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Abstract: In this article, we investigate a class of non-smooth semidefinite multiobjective program-
ming problems with inequality and equality constraints (in short, NSMPP). We establish the convex
separation theorem for the space of symmetric matrices. Employing the properties of the convexifica-
tors, we establish Fritz John (in short, FJ)-type necessary optimality conditions for NSMPP. Subse-
quently, we introduce a generalized version of Abadie constraint qualification (in short, NSMPP-ACQ)
for the considered problem, NSMPP. Employing NSMPP-ACQ, we establish strong Karush-Kuhn-
Tucker (in short, KKT)-type necessary optimality conditions for NSMPP. Moreover, we establish
sufficient optimality conditions for NSMPP under generalized convexity assumptions. In addition to
this, we introduce the generalized versions of various other constraint qualifications, namely Kuhn-
Tucker constraint qualification (in short, NSMPP-KTCQ), Zangwill constraint qualification (in short,
NSMPP-ZCQ), basic constraint qualification (in short, NSMPP-BCQ), and Mangasarian-Fromovitz
constraint qualification (in short, NSMPP-MFCQ), for the considered problem NSMPP and derive
the interrelationships among them. Several illustrative examples are furnished to demonstrate the
significance of the established results.

Keywords: semidefinite programming; multiobjective optimization; mixed constraints; constraint
qualifications; optimality conditions; convexificators
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1. Introduction

In optimization theory, multiobjective programming problems (in short, MOP) refer
to a class of optimization problems that involve the simultaneous minimization of several
conflicting objectives. MOP hold significant importance in practical optimization scenar-
ios, such as business, economics, and various scientific and engineering fields (see, for
instance, [1–3] and the references mentioned therein). For a more comprehensive overview
and updated survey of multiobjective optimization; see [4–7] and the references men-
tioned therein.

In mathematical optimization problems, non-smooth phenomena occur frequently,
resulting in the formulation of numerous types of generalized directional derivatives
and subdifferentials (see, for instance, [8–10] and the references mentioned therein). De-
myanov [11] introduced the concept of convexificator as an extension of the notions
of lower concave and upper convex approximations. Demyanov and Jeyakumar [10]
investigated convexificator for locally Lipschitz and positively homogeneous functions.
Jeyakumar and Luc [12] presented non-compact convexificators and introduced various
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calculus rules for computing convexificators. Convexificators can be seen as weaker ver-
sions of the various well-known subdifferentials, such as Clarke [8], Michel-Penot [9],
Ioffe-Morduchovich-Shao [13,14], and Treiman [15], as convexificators, in general, are
closed-set and are not necessarily bounded or convex, unlike most known subdifferentials.
For a locally Lipschitz function, generalized subdifferentials, such as [8,9,13–15] can be
considered as convexificators, and these aforementioned subdifferentials may include the
convex hull of a convexificator (see, for instance, [12]). Convexificators serve as an essential
tool in establishing optimality results for non-smooth MOP. Luu [16,17] employed the
concept of convexificators to formulate necessary optimality conditions for local Pareto
and weak Pareto minimums in MOP that involve a combination of inequality, equality,
and set constraints in the context of Banach spaces. Convexificators have been utilized to
extend various results in the field of non-smooth analysis (see, for instance, [18–21] and the
references mentioned therein).

In the mathematical theory of optimization, constraint qualifications (in short, CQ)
play a very significant role in deriving Karush-Kuhn-Tucker (in short, KKT)-type necessary
optimality criteria (see, for instance, [22]). Constraint qualifications were first introduced
by Kuhn and Tucker [23] for non-linear programming problems. Maeda [24] presented
several CQ for differentiable multiobjective programming problems and established in-
terrelationships among them. Similar to the result obtained by Maeda [24], Preda and
Chiţescu [25] extended the corresponding results within the context of semidifferentiable
analysis. Jourani [26] investigated CQ for non-smooth single-objective programming prob-
lems with both inequality and equality constraints on Banach spaces. Li [27] explored
constraint qualifications for non-smooth multiobjective programming problems using lo-
cally Lipschitz functions in Euclidean spaces and derived strong KKT conditions for such
problems. Stein [28] studied Mangasarian-Fromovitz constraint qualifications and Abadie
constraint qualifications for single-objective non-smooth programming problems. Gupta
and Srivastava [29] explored CQ for a class of multiobjective programming problems char-
acterized by locally Lipschitz objective functions and inequality and equality constraints.
Using convexificators, Golestani and Nobakhtian [30] introduced various CQ for non-
smooth multiobjective programming problems and established interrelationships among
them. Several authors have introduced CQ for multiobjective programming problems un-
der different assumptions (see, for instance, [31–34] and the references mentioned therein).

