
Citation: Gnegel, F.; Schaudt, S.;

Clausen, U.; Fügenschuh, A. A

Graph-Refinement Algorithm to

Minimize Squared Delivery Delays

Using Parcel Robots. Mathematics

2024, 12, 3201. https://doi.org/

10.3390/math12203201

Academic Editors: Pei-Fang Tsai and

Ming-Feng Yang

Received: 7 September 2024

Revised: 7 October 2024

Accepted: 8 October 2024

Published: 12 October 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

A Graph-Refinement Algorithm to Minimize Squared Delivery
Delays Using Parcel Robots
Fabian Gnegel 1, Stefan Schaudt 2, Uwe Clausen 2 and Armin Fügenschuh 1,*

1 Institute of Mathematics, Brandenburg University of Technology Cottbus-Senftenberg, Platz der Deutschen
Einheit 1, 03046 Cottbus, Germany; gnegel@b-tu.de

2 Institute of Transport Logistics, TU Dortmund University, Leonhard-Euler-Str. 2, 44227 Dortmund, Germany;
stefan.schaudt@tu-dortmund.de (S.S.); uwe.clausen@tu-dortmund.de (U.C.)

* Correspondence: fuegenschuh@b-tu.de

Abstract: In recent years, parcel volumes have reached record highs, prompting the logistics industry
to explore innovative solutions to meet growing demand. In densely populated areas, delivery robots
offer a promising alternative to traditional truck-based delivery systems. These autonomous electric
robots operate on sidewalks and deliver time-sensitive goods, such as express parcels, medicine and
meals. However, their limited cargo capacity and battery life require a return to a depot after each
delivery. This challenge can be modeled as an electric vehicle-routing problem with soft time windows
and single-unit capacity constraints. The objective is to serve all customers while minimizing the
quadratic sum of delivery delays and ensuring each vehicle operates within its battery limitations.
To address this problem, we propose a mixed-integer quadratic programming model and introduce
an enhanced formulation using a layered graph structure. For this layered graph, we present two
solution approaches based on relaxations that reduce the number of nodes and arcs compared to
the expanded formulation. The first approach, Iterative Refinement, solves the current relaxation to
optimality and refines the graph when the solution is infeasible for the expanded formulation. This
process continues until a proven optimal solution is obtained. The second approach, Branch and
Refine, integrates graph refinement into a branch-and-bound framework, eliminating the need for
restarts. Computational experiments on modified Solomon instances demonstrate the effectiveness
of our solution approaches, with Branch and Refine consistently outperforming Iterative Refinement
across all tested parameter configurations.

Keywords: integer programming; layered graph refinement; delivery robots; electric vehicle-routing
problem; partial recharging

MSC: 90B06; 90B20; 90C11; 90C20

1. Introduction

Over the past decade, e-commerce has transformed consumer markets globally. Ac-
cording to [1], global e-commerce revenue reached USD 2415 billion in 2020, representing a
25% increase from 2019. The rapid growth of e-commerce has significantly increased the
volume of parcels requiring delivery. In 2019, it was estimated that over 100 billion parcels
were shipped worldwide [2]. This surge exacerbates existing traffic-related challenges,
including congestion, noise and air pollution.

In response, many Western European cities have implemented regulations to curb
transportation emissions, with some areas introducing pedestrian-only, low-emission
or zero-emission zones. These measures are reshaping how people move, order goods
and how logistics companies operate. To comply with these regulations and to enhance
their environmental credentials, logistics companies have launched initiatives to improve
carbon efficiency and reduce local emissions. Some companies have even committed to

Mathematics 2024, 12, 3201. https://doi.org/10.3390/math12203201 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12203201
https://doi.org/10.3390/math12203201
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-3637-4066
https://doi.org/10.3390/math12203201
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12203201?type=check_update&version=1

Mathematics 2024, 12, 3201 2 of 27

achieving net-zero carbon emissions in the future. Consequently, there is growing interest
in environmentally friendly solutions, particularly for last-mile deliveries, which present
the greatest logistical and cost challenges. It is estimated that last-mile delivery accounts
for 50% of total transportation costs [3].

One promising approach for urban goods distribution is a two-tier system. In this
model, goods are first transported in bulk to decentralized micro-depots on the outskirts of
cities via conventional trucks. From these depots, environmentally friendly vehicles are
used for last-mile delivery. One such option is electrically assisted cargo bikes, which offer
flexibility and can help reduce traffic, noise and air pollution [4]. However, this approach is
weather-dependent, and the cargo capacity of these bikes remains limited.

Another promising concept for last-mile transportation involves the use of small
autonomous parcel robots. These robots are equipped with technology similar to that found
in autonomous vehicles, but differ primarily in size and speed. Over the past few years,
several startups and established companies, including Starship Technologies, Amazon,
Kiwibot and Teleretail, have developed delivery robots. These electric robots are designed
to travel on sidewalks or within pedestrian zones at walking speed, with size constraints
ensuring they do not obstruct pedestrians. The robots produced by these companies are
typically limited to carrying a single delivery unit. This limited capacity necessitates a
return to the depot after each delivery. Despite this, delivery robots offer a high level of
service compared to conventional trucking, as they allow customers to schedule specific
time slots for parcel delivery. They are especially well-suited for delivering small, time-
sensitive goods, operating efficiently within urban environments where their capacity and
range are sufficient for short trips. These robots are versatile in what they can transport,
provided the items fit within their compartment. Some models even feature heating or
refrigeration units, enabling the delivery of temperature-sensitive goods. Applications
include the delivery of parcels, food, clothing, groceries and medicine.

To further illustrate how delivery robots can be integrated into logistics operations, we
present an example scenario. Suppose a customer purchases a product online. This product
is first transported from a warehouse to a nearby micro-depot, where a fleet of delivery
robots is stationed. To provide a high level of service, the customer has the option to select
a preferred delivery time slot. Shortly before the selected time slot, a robot is loaded with
the product at the micro-depot and begins its journey to the customer’s location. Upon
arrival, the robot is unlocked and the package is retrieved by the customer. The robot then
returns to the micro-depot, where it either recharges or is prepared for the next delivery.

In this work, we investigate the optimal routing, scheduling and charging strategies
for a fixed number of battery-powered vehicles with single-unit capacity. The objective
is to minimize the sum of the squared differences between the actual service start times
at customer locations and their desired delivery times—effectively minimizing delivery
delays. Our problem formulation is based on the classical vehicle-routing problem (VRP),
but we introduce additional variables and constraints to account for arrival times, states of
charge (SoC) and delays. Given that the objective involves squared delays, the resulting
formulation is a mixed-integer quadratic program (MIQP). We refer to this problem as the
time- and battery-constrained delivery robot problem (TBDRP).

As we demonstrate in the computational experiments, using state-of-the-art MIQP
solvers is only feasible for problems with a relatively small number of delivery robots and
customers. To address larger instances, we derive an alternative formulation based on a
layered graph, where nodes represent customers and are characterized by a combination of
customer ID, arrival time and SoC upon arrival. However, constructing a suitable layered
graph proved to be as challenging as solving the original problem, making this approach
impractical for direct use. The advantage of this formulation, though, is that it allows for
relaxations that yield solutions with small optimality gaps and are relatively easy to solve.
Building on this, we develop an iterative method that progressively refines the relaxation
until its solution can be transformed into a solution for the original problem with the same
cost. In other words, the gap between the relaxation and the original problem becomes

Mathematics 2024, 12, 3201 3 of 27

zero, resulting in a proven optimal solution. Leveraging these relaxations, we propose
two algorithms: Iterative Refinement, in which relaxations are refined in an outer loop,
and Branch and Refine, where relaxations are refined during the exploration phase of a
branch-and-bound algorithm.

In summary, the contributions of this work are as follows:

• We present and model a real-world problem, the TBDRP, as a MIQP. This model
accounts for battery consumption, soft time-window constraints and supports partial
recharging.

• We propose an alternative formulation using two-dimensional layered graphs and
demonstrate that aggregated layered graphs can be employed to find relaxations of
the TBDRP.

• We develop two algorithms based on these relaxations and show through compu-
tational experiments that they outperform direct approaches to solving the MIQP
formulation using state-of-the-art solvers.

The outline of this paper is as follows: In Section 2, we provide a review of the
existing literature on last-mile logistics and refinement algorithms. Section 3 presents the
mathematical formulation of the problem and various mixed-integer models, along with
the concept of time- and battery-expanded graphs. In Section 4, we discuss relaxation
techniques for a fully time- and battery-expanded graph. This theoretical background
is used to define a refinement algorithm in Section 5. Section 6 presents the results of
computational experiments. Finally, Section 7 concludes the paper and provides an outlook
on future research directions.

2. Literature Review

The use of innovative delivery concepts, such as drones or autonomous delivery robots,
for parcel delivery is a relatively recent topic. A comprehensive overview of current and
future concepts is provided by [5,6], while [7] discusses broader trends in transportation.

The body of literature on optimizing last-mile delivery networks using delivery robots
is still limited and can be divided into two main categories: (1) approaches involving mobile
vans capable of transporting robots, and (2) approaches focused on stationary micro-depots.

In the first category, [8] consider the scheduling of a delivery truck carrying robots.
The truck can load robots at micro-depots and launch them at predefined locations along
its route. The objective is to minimize the weighted number of late deliveries. The authors
formulate the problem as a mixed-integer linear program (MILP) and propose a multi-start
local search heuristic to solve the scheduling problem. A related problem is studied by [9],
who present a different objective function. Their model incorporates a multi-objective
function aiming to minimize the total tour length of the truck, the distances traveled by the
robots and the lateness of deliveries. The authors also provide a MILP formulation and a
two-stage heuristic to solve this problem.

In the second category, where micro-depot locations are fixed, [10] present a simulation
framework that models parcel deliveries in a city of one million inhabitants. In this model,
up to 3% of parcels are delivered by robots in a two-tiered system, with the remainder
delivered by conventional vehicles. In a follow-up study, [11] examine the number of
delivery robots required to service a city center. Two delivery slot selection strategies are
considered: in the first, customers pre-select delivery time slots, and delays are minimized
using a simulated annealing approach; in the second, customers request deliveries on-
demand, and available robots from nearby micro-depots are dispatched accordingly.

In another contribution, [12] address a location-routing problem for delivery robots.
The goal is to minimize the delivery costs of urban shipments using parcel robots. The
problem is modeled as a MILP and solved using optimization software. In a case study, the
authors examine the impact of varying the number of compartments on delivery efficiency.

Recently, [13] studies last-mile distribution with delivery robots and public trans-
portation lines. They used a heuristic destroy-and-repair mechanism embedded into a

Mathematics 2024, 12, 3201 4 of 27

neighborhood search, and applied their method on test instances from drug distribution to
pharmacies in Rome.

Optimizing unmanned aerial vehicles (UAVs) or drones is a more widely explored
topic in the literature. Ref. [14] provide a comprehensive overview of routing problems
involving UAVs. However, only a limited number of studies focus on battery management
and recharging processes. In most publications where batteries are considered, they are
treated merely as range constraints, with recharging assumed to occur instantaneously.
This is typically modeled as a battery swap at a micro-depot, where an empty battery is
exchanged for a fully charged one (see [15–17]).

A more closely related field of research is the Electric Vehicle Routing Problem (EVRP),
which extends the standard VRP to include electric vehicles that require recharging at
dedicated stations. A survey of the EVRP is provided by [18]. Ref. [19] extend the EVRP by
incorporating time windows (EVRPTW) at customer locations. They formulate the problem
as a MILP and propose a Variable Neighborhood Search and Tabu Search heuristic to solve
it, though their model only considers full recharges.

