indicating whether the observed value is above or below the fitted value.

3. Nonlinear Models in the Exponential Family

As the modeling of exponential family distributions extends beyond linear relation-
ships, it becomes necessary to explore nonlinear formulations that offer greater flexibility in
capturing complex data patterns. In this section, we transition to nonlinear models within
the exponential family framework, focusing on the general structure and specific cases
such as the nonlinear negative binomial model.

3.1. General Structure of Nonlinear Models

Let Y1, . . . , Yn be independent random variables, each following the distribution with
density as defined in (1), where µi and ϕi > 0 satisfy the nonlinear structures given by

g(µi) = η1i = f1(x⊤i β), (14)

h(ϕi) = η2i = f2(z⊤i γ), i ∈ {1, . . . , n}, (15)

where β ∈ Rk and γ ∈ Rq are unknown parameter vectors with k + q < n. Here, η1i and
η2i are the nonlinear predictors, x⊤i = (xi1, . . . , xik) and z⊤i = (zi1, . . . , ziq) are observations
of k and q known and fixed covariates, respectively, for each i ∈ {1, . . . , n}.

The link functions g and h are strictly monotonic and twice differentiable. The func-
tions f1 and f2 are continuous and differentiable, ensuring that the Jacobian matrices,
J1 = ∂η1/∂β and J2 = ∂η2/∂γ namely, have full ranks k and q, respectively.
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The log-likelihood function for the structures presented in (14) and (15) is stated as
in (2), with the jth component of the score function with respect to β defined as

∂ℓ(θ)

∂β j
=

n

∑
i=1

∂ℓi(µi; ϕi)

∂µi

∂µi
∂η1i

∂η1i
∂β j

=
n

∑
i=1

ϕi(Yi − µi)

√
ωi
Vi

∂η1i
∂β j

, j ∈ {1, . . . , k},

where Vi = ∂µi/∂θi and ωi = (∂µi/∂η1i)
2/Vi. The score function can be expressed in

matrix form as Uβ = J⊤1 ΦW1/2V−1/2(Y − µ), where J1 = ∂η1/∂β is an n × k matrix,
Φ = diag{ϕ1, . . . , ϕn}, W = diag{ω1, . . . , ωn}, V = diag{V1, . . . , Vn}, Y = (Y1, . . . , Yn)⊤,
and µ = (µ1, . . . , µn)⊤. Assuming that c(Yi; ϕi) = d(ϕi) + ϕia(Yi) + u(Yi), the score func-
tion with respect to γ is given by

∂ℓ(θ)

∂γj
=

n

∑
i=1

∂ℓi(µi; ϕi)

∂ϕi

∂ϕi
∂η2i

∂η2i
∂γj

=
n

∑
i=1

(ti + d′(ϕi))
∂ϕi
∂η2i

∂η2i
∂γj

, j ∈ {1, . . . , q},

where ti = Yiθi − b(θi) + a(Yi). Similarly, the score function for γ can be expressed as
Uγ = J⊤2 H−1

γ (t−µ∗), where J2 = ∂η2/∂γ is an n× q matrix, Hγ = diag{h′(ϕ1), . . . , h′(ϕn)},
h′(ϕi) = ∂η2i/∂ϕi, t = (t1, . . . , tn)⊤, and µ∗ = (µ∗

1 , . . . , µ∗
n)

⊤.
The Fisher information matrix is derived from the second-order derivatives of the

log-likelihood function with respect to the parameter vector. For j, l ∈ {1, . . . , k}, we have

∂2ℓ(θ)

∂β j∂βℓ
=

n

∑
i=1

ϕi
∂

∂βℓ

(√
ωi
Vi

)
(Yi − µi)

∂η1i
∂β j

−
n

∑
i=1

ϕi

√
ωi
Vi

(
∂µi
∂η1i

)2 ∂η1i
∂β j

∂η1i
∂βl

,

and for j, l ∈ {1, . . . , q}, we reach

∂2ℓ(θ)

∂γj∂γl
=

n

∑
i=1

(
ti + d′(ϕi)

)∂η2i
∂γj

∂

∂γl

(
∂ϕi
∂η2i

)
+

n

∑
i=1

d′′(ϕi)

(
∂ϕi
∂η2i

)2 ∂η2i
∂γj

∂η2i
∂γl

.

For j ∈ {1, . . . , k} and l ∈ {1, . . . , q}, we obtain

∂2ℓ(θ)

∂β j∂γl
=

n

∑
i=1

(Yi − µi)

√
ωi
Vi

∂ϕi
∂η2i

∂η1i
∂β j

∂η2i
∂γl

.

Since E(Yi − µi) = 0 and E(ti − µTi ) = 0 (under regularity conditions), the expected
values of the above-presented derivatives are established as

E

(
∂2ℓ(θ)

∂β j∂βl

)
= −

n

∑
i=1

ϕiωi
∂η1i
∂β j

∂η1i
∂βl

, E

(
∂2ℓ(θ)

∂γj∂γl

)
= −

n

∑
i=1

d′′(ϕi)

(h′(ϕi))2
∂η2i
∂γj

∂η2i
∂γl

, E

(
∂2ℓ(θ)

∂β j∂γl

)
= 0.

Thus, the Fisher information matrix for θ is a block diagonal matrix given as
Kθθ = diag{Kββ, Kγγ}, where Kββ and Kγγ are the Fisher information matrices for β
and γ, respectively. These expected values can be expressed in matrix form as

Kββ = E
(
−∂2ℓ(β; γ)

∂β∂β⊤

)
= J⊤1 ΦW J1, Kγγ = E

(
−∂2ℓ(β; γ)

∂γ∂γ⊤

)
= J⊤2 PJ2,

where P = VγH−2
γ and Vγ = diag{−d′′(ϕ1), . . . ,−d′′(ϕn)}. The Poisson distribution is

commonly employed for modeling count data. However, it may present issues, particu-
larly in cases of overdispersion, where the observed variance exceeds the mean. In such
situations, the Poisson model becomes inadequate because it inherently assumes that the
mean and variance are equal.

A similar issue arises with the binomial model, where the dispersion parameter is
fixed as the value n; see Table 1. However, in a regression context, n is typically known and
does not vary, which can limit the model flexibility in accommodating overdispersion.
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3.2. Nonlinear Negative Binomial Model

In recent years, the negative binomial distribution has been increasingly utilized as
an alternative in situations where overdispersion is present. Overdispersion occurs when
the observed variance exceeds the mean, a scenario in which the Poisson regression model
becomes inadequate because it assumes that the mean and variance are equal. Ignoring
overdispersion can lead to relevant consequences, such as incorrect or underestimated
standard errors in parameter estimates.

Let Y be a random variable following a negative binomial distribution with parameters
µ > 0 and ϕ > 0, with its probability function given by

f (y; µ, ϕ) =
Γ(y + ϕ)

Γ(y + 1)Γ(ϕ)

(
ϕ

ϕ + µ

)ϕ( µ

ϕ + µ

)y
, y ∈ {0, 1, . . . }

where, as mentioned, Γ is the gamma function. We use the notation Y ∼ NB(µ, ϕ) for the
negative binomial distribution, and its expected value and variance are given by E(Y) = µ
and Var(Y) = µ + µ2/ϕ, respectively. When the parameter ϕ is known, the negative
binomial distribution belongs to the exponential family, with the canonical parameter being
θ = log(µ/(µ + ϕ)), the cumulant function b(θ) = −ϕ log(µ/(µ + ϕ)), the normalizing
function c(y; ϕ) = Γ(y + ϕ)/(Γ(y + 1)Γ(ϕ)), and the variance function V(µ) = µ + µ2/ϕ.

Consider Y1, . . . , Yn to be independent random variables such that Yi ∼ NB(µi, ϕi),
for i ∈ {1, . . . , n}, where the dispersion parameter ϕi is unknown. We assume a regression
structure in which µi and ϕi satisfy the nonlinear relationships defined in (14) and (15),
respectively. Let the vector of model parameters be θ = (β⊤, γ⊤)⊤ and the corresponding
log-likelihood function be expressed as

ℓ(θ) =
n

∑
i=1

(yi log(µi) + ϕi log(ϕi)− (yi + ϕi) log(µi + ϕi) + log(Γ(ϕi + yi))− log(Γ(ϕi))− log(Γ(yi + 1))),

where µi is the mean and ϕi the dispersion parameter, for i ∈ {1, . . . , n}. The score
functions for β and γ can be represented in matrix form as Uβ = J⊤1 W(y − µ) and
Uγ = J⊤2 W−1

γ c, where J1 = ∂η1/∂β is an n × k matrix, J2 = ∂η2/∂γ is an n × q matrix,
W = diag{ω1, . . . , ωn} with ωi = (∂µi/∂η1i)

2V(µi)
−1, Wγ = diag{h′(ϕ1), . . . , h′(ϕn)}

with h′(ϕi) = ∂η2i/∂ϕi, y = (y1, . . . , yn)⊤, and µ = (µ1, . . . , µn)⊤.
According to [48], the Fisher information matrix for θ = (β⊤, γ⊤)⊤ is block-diagonal

and given by Kθθ = diag{Kββ, Kγγ}, where Kββ and Kγγ are the Fisher information
matrices for β and γ, respectively. Thus, we can represent Kββ and Kγγ in matrix form as

Kββ = E
(
−∂2ℓ(β; γ)

∂β∂β⊤

)
= J⊤1 W J1, Kγγ = E

(
−∂2ℓ(β; γ)

∂γ∂γ⊤

)
= J⊤2 PJ2,

where P = TW−2
γ and T = diag{E(c′1), . . . , E(c′n)}, with c = (c1, . . . , cn)⊤ being the

residual vector for the dispersion model. The deviance function from the mean, assuming
ϕi is known, for i ∈ {1, . . . , n}, is given by

D∗(y, µ̂) = 2
n

∑
i=1

(
ϕi log

(
µ̂i + ϕi
yi + ϕi

)
+ yi log

(
yi(µ̂i + ϕi)

µ̂i(yi + ϕi)

))
.

In practice, ϕi is replaced by its ML estimate ϕ̂i. When yi = 0 for some i, the ith
component of the deviance is stated as

2ϕi log
(

yi + ϕi
µ̂i + ϕi

)
.

The construction of ordinary residuals depends on the Fisher scoring method used to obtain
the ML estimate; see Appendix B.
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By replacing the matrices X and Z with J1 and J2, respectively, we can express the
Fisher scoring method as an iterative weighted least squares process presented as

β(m+1) =
(

J⊤1 Φ(m)W (m) J1
)−1 J⊤1 Φ(m)W (m)u(m)

1 , (16)

γ(m+1) =
(

J⊤2 P(m) J2
)−1 J⊤2 P(m)u(m)

2 , (17)

where u(m)
1 = J1β(m) + W1/2(m)V−1/2(m)(y − µ(m)) and u(m)

2 = J2γ(m) + V−1(m)
γ H(m)

γ

(t − µ∗(m)). Upon convergence, we have

β̂ =
(

J⊤1 Φ̂Ŵ J1
)−1 J⊤1 Φ̂Ŵu1, (18)

γ̂ =
(

J⊤2 P̂J2
)−1 J⊤2 P̂u2, (19)

with
u1 = η̂1 + Ŵ1/2V̂−1/2(y − µ̂), u2 = η̂2 + V̂−1

γ Ĥγ(t − µ̂∗).

The expressions stated in (18) and (19) can be interpreted as the OLS estimates of β and
γ, respectively. In other words, to obtain β̂, consider the regression of the auxiliary variable
Φ̂1/2Ŵ1/2u1 on the covariate Φ̂1/2Ŵ1/2 J1, and to reach γ̂, consider the regression of the
auxiliary variable P̂1/2u2 on the covariate P̂1/2 J2. Consequently, the ordinary residuals (see
Appendix B) from these regressions are given by

rβ = Φ̂1/2Ŵ1/2(u1 − η̂1), rγ = P̂1/2(u2 − η̂2).

Thus, considering the residuals based on the sub-models for the mean and dispersion,
we have

rβ
i =

yi − µ̂i√
ϕ̂−1

i V̂i

, rγ
i =

ti − µ̂∗
i√

−d′′(ϕ̂i)
, i ∈ {1, . . . , n}.

These residuals can be standardized using the projection matrices from the OLS solutions
stated in (18) and (19). Specifically, we obtain

Ŝβ = Φ̂1/2Ŵ1/2 J1
(

J⊤1 Φ̂Ŵ J1
)−1 J⊤1 Ŵ1/2Φ̂1/2, (20)

Ŝγ = P̂1/2 J2
(

J⊤2 P̂J2
)−1 J⊤2 P̂1/2. (21)

Therefore, the corresponding standardized residuals are formulated as

rβ
si =

yi − µ̂i√
ϕ̂−1

i V̂i(1 − ŝβ
ii)

, rγ
si =

ti − µ̂∗
i√

−d′′(ϕ̂i)(1 − ŝγ
ii)

, i ∈ {1, . . . , n},

where ŝβ
ii and ŝγ

ii are the diagonal elements of the matrices presented in (20) and (21),
respectively.

We have analyzed various types of residuals within the context of GLM, focusing on
their roles in model diagnostics and goodness-of-fit evaluation. However, in scenarios
where both the mean and dispersion are modeled simultaneously, it is beneficial to consider
a combined residual that encapsulates the information from both aspects.

4. Standardized Combined Residuals

In this section, we introduce the concept of standardized combined residuals, designed
to integrate information from both the mean and dispersion sub-models into a single
diagnostic tool. This unified approach facilitates a more comprehensive assessment of
model adequacy. We begin by presenting a new standardized combined residual and then
extend the concept to accommodate broader model structures.
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4.1. New Standardized Combined Residual

The combined residual is calculated by summing the residuals from the mean and
dispersion components. Using the estimates from the formulas given in (16) and (17),
the combined residual for each observation i is defined as

rβγ
i = (yi − µ̂i) + (ti − µ̂∗

i ), i ∈ {1, . . . , n}, (22)

where yi is the observed response, µ̂i is the estimated mean from the mean sub-model, ti is
a function related to the dispersion component, and µ̂∗

i is the estimated value related to ti.
By combining these residuals, we capture discrepancies in both models.