Non-linear semidefinite programming problems (in short, NSDP) are essentially a
generalization of non-linear programming problems, where the vector variables are sub-
stituted with symmetric positive semidefinite matrices. Arising from various areas of
modern research, semidefinite programming problems have numerous applications, for
instance, combinatorial optimization [35], control theory [36], and eigenvalue optimiza-
tion [37]. Under convexity assumptions for NSDP, Shapiro [38] established both first- and
second-order necessary as well as sufficient optimality conditions. Forsgren [39] extended
the results obtained by Shapiro [38] for non-convex semidefinite programming problems.
Many researchers have widely discussed various algorithmic approaches for solving NSDP
(see, for instance, [40,41] and the references mentioned therein). Furthermore, Yamashita
and Yabe [42] developed numerical methods and discussed their convergence properties
for NSDP. Employing convexificators, Golestani and Nobakhtian [43] introduced the gener-
alized Abadie CQ for non-smooth semidefinite programming problems and established
both necessary and sufficient optimality conditions for non-smooth NSDP. Lai et al. [44]
employed convexificators and established both necessary as well as sufficient optimality
conditions for non-smooth semidefinite MOP with vanishing constraints. Mishra et al. [45]
derived optimality conditions and numerous duality theorems for non-smooth semidefinite
MOP using convexificators. Recently, Upadhyay et al. [46] established optimality and dual-
ity results for non-smooth semidefinite multiobjective fractional programming problems.

It is worth mentioning that Golestani and Nobakhtian [43] introduced several CQ for
non-smooth semidefinite single-objective programming problems. However, the constraint
qualifications introduced for single-objective optimization problems cannot be employed
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for multiobjective optimization problems because they do not guarantee the positiveness of
the Lagrange multipliers related to the different components of the objective function. There-
fore, some of the components of the objective function do not contribute to determining the
necessary optimality conditions. To the best of our knowledge, constraint qualifications and
optimality conditions for non-smooth semidefinite multiobjective programming problems
with mixed constraints have not been addressed. This article aims to bridge this research
gap. In this article, motivated by the works [24,30,43], we investigate a class of NSMPP. We
establish FJ-type necessary optimality conditions. We introduce NSMPP-ACQ and establish
strong KKT-type necessary optimality conditions for NSMPP using convexificators. Under
the assumptions of generalized convexity, we establish the sufficient optimality condition
for NSMPP. Moreover, we introduce NSMPP-KTCQ, NSMPP-ZCQ, NSMPP-MFCQ, and
NSMPP-BCQ for NSMPP and derive the interrelationships among them. The significance of
these findings is demonstrated by the inclusion of several non-trivial illustrative examples.

The primary contributions and novel aspects of the present article are threefold. Firstly,
we generalize the various constraint qualifications introduced in [30] from non-smooth
multiobjective programming problems to a more general programming problem, NSMPP,
as well as the corresponding results from the Euclidean space to the space of symmetric
matrices. Moreover, the results derived in this article generalize the corresponding results
derived in [34] from the Euclidean space to the space of symmetric matrices. Secondly, we
generalize the constraint qualifications introduced in [43] from non-smooth semidefinite
single-objective programming problems to a more general programming problem, NSMPP
in the space of symmetric matrices. Thirdly, in view of the fact that convexificators are
weaker versions of Clarke sudifferentials (see [12]), the results established in this article
sharpen the corresponding results derived by Giorgi et al. [34]. To the best of our knowledge,
this is the first time that the CQ and optimality conditions for NSMPP have been explored
via convexificators.

The present article is structured as follows: In Section 2, we revisit some basic def-
initions and mathematical preliminaries. In Section 3, we introduce NSMPP-ACQ and
derive the necessary and sufficient optimality conditions for NSMPP. In Section 4, we
introduce various constraint qualifications for NSMPP and establish interrelationships
among them. In Section 5, we conclude this article by summarizing the key findings and
outlining potential avenues for future research.

2. Preliminaries

In the present article, the symbols Rn and N are used to represent the n-dimensional Eu-
clidean space and the set consisting of all natural numbers, respectively. Let R = R∪ {+∞}
and ∅ denote an empty set. The space of n × n symmetric matrices is denoted by Sn. The
set of all symmetric positive semidefinite matrices and symmetric positive definite matrices
are denoted by Sn

+ and Sn
++, respectively.

Let p, q ∈ Rn. The following notations are used in the article:

p ≺ q ⇐⇒ pk < qk, ∀k ∈ {1, . . . , n},

p ⪯ q ⇐⇒
{

pk ≤ qk, ∀k ∈ {1, . . . , n},

pr < qr, for at least one r ∈ {1, . . . , n}.

For A , B ∈ Sn, we define the inner product between A and B as

⟨A , B⟩ = trace(A B).

The norm related to the inner product is referred to as the Frobenius norm, denoted by

∥ A ∥F= tr(A A )1/2 =

(
n

∑
i,j=1

|aij|2
)1/2

.
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Let B be a nonempty subset of Sn. We employ the symbols clB, coB and coneB to denote
the closure of B, convex hull of B, and the convex cone (including the origin) generated by
B, respectively.

Now, we define the following sets, which will be useful in the subsequent sections:

B− := {Z ∈ Sn : ⟨Z , M⟩ ≤ 0, ∀M ∈ B},

Bs := {Z ∈ Sn : ⟨Z , M⟩ < 0, ∀M ∈ B}.