Ref. [20] build upon this by allowing partial recharges in their extension of the
EVRPTW. They present a MILP formulation and develop an adaptive large neighborhood
search heuristic. Additionally, Ref. [21] propose an exact algorithm for the EVRPTW,
discussing both full and partial recharging strategies. They introduce a branch-price-and-
cut algorithm to solve this problem effectively.

The TBDRP is closely related to the EVRPTW but differs in two significant ways. First,
we relax the time window constraints, allowing for late deliveries, which are penalized in
the objective function. This choice of objective function is motivated by the autonomy of
the delivery vehicles, where operational costs are not significantly influenced by operating
time. As a result, the focus shifts towards maximizing customer satisfaction by minimizing
delivery delays.

The second key difference lies in the limited cargo capacity of autonomous delivery
vehicles. In our model, each vehicle has a single-unit capacity, necessitating a mandatory
return to the depot or recharging station between each pair of customer deliveries. Conse-
quently, each customer visit consists of a round trip from the depot to the customer and
back, making it independent of the sequence of other customers. This implies that the order
in which customers are visited has no direct impact on the total travel time of the vehicles
in the TBDRP.

Despite this, the problem remains complex, as customers must still be assigned to
vehicles and sequenced in a way that minimizes time-window violations. Additionally, the
scheduling of vehicle recharging plays a crucial role in the overall optimization.

In contrast to studies on the EVRPTW, our modeling approach for the TBDRP is based
on layered graphs. This concept has recently gained traction in the literature and has been
applied to various optimization problems. The nodes in a layered graph are derived from
the nodes of an underlying graph. For each original node, the layered graph contains a
set of nodes, referred to as copies, with each copy representing a different state of one or
more commodities at that node. Arcs between these copies represent feasible transitions
between states, allowing constraints on the commodities to be naturally integrated into the
graph structure.

Ref. [22] provide a survey on models based on layered graphs and the solution
methods associated with them. Compared to traditional formulations that use additional
variables to track commodities, layered graph formulations often exhibit much stronger
linear relaxations, as noted by [23]. This characteristic is particularly advantageous for
branch-and-bound algorithms, where the ability to prune nodes from the search tree is
heavily influenced by the quality of the linear relaxation.

One of the most commonly used layered graphs is the well-known time-expanded
graph, where nodes representing locations are expanded into sets of copies that represent
different arrival times. Refinement algorithms have been proposed for a variety of problems
modeled using time-expanded graphs. Ref. [23] offer an in-depth perspective on the

Mathematics 2024, 12, 3201 5 of 27

potential of these algorithms for solving time-dependent problems. The general concept
involves constructing partially expanded graphs, which contain fewer nodes and arcs than
a fully expanded graph while still representing the problem. Depending on whether travel
times are underestimated or overestimated, these graphs can provide either lower or upper
bounds. They are then dynamically refined to improve the bounds and reduce the gap
between them.

For example, Ref. [24] successfully apply this strategy to a delivery problem where
shipments can be consolidated if they share the same route and departure time. Other
examples include [25], who apply it to a time-dependent variant of the traveling sales-
man problem, and [26], who use it to solve the minimum duration shortest path problem.
Additionally, Ref. [27] employ refinement steps based on the linear relaxation of a MILP for-
mulation in their approach to solving the traveling salesman problem with time windows.

As an example of a layered graph where nodes do not represent arrival times, we
reference [28], who apply refinement techniques in a graph where the node copies represent
the number of arrivals at a location. Additionally, the works of [29,30] demonstrate that
this technique is not limited to formulations derived from layered graphs but can be
applied more broadly to problems where node contractions can be used to obtain relaxed
formulations.

Our Branch and Refine approach is closely related to one of the methods presented
by [29]. To the best of our knowledge, they were the first to incorporate graph refinement
into a branch-and-bound algorithm, thus avoiding the need to repeatedly solve MILPs in a
loop to progressively improve bounds.

3. Problem Description and Mathematical Formulation

In this section, we provide a detailed description of the TBDRP. Although the prac-
tical application involves delivery robots, we adopt a more theoretical perspective in the
following sections and therefore use the more general term “vehicle.”

Let V = {0, . . . , n, n + 1} represent a set of locations, where locations 0 and n + 1 are
copies of the depot, and let C = {1, . . . , n} represent the customer locations. We also define
the following set of ordered location pairs:

A = {(i, j) ∈ C× C | i ̸= j} ∪ {(0, i) | i ∈ C} ∪ {(i, n + 1) | i ∈ C}.

There are m identical vehicles available at the depot, each with a single-unit capacity, and
each customer has a single-unit demand. Consequently, a depot visit is required between
any two consecutively visited customers.

Each location i ∈ V has a soft time window [ti, ti], where ti ∈ R+ represents the lower
bound, and ti ∈ R+ represents the upper bound of the time window. For depot locations
i = 0, n + 1, we set [ti, ti] = [0, T], where T is the time horizon, chosen sufficiently large to
avoid constraining potential routes. Additionally, we assume that servicing each customer
i ∈ C requires a known duration si.

An early arrival at a customer location is not permitted, and any tardy arrival incurs a
penalty, which is the squared delay. Let di denote the travel time between the depot and
customer i ∈ C, both to and from the depot. Let dij = si + di + dj represent the service
time at customer i, plus the travel time between the arrival at customers i and j ∈ C. This
includes the travel time from i back to the depot, followed by the travel time from the depot
to j. For ease of notation, we define d0j = dj and djn+1 = dj + sj for j ∈ C.

The depot functions not only as a storage facility for goods but also as a recharging
station for the vehicles. We assume that the recharging capacity is sufficient to charge all
vehicles simultaneously. Since the vehicles are battery-powered, let B denote the battery
capacity. For simplicity, we assume that the state of charge (SoC) of the battery is expressed
in terms of the number of time units the vehicle can still travel. This assumption allows for
a direct conversion between the resources of time and energy.

Furthermore, we assume that the SoC increases linearly during charging and decreases
linearly during driving, although in real-world applications, the charging rate typically

Mathematics 2024, 12, 3201 6 of 27

decreases for the last 10% to 20% of the battery capacity (see [31]), research indicates that the
linearity assumption holds well within the crucial 20% to 90% SoC range, which is the most
relevant for our model. In addition, given that our test area is relatively flat, the vehicle
motor operates under stable conditions, making the linearity assumption more reasonable.

We also assume that real-world factors such as traffic or pedestrian interference are
minimal. Although the robot can slow down or wait for obstacles, such interference is
considered negligible compared to overall daytime operations in the test scenarios. Finally,
processes such as loading, unloading or waiting do not impact the SoC, as vehicles are
assumed to enter a standby mode during these activities, consuming only negligible
amounts of energy.

Let α represent the travel time units gained by charging for one unit of time. Let
bij = di + dj denote the battery units consumed when traveling between customers i and
j ∈ C. For consistency, we also define b0j = dj and bjn+1 = dj for j ∈ C. Upon arrival at
each customer i ∈ C, the SoC of the vehicle’s battery must lie within a battery window
[bi, bi], where bi = di and bi = B− di.

The optimization problem involves determining m routes that minimize the sum of
squared delays, subject to the following constraints: (i) each customer is visited exactly
once by any of the vehicles, (ii) no customer is served earlier than their specified lower time
window bound ti and (iii) the vehicles’ state of charge (SoC) must always remain within
the bounds [0, B].

3.1. Exact Mixed-Integer Formulations

In this subsection, we present a mixed-integer quadratic programming (MIQP) for-
mulation for modeling the TBDRP. Since each vehicle has a single-unit capacity, it must
return to the depot after each delivery before proceeding to the next. In our formulation,
we implicitly model these return trips by adjusting the travel times and battery consump-
tion, which leads to the following definition. Given k ∈ N locations P1, . . . , Pk ∈ V with
2 ≤ k ≤ n + 1, we define the tuple P = (P1, . . . , Pk) as a tour if the locations are pairwise
disjoint, and if P1 = 0 and Pk = n + 1.

We introduce binary decision variables xij for (i, j) ∈ A. For i, j ∈ C, these variables
indicate whether customer i precedes customer j in the tour: xij = 1 if and only if a vehicle
returns from i to the depot and then serves customer j next. The variables x0j for j ∈ C
indicate whether customer j is the first customer in a tour, while xin+1 for i ∈ C indicate
whether customer i is the last customer in a tour.

We also introduce continuous decision variables ϑi ∈ R+ to represent the start time of
service at location i ∈ V. Additionally, for each location i ∈ V, the state of charge (SoC) at
the start of service is captured by the continuous variable βi ∈ R+, and any potential delay
at the location is represented by the continuous variable γi ∈ R+.

An overview of all decision variables and parameters is provided in Table 1.

Table 1. Decision variables and parameters.

Variable Description

xij indicator if location i precedes location j for (i, j) ∈ A
ϑi start of the service at location i ∈ V
βi SoC at location i ∈ V
γi delay at location i ∈ V
m number of vehicles
n number of customers
si service time at customer i ∈ C
di travel time from the depot to customer i ∈ C
dij traveling plus service time for (i, j) ∈ A

Mathematics 2024, 12, 3201 7 of 27

Table 1. Cont.

Parameter Description

bij battery consumption for (i, j) ∈ A
T time horizon
[ti, ti] time window of location i ∈ V
B battery capacity
[bi, bi] battery window of location i ∈ V
α recharging rate

Using these variables, the TBDRP can be modeled as the following mixed-integer
quadratic program (MIQP):

minimize ∑
i∈C

γ2
i (1)

subject to ∑
i∈C

x0i ≤ m (2)

∑
j∈V:(i,j)∈A

xij = 1 i ∈ C (3)

∑
j∈V:(j,i)∈A

xji = 1 i ∈ C (4)

ϑi + dij ≤ ϑj + (1− xij)T (i, j) ∈ A (5)

βi + α(ϑj − ϑi − dij)− bij ≥ β j − (1− xij)T (i, j) ∈ A (6)

bi ≤ βi ≤ bi i ∈ V (7)

ti ≤ ϑi ≤ ti + γi i ∈ V (8)

0 ≤ γi ≤ T − ti i ∈ V (9)

xij ∈ {0, 1} (i, j) ∈ A (10)

In the objective function (1), delays are squared to penalize significant individual delays
more heavily than multiple short delays. Constraint (2) ensures that no more than m
vehicles are used. Constraints (3) and (4) guarantee that each customer is visited exactly
once. For two consecutively visited locations i and j, constraints (5) ensure that the time
difference between the arrival at these locations is sufficient. Similarly, constraints (6)
ensure that the difference between the SoC levels reflects battery consumption and the time
spent charging.

Additionally, constraints (5) implicitly impose an ordering of the customers within the
same tour, preventing cycles in the solution. The domains of the variables are enforced by
(7), (8) and (10). The time window for any location i ∈ V can only be violated if a positive
value is assigned to γi, ensuring that the delay variables are correctly applied.

3.2. The Time- and Battery-Expanded Formulation

For fractional values of the x-variables, the right-hand side of (5) can become large,
while the right-hand side of (6) can become small, making these constraints very weak
in the linear relaxation of (10). This can result in a significant gap between the objective
function value in the original problem (1)–(10) and its linear relaxation, which is known to
hinder the performance of branch-and-bound algorithms used to solve the problem.