To standardize the combined residual stated in (22), we calculate its variance. Using
the variances and covariances from the equations presented in (A2), (A5), and (A6) of
Appendix A, the variance of rβγ

i , denoted by ζi, is given as

ζi = ϕ−1
i b′′(θi)− d′′(ϕi), i ∈ {1, . . . , n}, (23)

where, as mentioned, b′′(θi) is the second derivative of the cumulant generating func-
tion b(θi) and d′′(ϕi) is the second derivative of the dispersion function d(ϕi). The term
ϕ−1

i b′′(θi) established in (23) represents the variance from the mean sub-model, while
d′′(ϕi) accounts for variability in the dispersion sub-model.

With ζi computed, we define the standardized combined residual as

rβγ
Si

=
(yi − µ̂i) + (ti − µ̂∗

i )√
ζ̂i

, i ∈ {1, . . . , n},

where ζ̂i is the variance ζi evaluated at the estimated parameters µ̂i and ϕ̂i. This standard-
ization allows for comparison across observations and aids in identifying outliers or model
inadequacies by scaling the residuals.

Furthermore, we can estimate the covariance matrices of the parameter estimators
β̂ and γ̂ to assess the variability in the model parameters. The approximate covariance
matrices are presented as

Cov(β̂) ≈
(

J⊤1 ΦW J1
)−1, Cov(γ̂) ≈

(
J⊤2 PJ2

)−1,

where J1 and J2 are the Jacobian matrices of the mean and dispersion models, respectively,
and Φ and P are diagonal weight matrices. These covariance matrices help to quantify the
uncertainty in the estimated parameters due to the data variability. Using these covariance
estimates, the normal equations for parameter estimation, originally expressed in (18) and
(19), can be approximated as(

J⊤1 ΦW J1
)

β̂ ≈ J⊤1 ΦWu1,
(

J⊤2 PJ2
)
γ̂ ≈ J⊤2 Pu2,

where u1 and u2 are the working responses for the mean and dispersion models. The left-
hand sides represent the information matrices, adjusted by projection matrices, projecting
residuals onto the parameter space. This simplifies the parameter estimation process by
solving weighted least squares problems.

Assuming that the estimated matrices Ŵ , Φ̂, and P̂ are good approximations of their
true counterparts W , Φ, and P, respectively, we can simplify the covariance for the working
responses as

Ĉov(u1) ≈ Ŵ−1Φ̂−1, Ĉov(u2) ≈ P̂−1,

where Ŵ , Φ̂, and P̂ are the diagonal matrices of weights and adjustments.
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With these approximations, the covariance matrices for rβ and rγ can be derived.
In regression, the covariance of residuals is expressed using projection matrices given by

Ĉov(rβ) ≈ (I − Ŝβ), Ĉov(rγ) ≈ (I − Ŝγ),

where I is the identity matrix, and Ŝβ and Ŝγ are the projection matrices for the mean and
dispersion models, respectively. These matrices reflect the variability explained by the
models, while I − Ŝ captures the unexplained portion.

To account for the covariances of u1 and u2, we use the standardized combined residual
by summing the individual standardized residuals. For observation i, it is defined as

rβγ
Si

=
rβ

i + rγ
i√

(1 − ŝβ
ii) + (1 − ŝγ

ii) + 2m̂ii

, i ∈ {1, . . . , n}, (24)

where rβ
i and rγ

i are the standardized residuals from the mean and dispersion models,

respectively; ŝβ
ii and ŝγ

ii are the ith diagonal elements of Ŝβ and Ŝγ, representing the leverage
of observation i in each model; and m̂ii is the ith diagonal element of the covariance matrix
M = Cov(rβ, rγ), capturing the covariance between the residuals of the two sub-models.

The denominator stated in (24) represents the combined variance of the residuals,
incorporating both individual variances and their covariance. This standardization ensures
that rβγ

Si
has a unit variance, allowing for consistent comparison across observations and

aiding in the detection of outliers or influential data points. However, evaluating the
standardized combined residual given in (24) requires calculating the projection matrices
Ŝβ and Ŝγ, as well as the covariance matrix. These calculations can be computationally
expensive, especially for large datasets where matrix operations become complex. The dif-
ficulty arises from the need for matrix inversions and multiplications involving the design
matrices, which scale poorly with the number of observations. Due to this, the practical im-
plementation of the standardized combined residual presented in (24), while it theoretically
sounds good, may be limited in applications with large datasets.

4.2. Background for the Generalized Standardized Combined Residual

Next, we develop a generalized form of the combined residual by relaxing certain
assumptions on the functional form of c(yi; ϕi). These conditions were previously used to
derive variance expressions, but by removing them, we focus on a broader estimation of
the dispersion parameter ϕi, which allows greater flexibility in model specification.

Let Y1, . . . , Yn be independent random variables, where each Yi, for i ∈ {1, . . . , n},
follows the density stated in (1). Then, the probability density function of Yi is given by

f (yi; θi, ϕi) = exp
(

θiyi − b(θi)

ϕi
+ c(yi; ϕi)

)
, i ∈ {1, . . . , n}, (25)

where θi is the canonical parameter, ϕi > 0 is the dispersion parameter, b is a known function
related to the cumulant generating function, and c(yi; ϕi) is a normalizing function.

Building on the nonlinear relationships defined in (14) and (15), we now provide a
more detailed explanation of the link functions and covariate effects.

The mean µi and dispersion parameter ϕi are linked to the covariates through nonlinear
functional relationships established such as in (14) and (15), that is, g(µi) = η1i = f1(x⊤i β)
and h(ϕi) = η2i = f2(z⊤i γ), for i ∈ {1, . . . , n}, where, as mentioned, g and h are known
link functions, xi and zi are vectors of covariates values for the mean and dispersion sub-
models, respectively, and β and γ are the parameter vectors to be estimated. The functions
f1 and f2 represent the nonlinear effects of the covariates on the mean and dispersion
components, allowing the model to capture more complex relationships between covariates
and the response.
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The log-likelihood function for the model based on all observations is given by

ℓ(θ) =
n

∑
i=1

ℓi(µi; ϕi) =
n

∑
i=1

{
θiyi − b(θi)

ϕi
+ c(yi; ϕi)

}
, (26)

where θ represents all the parameters in the model.
To derive the score function for the parameter vector β, we calculate the gradient of

the log-likelihood function with respect to β. Applying the chain rule, we obtain

Uβ =
∂ℓ(θ)

∂β
=

n

∑
i=1

∂ℓi
∂θi

∂θi
∂µi

∂µi
∂η1i

∂η1i
∂β

. (27)

Recognizing that ∂ℓi/∂θi = (yi − b′(θi))/ϕi and noting that b′(θi) = µi, the formula-
tion presented in (27) simplifies to

Uβ =
n

∑
i=1

(yi − µi)

ϕi

∂θi
∂µi

∂µi
∂η1i

∂η1i
∂β

. (28)

To express the equation stated in (28) in matrix form, we define:

• J1 = ∂η1/∂β as the n × k Jacobian matrix for the mean model;
• Φ = diag{ϕ1, . . . , ϕn} as the diagonal matrix of dispersion parameters;
• W = diag{ω1, . . . , ωn}, where ωi = (∂µi/∂η1i)

2/Vi, for i ∈ {1, . . . , n};
• V = diag{V1, . . . , Vn}, where Vi = Var(Yi) = ϕib′′(θi), for i ∈ {1, . . . , n};
• y = (y1, . . . , yn)⊤ and µ = (µ1, . . . , µn)⊤.

Then, we have that the score function is formulated as Uβ = J⊤1 Φ−1W(y − µ). This
formulation shows that the score function is a weighted sum of the residuals (y − µ), where
the weights take into account the variance structure and the link function. The information
matrix for β, which quantifies the information of the data about the parameters, is given by
the expected value of the negative second derivative of the log-likelihood function stated as

Kββ = E[−∂2ℓ(θ)/∂β∂β⊤] = J⊤1 Φ−1W J1.

This matrix plays a crucial role in parameter estimation and inference, as it is used to
compute standard errors and conduct hypothesis tests.

Next, we derive the score function for γ, the parameter vector associated with the
dispersion model. Starting with the partial derivative of the log-likelihood function with
respect to the jth element of γ, denoted by γj, and applying the chain rule, we obtain

∂ℓ(θ)

∂γj
=

n

∑
i=1

∂ℓi
∂ϕi

∂ϕi
∂η2i

∂η2i
∂γj

, j ∈ {1, . . . , q},

where the derivative ∂ℓi/∂ϕi represents how the log-likelihood function changes with
respect to the dispersion parameter ϕi and is given by

∂ℓi
∂ϕi

= − θiyi − b(θi)

ϕ2
i

+
∂c(yi; ϕi)

∂ϕi
, i ∈ {1, . . . , n}.

To simplify the notation in the model, we define the term ti, which captures the change
in the log-likelihood function with respect to ϕi. Specifically, we express ti as

ti =
∂ℓi
∂ϕi

= − θiyi − b(θi)

ϕ2
i

+ c′(yi; ϕi), i ∈ {1, . . . , n}, (29)

where c′(yi; ϕi) is the derivative of c(yi; ϕi) with respect to ϕi. This quantity ti can be inter-
preted as a residual that reflects the variability associated with the dispersion parameter.
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Next, we use ti to derive the score function for the dispersion parameters γ. Recogniz-
ing that ∂ϕi/∂η2i = h′(ϕi)

−1, where h′(ϕi) is the derivative of the dispersion link function
with respect to ϕi, we can express the score function for γ as

∂ℓ(θ)

∂γj
=

n

∑
i=1

tih′(ϕi)
−1 ∂η2i

∂γj
, j ∈ {1, . . . , q}, (30)

We can further express the formulation stated in (30) in matrix form, leading to the
score function for γ given by

Uγ = J⊤2 H−1
γ t, (31)

where J2 = ∂η2/∂γ is the Jacobian of the dispersion model, Hγ = diag{h′(ϕ1), . . . , h′(ϕn)}
is the diagonal matrix of link function derivatives, and t = (t1, . . . , tn)⊤ are the dispersion
residuals. The expression stated in (31) shows that the score function for γ is a weighted
sum of the components of t, incorporating both the link function and covariate effects,
and reflecting the role of the dispersion parameter ϕi in the model. To derive the second
derivative of the log-likelihood function presented in (26) with respect to γj and γl , we
differentiate the score function stated in (30) with respect to γl to obtain

∂2ℓ(θ)

∂γj∂γl
=

n

∑
i=1

{
∂ti
∂ϕi

(
∂ϕi
∂η2i

)2
+ ti

∂2ϕi

∂η2
2i

}
∂η2i
∂γj

∂η2i
∂γl

, j, l ∈ {1, . . . , q}, (32)

where t′i = ∂ti/∂ϕi describes how the dispersion residual changes with respect to ϕi,
and ∂2ϕi/∂η2

2i represents the second derivative of ϕi with respect to η2i, capturing the
curvature of the link function. The terms ∂η2i/∂γj and ∂η2i/∂γl are the derivatives of the
linear predictor with respect to the parameters. The curvature of the link function indicates
how changes in ϕi affect the linear predictor η2i through the link function.

The second derivative stated in (32) is crucial for constructing the Fisher information
matrix for γ. Under regularity conditions, the expected value of the score function is zero,
that is, E(Uγ) = 0. This fundamental property ensures that ML estimators are unbiased,
meaning that the average score across repeated samples equals zero. Substituting the
expression for the score function of γ from the formula given in (31), we get

E

(
n

∑
i=1

ti
∂ϕi
∂η2i

∂η2i
∂γj

)
= 0, j ∈ {1, . . . , q}.

Since ∂ϕi/∂η2i and ∂η2i/∂γj are deterministic functions (given the data and parameter
values), it follows that E(ti) = 0, for i ∈ {1, . . . , n}. This result shows that the expected
value of the dispersion residuals ti is zero, similar to the property that the mean residuals
(yi − µi) have zero expectation. Next, we consider the expected value of the second deriva-
tive of the log-likelihood function expressed in (26) with respect to γj and γl , as shown in
the formula given in (32). Taking expectation, we obtain

E

(
∂2ℓ(θ)

∂γj∂γl

)
=

n

∑
i=1

E(t′i)
(

∂ϕi
∂η2i

)2 ∂η2i
∂γj

∂η2i
∂γl

, j, l ∈ {1, . . . , q},

where t′i = ∂ti/∂ϕi represents the sensitivity of the dispersion residuals to changes in
the dispersion parameter ϕi. The term E(t′i) captures the expected curvature of the log-
likelihood function established in (26) with respect to ϕi.

Defining T = diag{−E(t′1), . . . ,−E(t′n)}, we can express the Fisher information matrix
for γ in matrix form as Kγγ = J⊤2 T H−2

γ J2, where J2 = ∂η2/∂γ is the Jacobian of the
dispersion model, containing the derivatives of the linear predictors η2i with respect to
γ, and Hγ = diag{h′(ϕ1), . . . , h′(ϕn)} is a diagonal matrix of the derivatives of the link
function h with respect to ϕi. The matrix T encapsulates the expected information provided
by each observation about the dispersion parameters.
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This Fisher information matrix quantifies the amount of information the data provide
about the dispersion parameters γ, and it is crucial for parameter estimation and inference,
such as computing standard errors and confidence intervals. Under the assumption that
the mean and dispersion parameters are orthogonal (that is, the cross-partial derivatives of
the log-likelihood with respect to β and γ are zero), the Fisher information matrix for the
full parameter vector θ = (β⊤, γ⊤)⊤ is block-diagonal stated as

Kθθ = diag{Kββ, Kγγ}. (33)

The block-diagonal structure presented in (33) simplifies the estimation process, as it allows
us to estimate β and γ separately without loss of efficiency.

4.3. Generalized Standardized Combined Residual

Our goal is to develop a residual that incorporates the Fisher scoring iterative process,
an optimization algorithm used to obtain ML estimates. This process is represented as an
iterative weighted least squares procedure, leveraging the quadratic approximation of the
log-likelihood function.

For the mean parameters β, this iterative procedure is expressed as in (16) by

β(m+1) =
(

J⊤1 W (m) J1
)−1 J⊤1 W (m)u(m),

where W (m) is the weight matrix at mth iteration, reflecting the variance of the observations
and the link function, and u(m) is the working response vector, which incorporates the
current estimates and residuals.