As an alternative to the MIQP formulation, we propose modeling the problem using a
type of layered graph called a partially time- and battery-expanded graph (TBEG). Such for-
mulations are known to provide much stronger linear relaxations (see, for example, Ref. [22]).

To define this approach, for a location i ∈ V, we introduce a tuple (i, t, b), which we
refer to as a node representative of i, where (t, b) ∈ [ti, T − di − si]× [bi, bi]. In this case,
(t, b) represents the arrival state of the node representative (i, t, b).

Mathematics 2024, 12, 3201 8 of 27

For any arc (i, j) ∈ A, we define a tuple (i, ti, bi, j, tj, bj) as an arc representative of
(i, j), where (i, ti, bi) is a node representative of i, and (j, tj, bj) is a node representative of j.

A TBEG is a graph G = (V ,A), where the set of nodes V consists of node representa-
tives, and the set of arcs A consists of arc representatives. Furthermore, for each location
i ∈ V, there must be at least one node representative in V , and for each node representative
(i, t, b) and each arc (i, j) ∈ A, there must be at least one arc representative of (i, j) inA, with
(i, t, b) as its tail. For a location i ∈ V, the subset of V containing all node representatives of
i is denoted by Vi and for (i, j) ∈ A, the subset of A containing all arc representatives of
(i, j) is denoted by Aij.

Figure 1 illustrates the concept of TBEGs. For simplicity, in the example shown in
Figure 1a, there are only three customers and one vehicle. Figure 1b illustrates the TBEG
obtained by considering the six possible paths, where each customer is visited as early as
possible. The different line styles of the circles in both figures indicate their correspondence.
The nodes of this graph represent tuples consisting of the customer index, the arrival time
and the battery level upon arrival. Arcs connect only those nodes where travel is feasible,
i.e., the difference in arrival times is sufficiently large, and the battery consumption is
accurately tracked.

The highlighted tour in the graph represents the sequence of customer visits that
minimizes the objective function. The individual contribution of each arc to the objective
function is indicated above the arcs of the highlighted tour. In this example, customers 1
and 2 can be visited without requiring a recharge. However, for the trip to customer 3 and
the subsequent return to the depot, the vehicle needs to spend 6 units of time charging.
Finally, the vehicle returns to the depot, using up the remainder of its battery.

depot

12

3

n = 3
m = 1
B = 6
s1, s2, s3 = 0
α = 1
[t1, t1] = [1, 2]
[t2, t2] = [2, 3]
[t3, t3] = [3, 4]

1
12

2

33

(a) An illustration of a TBDRP instance.

depot
(0,0,6)

(1,1,5)

(2,2,4)

(3,3,3)

(3,7,3)

(2,4,2)

(3,11,3)

(1,5,1)

(2,12,2)

(1,9,1)

(3,15,3)

(2,16,2)

(1,17,1)

depot
(4,18,0)

0

1 11

0

(b) A corresponding TBEG.

Figure 1: A minimalistic example.

to the objective function is indicated above the arcs of the highlighted tour. In
this example, customers 1 and 2 can be visited without requiring a recharge.
However, for the trip to customer 3 and the subsequent return to the depot, the
vehicle needs to spend 6 units of time charging. Finally, the vehicle returns to
the depot, using up the remainder of its battery.

For any TBEG G, we can derive a model that, depending on G, can serve as
an exact formulation of the TBDRP. We use variables xij for all (i, j) ∈ A in the
same way they are used in (1). However, instead of the continuous variables,
we now use binary variables ya for each a ∈ A, which take the value 1 if and
only if a vehicle transitions from the arrival state of the tail of a to the arrival
state of the head of a.

Using these variables, we propose the following mixed-integer linear program

11

Figure 1. A minimalistic example.

For any TBEG G, we can derive a model that, depending on G, can serve as an exact
formulation of the TBDRP. We use variables xij for all (i, j) ∈ A in the same way they are
used in (1)–(10). However, instead of the continuous variables, we now use binary variables

Mathematics 2024, 12, 3201 9 of 27

ya for each a ∈ A, which take the value 1 if and only if a vehicle transitions from the arrival
state of the tail of a to the arrival state of the head of a.

Using these variables, we propose the following mixed-integer linear program (MILP)
for any TBEG G:

minimize ∑
a=(i,ti ,bi ,j,tj ,bj)∈A

max(0, tj − tj)
2ya (11)

subject to ∑
j∈C

x0j ≤ m (12)

∑
j∈V:(i,j)∈A

xij = 1 i ∈ C (13)

∑
a∈Aij

ya = xij (i, j) ∈ A (14)

∑
a∈δ+((i,t,b))

ya = ∑
a∈δ−((i,t,b))

ya (i, t, b) ∈ V (15)

xij ∈ {0, 1} (i, j) ∈ A (16)

ya ∈ {0, 1} a ∈ A. (17)

We refer to this MILP as MG , depending on the TBEG G from which it is derived. The
objective function (11) minimizes the squared delay of the arrival states indicated by
the heads of the arcs in the TBEG. Constraint (12) limits the number of vehicles, while
constraints (13) ensure that each customer is visited exactly once. The constraints (14)
enforce consistency between the values assigned to the x- and y-variables.

Flow conservation is enforced by constraints (15), where δ+((i, t, b)) denotes the set of
outgoing arcs and δ−((i, t, b)) denotes the set of incoming arcs for the node (i, t, b) ∈ V .

It is important to note that, at this stage, the solutions may contain cycles, which will
need to be addressed in subsequent algorithmic steps.

Since the nodes in G represent arrival states at locations, we can use Algorithm 1
with a solution of MG as its input and check if its output satisfies the constraints (2)–(10).
For all nodes (j, t, b) where the flow described by the y-variables in (11)–(17)is non-zero,
the algorithm assigns t to the variable ϑj, b to the variable β j, and max(0, t − tj) to the
variable γj of (9). The objective function (11) then becomes the squared delay given by the
γ-variables in (1).

Algorithm 1: transform(x, y)

1 Input: Solutions vectors x and y of MG for some TBEG G;
2 for (i, j) ∈ A do
3 xij ← xij;

4 for a = (i, ti, bi, j, tj, bj) ∈ A do
5 if ya = 1 then
6 ϑj ← tj;
7 β j ← bj;
8 γj ← max(0, tj − tj);

9 Output: Vectors x, ϑ, β, γ;

Based on this, we can make the following observation:

Proposition 1. Let G be a TBEG, with a set of arcs that ensures that for any input to Algorithm 1,
the output of Algorithm 1 satisfies the constraints (8) and (7). Then, the solution vectors of MG can
be transformed by Algorithm 1 into vectors that satisfy all the constraints (2)–(10). Furthermore, if
it is guaranteed that at least one optimal solution of (1)–(10) can be expressed as a tour in G, the
solution of MG can be transformed by Algorithm 1 into a feasible solution of (2)–(10).

Mathematics 2024, 12, 3201 10 of 27

In the remainder of this section, we derive a TBEG Gexp = (Vexp,Aexp) that satisfies
the conditions of Proposition 1. We refer to this graph as the completely time- and battery-
expanded graph.

We begin by introducing the matrix

M =

(
1 α
0 −1

)
.

Since M−1 = M, this transformation will be useful for considering arrival states in a
different coordinate system.

For (i, j) ∈ A, we call a node representative (j, tj, bj) of j reachable from a node repre-
sentative (i, ti, bi) of i, and an arc representative (i, ti, bi, j, tj, bj) of an arc (i, j) realizable if
there exist θ, τ ≥ 0 such that(

tj
bj

)
=

(
ti
bi

)
+

(
dij
−bij

)
+ θ

(
1
α

)
+ τ

(
0
−1

)
=

(
ti
bi

)
+

(
dij
−bij

)
+ M⊺

(
θ
τ

)
.

A possible interpretation of θ is the charging time, while non-zero values of τ cannot
be realized in practice. τ can be interpreted as an instantaneous loss of charge or an
overestimation of battery consumption. Although energy stored in the battery cannot
simply disappear, this is allowed by constraint (7). This choice will be useful later, as it
helps to expand the set of reachable arrival states as much as possible. Importantly, there
is no downside to overestimating battery consumption when considering the feasibility
of transitions.

We can deduce that if the arcs inAexp are realizable, all tours in Gexp are guaranteed to
satisfy both the time and battery constraints. Therefore, if we include node representatives
with all possible arrival states for the locations, along with all realizable arc representatives,
the conditions of Proposition 1 would be fulfilled by Gexp.

However, the set of node representatives is defined as a rectangle (for each customer
index), meaning it is not possible to include all of them in a finite graph. To apply the
described approach, we first need to demonstrate that it suffices to consider only a finite set
of node representatives, i.e., for Vexp to contain a finite number of nodes. We achieve this
by introducing the concept of domination, based on a specific partial order ⪯ of the states.

A closer examination of the definition of reachable arrival states reveals that they form
part of a shifted convex cone. Moreover, this convex cone depends solely on the recharging
rate α. Thus, it is natural to define the partial order induced by this cone. The cone is
given by

C =
{

θ

(
1
α

)
+ τ

(
0
−1

) ∣∣∣∣ θ, τ ≥ 0
}

.

For two node representatives (i, t1, b1) and (i, t2, b2) of a location i ∈ V, we define (i, t1, b1) ⪯
(i, t2, b2) if and only if (t2, b2) − (t1, b1) ∈ C. Similarly, for the arrival states, we write
(t1, b1) ⪯ (t2, b2).

An easy way to verify whether two node representatives can be compared using this
partial order is presented in the following lemma.

Lemma 1. Given two node representatives (i, t1, b1) and (i, t2, b2) of a location i ∈ V, define
(θ1, τ1) = (t1, b1) ·M and (θ2, τ2) = (t2, b2) ·M. Then, (t1, b1) ⪯ (t2, b2) if and only if θ1 ≤ θ2
and τ1 ≤ τ2.

Proof. By the definition of M and C, any point (t, b) ∈ C can be expressed as (θ, τ) ·M for
some θ, τ ≥ 0. The result then follows directly from the definition of the partial order⪯.

With the previously outlined interpretation of θ and τ in mind, (t1, b1) ⪯ (t2, b2)
for two arrival states at the same location means that less time must be spent charging,

Mathematics 2024, 12, 3201 11 of 27

and the battery consumption must be overestimated by a smaller amount to reach (t1, b1)
instead of (t2, b2). For this reason, we now use the partial order to state that a node
representative (i, t1, b1) dominates a node representative (i, t2, b2) for some location i ∈ V
if (i, t1, b1) ⪯ (i, t2, b2). This is further justified by the following observation.

Proposition 2. Let (i, t1
i , b1

i) and (i, t2
i , b2

i) be node representatives of some location i ∈ V, such
that (i, t1

i , b1
i) ⪯ (i, t2

i , b2
i), and let (j, tj, bj) be a node representative of some other location j ∈ V,

where (i, j) ∈ A. If (j, tj, bj) is reachable from (i, t2
i , b2

i), then (j, tj, bj) is also reachable from
(i, t1

i , b1
i).

Proof. This follows directly from the definition of arrival states.

The following result demonstrates that our concept of domination is useful for reduc-
ing the number of node representatives that need to be included in Gexp.

Lemma 2. Let (i, ti, bi) be a node representative of some location i ∈ V, and let j ∈ V be another
location such that (i, j) ∈ A. Then, there exists at most one node representative (j, tj, bj) of j that is
reachable from (i, ti, bi) and is not dominated by another reachable node representative of j.

Proof. Assume there are two distinct node representatives (t1
j , b1

j) and (t2
j , b2

j) of j that are
reachable from (i, ti, bi) and are not dominated by any other node representative that is
also reachable from (i, ti, bi). Then, we can find θ1, θ2, τ1, τ2 ≥ 0 such that(

t2
j

b2
j

)
=

(
ti
bi

)
+

(
di + dj
−di − dj

)
+ θ1

(
1
α

)
+ τ1

(
0
−1

)
, (18)(

t1
j

b1
j

)
=

(
ti
bi

)
+

(
di + dj
−di − dj

)
+ θ2

(
1
α

)
+ τ2

(
0
−1

)
. (19)

Since they are not dominated by any other node representative, they also cannot
dominate each other. This implies (t1

j , b1
j)− (t2

j , b2
j) /∈ C and (t2

j , b2
j)− (t1

j , b1
j) /∈ C. For this

to hold, either θ1 ≥ θ2 or τ1 ≥ τ2 must be true, but not both. Without loss of generality,
assume θ1 ≥ θ2 and τ1 < τ2.

Now, consider the point (t3
j , b3

j) given by(
t3

j
b3

j

)
=

(
ti
bi

)
+

(
di + dj
−di − dj

)
+ θ2

(
1
α

)
+ τ1

(
0
−1

)
. (20)

This point dominates both (t1
j , b1

j) and (t2
j , b2

j). Moreover, since t3
j = t2

j and b2
j ≤ b3

j ≤
b1

j , (j, t3
j , b3

j) fulfills the conditions to be a node representative of j if (j, t1
j , b1

j) and (j, t2
j , b2

j)

are node representatives. Furthermore, (j, t3
j , b3

j) is also reachable from (i, ti, bi). Thus, we
have found a node representative of j that is reachable from (i, ti, bi) and dominates both
(j, t1

j , b1
j) and (j, t2

j , b2
j), contradicting the initial assumption.

Lemma 2 demonstrates that we do not need to consider the entire set of node represen-
tatives. Instead, we only need to find the reachable node representative that dominates all
others. While it is possible to use an LP formulation to identify this point, the geometry of
the reachable node representatives is simple enough that it can be found by distinguishing
a few special cases. The steps for this process are outlined in Algorithm 2.

Mathematics 2024, 12, 3201 12 of 27

Algorithm 2: recharge(i, t, b, j)

1 Input: A node representative (i, t, b) of some location i ∈ V and another location j,
such that (i, j) ∈ A;

2 tc ← max(bj + bij − b), 0)/α; (forced charging time)
3 tw ← max(tj − dij − t), 0) ; (forced wait time)
4 td ← max(tct, twt); (time at depot)
5 tj ← t + td + dij; (arrival time at j)
6 bj ← min(B, b− di + αtd)− dj; (SoC at j)
7 Output: A node representative (j, tj, bj) of j;

In this strategy, the time that must be spent at the depot is calculated first. It is the
maximum of the following two values: (1) the waiting time required at the depot to ensure
that the vehicle does not arrive too early at the next customer, and (2) the time needed to
charge the battery sufficiently for the journey to the next customer and back. Based on this,
the vehicle’s arrival time and state of charge (SoC) at the next customer can be determined.

Using this strategy ensures that the vehicles spend the minimum possible time at
the depot. As a result, for any given tour assignment, there exists no recharging strategy
that allows a customer to be reached earlier while still guaranteeing the feasibility of
the transition. This, in turn, minimizes delays and ensures that the recharging strategy
is optimal.

Let (i, ti, bi, j, tj, bj) ∈ A be an arc representative, and let (t, t̂j, b̂j) be the output of the
function recharge(i, ti, bi, j). This implies that t̂j ≥ tj, and t̂j provides a better estimation
of the arrival time than tj. Thus, we can replace tj with t̂j in (11) to obtain a more accurate
estimation of the delays.

More explicitly, by using t̂j for the arrival time calculated in this manner, we replace
the objective (11) of the MILP MG with:

∑
a=(i,ti ,bi ,j,tj ,bj)∈A

max(0, t̂j − tj) · ya. (21)

This modified objective function provides tighter bounds in our algorithms but does
not affect the broader discussion, as the two objective functions are identical for the time-
and battery-expanded graph Gexp.

The next step is to convert tours in G into tours of node representatives. We first extend
the concept of representatives to tours by calling a tour P in a TBEG G a tour representative
of a tour P in G if all the nodes in P are node representatives of the corresponding nodes in P.

Given two tours P and P̂ in some TBEG G that are tour representatives of the same
tour P in G, we write P ⪯ P̂ if the relation ⪯ holds for all node representatives in P and P̂ .

With this notation, we can now prove the following result for Algorithm 2.

Lemma 3. Given a tour P of length k in G, Algorithm 3 returns a tour representative P of P,
where the arcs between subsequent nodes are realizable. Furthermore, it holds that P ⪯ P̂ for all
other tour representatives P̂ of P.

Algorithm 3: expand(P)

1 Input: A tour P in G ;
2 (i, t, b)← (0, 0, B);
3 for j = 1, . . . , k− 1 do
4 Pj ← (i, t, b);
5 (i, t, b)← recharge(i, t, b, Pj+1);

6 Pk ← (i, t, b);
7 Output: A tour representative P = (P1, . . . ,Pk) of P;

Mathematics 2024, 12, 3201 13 of 27

Proof. Since the subsequent nodes in the output P of Algorithm 3 are computed using
Algorithm 2, the transitions between them must be realizable. By Lemma 2, the second
node P2 is the unique non-dominated node representative of P2 that is reachable from P1.
In particular, this also holds for P̂2 of any other tour representative P̂ of P. Inductively, this
property holds for all nodes in P , which completes the proof.

Now, interpreting the tours P as graphs (VP ,AP) with nodes VP = P and arcs
between subsequent nodes, by Lemma 3, Algorithm 3 can be used to convert tours in G
into their tour representatives, which contain only realizable arc representatives. Moreover,
no other tour representative with realizable arc representatives has nodes that are non-
dominated by the nodes in the output of Algorithm 3.

Based on this, we define Vexp =
⋃

P∈P VP and Aexp =
⋃
P∈PAP , where P denotes

the set of all tours in G. By construction, any tour (including those in a solution of the
TBDRP) has a tour representative in the graph Gexp = (Vexp,Aexp). Furthermore, since
all arc representatives in this graph are realizable, each tour representative in Gexp can be
transformed into vectors that satisfy all time and battery constraints.

Therefore, Gexp fulfills the conditions outlined in Proposition 1, and thus MGexp is an
exact formulation of the TBDRP. For this reason, it is justified to refer to MGexp as the time-
and battery-expanded formulation of the TBDRP.

It is important to note that, based on the derivation of Gexp, this formulation is not
practical for solving the TBDRP in real-world scenarios. Listing all possible tours in G,
whose number grows exponentially with the size of the graph, would be computationally
infeasible. However, as we will demonstrate in the following section, it is possible to use
other TBEGs G, for which MG serves as a relaxation of the time- and battery-expanded
formulation of the TBDRP.

For any TBEG G, it is straightforward to check whether a solution of MG is also
contained in MGexp . This can be done by applying Algorithm 3 to the tours in G described
by the x-variables and comparing the resulting tour to the one described by the y-variables.
If they match, we have found an optimal solution to MGexp . If they differ, the output of
Algorithm 3 can still be used to generate solution candidates.

4. Relaxations of the Time- and Battery-Expanded Formulation

As outlined earlier, the first step in developing an algorithm that leverages the time-
and battery-expanded formulation is to find TBEGs G = (V ,A) for which MG serves as a
good relaxation of MGexp . We begin by introducing the TBEG G init = (V init,Ainit), where

V init = {(i, ti, bi), i ∈ V}, Ainit = {(i, ti, bi, j, tj, bj), (i, j) ∈ A}.

This represents the TBEG with the smallest possible number of nodes and arcs.
We define arc representatives (i, ti, bi, j, tj, bj) of an arc (i, j) ∈ A as underestimating if

(j, tj, bj) ⪯ recharge(i, ti, bi, j). Additionally, we say an arc is minimally underestimating
in a TBEG G if there exists no other node representative (j, t̂j, b̂j) ∈ V , with (j, t̂j, b̂j) ̸=
(j, tj, bj), such that (j, t̂j, b̂j) ⪯ recharge(i, ti, bi, j) and (j, t̂j, b̂j) ⪯ (j, tj, bj).

Let us illustrate this definition with a simplified example. Consider a situation where
the set of node representatives in Vj for some customer j ∈ C is represented by the black dots
in Figure 2a, and we want to include an arc from a node (i, ti, bi) to a node representative
of j. Even if the node representative given by the output of Algorithm 2 is not an element
of V , it is guaranteed to be located within one of the colored areas.

Mathematics 2024, 12, 3201 14 of 27

is minimally underestimating in a TBEG G if there exists no other node
representative (j, t̂j , b̂j) ∈ V, with (j, t̂j , b̂j) 6= (j, tj , bj), such that (j, t̂j , b̂j) �
recharge(i, ti, bi, j) and (j, t̂j , b̂j) � (j, tj , bj).

a
rr

iv
a
l

ti
m

e

SoC

(a)

SoC

(t1, b1)

(t2, b2)a
rr

iv
a
l

ti
m

e

(b)

SoC

(t1, b1)

(t2, b2)(t12, b12)a
rr

iv
a
l

ti
m

e

(c)

Figure 2: Arrival states at some customer j.

Let us illustrate this definition with a simplified example. Consider a situ-
ation where the set of node representatives in Vj for some customer j ∈ C is
represented by the black dots in Figure 2a, and we want to include an arc from
a node (i, ti, bi) to a node representative of j. Even if the node representative
given by the output of Algorithm 2 is not an element of V, it is guaranteed to
be located within one of the colored areas.

Since all points in any of these areas are dominated by the bottom right
corner (the apex of a shifted C), connecting (i, ti, bi) to the node representative
with an arrival state equal to the bottom right corner of this area results in a
graph that underestimates the arrival states. Arc representatives chosen in this
manner are minimally underestimating.

Constructing the entire set of arcs in this way leads to a graph where the
nodes do not represent a single arrival state but rather an entire section of the
rectangle of arrival states. Note that the graph Gexp can be interpreted similarly,
but it is designed such that the outputs of Algorithm 2 used in the definition of
underestimating arcs are already present in Vexp.

Another reason for using TBEGs in which the arc representatives are mini-
mally underestimating is demonstrated by the following result.

Proposition 3. Let G = (V,A), where all arcs are minimally underestimating,
P a tour, P a tour representative of P in G, and Pexp a tour representative of
P in Gexp. Then Pi � Pexp

i holds for i = 1, . . . , |P |.

Proof. Assume the assertion does not hold. Then, there exists a minimal index
2 ≤ k ≤ |P | such that Pk � Pexp

k . It must therefore hold that Pk−1 � Pexp
k−1.

18

Figure 2. Arrival states at some customer j.

Since all points in any of these areas are dominated by the bottom right corner (the
apex of a shifted C), connecting (i, ti, bi) to the node representative with an arrival state
equal to the bottom right corner of this area results in a graph that underestimates the
arrival states. Arc representatives chosen in this manner are minimally underestimating.

Constructing the entire set of arcs in this way leads to a graph where the nodes do
not represent a single arrival state but rather an entire section of the rectangle of arrival
states. Note that the graph Gexp can be interpreted similarly, but it is designed such that the
outputs of Algorithm 2 used in the definition of underestimating arcs are already present
in Vexp.

Another reason for using TBEGs in which the arc representatives are minimally
underestimating is demonstrated by the following result.