Similarly, for the dispersion parameters γ, the Fisher scoring update is given as

γ(m+1) =
(

J⊤2 P(m) J2
)−1 J⊤2 P(m)u∗(m), (34)

where P(m) = T(m)(H(m)
γ )−2 is the weight matrix for the dispersion model at mth itera-

tion. This matrix combines the expected information from T(m) with adjustments from
the link function derivatives. The working response vector for the dispersion model,
u∗(m) = J2γ(m) + (T(m))−1H(m)

γ t namely, accounts for the current parameter estimates and
the dispersion residuals t.

In the expression stated in (34), H(m)
γ and T(m) are evaluated using the current param-

eter estimates γ(m). This iterative weighted least squares procedure refines the parameter
estimates by solving a sequence of linear approximations to the score equations. At each
iteration, the weights and working responses are updated based on the current estimates,
progressively improving the parameter estimates until convergence.

By developing a residual based on this iterative process, we can create diagnostic
measures that reflect the influence of individual observations on the estimation of both
mean and dispersion parameters. These residuals help to identify outliers or influential
data points that may disproportionately affect the model fit.

Upon convergence of the iterative weighted least squares procedure, we obtain the
estimate of the dispersion parameters γ̂. Specifically, the converged estimate is given by

γ̂ =
(

J⊤2 P̂J2
)−1 J⊤2 P̂u∗, (35)

where P̂ is the weight matrix evaluated at the converged estimates, J2 is the Jacobian matrix
of the dispersion model, and u∗ is the working response vector for the dispersion sub-model.

The expression presented in (35) shows that γ̂ can be interpreted as the weighted
least squares estimator of the transformed response u∗ on the covariates represented by J2,
with weights given by P̂.
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By pre-multiplying both the response and the covariate matrix by P̂1/2, we can view
the estimation process as an OLS problem formulated as

γ̂ =
(
(P̂1/2 J2)

⊤(P̂1/2 J2)
)−1

(P̂1/2 J2)
⊤(P̂1/2u∗).

This formulation provides an intuitive understanding of the estimation process, emphasiz-
ing the role of the weights in adjusting for heteroscedasticity in the dispersion model.

The residuals for the dispersion parameters γ can be defined based on the least squares
interpretation. The ordinary residual vector for γ is expressed as

rγ = P̂1/2(u∗ − J2γ̂). (36)

This expression interprets the residuals as the difference between the observed working
responses u∗ and the fitted values J2γ̂, scaled by the square root of the weight matrix P̂.

By substituting u∗ given in (34) into the definition of the residual vector rγ from the
expression presented in (36), we obtain

rγ = P̂1/2(J2γ̂ + T̂−1Ĥγt − J2γ̂
)
= P̂1/2T̂−1Ĥγt.

Recall that the weight matrix is defined as P̂ = T̂ Ĥ−2
γ . Then, its square root is

P̂1/2 = T̂1/2Ĥ−1
γ . Substituting this into the expression for the residuals, we get

rγ =
(
T̂1/2Ĥ−1

γ

)
T̂−1Ĥγt = T̂−1/2t.

This simplification shows that the residuals rγ are scaled versions of the dispersion resid-
uals t, adjusted by the inverse square root of the expected information from the Fisher
information matrix. Therefore, for each observation, the individual residual is expressed as

rγ
i = ti/(−E(t′i))

1/2, i ∈ {1, . . . , n},

where −E(t′i) represents the negative expected value of the derivative of ti with respect
to ϕi, effectively capturing the curvature of the log-likelihood function with respect to the
dispersion parameter.

Building on the residuals from both the mean and dispersion models, we can define
a combined residual that incorporates information from both components. Specifically,
the combined residual for observation i is defined as

rβγ
i = (yi − µ̂i) + ti, i ∈ {1, . . . , n}, (37)

reflecting the total deviation of the observed response from its expected value, accounting
for both the mean and dispersion effects.

To standardize the combined residual presented in (37) and facilitate comparison
across observations, we compute its variance given by

ζi = Var(rβγ
i ) = Var((yi − µ̂i) + ti) = Var(yi) + Var(ti) + 2 Cov(yi, ti), (38)

where Var(yi) = ϕib′′(θi) represents the variance of the response variable from the mean
model, and Var(ti) captures the variance of the dispersion residuals. The covariance
term Cov(yi, ti) accounts for any dependency between the response variable and the
dispersion residuals. Calculating Var(ti) and Cov(yi, ti) in the expression defined in (38)
requires careful consideration of the statistical properties of ti. As defined previously in
(29), ti represents the change in the log-likelihood function with respect to ϕi. The term
c′(yi; ϕi) = ∂c(yi; ϕi)/∂ϕi depends on the specific form of the function c(yi; ϕi), which is
model-dependent. Without specific assumptions about c(yi; ϕi), the direct computation of
Var(ti) and Cov(yi, ti) can be challenging. However, these terms are crucial for accurately
quantifying the combined residual variance and ensuring robust model diagnostics.
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To address this challenge, we can use asymptotic approximations or empirical es-
timates. Under regularity conditions and assuming a large sample size, Var(ti) can be
approximated using the observed information as Var(ti) ≈ −E(t′i) = −E(∂ti/∂ϕi). Simi-
larly, Cov(yi, ti) may be approximated by considering the covariance between the score
functions for β and γ. If the mean and dispersion parameters are orthogonal (that is,
their cross-derivatives are zero), the covariance term may be negligible. Substituting these
approximations, the variance of the combined residual simplifies to ζi = Var(yi) + Var(ti),
for i ∈ {1, . . . , n}. Thus, the standardized combined residual is expressed as

rβγ
Si

=
(yi − µ̂i) + ti√
ϕib′′(θi)− E(t′i)

, i ∈ {1, . . . , n}.

In practice, the unknown quantities are replaced with their estimates evaluated at the
fitted values as ζ̂i = ϕ̂ib′′(θ̂i)− Ê(t′i), for i ∈ {1, . . . , n}, yielding the estimated standardized
combined residual formulated as

rβγ
Si

=
(yi − µ̂i) + t̂i√

ζ̂i

, i ∈ {1, . . . , n}. (39)

This standardized residual presented in (39) combines the deviations from both the mean
and dispersion models into a single metric, making it easier to identify observations that
may be outliers or exert undue influence on the model fit. By appropriately scaling the
combined residual, we ensure consistent interpretation across observations, facilitating
effective diagnostic assessment.

In the case where the response variable follows a negative binomial distribution,
calculating Var(ti) and Cov(yi, ti) for the standardized combined residual may not be
straightforward due to the complexity of the function c′(yi; ϕi). This function arises from
the derivative of the normalization term c(yi; ϕi) in the exponential family representation
of the negative binomial distribution. To estimate V̂ar

(
c′(yi; ϕ̂i)

)
and Ĉov

(
yi, c′(yi; ϕ̂i)

)
, we

can employ numerical methods. Specifically, these estimates are computed by evaluating
the expectations over the distribution of Yi using the fitted values of the model parameters.
The estimated variance of c′(yi; ϕ̂i) is given by

V̂ar(c′(yi; ϕ̂i)) = Ê(c′(yi; ϕ̂i)
2)− (Ê(c′(yi; ϕ̂i)))

2, i ∈ {1, . . . , n},

and the estimated covariance between yi and c′(yi; ϕ̂i) is represented as

Ĉov
(
yi, c′(yi; ϕ̂i)

)
= Ê(yi c′(yi; ϕ̂i))− Ê(yi) Ê(c′(yi; ϕ̂i)), i ∈ {1, . . . , n}.

To compute these above-mentioned expectations numerically, we use the probability
function of the negative binomial distribution evaluated at the estimated parameters.
Hence, the expectations are approximated as

Ê
(
c′(yi; ϕ̂i)

)
=

∞

∑
j=0

c′(j; ϕ̂i) P̂(Yi = j), Ê
(
c′(yi; ϕ̂i)

2) = ∞

∑
j=0

c′(j; ϕ̂i)
2 P̂(Yi = j), Ê

(
yi c′(yi; ϕ̂i)

)
=

∞

∑
j=0

j c′(j; ϕ̂i) P̂(Yi = j),

where P̂(Yi = j) is the estimated probability that Yi takes the value j, given by the negative
binomial probability function evaluated at the estimated parameters µ̂i and ϕ̂i, given by

P̂(Yi = j) =
(

j + ri − 1
j

)(
µ̂i

µ̂i + ri

)j( ri
µ̂i + ri

)ri

,

with ri = 1/ϕ̂i. Since the sums over j from 0 to infinity are infinite, in practice, we truncate
the sums at a sufficiently large value Jmax, where the probabilities become negligible. This
truncation allows for numerical computation while maintaining accuracy.
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For example, we can choose Jmax such that ∑Jmax
j=0 P̂(Yi = j) ≥ 1 − ε, where ε is a

small number (for instance, 10−6). This ensures that we capture almost all the probability
mass in our calculations. By computing these sums numerically for each observation i, we
obtain the estimates V̂ar

(
c′(yi; ϕ̂i)

)
and Ĉov

(
yi, c′(yi; ϕ̂i)

)
needed for the variance ζ̂i of the

combined residual. Substituting these estimates into the expression for the standardized
combined residual, we have

rβγ
Si

=
(yi − µ̂i) + t̂i√

ϕ̂ib′′(θ̂i) + V̂ar
(
c′(yi; ϕ̂i)

)
+ 2 Ĉov

(
yi, c′(yi; ϕ̂i)

) , i ∈ {1, . . . , n}. (40)

Our approach allows us to compute the standardized combined residuals defined
in (40) numerically, accommodating the complexities inherent in the negative binomial
distribution. Thus, we maintain the diagnostic capabilities of the residuals while ensuring
that the calculations remain feasible in practice.

5. Evaluation of Model Fit Using Simulated Envelopes

This section explores methods for assessing model fit through simulated envelopes,
focusing on the analysis of residuals. The proposed techniques provide a robust approach
to identifying model misspecifications and aberrant observations, even when traditional
residual plots may be inadequate.

5.1. Simulated Envelopes for Residual Analysis

The residuals proposed in this study do not limit to normality. Consequently, the con-
ventional thresholds of [−2, 2] commonly used in residual plots for evaluating model fit
against observation indices, covariate values, or predicted values may not be appropriate.
To address this limitation, we use a method based on the empirical quantiles derived from
simulated envelopes for residual analysis. This method serves as a helpful diagnostic
tool, accurately capturing the underlying probabilistic structure of the residuals, even
in situations where key assumptions regarding the data or model are not satisfied.

Simulated envelope-based probability plots are highly effective for evaluating the
goodness of fit of statistical models and detecting potential outliers. Residuals that fall
outside the bounds of the simulated envelope are flagged as outliers [49]. The procedure
for constructing these plots is rigorously outlined in Algorithm 1. A visual representation
of this algorithm is provided in the accompanying flowchart of Figure 1. To facilitate un-
derstanding of how this procedure can be implemented in practice, we provide a complete
example in R code; see Appendix C. This example demonstrates the simulation and residual
analysis steps discussed in this section, helping readers bridge the gap between theory
and application.

The adequacy of the model fit is confirmed if, in the QQ plots with simulated envelopes,
the residuals lie inside the bounds of the simulated confidence bands. This indicates that the
distribution of the residuals from the model closely approximates the expected empirical
distribution under the assumed model, thereby validating the model assumptions.

To evaluate the performance of the proposed residuals under different conditions for
the mean and dispersion sub-models, we analyze the following scenarios:

(i) [Model 1] Yi ∼ Gamma(µi; ϕ1) with µ−1
i = β1 + xβ2

i and log(ϕi) = γ1 + zγ2
i , where

β1 = 1, β2 = 0.8, γ1 = 1, γ2 = 1.5, xi are values from X ∼ U(0.1, 1.1), zi are values
from Z ∼ U(0.4, 1.4), and i ∈ {1, . . . , 80}.

(ii) [Model 2] Yi ∼ BN(µi; ϕ1) with log(µi) = β1 + xβ2
i and log(ϕi) = γ1 + zγ2

i , where
β1 = 1.6, β2 = 0.8, γ1 = −0.3, γ2 = 0.5, xi are values from X ∼ U(0.1, 1.1), zi are
values from Z ∼ U(0.4, 1.4), and i ∈ {1, . . . , 80}.

The choice of these parameters was made to reflect realistic scenarios where both the
mean and dispersion sub-models vary according to different covariates, allowing for a
comprehensive evaluation of the residuals performance under varying conditions.
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Figure 2 shows plots with envelopes for Models 1 and 2, generated under the correct
model and n = 80. In these plots, the solid blue lines are the 2.5th and 97.5th percentiles
of 100 simulated points for each observation, whereas the dashed blue line is the median.
The empirical distributions of the residuals match the estimated distributions, indicating a
good fit. Thus, we conclude that the standardized combined residual proves satisfactory
performance across all analyzed scenarios, as all observed quantiles lie inside the simulated
envelopes, suggesting a suitable fit.

Algorithm 1 Construction of simulated envelopes for residual analysis

1: Input: Fitted model, number of simulations m, sample size n
2: Output: Simulated envelopes for residuals, diagnostic plots
3: Step 1: Model fitting and initial residual calculation
4: Fit the initial model to the observed data to obtain the estimated residuals. The residuals can be

ordinary residuals, deviance residuals, or any other residual type relevant to the model being
analyzed.

5: Compute the residuals from the fitted model.
6: Step 2: Simulation procedure
7: for j = 1 to m do
8: Generate a simulated sample of n independent observations based on the fitted model

parameters.
9: Refit the model to the simulated sample.

10: Calculate and store the absolute values of the residuals from the refitted model.
11: end for
12: Step 3: Construction of empirical quantiles
13: for i = 1 to n do
14: Obtain the empirical quantiles: 2.5th percentile, mean, and 97.5th percentile, for each ordered

set of residuals. These quantiles represent the interval where 95% of the residuals are expected to
fall, assuming the model is correctly specified.

15: end for
16: Step 4: Diagnostic plotting
17: Construct a quantile versus quantile (QQ) plot by plotting the ordered residuals from the original

data against the theoretical quantiles of the standard normal distribution.
18: Overlay the simulated envelope, constructed from the empirical quantiles, onto the plot.
19: Step 5: Model fit assessment
20: Assess the model fit by evaluating whether the residuals lie inside the simulated envelope.
21: if the residuals fall within the simulated envelope then
22: Conclude that the model provides an adequate fit.
23: else
24: Identify potential model inadequacies.
25: Optional step: Model check
26: If important deviations are observed, consider checking the model. Possible check includes

re-specifying the model structure, adjusting for heteroscedasticity, or considering alternative
distributions.