Proposition 3. Let G = (V ,A), where all arcs are minimally underestimating, P a tour, P a tour
representative of P in G, and Pexp a tour representative of P in Gexp. Then, Pi ⪯ Pexp

i holds for
i = 1, . . . , |P|.

Proof. Assume the assertion does not hold. Then, there exists a minimal index 2 ≤ k ≤ |P|
such that Pk ⪯̸ Pexp

k . It must therefore hold that Pk−1 ⪯ Pexp
k−1. Since the output of recharge

is always reachable from its input, by Proposition 2, this implies

recharge(Pk−1, Pk) ⪯ recharge(Pexp
k−1, Pk).

However, since the arcs in G are underestimating and by the construction of Gexp, it
follows that

Pk ⪯ recharge(Pk−1, Pk) ⪯ recharge(Pexp
k−1, Pk) = Pexp

k ,

which contradicts the initial assumption.

Since our concept of domination implies that the arrival times are underestimated,
a direct consequence of Proposition 3 is that for any chosen tour, the objective value of
the MILP MG is always less than or equal to the objective value of MGexp . This means
that we can use MG as a relaxation of MGexp if all the arcs in the TBEG G are minimally
underestimating. Consequently, we will now only consider TBEGs in which all arcs are
minimally underestimating.

The situation in Figure 2a, where all nodes can be strictly ordered with respect to
the partial order ⪯, is a special case, as it implies that there is always only one minimally
underestimating arc for a given node and a fixed destination. A more complex scenario

Mathematics 2024, 12, 3201 15 of 27

is illustrated in Figure 2b, where there are two nodes (j, t1, b1) and (j, t2, b2), and neither
dominates the other. If the output of recharge(i, ti, bi, j) for a node (i, ti, bi) ∈ V falls within
the vertically and horizontally striped area, there are two possible choices for minimally
underestimating arcs.

In this situation, two issues can arise, which we will illustrate with a simple example.
The TBEGs G1 and G2, shown in Figure 3, were derived for an instance of the TBDRP given
by the parameters in Table 2 (with a service time of 0 min for all locations) and include all
minimally underestimating arcs. The numbers next to the arcs represent the delays that
occur when an arc is used.

(0,0,120)

(1,45,75)

(2,100,29) (2,100,109)

(3,132,90)

(4,0,120)

0

0

26 0

0

(a) The TBEG G1.

(0,0,120)

(1,45,75)

(2,100,29) (2,101,109)(2,100,109)

(3,132,90)

(4,0,120)

0

0 0

26 00

0

(b) The TBEG G2.

Figure 3: Illustrations of two TBEGs.

Since the output of recharge is always reachable from its input, by Proposi-
tion 2, this implies

recharge(Pk−1, Pk) � recharge(Pexp
k−1, Pk).

However, since the arcs in G are underestimating and by the construction of
Gexp, it follows that

Pk � recharge(Pk−1, Pk) � recharge(Pexp
k−1, Pk) = Pexp

k ,

which contradicts the initial assumption.

Since our concept of domination implies that the arrival times are underes-
timated, a direct consequence of Proposition 3 is that for any chosen tour, the
objective value of the MILP MG is always less than or equal to the objective
value of MGexp . This means that we can use MG as a relaxation of MGexp if all
the arcs in the TBEG G are minimally underestimating. Consequently, we will
now only consider TBEGs in which all arcs are minimally underestimating.

The situation in Figure 2a, where all nodes can be strictly ordered with re-
spect to the partial order �, is a special case, as it implies that there is always
only one minimally underestimating arc for a given node and a fixed destina-
tion. A more complex scenario is illustrated in Figure 2b, where there are two
nodes (j, t1, b1) and (j, t2, b2), and neither dominates the other. If the output
of recharge(i, ti, bi, j) for a node (i, ti, bi) ∈ V falls within the vertically and
horizontally striped area, there are two possible choices for minimally underes-
timating arcs.

In this situation, two issues can arise, which we will illustrate with a simple
example. The TBEGs G1 and G2, shown in Figure 3, were derived for an instance
of the TBDRP given by the parameters in Table 2 (with a service time of 0
minutes for all locations) and include all minimally underestimating arcs. The
numbers next to the arcs represent the delays that occur when an arc is used.

19

Figure 3. Illustrations of two TBEGs.

Table 2. Parameters of a VRPTB instance.

Customer Time Window Depot Distance Battery Interval

1 [45, 55] 45 [45, 75]
2 [100, 110] 11 [11, 109]
3 [132, 142] 30 [30, 90]

Starting at the node (1, 45, 75), the output of recharge(1, 45, 75, 2) is (2, 101, 29). There-
fore, in G1, the node (1, 45, 75) is only connected to (2, 100, 29) and not to (2, 100, 109),
because (100, 29) ⪯ (100, 109). Now, consider G2, which contains the nodes of G1 and
an additional node (2, 101, 109) (highlighted in red). Since (2, 101, 109) ⪯̸ (2, 100, 29) and
(2, 100, 29) ⪯̸ (2, 101, 109), both are successors of (1, 45, 75).

In this case, the arc to (2, 101, 109) significantly underestimates the correct battery
consumption, allowing customer 3 to be reached without any delay. Both TBEGs could be
used to create relaxations of the time- and battery-expanded formulation, but the problem
arises because, although G2 can be obtained from G1 by adding a node, the MILP MG2 has
a smaller objective value than MG1 . In this case, the graph with fewer nodes provides a
better relaxation than the one with more nodes.

In an algorithm that dynamically expands the set of nodes, however, the quality of the
relaxation should only improve in order to provide tighter bounds.

In addition to this, there is another issue we will address shortly. In G2, there are two
different tour representatives for the tour (0, 1, 2, 3, 4). However, in Gexp and G init, there is a
one-to-one correspondence between tours and their representatives. One of the goals in
designing our refinement strategy is to maintain this one-to-one correspondence between
tours in G and their tour representatives in G, as it simplifies checking whether a certain
tour in the graph underestimates delays or if its arrival states are accurately represented.

Our approach to prevent both of the previously mentioned problems is to expand the
set of nodes more carefully, ensuring that there is always only one minimally underestimat-
ing arc to choose. The idea we will use is illustrated in Figure 2c. We add the bottom-right
corner of the intersecting areas as nodes. As depicted, the node representatives with arrival

Mathematics 2024, 12, 3201 16 of 27

states in the blue and orange striped areas can be connected to (j, t12, b12), and this is now
the only minimally underestimating arc.

To formalize this approach, we start by providing an algorithm to find the bottom-right
corner of the intersecting areas, which is denoted as (t12, b12) in the illustration. Algorithm 4
formalizes this idea.

Algorithm 4: intersect(j, t1, b1, t2, b2)

1 Input: Node representatives (j, t1, b1) and (j, t2, b2) of some location j ∈ V;
2 (θ1, τ1) = (t1, b1) ·M ;
3 (θ2, τ2) = (t1, b1) ·M;
4 (θ12, τ12) = (max(θ1, θ2), max(τ1, τ2));
5 (t12, b12) = (θ12, τ12) ·M;
6 Output: A node representative (j, t12, b12) of j;

In this approach, a location j and two node representatives (j, t1, b1) and (j, t2, b2) of j
are used as input. The matrix M is then employed to transform their arrival states into a
different coordinate system, which is defined using the same vectors that describe C. In this
transformed coordinate system, the coordinates of the new point can be easily calculated
using the maximum function. Finally, we convert back to the original coordinate system
and return the calculated point.

Using this algorithm, we define a TBEG G = (V ,A) as intersection complete if, for any
node representatives (j, t1, b1), (j, t2, b2) ∈ V of some location j ∈ V, the node representative
intersect(j, t1, b1, t2, b2) is also an element of V .

The following two results demonstrate that intersection-complete TBEGs avoid the
problem of multiple minimally underestimating arcs, as previously illustrated.

Lemma 4. Let G = (V ,A) be an intersection-complete TBEG, and let (j, t, b) be a node representative
of a location j ∈ V. If there are two node representatives (j, t1, b1) ∈ V and (j, t2, b2) ∈ V such that
(j, t1, b1) ⪯ (j, t, b) and (j, t2, b2) ⪯ (j, t, b), then there exists a node representative (j, t12, b12) ∈ V
such that (j, t1, b1) ⪯ (j, t12, b12), (j, t2, b2) ⪯ (j, t12, b12), and (j, t12, b12) ⪯ (j, t, b).

Proof. Let (j, t12, b12) = intersect(j, t1, b1, t2, b2), and define

(θ, τ) = (t, b) ·M,

(θ1, τ1) = (t1, b1) ·M,

(θ2, τ2) = (t2, b2) ·M,

(θ12, τ12) = (j, t12, b12) ·M.

By Lemma 1, it follows that (j, t1, b1) ⪯ (j, t12, b12) and (j, t2, b2) ⪯ (j, t12, b12). Furthermore,
by the same lemma, we have θ ≥ θ1, θ2 and τ ≥ τ1, τ2, so θ ≥ max(θ1, θ2) and τ ≥
max(τ1, τ2).

Since (θ12, τ12) = (max(θ1, θ2), max(τ1, τ2)), it follows again by Lemma 1 that
(j, t12, b12) ⪯ (j, t, b), which completes the proof.

Proposition 4. Given a tour P in G and an intersection-complete TBEG G, where all arc represen-
tatives are minimally underestimating, there exists a unique tour representative P of P in G.

Proof. Assume there are two different tour representatives P̂ and P of P in G. Then, there
must exist a minimal index k with 2 ≤ k ≤ |P| for which P̂k ̸= Pk.

Let Pk−1 = (i, ti, bi), Pk = (j, t1, b1), and P̂k = (j, t2, b2). It also holds that P̂k−1 =
(i, ti, bi). Furthermore, we have (i, ti, bi, j, t1, b1) ∈ A and (i, ti, bi, j, t2, b2) ∈ A, which must
both be underestimating arcs.

This implies (j, t1, b1), (j, t2, b2) ⪯ recharge(i, ti, bi, j), placing us in the situation de-
scribed in Lemma 4. The existence of the state (j, t12, b12) from Lemma 4 now yields a

Mathematics 2024, 12, 3201 17 of 27

contradiction to the arcs (i, ti, bi, j, t1, b1) and (i, ti, bi, j, t2, b2) being minimally underesti-
mating, unless (t1, b1) = (t2, b2) = (t12, b12), which contradicts our initial assumption.

Therefore, there is a unique tour representative P of P in G.

In the remainder of this section, we demonstrate how intersection-complete TBEGs
can be constructed in practice. Note that G init is an intersection-complete TBEG, as each
location has only one node representative, and it holds that intersect(j, t, b, t, b) = (j, t, b)
for any (j, t, b) ∈ V init.

Before going into the details, we provide an example showing how refinements can be
used to correct the objective of a tour. The graph G init for the instance considered earlier in
Figure 1 is depicted in Figure 4a. We have highlighted the tour and its associated delays,
which we aim to correct. The refined graph is shown in Figure 4b. To obtain this graph,
two nodes were added, which represent the correct arrival times and SoCs for the tour
(0, 1, 2, 3, 4). After the refinement, the representative of this tour has the correct delays. As
a side effect, the representatives of other tours, such as (0, 1, 3, 2, 4), now contain different
node representatives.

depot
(0,0,6)

(2,2,4)

(1,1,5)

(3,3,3)

depot
(4,0,6)

0
1

7

0

(a) An example of a TBEG.

depot
(0,0,6)

(2,2,4)

(2,4,2)

(1,1,5)

(3,3,3)

(3,15,3)

depot
(4,0,6)

0

1

11

0

(b) An example of a TBEG.

Figure 4: Illustrations of two TBEGs.

Lemma 4 now yields a contradiction to the arcs (i, ti, bi, j, t1, b1) and (i, ti, bi, j, t2, b2)
being minimally underestimating, unless (t1, b1) = (t2, b2) = (t12, b12), which
contradicts our initial assumption.

Therefore, there is a unique tour representative P of P in G.

In the remainder of this section, we demonstrate how intersection-complete
TBEGs can be constructed in practice. Note that Ginit is an intersection-
complete TBEG, as each location has only one node representative, and it holds
that intersect(j, t, b, t, b) = (j, t, b) for any (j, t, b) ∈ V init.

Before going into the details, we provide an example showing how refine-
ments can be used to correct the objective of a tour. The graph Ginit for the
instance considered earlier in Figure 1 is depicted in Figure 4a. We have high-
lighted the tour and its associated delays, which we aim to correct. The refined
graph is shown in Figure 4b. To obtain this graph, two nodes were added,
which represent the correct arrival times and SoCs for the tour (0, 1, 2, 3, 4).
After the refinement, the representative of this tour has the correct delays. As a
side effect, the representatives of other tours, such as (0, 1, 3, 2, 4), now contain
different node representatives.

As a first step towards our refinement routine, we present an algorithm that
incorporates a new node representative. Algorithm 5 takes a TBEG G and a
node representative (i, t, b) of a location i ∈ V as its input. The output is a
larger TBEG in which (i, t, b) and some additional nodes are included in its set
of nodes.

For the returned TBEG, we can prove the following result.

Lemma 5. Given an intersection-complete TBEG G, a location i ∈ V , and a
node representative (i, ti, bi) of i, the output Gnew = addNode(G, i, ti, bi) is an
intersection-complete TBEG.

22

Figure 4. Illustrations of two TBEGs.

As a first step towards our refinement routine, we present an algorithm that incorpo-
rates a new node representative. Algorithm 5 takes a TBEG G and a node representative
(i, t, b) of a location i ∈ V as its input. The output is a larger TBEG in which (i, t, b) and
some additional nodes are included in its set of nodes.

Algorithm 5: addNode(G, i, t, b)

1 Input: A TBEG G, and a node representative (i, t, b) of some location i ∈ V;
2 Vnew ← {(i, t, b)};
3 for (i, t̂, b̂) ∈ Vi do
4 (tnew, bnew)← intersect(i, t, b, t̂, b̂);
5 if bnew ∈ [bi, bi] then
6 Vnew ← Vnew ∪ {(i, tnew, bnew)};

7 A ← {a ∈ V × V | a is minimally underestimating};
8 Output: A larger TBEG Gnew= (Vnew,Anew);

Mathematics 2024, 12, 3201 18 of 27

For the returned TBEG, we can prove the following result.

Lemma 5. Given an intersection-complete TBEG G, a location i ∈ V and a node representative
(i, ti, bi) of i, the output Gnew = addNode(G, i, ti, bi) is an intersection-complete TBEG.

Proof. Assume that the output is not intersection-complete. Then, there exists a location j ∈ C
and two node representatives (j, t1, b1) ̸= (j, t2, b2), such that intersect(j, t1, b1, t2, b2) /∈
Vnew. We set

(θ1, τ1) = (t1, b1) ·M,

(θ2, τ2) = (t2, b2) ·M,

(θ12, τ12) = (max(θ1, θ2), max(τ1, τ2)),

(t12, b12) = (θ12, τ12) ·M.

Note that j = i must hold, because otherwise G is not intersection-complete. For the
same reason, at least one of (j, t1, b1) or (j, t2, b2) is not an element of V . Without loss of
generality, let (j, t1, b1) /∈ V . Now, both (θ12, τ12) = (θ1, τ1) and (θ12, τ12) = (θ2, τ2) lead to
a contradiction.

Without loss of generality, assume that (θ12, τ12) = (θ2, τ1). This implies τ1 ≥ τ2
and θ1 ≤ θ2. Since (j, t1, b1) was added during the execution of Algorithm 5, there must
be a node representative (j, t3, b3) ∈ Vi ∪ {(i, t, b)} such that θ3 = θ2 and τ3 ≤ τ2, where
(θ3, τ3) = (t3, b3) ·M. Similarly, we can find a node representative (j, t4, b4) ∈ Vi ∪ {(i, t, b)}
such that θ4 = θ1 and τ4 ≤ τ1, where (θ4, τ4) = (t4, b4) ·M. If (j, t1, b1) ∈ V , we can choose
(t4, b4) = (t1, b1).

Since G is intersection-complete, it must hold that intersect(j, t3, b3, t4, b4) ∈ Vnew.
Since τ3 ≤ τ2 ≤ τ1 = τ4 and θ4 ≤ θ1 ≤ θ2 = θ3, we have (max(θ3, θ4), max(τ3, τ4)) =
(θ2, τ1) = (θ12, τ12). This implies (j, t12, b12) ∈ Vnew, which is a contradiction.

Thus, Gnew is intersection-complete.

Finally, we present Algorithm 6, which takes a TBEG and a tour P as input, and returns
a TBEG where the tour representative of P is unique and is also contained in Gexp.

Algorithm 6: refine(G, P)

1 Input: A TBEG G and a tour P in G of length k;
2 P ← expand(P);
3 for (i, t, b) ∈ P do
4 Gnew ← addNode(G, i, t, b);

5 A ← {a ∈ V × V | a is minimally underestimating};
6 Output: A larger TBEG Gnew = (V ,A);

The input consists of a tour P in G. If some of the transitions in the tour representative
of P in G underestimate the arrival states, the following result shows that this algorithm
guarantees that the tour representative in the output models the arrival states correctly.

Proposition 5. Given an intersection-complete TBEG G and a tour P in G, the output Gnew of
Algorithm 6 is an intersection-complete TBEG. Furthermore, there is a unique tour representative
P of the tour P in Gnew, and this tour representative is the same as the tour representative of P
in Gexp.

Proof. The first statement is a direct consequence of Lemma 5, as the output is created by
iteratively applying Algorithm 5 to an intersection-complete graph. The uniqueness of the
tour representative follows from Proposition 4, and the final assertion comes from the fact
that we use Algorithm 3 both for deriving Gexp and in Algorithm 5 to determine the added
nodes.

Mathematics 2024, 12, 3201 19 of 27

Now, we have a strategy to construct practically useful TBEGs. We start with G init

as the initial TBEG and iteratively correct the tour representatives of tours in G, until the
solution of the MILP from the current TBEG matches that of Gexp. In the following section,
we convert this strategy into two different algorithms that solve the TBDRP.

5. Refinement Algorithms

Based on the results from the previous section, we can derive refinement algorithms to
solve the TBDRP. For ease of notation, we denote the linear relaxation of a MILP M by M∗.
We further use opt(M) for the optimal value of a MILP and feas(M) for the set of feasible
points of a MILP. Additionally, for a subtour S in G, we refer to the constraint

∑
(i,j)∈A:i,j∈S

xij ≤ |S| − 1

as the subtour elimination constraint (SEC) for S.
We begin with Iterative Refinement, as outlined in Algorithm 7.

Algorithm 7: Iterative Refinement Algorithm

1 Input: An instance of the TBDRP;
2 G ← G init (current TBEG), S← {} (pool of subtours);
3 (x, y)← solution of MG ;
4 while (x, y) /∈ feas(MGexp) do
5 if x describes a subtour S then
6 S← S∪ {S};
7 else
8 P← a tour described by x;
9 G ← refine(G, P);

10 (x, y)← solution of MG with additional SECs for the subtours in S;

11 Output: Vectors x, y describing a solution of the TBDRP instance.

In theory, the initial TBEG for this algorithm could be any intersection-complete TBEG,
but for simplicity, we choose to start with G init. This graph is then iteratively refined until
its solution is feasible for the time- and battery-expanded formulation. Additionally, if
the solution contains subtours, we address this by adding subtour elimination constraints
(SECs) rather than refining the graph.

Since, upon termination, the solution of the relaxation is found to be feasible, the
returned values (x, y) are proven to be optimal solutions of the TBDRP. After each iteration,
either one more tour is represented correctly (as guaranteed by Proposition 5) or a subtour
is excluded. Therefore, the algorithm must terminate after a finite number of iterations.

An alternative approach, called Branch and Refine, is presented in Algorithm 8. In
line 23, the function branch performs the usual branching step of a branch-and-bound
algorithm. Since the integer variables are binary, it returns two MILPs: one in which a
variable that had a fractional value in the solution is set to 0, and one in which it is set to
1. Furthermore, in line 20, the function exchange takes the list of open problems, the old
graph and the new graph as input, and returns an updated list of open problems where
the constraints and objective derived from the old graph are replaced by those from the
new graph.

Mathematics 2024, 12, 3201 20 of 27

Algorithm 8: Branch and Refine

1 Input: A TBDRP instance;
2 G ← G init (current TBEG), S← {} (pool of subtours), LO ← {MG} (list of open

nodes), LC ← ∅, (list of closed nodes) U ← ∞ (upper bound);
3 while LO ̸= ∅ do
4 Choose M ∈ LO;
5 if feas(M∗) = ∅ or opt(M∗) ≥ U then
6 Move M from LO to LC;
7 else
8 (x, y)← a solution of M∗ with additional SECs for the subtours in S;
9 if (x, y) is integer then

10 if (x, y) ∈ feas(MGexp) then
11 U ← opt(M∗);
12 (x̂, ŷ)← (x, y);
13 Move M from LO to LC;
14 else
15 if x describes a subtour S then
16 S← S∪ {S};
17 else
18 P← a tour described by x;
19 Gold ← G;
20 G ← refine(G, P);
21 LO ← exchange(LO,Gold,G);

22 else
23 LO ← LO ∪ branch(M∗, x);

24 Output: Vectors x̂, ŷ describing a solution of the TBDRP instance.

This algorithm is similar to the usual branch-and-bound algorithms applied to solve
MILPs, with the main difference being that graph refinement is integrated into the ex-
ploration of the branch-and-bound search tree. Branch-and-bound algorithms divide the
problem into subproblems and use relaxations to find valid bounds that reduce the number
of subproblems to consider. Typically, the linear relaxation of the MILP is used, but this is
not the only option. In Branch and Refine, we use the linear relaxation of another MILP
MG and adjust this MILP during execution. Since any of the MILPs MG used are relaxations
of MGexp , Branch and Refine fits within the branch-and-bound paradigm for solving MGexp

and thus returns a solution.
Note that this algorithm is very similar to Iterative Refinement. However, in Iterative

Refinement, the exploration of the branch-and-bound search tree is implicit, as we directly
use the solutions of the MILPs. Therefore, the search tree is explored in every iteration,
whereas in Branch and Refine, it is explored only once. This does not guarantee an
advantage, as early branching decisions during search tree exploration can significantly
affect the runtime of branch-and-bound algorithms. To evaluate the performance of these
approaches, we conducted a computational study implementing both algorithms.

6. Computational Experiments and Implementation Details

In this section, we compare the two refinement algorithms presented in this work,
not only to each other but also to a direct approach for solving the MIQP (1)–(10) using a
state-of-the-art solver. To ensure the comparison is as objective as possible, our goal was to
create a framework where all three approaches could be implemented without favoring one
over the others. The challenge, however, is that not all state-of-the-art solvers are suitable
for implementing Branch and Refine.