27: Refit the checked model and repeat Steps 1-5.
28: end if
29: Step 6: Application of model-specific diagnostics (if necessary)
30: if applicable (for example, in specific distributions such as binomial or Poisson models) then
31: Use additional diagnostic checks relevant to the specific type of model (for example, checks

for overdispersion, zero-inflation).
32: end if
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Figure 1. Flowchart illustrating the construction of simulated envelopes for residual analysis.
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Figure 2. Probability plots with simulated envelope for the indicated model, where the solid blue
lines are the 2.5th and 97.5th percentiles of 100 simulated points for each observation, whereas
the dashed blue line is the median, with the symbol “+” indicating the empirical values.
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5.2. Residual Analysis under Incorrect Model Specification

One of the common errors in modeling a dataset is assuming constant dispersion, while
the real data-generating process may involve varying dispersion. Such misspecification
can importantly impact residual analysis, as the empirical distribution of the residuals may
deviate substantially from expectations based on correct model assumptions.

To detect this type of misspecification, we evaluate the empirical distribution of model
residuals using probability plots. Typically, these plots are employed to assess model fit
under correct specifications. However, when model assumptions are violated, the residual
distributions can exhibit important deviations, such as skewness or kurtosis, that differ from
those of a standard normal distribution. Even if the residuals appear approximately nor-
mally distributed, caution is necessary. Relying on conventional thresholds of the standard
normal distribution—for example, [−2, 2]—to identify outliers may lead to misleading
conclusions, as the true residual distribution may not adhere to this standard. To address
this, we propose using thresholds derived from simulated envelopes. Specifically, we
employ the 2.5th and 97.5th percentiles of the empirical distribution of simulated residuals
as cut-off bands in residual plots. This employment is computationally efficient because it
leverages the residuals already simulated.

To illustrate our diagnostic method, we present examples where dispersion modeling
is ignored, meaning that a model with constant dispersion is assumed. In these simulations,
the true dispersion sub-model is given by log(ϕi) = γ1 + zγ2

i , where the covariate value
zi = 1, for i ∈ {1, . . . , 25}, and zi = 1.5, for i ∈ {26, . . . , 50}. The degree of heterogeneity
is defined as λ = max{ϕ1, . . . , ϕn}/min{ϕ1, . . . , ϕn}. Note that λ depends on the true
values of the parameters γ1 and γ2. For models where the response follows a continuous
distribution (for example, normal, gamma, or inverse Gaussian —IG—), we consider
γ1 = 1 and γ2 = 2, implying λ ≈ 20; if γ2 = 2.46, then λ ≈ 40; and if γ2 = 3.07, then
λ ≈ 100. For a response following a negative binomial distribution, we consider γ1 = 1
and γ2 = 3.07, implying λ ≈ 100; if γ2 = 3.54, then λ ≈ 200; and if γ2 = 4, then λ ≈ 400.
However, during parameter estimation, varying dispersion is disregarded, and only the
mean of the response variable is modeled. Thus, we analyze the following scenarios:

(i) [Model 1] Yi ∼ Gamma(µi; ϕi) with µ−1
i = β1 + xβ2

i , where β1 = 1, β2 = 0.8, and xi
are values from X ∼ U(0.1, 1.1), for i ∈ {1, . . . , 50}.

(ii) [Model 2] Yi ∼ BN(µi; ϕi) with log(µi) = β1 + xβ2
i , where β1 = 1.6, β2 = 0.8, and xi

are values from X ∼ U(0.1, 1.1), for i ∈ {1, . . . , 50}.

Figures 3 and 4 illustrate the behavior of residuals when the response variable follows
gamma and negative binomial distributions, respectively. In both cases, the residuals
disagree with the model specification, as the residuals fall outside the simulated envelope.
This disagreement becomes more pronounced with increasing heterogeneity, denoted by λ.
However, for the negative binomial response model, the detection of incorrect specification
is more subtle. As λ increases, the probability plots show only slight differences, likely due
to the robustness of the parameter estimation process across varying dispersion parameters.

The residual plots for detecting atypical observations are presented in Figures 5 and 6,
which show the distribution of residuals versus observation indices for the gamma and
negative binomial models, respectively. A consistent pattern is evident across all plots,
initially indicating an incorrect model specification. Typically, a good model fit is character-
ized by randomly distributed residuals. Notably, the combined residuals more prominently
highlight aberrant observations, as these points deviate further from the established cut-
off bands. The proposed method using simulated envelopes offers an improvement over
traditional methods of residual analysis, which often rely on fixed thresholds, such as
[−2, 2], that assume normality of residuals. This assumption is frequently violated in com-
plex models, especially in GLM with varying dispersion. By constructing envelopes based
on empirical quantiles from simulations, our diagnostic method provides a more accurate
reflection of the underlying distribution of residuals, even when traditional residual plots
may fail to capture deviations from model assumptions.
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Figure 3. Probability plots of standardized ordinary residuals, deviance residuals, and combined
residuals under incorrect specification for Model 1 across different levels of heterogeneity λ, with
simulated envelope for the indicated model, where the solid blue lines are the 2.5th and 97.5th
percentiles of 100 simulated points for each observation, whereas the dashed blue line is the median,
with the symbol “+” indicating the empirical values.

The above-mentioned construction makes our method more robust and reliable for
detecting model misspecifications and outliers, as demonstrated in the performance eval-
uation across different simulated scenarios. It is also noteworthy that the new limits for
detecting outliers differ from the conventional [−2, 2] range in several situations. For in-
stance, in a model with a negative binomial distribution, the upper limit is less than 2; see
Figure 6.
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(i) rβγ
p for λ = 400

Figure 4. Probability plots of standardized ordinary residuals (rβ
p), deviance residuals (dµ(µ̂i; ϕ̂i)),

and combined residuals (rβγ
p ) under incorrect specification for Model 2, evaluated at different levels

of heterogeneity λ, where the residuals are plotted for λ = 100, λ = 200, and λ = 400, where the solid
blue lines are the 2.5th and 97.5th percentiles of 100 simulated points for each observation, whereas
the dashed blue line is the median, with the symbol “+” indicating the empirical values.

In the previous sections, we developed and evaluated the effectiveness of various
residuals for diagnosing the goodness of fit in models with both mean and dispersion
components. We now transition from theoretical considerations to practical illustrations of
these concepts by means of empirical applications.
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(i) rβγ
p for λ = 100

Figure 5. Plots of residuals against observation indices under incorrect specification for Model 1, eval-
uated at different levels of heterogeneity λ, where the plots compare standardized ordinary residuals
(rβ

p), deviance residuals (dµ(µ̂i; ϕ̂i)), and combined residuals (rβγ
p ) for λ = 20, λ = 40, and λ = 100,

where the dashed blue lines are the thresholds [−2, 2] of the standard normal distribution, the symbol
“+” indicates the empirical values, and the blue numbers are outliers.
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Figure 6. Plots of standardized ordinary residuals (rβ
p), deviance residuals (dµ(µ̂i; ϕ̂i)), and combined

residuals (rβγ
p ) against observation indices under incorrect specification for Model 2, evaluated at

different levels of heterogeneity λ, where the plots correspond to λ = 100, λ = 200, and λ = 400, with
the dashed blue lines being the thresholds [−2, 2] of the standard normal distribution, the symbol “+”
indicating the empirical values, and the blue numbers being outliers.

6. Empirical Applications

This section presents two empirical applications where the proposed standardized
combined residual is used to analyze real datasets, highlighting its utility in detecting
model inadequacies and identifying potential outliers.
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6.1. Application 1: Shear Force in Snack Products

The dataset analyzed in this application, as presented in [1], originates from an experi-
ment conducted at the Nutrition Department of the Faculty of Public Health, University of
São Paulo, Brazil. This experiment was conducted to evaluate a new type of snack product,
specifically focusing on the impact of replacing hydrogenated vegetable fat—traditionally
used to fix the aroma in snacks—with canola oil. Five different formulations of the snack
were tested over a period of 20 weeks, varying in the proportions of fat and canola oil,
as detailed below:

• Characteristic A —22% fat, 0% canola oil.
• Characteristic B —0% fat, 22% canola oil.
• Characteristic C —17% fat, 5% canola oil.
• Characteristic D —11% fat, 11% canola oil.
• Characteristic E —5% fat, 17% canola oil.

The experimental design involved collecting 15 samples for each formulation in even-
numbered weeks, resulting in a total of 150 observations per formulation across the study
period. The primary response variable in this study was the force required to shear the
snack, which serves as a measure of the product texture. The covariates include the group
(A, B, C, D, or E) representing the snack formulation, and the week of collection.

Step 1: Model fitting and initial residual calculation

We denote yijk as the shear force for the kth replicate of the ith group in the jth week,
where k ∈ {1, . . . , 15} represents the replicates within each group-week combination;
j ∈ {2, 4, 6, . . . , 20} denotes the even-numbered weeks during which measurements were
taken, and i corresponds to the different snack formulations, specifically groups A, B, C,
D, and E. To analyze the data, we apply a joint modeling approach for both the mean and
dispersion of the gamma-distributed response variable. The systematic components of
the model are expressed as µij = β0 + βi + β6weekj + β7week2

j and log(ϕij) = γ0 + γi +

γ6weekj + γ7week2
j , where the baseline parameters β0 and γ0 represent the effects on the

mean and dispersion, respectively, for Group A (22% fat, 0% canola oil); the coefficients βi
and γi (i ∈ {B, C, D, E}) account for the deviations in the mean and dispersion associated
with groups B, C, D, and E relative to Group A; the terms β6 and γ6 capture the linear
effect of the week on the mean and dispersion; while β7 and γ7 capture potential nonlinear
trends over time through the quadratic term for the week. This model structure allows us
to assess the impact of different formulations and the passage of time on the texture (shear
force) of the snack products, while also accounting for variability within and between
different formulations.

Step 2: Simulation procedure

To assess the adequacy of the model, we generate simulated samples and refit the
model for each simulated sample. For each simulation, the absolute values of the residuals
are computed and stored. This step follows the approach detailed in Appendix D.2, where
the behavior of various residuals is empirically evaluated through Monte Carlo simulations.

Step 3: Construction of empirical quantiles

After generating and refitting the model m times, we calculate the empirical quantiles
(2.5th percentile, mean, and 97.5th percentile) for each ordered set of residuals, as described
in Appendix D, particularly in the context of gamma-distributed response variables as
shown in Table A2.

Step 4: Diagnostic plotting

Then, we plot the ordered residuals from the original data against the theoretical
quantiles of the standard normal distribution. The simulated envelopes are overlaid on the
plot, as shown in Figure 7. This aligns with the simulation-based diagnostics discussed in
Appendix D, which confirm the effectiveness of using simulated envelopes for assessing
model adequacy.
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Step 5: Model fit assessment

The parameter estimates provided in Table 2 reveal that Group A exhibits the highest
shear force, indicating a firmer texture compared to the other groups, particularly groups
D and E, which show the lowest shear forces. Additionally, Group A shows the highest
variability in terms of the coefficient of variation. The standardized combined residual
introduced in this study integrates information from both the mean and dispersion models,
providing a more comprehensive diagnostic tool. Figure 7 presents the probability plot
with simulated envelopes for these residuals, finding no evidence of model misfit, as the
residuals fall within the expected bounds. This finding is consistent with the results from
the Monte Carlo simulations presented in Appendix D.2, which validate the reliability of
the standardized combined residual for diagnosing model adequacy in similar scenarios.
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Figure 7. Probability plot of the standardized combined residual for the joint modeling of the mean
and dispersion, assuming a gamma response for the snack data, where the solid blue lines are the
2.5th and 97.5th percentiles of 100 simulated points for each observation, with simulated envelopes,
whereas the dashed blue line is the median, with the symbol “+” indicating the empirical values.

Table 2. ML estimates for the parameters from the joint modeling of mean and dispersion with a
gamma response fitted to the snack data.

Mean Dispersion

Effect Estimate Standard Error p-Value Estimate Standard Error p-Value
Constant 36.990 3.208 0.00 −1.560 0.214 0.00
Group B −10.783 1.684 0.00 −0.477 0.161 0.00
Group C −3.478 1.763 0.00 −0.050 0.160 0.07
Group D −14.829 1.614 0.00 −0.815 0.161 0.00
Group E −15.198 1.622 0.00 −0.817 0.161 0.00
week 5.198 0.525 0.00 −0.155 0.039 0.00
week2 −0.189 0.212 0.00 0.005 0.001 0.00

6.2. Application 2: Root Production in Apple Shoots

In this application, we examine a dataset provided in [50], which explores the stan-
dardized combined residual when the model response variable is discrete. The data
come from an experiment on apple crops, focusing on the number of roots produced by
270 micropropagated shoots. These shoots were grown under two different photoperiod
conditions (8 or 16 h of light exposure) and five varying concentrations of benzylaminop-
urine (BAP) cytokinin. The variables used in the model are defined as follows:

• Yi—Number of roots for the ith shoot;
• Xi1—Photoperiod (0 = 8 h, 1 = 16 h);
• Group 1—BAP cytokinin concentration of 2.2;
• Group 2—BAP cytokinin concentration of 4.4;
• Group 3—BAP cytokinin concentration of 8.8;
• Group 4—BAP cytokinin concentration of 17.6;
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• Group 5—BAP cytokinin concentration of 18.6.

Step 1: Model fitting and initial residual calculation

We perform joint modeling of the mean and dispersion for the response variable,
assuming a negative binomial distribution. The systematic component of the model is
specified as log(µi) = β0 + β1xi1 + β j and log(ϕij) = γ0 + γ1xi1 + γj, where the index
i represents the individual micropropagated shoot, for i ∈ {1, . . . , 270}. Each shoot is
subject to one of two photoperiod conditions (8 or 16 h of light exposure) and one of
five BAP cytokinin concentration groups, whereas the index j corresponds to the BAP
cytokinin concentration group, for j ∈ {1, . . . , 5}, representing the five levels of cytokinin
concentration tested in the experiment. The parameter β0 represents the baseline effect
on the mean number of roots (response variable) for Group 1 (BAP concentration of 2.2)
under the 8-hour photoperiod condition. Similarly, γ0 represents the baseline effect on
the dispersion for the same group and condition. The coefficients β1 and γ1 capture the
effect of increasing the photoperiod from 8 to 16 h on the mean and dispersion, respectively.
The terms β j and γj account for deviations in the mean and dispersion associated with
each BAP concentration group relative to Group 1. The choice of setting β2 = 0 and γ2 = 0
implies that Group 1 serves as the reference group, allowing us to interpret the other
groups’ effects as deviations from this baseline. This model structure enables us to quantify
both the direct effect of photoperiod on root production and how this effect varies across
different cytokinin concentrations, providing a comprehensive understanding of the factors
influencing root production in the experiment.

Step 2: Simulation procedure

To evaluate the model fit, we generate simulated samples and refit the model for each
simulated dataset. For each simulation, the absolute values of the residuals are computed
and stored. This procedure is aligned with the approach detailed in Appendix D, where
similar simulations were conducted to assess the behavior of residuals in negative binomial
models; see Table A4.

Step 3: Construction of empirical quantiles

After generating and refitting the model m times, we calculate the empirical quantiles
(2.5th percentile, mean, and 97.5th percentile) for each ordered set of residuals, consistent
with the methodology applied in Appendix D.

Step 4: Diagnostic plotting

Then, we plot the ordered residuals from the original data against the theoretical
quantiles of the standard normal distribution. The simulated envelopes are overlaid on
the plot, as shown in Figure 8. This technique of using simulated envelopes is validated in
Appendix D, where the reliability of the standardized combined residuals in the context of
negative binomial models is confirmed; see Table A4.

Step 5: Model fit assessment

The parameter estimates reported in Table 3 indicate that Group 1 exhibits the highest
root production among the shoots, while groups 4 and 5 have the lowest root counts.
Additionally, Group 1 shows the greatest variability in terms of the coefficient of variation.
The probability plot of the standardized combined residual, shown in Figure 8, strongly
suggests that the proposed model does not adequately fit the data.

Given the inadequacy of the initial model, we propose a simplified systematic compo-
nent that only accounts for the photoperiod effect formulated as follows:

log(µi) = β0 + β1xi1, log(ϕij) = γ0 + γ1xi1. (41)

Table 4 presents the ML estimates for the simplified model specified in (41).
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Figure 8. Probability plot of the standardized combined residual considering the joint modeling of
the mean and dispersion, assuming a negative binomial response fitted to the apple dataset, with
simulated envelopes, where the solid blue lines are the 2.5th and 97.5th percentiles of 100 simulated
points for each observation, with simulated envelopes, whereas the dashed blue line is the median,
with the symbol “+” indicating the empirical values.

Table 3. ML estimates for the parameters in the joint modeling of the mean and dispersion with a
negative binomial response fitted to the apple dataset.

Mean Dispersion

Effect Estimate Standard Error p-Value Estimate Standard Error p-Value

Constant 1.78 0.091 0.00 2.34 0.527 0.00
Photoperiod −0.92 0.151 0.00 −3.79 0.463 0.00
Group 2 0.26 0.119 0.03 0.46 0.485 0.34
Group 3 0.23 0.110 0.03 0.92 0.491 0.06
Group 4 0.17 0.112 0.12 0.69 0.484 0.15
Group 5 −0.87 1.013 0.16 10.08 105.6 0.92

Table 4. ML estimates for the parameters in the simplified joint modeling of the mean and dispersion
with a negative binomial response fitted to the apple dataset.

Mean Dispersion
Effect Estimate Standard Error p-Value Estimate Standard Error p-Value
Constant 1.96 0.419 0.00 2.77 0.038 0.00
Photoperiod −0.91 0.458 0.00 −3.68 0.152 0.00

The probability plot for the standardized combined residual from the checked model
is presented in Figure 9. Unlike Figure 8, where most points are outside the simulated
envelopes, the checked model probability plot shows that only a few points, particularly in
the tails, are outside the envelopes. This suggests that the checked model provides a much
better fit to the data, consistent with findings from the simulations of the negative binomial
model presented in Appendix D; see Table A4.
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Figure 9. Probability plot of the standardized combined residual considering the joint modeling of
the mean and dispersion, assuming a negative binomial response fitted to the apple dataset after
model selection, with simulated envelopes, where the solid blue lines are the 2.5th and 97.5th per-
centiles of 100 simulated points for each observation, with simulated envelopes, whereas the dashed
blue line is the median, with the symbol “+” indicating the empirical values..

7. Conclusions and Future Work

In this work, we introduced a new residual—the standardized combined residual—
designed for classes of linear and nonlinear models within the exponential family, aimed
at evaluating the goodness of fit in various scenarios. The need for this new residual
arises from the limitations observed in traditional residuals, particularly when dealing
with models that incorporate both mean and dispersion sub-models. Traditional residuals
often fall short in adequately capturing the complexities of such models, especially in the
presence of heteroscedasticity or nonconstant variance.

The standardized combined residual offers several advantages over existing methods.
An important advantage is its construction, which integrates the Fisher iterative scoring
process for both the mean and dispersion models. This allows for a unified diagnostic
analysis, as it considers a single group of residuals that encapsulate information from both
sub-models, rather than requiring separate analyses for each component. Our approach
simplifies the evaluation process, particularly in generalized linear models and other
models where variance is not constant. Moreover, the proposed residual does not require
the computation of projection matrices, which are often computationally intensive and
challenging to interpret. This results in reduced computational costs and enhances the
practicality of the diagnostic process. The standardized combined residual also behaves
similarly to the deviance residual, which is widely used in practical applications, making
it an accessible tool for practitioners. A notable feature of the standardized combined
residual is its independence from the method of maximization used to estimate model
parameters. Whether using traditional optimization techniques or more advanced methods
like simulated annealing [51], the residual relies solely on the parameter estimates, making
it versatile and robust across different scenarios.

The empirical applications presented in this article, including the analysis of shear
force in snack products and root production in apple shoots, showed the utility of the
standardized combined residual in practical settings. In both cases, the new residual
provided clear insights into model fit and highlighted inadequacies that were not as evident
with traditional residuals. Specifically, the application to the apple shoot data underscored
the importance of considering both the mean and dispersion in the model, as the initial
model was found to be inadequate when evaluated with the new residual.
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However, the standardized combined residual has certain limitations. Its effectiveness
depends on the correct specification of both the mean and dispersion models. In scenarios
where either sub-model is misspecified, the residual may not fully capture the inadequacies.
Additionally, while it is computationally less intensive than methods requiring projection
matrices, it still relies on accurate parameter estimation, which can be challenging in
complex models or with limited data.

While the detailed derivation of certain asymptotic properties of the estimators is
not the primary focus of this work, the developed framework provides clear insights into
the robustness of the methods employed. The estimators, obtained through maximum
likelihood methods and the Fisher scoring procedure, are expected to exhibit desirable prop-
erties, such as consistency and asymptotic normality, under regular conditions presented
in Appendix B. The regular conditions applied, particularly in the context of exponential
family distributions, support the notion that the proposed methodology provides accurate
estimates for large samples, as further elaborated in the appendix. This reinforces the
practical utility of the estimators, even in the absence of formal proofs of all properties in
the present work.

Although the standardized combined residual offers several advantages, particularly
in simplifying the diagnostic process and reducing computational costs, some trade-offs are
present. By combining the information from both the mean and dispersion sub-models into
a single residual, some level of detail may be sacrificed compared to using separate residuals
for each component. However, this trade-off was a deliberate decision to balance simplicity
with practicality, aiming to create an efficient and unified diagnostic tool. For most practical
applications, the benefits of a straightforward interpretation and reduced computational
burden outweigh the potential loss of specificity from separate residual analysis.

Future work should explore the extension of this residual to other classes of models,
particularly those outside the exponential family. There is also potential for further refine-
ment of the residual to enhance its robustness against model misspecifications. Additionally,
the development of software tools to automate the computation and interpretation of the
standardized combined residual would greatly benefit practitioners, making advanced
diagnostic methods more accessible in applied settings.

In summary, while the standardized combined residual offers a unified and computa-
tionally efficient method for evaluating models that incorporate both mean and dispersion
components, it also balances the trade-off between simplicity and the potential loss of gran-
ularity. Nonetheless, its development represents a step forward in statistical diagnostics,
with the potential for broader applications and continued refinement in future research.
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Appendix A. Canonical Form of the Exponential Family

Consider the function c(yi; ϕi) defined as c(yi; ϕi) = d(ϕi) + ϕia(yi) + u(yi). Us-
ing this definition, the expression stated in (25) can be reformulated as f (yi, θi, ϕi) =
exp(ϕiθiyi + ϕia(yi)− (ϕib(θi)− d(ϕi)) + u(yi)). From this formulation, the following
components can be identified: τ1(yi) = yi, τ2(yi) = a(yi), c1(θi; ϕi) = θiϕi, c2(θi; ϕi) = ϕi,
and δ(θi; ϕi) = ϕib(θi) − d(ϕi). The canonical parameters are, therefore, given by ν1 =
θiϕi ⇒ θi = ν1/ν2, and ν2 = ϕi. Consequently, the expression for δ0(ν1; ν2) becomes
δ0(ν1; ν2) = ν2b(ν1/ν2)− d(ν2). The expectations and variances of the sufficient statistics
τ1 and τ2 are then derived as

E(τ1) =
∂δ0(ν1; ν2)

∂ν1
= b′

(
ν1

ν2

)
= b′(θi), (A1)

Var(τ1) =
∂2δ0(ν1; ν2)

∂ν2
1

=
1
ν2

b′′
(

ν1

ν2

)
=

1
ϕi

b′′(θi), (A2)

E(τ2) =
∂δ0(ν1; ν2)

∂ν2
= b

(
ν1

ν2

)
− ν1

ν2
b′
(

ν1

ν2

)
− d′(ν2), (A3)

= b(θi)− θib′(θi)− d′(ϕi), (A4)

Var(τ2) =
∂2δ0(ν1; ν2)

∂ν2
2

=
ν2

1
ν3

2
b′′
(

ν1

ν2

)
− d′′(ν2) =

θ2
i

ϕi
b′′(θi)− d′′(ϕi), (A5)

Cov(τ1, τ2) =
∂δ0(ν1; ν2)

∂ν1∂ν2
= −ν1

ν2
b′′
(

ν1

ν2

)
= − θi

ϕi
b′′(θi). (A6)

For further details on these derivations and the broader context of the exponential
family, refer to [46,52].

Appendix B. Fisher Scoring Iterative Method

The score function derived from (3), (4), and (25) is given by ∂ℓ(θ)/∂θ = Uθ(θ) =(
U⊤

β , U⊤
γ

)⊤
, where Uβ = ∂ℓ(θ)/∂β and Uγ = ∂ℓ(θ)/∂γ. The Fisher scoring iterative

method for β is expressed as

β(m+1) = β(m) + (K(m)
ββ )−1Uβ(m) = β(m) +

(
X⊤Φ(m)W (m)X

)−1
X⊤Φ(m)W1/2(m)V−1/2(m)(y − µ(m))

=
(

X⊤Φ(m)W (m)X
)−1

X⊤Φ(m)W (m)Xβ(m) +
(

X⊤Φ(m)W (m)X
)−1

X⊤Φ(m)W1/2(m)V−1/2(m)(y − µ(m))

=
(

X⊤Φ(m)W (m)X
)−1

X⊤Φ(m)W (m)
(

η
(m)
1 + W−1/2(m)V−1/2(m)(y − µ(m))

)
=
(

X⊤Φ(m)W (m)X
)−1

X⊤Φ(m)W (m)u1,

where u1 = η
(m)
1 + W−1/2(m)V−1/2(m)(y − µ(m)). Similarly, the Fisher scoring iterative

method for γ is given by

γ(m+1) = γ(m) + {K(m)
γγ }−1Uγ(m) = γ(m) +

(
Z⊤P(m)Z

)−1
Z⊤H−1(m)

γ (t − µ(m))

=
(

Z⊤P(m)Z
)−1

Z⊤P(m)Zγ(m) +
(

Z⊤P(m)Z
)−1

Z⊤Hγ−1(m) (t − µ(m))

=
(

Z⊤P(m)Z
)−1

Z⊤P(m)
(

η2 + P−1(m)Hγ−1(m) (t − µ(m))
)
=
(

Z⊤P(m)Z
)−1

Z⊤P(m)u2,
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where u2 = η2 + P−1(m)Hγ−1(m)(t − µ(m)). The ordinary residual for β is defined as rβ =

Φ̂1/2Ŵ1/2(u1 − η̂1) = Φ̂1/2Ŵ1/2
(

η̂1 + Ŵ−1/2V̂−1/2(y − µ̂)− η̂1

)
= Φ̂1/2Ŵ1/2Ŵ−1/2

V̂−1/2(y − µ̂) = Φ̂1/2V̂−1/2(y − µ̂). Thus, the residual for observation i is stated as
rβ

i = (yi − µ̂i)/(ϕ−1
i Vi)

1/2, for i ∈ {1, . . . , n}. Similarly, the ordinary residual for γ is given
by rγ = P̂1/2(u2 − η̂2) = P̂1/2(η̂2 + P̂−1Ĥ−1

γ (t − µ̂∗) − η̂2) = P̂1/2P̂−1Ĥγ−1(t − µ̂∗) =

P̂−1/2Ĥγ−1(t − µ̂∗). For P = VγHγ−2 , we have rγ = Vγ−1/2(t − µ̂∗). Therefore, the residual
for observation i is defined as rγ

i = (ti − µ̂∗
i )/(−d′′(ϕi)))

1/2, for ∈ {1, . . . , n}.

Appendix C. R Code for Simulation and Residual Analysis

This appendix provides an example of how the theoretical models discussed in the
article can be implemented in practice using R. The code simulates data, fits a GLM
with varying dispersion, calculates residuals, and performs residual analysis using
simulated envelopes.