Mathematics 2024, 12, 3201 21 of 27

To implement Branch and Refine efficiently, the solver must not only allow for adding
constraints and variables (i.e., rows and columns) to the MILP representation but also
for changing the coefficients of some variables in certain constraints. This is necessary
because, after adding nodes, some of the previously used arcs may no longer be minimally
underestimating. Instead of adding a cutting plane that sets the associated variables to
zero, an efficient implementation would remove the variable from the flow constraint of
its old head and add it to the new head. However, none of the state-of-the-art solvers we
tested allowed for this type of modification during the solution process, as removing a
variable from a constraint can invalidate previously computed bounds.

As a result, we dropped this requirement and adopted a workaround where we added
cutting planes to set the old variables to zero and introduced new variables. With this
approach, we successfully implemented Branch and Refine in the SCIP Optimization
Suite, maintained by the Zuse Institute Berlin. For a fair comparison, we also used SCIP
Optimization Suite 6.0.1 to solve the MIQP formulation in (1)–(10) and the MILPs that must
be solved during Iterative Refinement. Within SCIP, the SoPlex 4.0.1 solver was used to
solve the linear relaxations at the nodes of the search tree.

All experiments were executed on a single core of a computer with a 3.30 GHz CPU
running Windows 10 as the operating system.

To test the performance of the implementations, we conducted an extensive compu-
tational study on a variety of instances. All instances are based on the benchmark set
introduced by [32]. This set contains instances for the capacitated VRP and is divided into
six classes, featuring problems with either short or long scheduling horizons, randomly
distributed customers, clustered customers and a mixed version of both. An important
detail is that within each class, the customer locations are fixed, with only the time windows
being varied.

In the TBDRP, since vehicles always return to the depot, the distances between cus-
tomers are irrelevant—only the distance to the depot matters. Therefore, the distinction
between clustered and non-clustered customers is not applicable in our case. In prelimi-
nary tests, we also observed minimal variation in the solutions within each instance class.
As a result, we derived new instances by selecting unique customer locations and time
window combinations from the benchmark set. For each instance, we randomly selected
50 of these combinations to create a new test case. These instances are available via DOI
10.26127/BTUOpen-5493. The time limit for all instances was set to 1 h.

The goal of the computational experiments was to evaluate the effectiveness of the
three solution methods presented in this paper.

In the first experiment, we examine the impact of an increasing number of cus-
tomers on computation time while keeping the number of vehicles fixed. We ran two
sets of experiments: one with m = 3 vehicles and one with m = 10 vehicles. In both
cases, the battery capacity was set to B = 120, and the recharging rate α was set to
2.5. For the experiments with 3 vehicles, we started with the first 10 to 27 customers of
20 different instances.

The results of these experiments are shown in Figure 5, where we use the abbreviations
IR for Iterative Refinement and BaR for Branch and Refine. For the experiments with
10 vehicles, we followed a similar procedure, but the number of customers ranged from
30 to 50. The results are shown in Figure 6. Each solution method’s run is represented by a
marker in the plot, with a transparency of 40%, and the marker’s color and shape indicate
the method used. The x-axis of the graphs shows the number of customers, while the y-axis
is split into two parts: a lower section for instances solved within 3600 s, and an upper
section displaying the gap for instances that timed out.

Mathematics 2024, 12, 3201 22 of 27

Figure 5. Computation times for different customer numbers and 3 vehicles.

Figure 6. Computation times for different customer numbers and 10 vehicles.

To facilitate a comprehensive comparison of the algorithms’ performance across dif-
ferent instances, we introduce a scoring function that combines computation time and
optimality gap into a single metric. This scoring function allows us to compute a median
performance measure even when some instances are not solved to optimality within the
time limit. The scoring function is defined as follows:

Computation Time Score (st): For instances solved to proven optimality within the time
limit Tmax = 3600 s, we compute a normalized computation time score:

st =
t

Tmax

where t is the computation time in seconds. This maps the computation time linearly onto
the interval [0, 1], with lower values indicating better performance.

Optimality Gap Score (sg): For instances not solved to proven optimality within the time
limit, we record the optimality gap at termination:

Gap =
UB− LB

UB
× 100%

Mathematics 2024, 12, 3201 23 of 27

where UB and LB are the best upper and lower bounds found by the algorithm, respectively.
We normalize the gap to a score between 0 and 1:

sg =
Gap
100

with higher values indicating a larger gap and thus poorer performance.

Total Score (s): The total score for each instance is the sum of the computation time score
and the optimality gap score:

s = st + sg

This results in a total score s ranging from 0 (best possible performance) to 2 (worst possible
performance), effectively combining both time and solution quality into a single metric.

Using this scoring function, we rank the instances for each fixed parameter setting
(e.g., number of customers) based on their total scores. The median is then computed with
respect to these total scores, allowing us to plot a representative performance measure for
each group of instances.

In all figures (Figures 5–8), the y-axis is divided into two sections: The lower section
displays the computation times (in seconds) for instances solved within the time limit,
and the upper section displays the optimality gaps (in percentages) for instances where
the time limit was reached. Each algorithm’s performance on an individual instance is
represented by a marker. The markers are semi-transparent to illustrate the distribution
of results across multiple instances. The line connecting the median points represents the
general trend of the algorithms’ performance as problem size or other parameters vary,
based on the total score s. This approach allows us to present both computation time and
solution quality in a single figure, providing a comprehensive comparison of the algorithms
under various conditions.

In Figures 5 and 6 it is clear that directly solving the MIQP formulation is not com-
petitive with the approaches presented in this work. For example, in the 3-vehicle setting,
the MIQP timed out on more than half of the instances with 15 customers, whereas both
refinement approaches solved all instances with up to 19 customers to optimality.

Figure 7. Computation times for different recharging rates.

Mathematics 2024, 12, 3201 24 of 27

Figure 8. Computation times for different time window widths.

When comparing Iterative Refinement and Branch and Refine for 19 to 22 customers,
Branch and Refine outperforms Iterative Refinement. However, for larger instances, the two
methods perform similarly, and the median trends suggest that Iterative Refinement may
perform better as the number of customers increases. Notably, few instances with more
than 23 customers were solved to global optimality by any method. It is also important to
note that the smaller gaps found by Iterative Refinement within 3600 s do not necessarily
imply that an optimal solution would be found faster compared to Branch and Refine.

The results for the 10-vehicle experiments show similar behavior. For instances with
more than 33 customers, most were unsolved within the time limit using the MIQP formula-
tion, while both refinement methods solved instances for all customer amounts. Between 40
and 48 customers, Branch and Refine clearly outperforms Iterative Refinement, suggesting
that Branch and Refine is more effective in this range. However, for 49 and 50 customers,
when more than half the instances remain unsolved, it becomes less clear which algorithm
performs better.

In another computational experiment, we investigated the impact of the recharging
rate α on the difficulty of the instances. The recharging rate influences how much the
battery constraints affect the problem. For very small values of α, nearly all the time is
spent charging at the depot, while large values of α make charging almost instantaneous,
meaning the battery constraints impose minimal restrictions on the routes. The results for
instances with 3 vehicles and between 20 and 22 customers are shown in Figure 7. The plot
layout is similar to the previous one, but the x-axis now represents different values of α,
and a logarithmic scale is used.

The results show that as α increases, the instances become easier to solve for both
Iterative Refinement and Branch and Refine. We do not expect computation times to
decrease significantly for values of α larger than 40, as routing decisions seem to have
the greatest impact on delays at this point. It is also clear that Branch and Refine outper-
formed Iterative Refinement in most cases, even for instances where recharging was nearly
instantaneous.

The final set of computational tests studied the effect of the time window width on
computation times. We used instances with 20 to 22 customers, a recharging rate of α = 2.5
and m = 3 vehicles. The lower bounds ti of the time windows were kept constant, and the
due dates ti were set to the lower bounds plus a varying constant that determined the time
window width. The results, shown in Figure 8, follow the same plot structure as before,
with the time window width displayed on the x-axis.

As expected, given the number of customers in the instances, the MIQP formulation
could only be solved for a few cases, and most had an optimality gap of 100% after one hour.
Once again, Branch and Refine performed better than Iterative Refinement. Interestingly,

Mathematics 2024, 12, 3201 25 of 27

while Branch and Refine benefited from wider time windows, Iterative Refinement and the
direct MIQP approach performed worst on instances with the largest time window widths.

7. Conclusions and Future Work

We introduced a variant of the Vehicle Routing Problem (VRP), the Time- and Battery-
Constrained Delivery Robot Problem (TBDRP), which incorporates soft time windows
alongside vehicle battery consumption constraints. To address this problem, we proposed
two formulations: a Mixed-Integer Quadratic Programming (MIQP) formulation that can be
solved directly using state-of-the-art solvers, and a formulation based on a two-dimensional
layered graph. While the latter is not suitable for direct solution approaches, it allows for
relaxations that not only provide lower bounds but can also be solved efficiently. These
relaxations were employed in two structurally similar algorithms: Branch and Refine and
Iterative Refinement. Both algorithms start with a coarse layered graph where travel times
are underestimated and battery consumption is overestimated. The graph is dynamically
refined based on the solutions provided by the relaxations.

The results of our computational study indicate that both algorithms significantly
outperform the direct MIQP approach. Additionally, Branch and Refine, which integrates
graph refinement into a branch-and-bound framework, consistently outperforms Iterative
Refinement in most cases.

There are several limiting assumptions underlying our study, which could be ad-
dressed in future research. One key limitation is the assumption of linear battery consump-
tion and charging behavior, which, while simplifying the model, does not fully capture the
non-linearities found in real-world battery systems. Factors such as the vehicle’s speed,
load and terrain can affect battery discharge, while charging times typically increase as the
battery approaches full capacity. Another important limitation is that our model operates
in static environments, where all delivery locations, traffic patterns and vehicle statuses
are known in advance. Real-world conditions are far more dynamic, and incorporating
factors like fluctuating traffic or real-time battery deterioration would be essential for more
practical applications. Furthermore, while our methods perform well on modified Solomon
instances, the scalability of the approach for larger datasets involving many customers or
robots could present computational challenges. Lastly, our focus on minimizing delivery
delays is a single-objective approach, which does not consider other important factors such
as total energy consumption or the number of deliveries per day. Future work could explore
these additional performance metrics and investigate alternative objective functions to
achieve a more comprehensive optimization.

Additionally for future work, we plan to explore whether similar techniques can
be applied in more general settings. A natural extension would be to consider multiple
depots. If each vehicle is strictly assigned to one depot and can only recharge and pick up
parcels there, it is feasible to use a layered graph for each depot. A more challenging, yet
realistic, scenario would involve a setting where the assignment of parcels to depots is not
predefined. In this case, vehicles would need to choose a depot for picking up parcels and
decide whether recharging is necessary.

In this more complex scenario, even if the next customer is known, the closest depot
might not always be the best option. The vehicle’s current state of charge (SoC) could be
insufficient to reach the nearest depot, while another depot might still be within range.
Additionally, a more distant depot might allow for a higher SoC before visiting the next
customer, optimizing the overall route. An even more complex situation arises when these
factors occur simultaneously, and visiting two depots could be the optimal solution. In
such cases, a layered graph approach would need to incorporate all these possibilities into
its topology.

Besides single-compartment delivery robots, multi-compartment delivery robots
are also used. In this scenario, the robots are not required to return to the depot after
each delivery. Consequently, our charging strategy cannot be applied, as spending ex-
tra time charging earlier might be necessary to consolidate multiple deliveries into one

Mathematics 2024, 12, 3201 26 of 27

trip. In future work, we aim to investigate how this impacts the charging strategy and
to explore suitable layered graph structures that could adapt our algorithm to this more
general setting.