Listing A1. R code for simulation and residual analysis

1 # Load necessary libraries
2 library(MASS) # For negative binomial GLM fitting
3 library(gamlss.dist) # For distribution functions like~rDPO
4

5 # Set seed for reproducibility
6 set.seed (12345)
7

8 # Define parameters
9 N = 1 # Number of simulations (set to 1 for illustration)

10 n = 50 # Sample size
11 b.1 = 1 # True parameter beta_1 for the mean sub -model
12 b.2 = 0.8 # True parameter beta_2 for the mean sub -model
13 g.1 = -0.4 # True parameter gamma_1 for the dispersion

sub -model
14 g.2 = -0.2 # True parameter gamma_2 for the

dispersion~sub -model
15

16 # Generate covariates x and z
17 x = runif(n, 0.1, 1.1) # Covariate for the mean sub -model
18 z = runif(n, 0.2, 1.2) # Covariate for the

dispersion~sub -model
19

20 # Calculate linear predictors for mu and phi
21 eta.mu = b.1 + x^b.2
22 eta.phi = g.1 + z^g.2
23

24 # Transform linear predictors to obtain mu and phi
25 mu = exp(eta.mu) # Mean parameter
26 phi = exp(eta.phi) # Dispersion~parameter
27

28 # Define functions for the simulation and residual~analysis
29

30 # Log -likelihood function for the negative binomial model
31 logbn <- function(theta , y, x, z) {
32 n = length(y)
33 eta.mu = theta [1] + x^theta [2]
34 eta.phi = theta [3] + z^theta [4]
35 mu = exp(eta.mu)
36 phi = exp(eta.phi)
37 log.lik = numeric(n)
38 for (i in 1:n) {
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39 # Negative binomial log -likelihood for each observation
40 log.lik[i] = phi[i] * log(phi[i] / (phi[i] + mu[i])) +
41 y[i] * log(mu[i] / (mu[i] + phi[i])) +
42 lgamma(y[i] + phi[i]) - lgamma(phi[i]) - lgamma(y[i] + 1)
43 }
44 return(-sum(log.lik)) # Return negative log -likelihood for

minimization
45 }
46

47 # Function to calculate the adjustment term cc for the combined
residual

48 cc <- function(y, mu, phi) {
49 temp = phi^(-1) - mu + y * (log(mu * phi) + 1) - digamma(phi

* y + 1)
50 return(temp)
51 }
52

53 # Function to calculate the variance components for ksi
estimation

54 e_psi2 <- function(func , mu, phi) {
55 n = length(mu)
56 temp1 = numeric(n)
57 for (j in 1:n) {
58 i = 1
59 temp0 = 0
60 repeat {
61 term = func(k = phi[j], v = i) * dDPO(i, mu = mu[j],

sigma = phi[j])
62 temp0 = temp0 + term
63 i = i + 1
64 if (abs(term) < 1e-8) break
65 }
66 temp1[j] = temp0 + func(phi[j], 0) * dDPO(0, mu = mu[j],

sigma = phi[j])
67 }
68 return(temp1)
69 }
70

71 # Functions needed for variance calculations
72 e1 <- function(k, v) { (-digamma(k * v + 1))^2 }
73 e2 <- function(k, v) { -digamma(k * v + 1) }
74 e3 <- function(k, v) { -v * digamma(k * v + 1) }
75

76 # Function to estimate ksi for the combined residual variance
77 ksi_est <- function(mu, phi , var_psi , cov_psi) {
78 temp = ((log(mu * phi) + 2)^2) * mu / phi + var_psi +
79 2 * (log(mu * phi) + 2) * cov_psi
80 return(temp)
81 }
82

83 # Function to calculate deviance residuals
84 devr <- function(y, mu, phi) {
85 temp = numeric(length(y))
86 for (i in 1: length(y)) {
87 if (y[i] == 0) {
88 temp[i] = sqrt(2 * mu[i] * phi[i])
89 } else {
90 temp[i] = sqrt(2 * phi[i] * (mu[i] - y[i] * (1 +

log(mu[i] / y[i]))))
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91 }
92 temp[i] = sign(y[i] - mu[i]) * temp[i]
93 }
94 return(temp)
95 }
96

97 # Main simulation loop
98 k = 1 # Simulation~counter
99

100 while (k <= N) {
101

102 # Generate responses from the negative binomial distribution
103 y = rDPO(n, mu = mu , sigma = phi) # Simulated

response~variable
104

105 # Fit the initial model using glm.nb to obtain starting values
106 fit = glm.nb(y ~ x, link = log)
107 beta0 = coef(fit)
108

109 # Estimate initial phi values using residuals from the mean
model

110 mu.est_l = exp(beta0 [1] + x * beta0 [2])
111 e_l = y - mu.est_l
112 var_l = sum(e_l^2) / (n - 2)
113 phi_l = mu.est_l / var_l
114

115 # Fit a preliminary dispersion model using gamma regression
116 fit2 = glm(log(phi_l) ~ z, family = Gamma(link = "log"))
117 gamma0 = coef(fit2)
118

119 # Combine initial estimates
120 val_ini = c(beta0 , gamma0)
121

122 # Estimate model parameters using maximum likelihood
estimation

123 lp = optim(val_ini , logbn , method = "BFGS", hessian = TRUE ,
124 y = y, x = x, z = z)
125

126 # Extract estimated parameters
127 eta.mu.est = lp$par [1] + x^lp$par[2]
128 eta.phi.est = lp$par [3] + z^lp$par [4]
129 mu.est = exp(eta.mu.est)
130 phi.est = exp(eta.phi.est)
131

132 # Calculate the adjustment term cc
133 ci = cc(y, mu.est , phi.est)
134

135 # Compute the numerator of the combined residual
136 r = y - mu.est + ci
137

138 # Calculate variance components for ksi
139 var_psi = e_psi2(func = e1, mu.est , phi.est) -
140 (e_psi2(func = e2, mu.est , phi.est))^2
141 cov_psi = e_psi2(func = e3, mu.est , phi.est) -
142 mu.est * e_psi2(func = e2 , mu.est , phi.est)
143

144 # Estimate ksi for the combined residual variance
145 ksi = ksi_est(mu.est , phi.est , var_psi , cov_psi)
146
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147 # Compute the standardized combined residual
148 r_p = r / sqrt(ksi)
149

150 # (Optional) Plot the QQ plot of the standardized combined
residual

151 qqnorm(r_p, main = "QQ plot of standardized combined
residual")

152 qqline(r_p, col = "red")
153

154 # Increment simulation counter
155 k = k + 1
156 }

Appendix D. Further Results of Simulations

This appendix provides additional details and results that complement the main
findings presented in the article. It includes the numerical evaluations performed through
simulations to assess the behavior of various residuals within the context of the exponential
family with varying dispersion. The material is organized into subsections that present the
setup and results of Monte Carlo simulations designed to evaluate the empirical distribution
of these residuals under different model specifications.

Appendix D.1. Numerical Evaluation

Next, we present the numerical evaluation of the empirical distribution of standard-
ized ordinary residuals, deviance residuals, and combined residuals. The analysis is
performed using models from the exponential family with varying dispersion parameters.
The evaluation includes simulations under correctly specified models, as well as scenarios
involving model misspecification and the presence of outliers.

Appendix D.2. Residual Evaluation through Monte Carlo Simulations

To characterize the empirical distribution of standardized ordinary residuals, stan-
dardized deviance, and standardized combined residuals, we conducted Monte Carlo
simulations with 5000 replications under various scenarios using a generalized nonlin-
ear model with varying dispersion. Note that, in this study, we focus exclusively on the
deviance residual for the mean, as defined in (13). The empirical distribution of these
residuals was evaluated using several key statistical measures as follows: mean, standard
error, skewness, and kurtosis. For the standard normal distribution, these measures are
expected to be 0, 1, 0, and 0, respectively.

In the first scenario, we assume that the response variable follows a normal distribu-
tion with mean µi and variance ϕ−1

i , which is a commonly used distribution within the
exponential family. The sample size is set to n = 30. Thus, the variables y1, . . . , y30 are
independent random variables, each following a normal distribution with mean µi and
variance ϕ−1

i , denoted as Yi ∼ N(µi; ϕ−1
i ), for i ∈ {1, . . . , 30}. In this scenario, the mean

of the response variable and the dispersion parameter are modeled as functions of the
covariates, with the relationships stated as

µi = β1 + xβ2
i , log(ϕi) = γ1 + zγ2

i , i ∈ {1, . . . , 30}, (A7)

where the values xi and zi of covariates are independently generated from uniform distribu-
tions. Specifically, xi are values from X ∼ U(0.1, 1.1) and zi are values from Z ∼ U(0.4, 1.4).
These covariates values are held constant across all scenarios analyzed. The parameter
values used in this scenario are β1 = −1.4, β2 = 0.8, γ1 = 0.9, and γ2 = −1.

In Table A1, we observe that the means of the evaluated residuals are close to zero,
and, similarly, the standard errors are close to one, indicating that the residuals are centered
and scaled appropriately. However, the skewness and, more notably, the kurtosis values
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indicate a departure from the standard normal distribution, suggesting that the residuals
do not follow a perfect normal distribution. It is important to note that achieving a residual
distribution that is approximately normal is not always the primary goal. Instead, the focus
should be on accurately capturing the empirical distribution of the residuals, which can
be effectively estimated through simulations [49]. The combined standardized residual
offers several advantages over traditional residuals, particularly in its ability to account for
the joint modeling of both the mean and dispersion sub-models. Additionally, it reduces
computational complexity by avoiding the need for projection matrix calculations. It is also
worth noting that the values of the mean, standard error, skewness, and kurtosis for the
ordinary residuals and the deviance components are identical in Table A1, which is due to
the fact that when the response variable follows a normal distribution and the identity link
function is used, these residuals share the same functional form.

Table A1. Empirical means, standard errors, skewness, and kurtosis of standardized ordinary
residuals rβ

p , deviance dµ(µ̂i; ϕ̂i), and combined rβγ
p for the model: Yi ∼ N(µi; ϕ−1

1 ) with µi = β1 + xβ2
i

and log(ϕi) = γ1 + zγ2
i , β1 = −1.4, β2 = 0.8, γ1 = 0.9, γ2 = −1, xi are values from X ∼ U(0.1, 1.1),

zi are values from Z ∼ U(0.4, 1.4), and i ∈ {1, . . . , 30}.

Mean Standard Error Skewness Kurtosis

i rβ
p dµ(µ̂i; ϕ̂i) rβγ

p rβ
p dµ(µ̂i; ϕ̂i) rβγ

p rβ
p dµ(µ̂i; ϕ̂i) rβγ

p rβ
p dµ(µ̂i; ϕ̂i) rβγ

p

1 0.0529 0.0529 0.0501 1.0362 1.0362 0.9573 0.0019 0.0019 −0.9437 −0.2490 −0.2490 0.8401
2 −0.1111 −0.1111 −0.0974 1.1502 1.1502 1.0590 −0.0058 −0.0058 −0.8852 −0.3649 −0.3649 0.5246
3 0.0635 0.0635 0.0592 1.0394 1.0394 0.9667 −0.0389 −0.0389 −0.9625 −0.2414 −0.2414 0.8919
4 0.0313 0.0313 0.0254 1.0583 1.0583 1.0049 −0.0578 −0.0578 −1.0292 −0.3378 −0.3378 1.0147
5 0.0013 0.0013 0.0005 1.0915 1.0915 1.0096 −0.0015 −0.0015 −0.7594 −0.3119 −0.3119 0.4026
6 0.0214 0.0214 0.0165 1.0540 1.0540 0.9989 −0.0304 −0.0304 −0.9679 −0.3951 −0.3951 0.7662
7 −0.0923 −0.0923 −0.0863 1.1760 1.1760 1.0462 0.0809 0.0809 −0.5716 −0.4337 −0.4337 −0.1301
8 −0.0854 −0.0854 −0.0751 1.0852 1.0852 1.0171 0.0140 0.0140 −0.8861 −0.2477 −0.2477 0.7573
9 −0.0742 −0.0742 −0.0497 0.9771 0.9771 0.8851 0.0639 0.0639 −0.5967 −0.3986 −0.3986 0.0725

10 −0.0161 −0.0161 −0.0163 1.0562 1.0562 1.0027 0.0037 0.0037 −0.9609 −0.0796 −0.0796 1.1221
11 0.0200 0.0200 0.0195 1.0335 1.0335 0.9795 0.0081 0.0081 −0.9239 −0.1361 −0.1361 1.0070
12 0.0029 0.0029 0.0076 1.0231 1.0231 0.9762 −0.0230 −0.0230 −0.9498 −0.4250 −0.4250 0.7264
13 −0.0619 −0.0619 −0.0539 1.0405 1.0405 1.0025 0.0003 0.0003 −0.9311 −0.1951 −0.1951 0.9274
14 0.0795 0.0795 0.0664 1.0798 1.0798 1.0051 −0.0481 −0.0481 −0.9750 −0.1878 −0.1878 0.9593
15 0.0031 0.0031 0.0062 1.0848 1.0848 0.9493 0.0045 0.0045 −0.5384 −0.6729 −0.6729 −0.3277
16 −0.0058 −0.0058 −0.0100 1.1008 1.1008 1.0191 0.0464 0.0464 −0.7126 −0.3134 −0.3134 0.2808
17 −0.0310 −0.0310 −0.0266 1.1289 1.1289 0.9966 −0.0003 −0.0003 −0.6177 −0.5437 −0.5437 −0.0570
18 0.0017 0.0017 0.0018 1.0455 1.0455 0.9959 −0.0378 −0.0378 −0.9825 −0.3026 −0.3026 0.9239
19 0.0218 0.0218 0.0200 1.0805 1.0805 0.9983 0.0028 0.0028 −0.7909 −0.2823 −0.2823 0.4899
20 −0.0164 −0.0164 −0.0070 1.0136 1.0136 0.9509 0.0280 0.0280 −0.9129 −0.3559 −0.3559 0.6219
21 −0.1167 −0.1167 −0.0963 1.2312 1.2312 1.0411 −0.0140 −0.0140 −0.9626 −0.1495 −0.1495 0.9737
22 0.0592 0.0592 0.0540 1.0718 1.0718 0.9827 −0.0275 −0.0275 −0.6926 −0.4931 −0.4931 0.1835
23 0.0689 0.0689 0.0649 1.0327 1.0327 0.9681 −0.0809 −0.0809 −1.0778 −0.3255 −0.3255 1.1394
24 0.0498 0.0498 0.0486 1.0264 1.0264 0.9447 −0.0106 −0.0106 −0.9274 −0.4568 −0.4568 0.6166
25 0.0531 0.0531 0.0473 1.0527 1.0527 0.9813 −0.0466 −0.0466 −1.0164 −0.2997 −0.2997 1.0107
26 0.0298 0.0298 0.0283 1.0374 1.0374 0.9528 0.0317 0.0317 −0.8929 −0.4148 −0.4148 0.5735
27 0.0651 0.0651 0.0570 1.1328 1.1328 0.9910 −0.0783 −0.0783 −0.5823 −0.7951 −0.7951 −0.3369
28 −0.0468 −0.0468 −0.0326 1.0019 1.0019 0.9511 0.0320 0.0320 −0.8650 −0.1997 −0.1997 0.7188
29 0.0811 0.0811 0.0726 1.0818 1.0818 0.9745 0.0105 0.0105 −0.7302 −0.3677 −0.3677 0.2215
30 −0.0857 −0.0857 −0.0780 1.1094 1.1094 1.0294 0.0496 0.0496 −0.8707 −0.3277 −0.3277 0.5302

Next, we conducted another simulation where the response variable follows a gamma
distribution with mean µi and dispersion parameter ϕ−1

i , denoted as yi ∼ Gamma(µi; ϕi).
This distribution is particularly useful for modeling scenarios where the response variable
consists of positive real numbers (R+). In this simulation, we consider a sample of size
n = 30, where y1, . . . , y30 are independent random variables, each following a gamma
distribution with mean µi and dispersion parameter ϕi. The gamma distribution for each
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observation is expressed as Yi ∼ Gamma(µi; ϕi), for i ∈ {1, . . . , 30}. In this scenario,
the mean of the response variable and the dispersion parameter are assumed to satisfy the
functional relationships stated as

µ−1
i = β1 + xβ2

i , log(ϕi) = γi + zγ2
i , i ∈ {1, . . . , n}, (A8)

where the parameters are set as β1 = 1, β2 = 0.8, γ1 = 1, and γ2 = 1.5. The values xi
and zi of covariates are generated independently from uniform distributions, specifically,
from X ∼ U(0.1, 1.1) and Z ∼ U(0.4, 1.4), respectively.

Table A2. Empirical means, standard errors, skewness, and kurtosis of standardized ordinary
residuals rβ

p , deviance dµ(µ̂i; ϕ̂i), and combined residuals rβγ
p for the model: Yi ∼ Gamma(µi; ϕi)

with µ−1
i = β1 + xβ2

i and log(ϕi) = γi + zγ2
i , β1 = 1, β2 = 0.8, γ1 = 1, γ2 = 1.5, xi are values from

X ∼ U(0.1; 1.1), zi are values from Z ∼ U(0.4; 1.4), and i ∈ {1, . . . , 30}.

Mean Standard Error Skewness Kurtosis

i rβ
p dµ(µ̂i; ϕ̂i) rβγ

p rβ
p dµ(µ̂i; ϕ̂i) rβγ

p rβ
p dµ(µ̂i; ϕ̂i) rβγ

p rβ
p dµ(µ̂i; ϕ̂i) rβγ

p

1 −0.0681 −0.1901 −0.0633 1.0069 1.0473 1.0426 0.6518 0.0229 −1.6062 0.3642 −0.2360 2.9941
2 0.1376 0.0352 0.1295 1.2066 1.1792 0.9105 0.3711 −0.0892 −0.6799 −0.1334 −0.3099 0.2738
3 −0.0911 −0.2193 −0.0826 0.9845 1.0308 1.0341 0.6961 0.0606 −1.4265 0.3802 −0.2877 2.4229
4 −0.0654 −0.1620 −0.0551 1.0403 1.0691 1.0100 0.4759 0.0433 −1.2266 −0.1053 −0.4049 1.3695
5 0.0408 −0.1035 0.0218 1.0884 1.0788 0.8775 0.7183 0.0388 −1.8128 0.3847 −0.3716 3.5617
6 −0.0752 −0.1766 −0.0710 1.0448 1.0744 1.0416 0.5371 0.0464 −1.2865 0.1252 −0.3143 1.6389
7 0.0568 −0.0897 0.0466 1.1075 1.0969 0.9690 0.6480 −0.0024 −0.9617 0.1305 −0.4083 0.8442
8 0.0802 −0.0409 0.0756 1.1169 1.0936 0.9398 0.6013 −0.0229 −0.8558 0.3787 −0.2179 0.7340
9 0.1150 −0.0191 0.1128 1.0787 1.0251 0.6807 0.6784 0.0249 −2.0631 0.3947 −0.3186 5.3635
10 0.0056 −0.1215 0.0204 1.0252 1.0285 0.8790 0.6721 0.0293 −1.9264 0.3551 −0.2699 4.7902
11 −0.0916 −0.2250 −0.0857 0.9613 1.0251 1.0574 0.6735 −0.0072 −1.2530 0.3850 −0.2520 1.6858
12 −0.0650 −0.1516 −0.0471 1.0229 1.0411 0.9241 0.4629 0.0932 −0.5624 −0.2520 −0.5480 −0.1751
13 0.0638 −0.0612 0.0579 1.0820 1.0748 0.9571 0.5854 −0.0347 −0.9877 0.1551 −0.2563 1.1088
14 −0.0942 −0.2283 −0.0873 0.9743 1.0290 1.0520 0.7399 0.0479 −1.3609 0.5323 −0.2109 2.1490
15 0.0059 −0.1462 −0.0058 1.0640 1.0737 0.9096 0.7334 0.0395 −1.7826 0.3235 −0.4162 3.4976
16 −0.0241 −0.1645 −0.0194 1.0013 1.0359 0.9927 0.6848 −0.0055 −1.1316 0.3598 −0.3201 1.2526
17 0.0183 −0.1264 0.0210 1.0286 1.0448 0.9516 0.6639 −0.0099 −1.0117 0.1783 −0.3976 1.0217
18 0.0409 −0.0710 0.0315 1.0911 1.0818 0.9075 0.5661 0.0108 −1.9305 0.1144 −0.2480 5.1510
19 0.0227 −0.1132 0.0254 1.0315 1.0427 0.9057 0.6252 −0.0231 −1.8073 0.2184 −0.3521 3.6561
20 0.0523 −0.0366 0.0622 1.1244 1.1179 0.8100 0.3460 −0.0199 −1.4416 −0.3247 −0.4876 2.1293
21 0.2360 0.1138 0.2038 1.2859 1.2057 0.8969 0.4666 −0.0862 −0.7408 0.0220 −0.2888 0.4351
22 −0.0534 −0.2005 −0.0506 1.0163 1.0415 0.9697 0.7783 0.0948 −1.3372 0.4787 −0.3966 1.7910
23 −0.1021 −0.1970 −0.0892 1.0148 1.0521 1.0181 0.4988 0.0796 −1.0082 −0.0953 −0.4596 0.7226
24 −0.0968 −0.1919 −0.0987 1.0644 1.1025 1.0552 0.4335 0.0694 −0.8332 −0.3531 −0.6255 0.2011
25 −0.1021 −0.2108 −0.1049 1.0456 1.0892 1.0939 0.5640 0.0527 −1.3735 0.0698 −0.3166 2.0412
26 −0.0757 −0.1747 −0.0750 1.0639 1.1027 1.0617 0.4483 0.0358 −1.1779 −0.2370 −0.4699 1.1893
27 −0.0344 −0.1896 −0.0438 1.0327 1.0671 0.9761 0.7311 0.0517 −1.4981 0.2856 −0.4978 2.2192
28 0.1027 −0.0232 0.0702 1.1020 1.0902 0.8793 0.5139 −0.1023 −2.1642 0.0722 −0.2594 5.7557
29 −0.0879 −0.2298 −0.0737 0.9649 1.0198 1.0101 0.7244 0.0576 −1.2519 0.3863 −0.3727 1.4555
30 0.0895 −0.0173 0.0767 1.2022 1.1978 0.9942 0.3846 −0.0833 −0.7137 −0.1861 −0.3712 0.2669

As observed in Table A2, the mean of the residuals is close to zero across all three
types of residuals analyzed, with the deviance residuals showing the largest deviation from
zero. The standard errors are approximately one for all residuals, but notable differences
appear in the skewness and kurtosis values. Specifically, the empirical distribution of
the deviance residuals exhibits a roughly symmetric shape but with negative kurtosis,
indicating a deviation from the standard normal distribution.
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Following this, we considered an alternative model for positive real-valued data,
where the response variable follows an IG with mean µi and dispersion parameter ϕ−1

i ,
denoted as Yi ∼ IG(µi; ϕi). In this scenario, Y1, . . . , Y30 are independent random vari-
ables, each following an IG distribution with mean µi and dispersion parameter ϕ−1

i , for
i ∈ {1, . . . , 30}. In this case, the mean of the response variable and the dispersion parameter
are assumed to follow the functional relationships stated as

log(µi) = β1 + xβ2
i , log(ϕi) = γi + zγ2

i , i ∈ {1, . . . , n}, (A9)

with parameter values set as β1 = −0.45, β2 = 0.9, γ1 = −0.2, and γ2 = −0.4.

Table A3. Empirical means, standard errors, skewness, and kurtosis of standardized ordinary
residuals rβ

p , deviance residuals dµ(µ̂i; ϕ̂i), and combined residuals rβγ
p for the model: Yi ∼ IG(µi; ϕ1)

with log(µi) = β1 + xβ2
i and log(ϕi) = γi + zγ2

i , β1 = −0.45, β2 = 0.9, γ1 = −0.2, γ2 = −0.4, xi are
values from X ∼ U(0.1, 1.1), zi are values from Z ∼ U(0.4, 1.4), for i ∈ {1, . . . , 30}.

Mean Standard Error Skewness Kurtosis

i rβ
p dµ(µ̂i; ϕ̂i) rβγ

p rβ
p dµ(µ̂i; ϕ̂i) rβγ

p rβ
p dµ(µ̂i; ϕ̂i) rβγ

p rβ
p dµ(µ̂i; ϕ̂i) rβγ

p

1 0.1093 −0.3234 0.1032 1.0611 1.4007 1.0224 1.6000 −0.0137 0.4466 3.3368 −0.3908 0.9456
2 −0.1667 −0.6437 −0.1358 0.8971 1.4081 0.9823 1.2245 −0.0270 −0.8427 1.8915 −0.3926 0.9439
3 0.0996 −0.3231 0.0841 1.0926 1.4206 1.0276 1.7995 0.0397 0.2460 4.7126 −0.2011 1.0853
4 0.1128 −0.3366 0.1004 1.0890 1.4225 1.0355 1.6730 0.0360 0.4411 3.6695 −0.3967 0.8769
5 −0.0101 −0.4639 −0.0013 0.9499 1.3508 0.9471 1.5946 −0.0067 0.7523 3.4482 −0.3329 1.3493
6 0.1084 −0.3394 0.1006 1.1031 1.4101 1.0332 1.7601 0.0940 0.5602 4.1436 −0.3957 0.9542
7 −0.1175 −0.5480 −0.1074 0.9410 1.4120 0.9854 1.2048 0.0426 −0.5765 1.7194 −0.4286 0.5012
8 −0.1185 −0.5685 −0.1025 0.9185 1.3916 0.9855 1.3471 0.0120 −0.8529 2.3364 −0.3026 1.4265
9 −0.1864 −0.7934 −0.1752 0.7176 1.2638 0.7471 1.5659 0.0023 0.8128 3.3358 −0.3195 1.3763
10 0.0238 −0.4481 0.0290 0.9855 1.3582 0.9735 1.7326 0.0008 0.8750 3.8052 −0.2624 1.6053
11 0.0674 −0.3200 0.0620 1.0323 1.4047 0.9971 1.5250 −0.0360 −0.2924 3.4876 −0.2037 0.8526
12 −0.0076 −0.4208 0.0030 0.9706 1.3722 0.9581 1.3744 0.0570 −0.4015 2.4670 −0.4719 0.3383
13 −0.0959 −0.5233 −0.0749 0.9079 1.3590 0.9713 1.3549 −0.0174 −0.7717 2.3474 −0.2642 1.4153
14 0.0506 −0.3670 0.0347 1.0512 1.4193 1.0163 1.6107 0.0125 −0.0660 3.5881 −0.2619 0.7162
15 0.0479 −0.3829 0.0484 1.0291 1.4034 0.9840 1.4119 0.1017 0.7719 2.2877 −0.5801 0.8494
16 −0.0155 −0.4031 −0.0071 0.9877 1.3955 0.9814 1.3742 0.0212 −0.4087 2.6827 −0.2890 0.6487
17 −0.0921 −0.5093 −0.0839 0.9608 1.4159 0.9756 1.2148 0.0758 −0.4736 1.7728 −0.4597 0.2306
18 0.0230 −0.4610 0.0284 0.9835 1.3532 0.9680 1.8352 0.0311 0.9112 4.7223 −0.3412 1.9152
19 0.0684 −0.3762 0.0675 1.0502 1.3978 1.0221 1.7285 −0.0117 0.8049 4.2068 −0.2745 1.7230
20 −0.0324 −0.5466 −0.0228 0.9283 1.3268 0.9174 1.8440 0.0693 1.0149 4.7498 −0.3704 2.0863
21 −0.1724 −0.6437 −0.1068 0.9212 1.4511 0.9582 1.1546 −0.0950 −0.9650 1.7367 −0.2621 1.3915
22 0.0628 −0.3381 0.0516 1.0718 1.4345 1.0157 1.4677 0.1032 0.2225 2.8493 −0.4636 0.3202
23 0.1068 −0.3255 0.0980 1.0955 1.4015 1.0130 1.7240 0.1198 0.3676 3.8983 −0.3703 0.9237
24 0.0939 −0.3418 0.0764 1.0765 1.4313 1.0281 1.5342 0.0510 0.1184 3.0591 −0.4712 0.4936
25 0.0974 −0.3486 0.0944 1.0784 1.3995 1.0182 1.7553 0.0799 0.5558 4.4933 −0.3461 1.1892
26 0.1018 −0.3511 0.0896 1.1014 1.4122 1.0335 1.7790 0.0991 0.5271 4.6299 −0.4332 1.0196
27 0.1016 −0.2805 0.0958 1.0744 1.4277 1.0023 1.2800 0.1152 0.4578 1.8635 −0.6681 0.1886
28 −0.1422 −0.7401 −0.1180 0.8133 1.3977 0.8243 1.8185 −0.6816 1.0622 5.1946 3.3745 2.6832
29 0.1012 −0.2774 0.0906 1.0600 1.4336 1.0148 1.3300 −0.0321 −0.0864 2.1824 −0.3847 0.3986
30 −0.1209 −0.5643 −0.0835 0.9070 1.3702 0.9568 1.3087 0.0295 −0.7676 2.1934 −0.3329 1.1623

Table A3 illustrates that the residuals do not follow an approximately N(0, 1) distri-
bution. This is evident from the empirical means and variances of the deviance residuals,
as well as the skewness and kurtosis of the other types of residuals. Among them, the de-
viance residuals show the most important deviation, with their mean and standard error
differing markedly from those of a standard normal distribution.
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To analyze count data, the negative binomial distribution is often employed as an
alternative to the Poisson distribution in situations of overdispersion. In this scenario, we
assume that the response variable follows a negative binomial distribution with mean µi and
dispersion parameter ϕ−1

i , denoted as Yi ∼ NB(µi, ϕi). Here, y1, . . . , y30 are independent
random variables, each following a negative binomial distribution with mean µi and
dispersion parameter ϕ−1

i , for i ∈ {1, . . . , 30}.
In this context, the mean of the response variable and the dispersion parameter are

assumed to follow the functional relationships provided in (A9), with parameters set as
β1 = 1.6, β2 = 0.8, γ1 = −0.3, and γ2 = 0.5.