Another promising direction for future research is to explore whether layered graph
approaches are effective for the Electric Vehicle Routing Problem with Time Windows
(EVRPTW). In this VRP variant, much like in a multi-depot version of the TBDRP, the routes
between customers are not predetermined, which requires more sophisticated modeling
techniques to construct the appropriate layered graph.

We also see potential for improving our current methodology, particularly Branch and
Refine. Thus far, we have utilized SCIP’s pre-implemented node selection strategy, which
was designed for branch-and-cut or branch-and-price algorithms. Since our implementation
uses SCIP functions in a non-standard way, it would be interesting to explore whether a
customized node selection strategy could enhance the performance of Branch and Refine.
Moreover, we have consistently enforced graph refinement for all nodes in the search tree,
although the theoretical framework we presented does not require this. A local refinement
strategy is sufficient, and whether such local refinements could offer practical benefits
remains an open question worthy of deeper analysis.

Author Contributions: Conceptualization, F.G., S.S., U.C. and A.F.; methodology, F.G. and S.S.;
software, F.G. and S.S.; validation, F.G., S.S., U.C. and A.F.; formal analysis, F.G. and S.S.; investigation,
F.G., S.S.; resources, U.C. and A.F.; data curation, F.G. and S.S.; writing—original draft preparation,
F.G. and S.S.; writing—review and editing, F.G., S.S., U.C. and A.F.; visualization, F.G. and S.S.;
supervision, U.C. and A.F.; project administration, U.C. and A.F.; funding acquisition, U.C. and A.F.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by Deutsche Forschungsgemeinschaft (DFG), grant numbers FU
860/1-1 and CL 318/26-1.

Data Availability Statement: https://doi.org/10.26127/BTUOpen-5493.

Acknowledgments: The authors Fabian Gnegel and Armin Fügenschuh acknowledge the funding by
the German Research Association (DFG) grant number FU 860/1-1. The authors Stefan Schaudt and
Uwe Clausen acknowledge the funding by the German Research Association (DFG) grant number
CL 318/26-1.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Statista Digital Market Outlook. Ecommerce Report 2022. 2022. Available online: https://www.statista.com/study/42335/

ecommerce-report/ (accessed on 7 October 2024).
2. Pitney Bowes Inc. Pitney Bowes Parcel Shipping Index Reports Continued Growth as Global Parcel Volume Exceeds 100 Billion

for First Time Ever. 2020. Available online: https://www.businesswire.com/news/home/20180828005237/en/ (accessed on
7 October 2024).

3. Heinemann, G. Der Neue Online-Handel; Springer Fachmedien: Wiesbaden, Germany, 2018.
4. Kreuz, F.; Clausen, U. Einsatzfelder von eLastenrädern im Städtischen Wirtschaftsverkehr; Springer Fachmedien: Wiesbaden, Germany,

2017; pp. 323–333.
5. Boysen, N.; Fedtke, S.; Schwerdfeger, S. Last-mile delivery concepts: A survey from an operational research perspective. OR

Spectr. 2020, 43, 1–58. [CrossRef]
6. Engesser, V.; Rombaut, E.; Vanhaverbeke, L.; Lebeau, P. Autonomous Delivery Solutions for Last-Mile Logistics Operations: A

Literature Review and Research Agenda. Sustainability 2023, 15, 2774. [CrossRef]
7. Speranza, M.G. Trends in transportation and logistics. Eur. J. Oper. Res. 2018, 264, 830–836. [CrossRef]
8. Boysen, N.; Schwerdfeger, S.; Weidinger, F. Scheduling last-mile deliveries with truck-based autonomous robots. Eur. J. Oper. Res.

2018, 271, 1085–1099. [CrossRef]
9. Ostermeier, M.; Heimfarth, A.; Hübner, A. Cost-optimal truck-and-robot routing for last-mile delivery. Networks 2022 , 79,

364–389. [CrossRef]
10. Poeting, M.; Schaudt, S.; Clausen, U. Simulation of an Optimized Last-Mile Parcel Delivery Network Involving Delivery Robots.

In Advances in Production, Logistics, and Traffic—Proceedings of the 4th Interdisciplinary Conference on Production Logistics and Traffic
2019; Clausen, U., Langkau, S., Kreuz, F., Eds.; Lecture Notes in Logistics; Springer Nature Switzerland AG: Cham, Switzerland,
2019; pp. 1–19.

https://doi.org/10.26127/BTUOpen-5493
https://www.statista.com/study/42335/ecommerce-report/
https://www.statista.com/study/42335/ecommerce-report/
https://www.businesswire.com/news/home/20180828005237/en/
http://doi.org/10.1007/s00291-020-00607-8
http://dx.doi.org/10.3390/su15032774
http://dx.doi.org/10.1016/j.ejor.2016.08.032
http://dx.doi.org/10.1016/j.ejor.2018.05.058
http://dx.doi.org/10.1002/net.22030

Mathematics 2024, 12, 3201 27 of 27

11. Poeting, M.; Schaudt, S.; Clausen, U. A comprehensive case study in last-mile delivery concepts for parcel robots. In Proceedings
of the 2019 Winter Simulation Conference (WSC), National Harbor, MD, USA, 8–11 December 2019.

12. Sonneberg, M.-O.; Leyerer, M.; Kleinschmidt, A.; Knigge, F.; Breitner, M.H. Autonomous unmanned ground vehicles for urban
logistics: Optimization of last mile delivery operations. In Proceedings of the 52nd Hawaii International Conference on System
Sciences, Hawaii International Conference on System Sciences, Hawaii, HI, USA, 8–11 January 2019.

13. Maio, A.D.; Ghiani, G.; Laganá, D.; Manni, E. Sustainable last-mile distribution with autonomous delivery robots and public
transportation. Transp. Res. Part C Emerg. Technol. 2024, 163, 104615. [CrossRef]

14. Viloria, D.R.; Solano-Charris, E.L.; Muñoz-Villamizar, A.; Montoya-Torres, J.R. Unmanned aerial vehicles/drones in vehicle
routing problems: A literature review. Int. Trans. Oper. Res. 2021 , 28, 1626–1657. [CrossRef]

15. Boysen, N.; Briskorn, D.; Fedtke, S.; Schwerdfeger, S. Drone delivery from trucks: Drone scheduling for given truck routes.
Networks 2018, 72, 506–527. [CrossRef]

16. Poikonen, S.; Wang, X.; Golden, B. The vehicle routing problem with drones: Extended models and connections. Networks 2017,
70, 34–43. [CrossRef]

17. Wang, Z.; Sheu, J.-B. Vehicle routing problem with drones. Transp. Res. Part B Methodol. 2019, 122, 350–364. [CrossRef]
18. Erdelić, T.; Carić, T. A survey on the electric vehicle routing problem: Variants and solution approaches. J. Adv. Transp. 2019,

2019, 5075671. [CrossRef]
19. Schneider, M.; Stenger, A.; Goeke, D. The electric vehicle-routing problem with time windows and recharging stations. Transp.

Sci. 2014, 48, 500–520. [CrossRef]
20. Keskin, M.; Çatay, B. Partial recharge strategies for the electric vehicle routing problem with time windows. Transp. Res. Part C

Emerg. Technol. 2016, 65, 111–127. [CrossRef]
21. Desaulniers, G.; Errico, F.; Irnich, S.; Schneider, M. Exact algorithms for electric vehicle-routing problems with time windows.

Oper. Res. 2016, 64, 1388–1405. [CrossRef]
22. Gouveia, L.; Leitner, M.; Ruthmair, M. Layered graph approaches for combinatorial optimization problems. Comput. Oper. Res.

2019, 102, 22–38. [CrossRef]
23. Boland, N.L.; Savelsbergh, M.W. Perspectives on integer programming for time-dependent models. Top 2019, 27, 147–173.

[CrossRef]
24. Boland, N.; Hewitt, M.; Marshall, L.; Savelsbergh, M. The continuous-time service network design problem. Oper. Res. 2017, 65,

1303–1321. [CrossRef]
25. Vu, D.M.; Hewitt, M.; Boland, N.; Savelsbergh, M. Dynamic discretization discovery for solving the time-dependent traveling

salesman problem with time windows. Transp. Sci. 2020, 54, 703–720. [CrossRef]
26. He, E.; Boland, N.; Nemhauser, G.; Savelsbergh, M. A dynamic discretization discovery algorithm for the minimum duration

time-dependent shortest path problem. In International Conference on the Integration of Constraint Programming, Artificial Intelligence,
and Operations Research; Springer: Berlin/Heidelberg, Germany, 2018; pp. 289–297.

27. Riedler, M.; Ruthmair, M.; Raidl, G.R. Strategies for iteratively refining layered graph models. In International Workshop on Hybrid
Metaheuristics; Springer: Berlin/Heidelberg, Germany, 2019; pp. 46–62.

28. Gnegel, F.; Fügenschuh, A. An iterative graph expansion approach for the scheduling and routing of airplanes. Comput. Oper.
Res. 2020, 114, 104832. [CrossRef]

29. Bärmann, A.; Liers, F.; Martin, A.; Merkert, M.; Thurner, C.; Weninger, D. Solving network design problems via iterative
aggregation. Math. Program. Comput. 2015, 7, 189–217. [CrossRef]

30. Clautiaux, F.; Hanafi, S.; Macedo, R.; Voge, M.-E.; Alves, C. Iterative aggregation and disaggregation algorithm for pseudo-
polynomial network flow models with side constraints. Eur. J. Oper. Res. 2017, 258, 467–477. [CrossRef]

31. Marra, F.; Yang, G.Y.; Træholt, C.; Larsen, E.; Rasmussen, C.N.; You, S. Demand profile study of battery electric vehicle under
different charging options. In Proceedings of the 2012 IEEE Power and Energy Society General Meeting, San Diego, CA, USA,
22–26 July 2012; pp. 1–7.

32. Solomon, M.M. Algorithms for the vehicle routing and scheduling problems with time window constraints. Oper. Res. 1987, 35,
254–265. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1016/j.trc.2024.104615
http://dx.doi.org/10.1111/itor.12783
http://dx.doi.org/10.1002/net.21847
http://dx.doi.org/10.1002/net.21746
http://dx.doi.org/10.1016/j.trb.2019.03.005
http://dx.doi.org/10.1155/2019/5075671
http://dx.doi.org/10.1287/trsc.2013.0490
http://dx.doi.org/10.1016/j.trc.2016.01.013
http://dx.doi.org/10.1287/opre.2016.1535
http://dx.doi.org/10.1016/j.cor.2018.09.007
http://dx.doi.org/10.1007/s11750-019-00514-4
http://dx.doi.org/10.1287/opre.2017.1624
http://dx.doi.org/10.1287/trsc.2019.0911
http://dx.doi.org/10.1016/j.cor.2019.104832
http://dx.doi.org/10.1007/s12532-015-0079-1
http://dx.doi.org/10.1016/j.ejor.2016.09.051
http://dx.doi.org/10.1287/opre.35.2.254

	Introduction
	Literature Review
	Problem Description and Mathematical Formulation
	Exact Mixed-Integer Formulations
	The Time- and Battery-Expanded Formulation

	Relaxations of the Time- and Battery-Expanded Formulation
	Refinement Algorithms
	Computational Experiments and Implementation Details
	Conclusions and Future Work
	References