Table A4. Empirical means, standard errors, skewness, and kurtosis of standardized ordinary
residuals rβ

p , deviance residuals dµ(µ̂i; ϕ̂i), and combined residuals rβγ
p for the model: Yi ∼ NB(µi; ϕ1)

with log(µi) = β1 + xβ2
i and log(ϕi) = γi + zγ2

i , β1 = 1.6, β2 = 0.8, γ1 = −0.3, γ2 = 0.5, xi are values
from X ∼ U(0.1; 1.1), zi are values from Z ∼ U(0.4; 1.4), and i ∈ {1, . . . , 30}.

Mean Standard Error Skewness Kurtosis

i rβ
p dµ(µ̂i; ϕ̂i) rβγ

p rβ
p dµ(µ̂i; ϕ̂i) rβγ

p rβ
p dµ(µ̂i; ϕ̂i) rβγ

p rβ
p dµ(µ̂i; ϕ̂i) rβγ

p

1 0.0800 −0.1576 0.0784 1.0543 1.0440 1.0303 1.1830 −0.0145 1.0567 1.6297 −0.2099 1.2593
2 −0.1285 −0.3632 −0.1148 0.9790 1.0834 0.9020 0.8964 −0.1011 0.7846 0.6302 −0.3266 0.3963
3 0.0521 −0.1940 0.0507 1.0299 1.0495 1.0129 1.1202 −0.0737 0.9810 1.4170 −0.2828 1.0352
4 0.0664 −0.1639 0.0637 1.0782 1.0744 1.0498 1.0030 0.0108 0.9080 0.8986 −0.4082 0.6631
5 −0.0020 −0.2557 −0.0025 1.0275 1.0544 0.9994 1.1614 0.0250 1.0509 1.3966 −0.3572 1.0897
6 0.0681 −0.1624 0.0659 1.0745 1.0688 1.0474 1.0042 0.0051 0.9082 0.8893 −0.3812 0.6530
7 −0.0718 −0.3220 −0.0684 0.9586 1.0343 0.9302 1.0829 −0.0360 0.9278 1.2114 −0.3675 0.7840
8 −0.1105 −0.3527 −0.1037 0.9465 1.0401 0.9102 1.0490 −0.0747 0.8936 1.0519 −0.3181 0.6783
9 −0.1257 −0.3551 −0.1152 0.8751 0.9842 0.8423 0.9571 −0.1475 0.8891 0.9414 −0.3212 0.8004
10 0.0243 −0.2173 0.0238 1.0112 1.0400 0.9847 1.0850 −0.0388 0.9744 1.1698 −0.3251 0.8798
11 −0.0044 −0.2560 −0.0046 1.0181 1.0488 1.0032 1.2489 0.0140 1.0970 1.7721 −0.2085 1.3381
12 −0.0398 −0.2538 −0.0381 0.9745 1.0296 0.9511 0.8840 −0.0380 0.7806 0.5482 −0.4332 0.3003
13 −0.0670 −0.3078 −0.0641 0.9572 1.0285 0.9328 1.1419 −0.0571 0.9733 1.4541 −0.2718 0.9966
14 0.0434 −0.2018 0.0431 1.0196 1.0434 1.0044 1.1190 −0.0618 0.9772 1.3927 −0.2649 1.0077
15 0.0335 −0.2275 0.0310 1.0548 1.0662 1.0233 1.1033 0.0519 1.0104 1.1712 −0.5602 0.9200
16 −0.0280 −0.2797 −0.0269 0.9978 1.0400 0.9800 1.2202 0.0170 1.0566 1.8418 −0.3072 1.3151
17 −0.0786 −0.3355 −0.0763 0.9710 1.0383 0.9467 1.1916 0.0270 1.0297 1.5911 −0.3855 1.1109
18 0.0472 −0.1847 0.0453 1.0313 1.0588 1.0002 0.9745 −0.1008 0.8750 0.8118 −0.2650 0.5907
19 0.0579 −0.1931 0.0562 1.0403 1.0593 1.0149 1.0319 −0.0463 0.9250 0.8743 −0.3993 0.6241
20 −0.0049 −0.2136 −0.0073 1.0074 1.0394 0.9587 0.8862 0.0134 0.8140 0.5088 −0.5098 0.3754
21 −0.1951 −0.4552 −0.1689 0.9736 1.1166 0.8616 0.9830 −0.1202 0.8286 1.0077 −0.3096 0.6065
22 0.0570 −0.1967 0.0560 1.0409 1.0551 1.0235 1.0913 −0.0007 0.9649 1.1634 −0.4341 0.8314
23 0.0643 −0.1635 0.0620 1.0729 1.0719 1.0470 0.9652 −0.0001 0.8688 0.8063 −0.4161 0.5635
24 0.0578 −0.1561 0.0571 1.0357 1.0446 1.0123 0.9089 −0.0156 0.8136 0.6062 −0.4052 0.3901
25 0.0559 −0.1771 0.0540 1.0592 1.0703 1.0342 1.0613 −0.0404 0.9528 1.2137 −0.2377 0.9341
26 0.0624 −0.1613 0.0604 1.0590 1.0676 1.0318 0.9458 −0.0259 0.8515 0.7540 −0.3824 0.5307
27 0.0724 −0.1926 0.0694 1.0702 1.0731 1.0468 1.0881 0.0216 0.9785 1.0999 −0.5273 0.8026
28 −0.0610 −0.2829 −0.0571 0.9281 1.0002 0.8965 0.9891 −0.1037 0.8868 0.8720 −0.2565 0.6463
29 0.0468 −0.2085 0.0457 1.0385 1.0554 1.0217 1.1541 −0.0216 1.0146 1.3559 −0.2962 0.9869
30 −0.0928 −0.3137 −0.0850 0.9592 1.0384 0.9066 1.0092 −0.0420 0.8788 1.0390 −0.2298 0.7176

Table A4 demonstrates the behavior when the response variable of the model follows
a negative binomial distribution. The results are consistent with those observed in cases
where the distributions are continuous, displaying nonzero skewness for both ordinary
and standardized combined residuals, and nonzero kurtosis for deviance residuals.

Lastly, we present another simulation where the response variable follows a double
Poisson distribution, which serves as an alternative to the Poisson model in situations where
the data exhibit overdispersion. In this case, the response variable is assumed to follow
a double Poisson (DP) distribution with mean µi and dispersion parameter ϕ−1

i , denoted
as Yi ∼ DP(µi, ϕi). Here, y1, . . . , y30 are independent random variables, each following a



Mathematics 2024, 12, 3196 41 of 43

double Poisson distribution with mean µi and dispersion parameter ϕ−1
i , for i ∈ {1, . . . , 30}.

In this simulation, the mean of the response variable and the dispersion parameter are
assumed to adhere to the functional relationships outlined in (A9), with the parameters set
to β1 = 1, β2 = 0.8, γ1 = −0.4, and γ2 = −0.2.

Table A5. Empirical means, standard errors, skewness, and kurtosis of the standardized ordinary
residuals rβ

p , deviance dµ(µ̂i; ϕ̂i), and combined residuals rβγ
p for the model: Yi ∼ DP(µi; ϕi) with

log(µi) = β1 + xβ2
i and log(ϕi) = γi + zγ2

i , β1 = 1, β2 = 0.8, γ1 = −0.4, γ2 = −0.2, xi are values
from X ∼ U(0.1; 1.1), zi are values from Z ∼ U(0.4; 1.4), and i ∈ {1, . . . , 30}.

Mean Standard Error Skewness Kurtosis

i rβ
p dµ(µ̂i; ϕ̂i) rβγ

p rβ
p dµ(µ̂i; ϕ̂i) rβγ

p rβ
p dµ(µ̂i; ϕ̂i) rβγ

p rβ
p dµ(µ̂i; ϕ̂i) rβγ

p

1 0.0233 -0.1658 1.4118 3.3167 3.5686 2.6543 0.5352 −0.1450 0.8083 0.8123 0.4426 1.0319
2 −0.1037 −0.3751 0.8548 3.8579 4.3109 2.3268 0.8648 −0.0387 1.2593 1.7674 0.6244 2.1948
3 0.0615 −0.1496 1.3403 3.5216 3.7657 2.7926 0.6165 −0.0839 0.8689 0.8094 0.3001 1.0851
4 0.0463 −0.1527 1.4415 3.9185 4.1153 3.0228 0.9254 −0.0206 1.2355 3.3578 1.8486 3.0421
5 −0.0016 −0.2054 1.6672 4.3049 4.6379 3.3868 0.5709 −0.1810 0.9803 1.5157 1.0457 1.8564
6 0.0635 −0.1361 1.4354 3.7256 3.9687 2.9319 0.6426 −0.1530 1.0031 1.4686 0.9935 1.6238
7 −0.0933 −0.3979 0.9768 4.9688 5.2090 3.0480 2.1098 0.3302 1.7778 21.2966 3.3476 8.8820
8 −0.0647 −0.3235 0.8992 3.4578 3.7909 2.3544 0.8915 0.0818 1.1611 1.6709 0.1812 2.1290
9 −0.3374 −0.5158 1.6586 4.1449 4.7605 2.7663 0.1114 −0.8286 1.0090 3.9539 4.7466 2.9466
10 −0.0323 −0.2191 1.5739 3.6045 3.8846 2.9438 0.5688 −0.1215 0.8459 1.0055 0.6263 1.2320
11 0.0069 −0.2295 1.1594 3.6421 3.9128 2.7782 0.8287 0.0206 1.0989 1.6480 0.4310 2.0542
12 −0.0201 −0.2809 1.0686 4.7487 5.1345 2.8904 1.3168 −0.1040 1.5475 7.6618 4.5142 4.3919
13 −0.0649 −0.3008 0.9345 3.1557 3.4906 2.2213 0.7113 −0.0139 0.9614 0.7537 0.0196 1.0298
14 0.0895 −0.1376 1.2945 3.7493 3.9578 2.9200 0.7406 −0.0080 0.9939 1.3571 0.3503 1.6857
15 0.0194 −0.2279 1.7977 6.6654 7.0479 4.5443 1.2710 −0.0740 1.5437 10.9736 5.2700 5.3047
16 −0.0592 −0.3287 1.0744 4.2024 4.5966 2.9267 0.9173 0.0138 1.2347 2.3228 0.6937 2.4515
17 0.0102 −0.2943 1.1006 5.2006 5.5565 3.3215 1.1066 0.0598 1.4255 3.5479 1.2652 3.3694
18 0.0069 −0.1714 1.5834 3.4867 3.7450 2.8046 0.4870 −0.1907 0.7964 0.8338 0.6903 0.9775
19 −0.0149 −0.2235 1.5777 4.2101 4.4967 3.3186 0.7519 −0.0853 1.1014 2.1757 1.1462 2.4559
20 −0.0655 −0.2604 1.6440 5.5428 5.7653 3.4208 2.0548 0.0715 1.7183 23.1532 12.7579 7.2832
21 −0.1503 −0.4306 0.7868 3.7096 4.2006 2.1232 0.8248 0.0206 1.1638 1.3389 0.1311 1.9946
22 0.0535 −0.2025 1.4024 5.0639 5.3102 3.6818 1.1248 0.0734 1.3769 4.7469 1.8224 3.6726
23 0.0967 −0.1154 1.4131 4.2417 4.3887 3.1568 1.0820 0.0249 1.3385 4.8203 2.4179 3.5112
24 0.1074 −0.1237 1.3676 5.3277 5.1619 3.4436 2.7325 0.6202 1.9467 27.4171 9.0764 9.4828
25 0.0627 −0.1290 1.4403 3.5540 3.7567 2.8391 0.7231 −0.0904 1.0249 2.0506 1.0417 2.0577
26 0.0864 −0.1182 1.4713 4.0637 4.2597 3.1574 0.8106 −0.0747 1.1975 2.3497 1.4990 2.5252
27 0.1782 −0.1030 1.7318 7.1841 7.4618 4.8472 1.1150 −0.0332 1.4564 5.2160 3.0318 3.6466
28 −0.1599 −0.3145 1.5901 3.0414 3.3301 2.4662 0.4244 −0.1989 0.7015 0.7759 0.6846 0.7803
29 0.0484 −0.2111 1.3164 4.6417 4.9355 3.4256 0.9671 0.0090 1.2822 2.9733 1.1306 3.0575
30 −0.0717 −0.3348 0.8960 3.8000 4.1193 2.4258 1.0736 0.0992 1.3362 3.3738 0.8143 3.2316

Table A5 illustrates the behavior of the model when the response variable follows a
double Poisson distribution, revealing high deviations from the standard normal distribu-
tion across all types of residuals analyzed. A critique of the double Poisson model, where
the variable of interest follows this distribution, is provided in [53]; for further discussion of
this, see [54]. These sources discuss the approximation nature of the mean and variance in
the double Poisson distribution. Moreover, challenges associated with the estimator for the
normalization constant, as proposed in [55], are highlighted. These challenges can lead to
nonconvergence in the optimization methods used for parameter estimation in this model.
Due to these limitations, it is advisable to consider alternative models when analyzing
count data that exhibit overdispersion.
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