The following definition will be employed in the sequel.

Definition 1 ([43]). Let B be a nonempty subset of Sn
+ and Z ∈ clB.

• The contingent cone T(B,Z) at Z ∈ clB is defined as

T(B,Z) := {V ∈ Sn : ∃αn ↓ 0 and Vn → V such that Z + αnVn ∈ B, ∀n ∈ N}.

• The cone of feasible directions F(B,Z) at Z ∈ clB is defined as

F(B,Z) := {V ∈ Sn| ∃κ > 0 such that Z + ηV ∈ B, ∀η ∈ (0, κ)}.

• The cone of attainable directions A(B,Z) at Z ∈ clB is defined as

A(B,Z) :=
{
V ∈ Sn| ∃κ > 0, Θ : R → Sn such that Θ(η) ∈ B, ∀η ∈ (0, κ),

Θ(0) = Z , lim
η↓0

Θ(t)− Θ(0)
η

= V
}

.

Remark 1. It can be demonstrated that (see [43]):

cl F(B,Z) ⊆ A(B,Z) ⊆ T(B,Z).

In the following definition, we introduce the notions of subgradient and subdifferential
of a convex function for the space of symmetric matrices.

Definition 2. Let Φ : Sn → R be an extended real-valued convex function and Z ∈ dom(Φ),
where dom(Φ) := {Z ∈ Sn : Φ(Z) ̸= +∞}. We say that ξ ∈ Sn is a subgradient of Φ at Z if
for all X ∈ dom(Φ) we have

f (X ) ⩾ f (Z) + ⟨ξ, X −Z⟩.

The set of all subgradients of Φ at Z is called the subdifferential of Φ at Z and is denoted by ∂Φ(Z).

Remark 2. Definition 2 generalizes the definition of subgradient and subdifferential given in [47]
from the Euclidean space to the space of symmetric matrices.

The following definitions of lower and upper Dini derivatives, convexificators, upper
semi-regular convexificator (in short, USRC), and generalized convexity for the space of
symmetric matrices will be beneficial in the subsequent sections of the article.

Definition 3 ([43]). Let Φ : Sn → R be an extended real-valued function and Z ∈ dom(Φ),
where dom(Φ) := {Z ∈ Sn : Φ(Z) ̸= +∞}. The lower and upper Dini derivatives of Φ at Z in
the direction V ∈ Sn are defined, respectively, by

Φ−(Z ;V) := lim inf
λ↓0

Φ(Z + λV)− Φ(Z)

λ
,
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Φ+(Z ;V) := lim sup
λ↓0

Φ(Z + λV)− Φ(Z)

λ
.

Definition 4 ([43]). Let Φ : Sn → R be an extended real-valued function. We say that Φ has an
upper semi-regular convexificator (USRC), ∂∗Φ(Z) ⊂ Sn at Z ∈ dom(Φ) if ∂∗Φ(Z) is a closed
set and for every V ∈ Sn we have

Φ+(Z ;V) ≤ sup
ζ∈∂∗Φ(Z)

⟨ζ, V⟩.

Definition 5 ([43]). Let Φ : Sn → R be an extended real-valued function. Assume that Z ∈ Sn

is a point such that Φ(Z) is finite and Φ admits an upper semi-regular convexificator ∂∗Φ(Z) at
Z . Then

• Φ is ∂∗-pseudoconvex at Z if, for all X ∈ Sn,

Φ(X ) < Φ(Z) =⇒ ⟨ζ,X −Z⟩ < 0, ∀ζ ∈ ∂∗Φ(Z).

• Φ is ∂∗-quasiconvex at Z if, for all X ∈ Sn,

Φ(X ) ≤ Φ(Z) =⇒ ⟨ζ,X −Z⟩ ≤ 0, ∀ζ ∈ ∂∗Φ(Z).

The subsequent lemmas are employed to derive the main results of the article.

Lemma 1 ([43]). Let C ∈ Sn such that ⟨C, D⟩ ≥ 0, ∀D ∈ Sn
+. Then C ∈ Sn

+.

Lemma 2 ([48]). Suppose T (Z) := (T1(Z), · · · ,Tm(Z)) such that Ti : Sn → R, i ∈ {1, · · · , m}
are convex functions. Then the system {

T (Z) < 0,
Z ∈ Sn

++,

has no solution if and only if there exist νi ≥ 0, i ∈ {1, · · · , m} and U ∈ Sn
+, not all zero

simultaneously such that

m

∑
i=1

νiTi(Z)− ⟨U, Z⟩ ≥ 0, ∀Z ∈ Sn.

The subsequent theorem is an adaptation of the Weierstrass Theorem for the space of
symmetric matrices Sn.

Theorem 1 ([49]). Let us assume that W is a nonempty compact set in Sn. Moreover, let Φ : W →
R be continuous on W . Then for the problem min{Φ(Z) : Z ∈ W}, the set arg min{Φ(Z) :
Z ∈ W} is nonempty.

The subsequent proposition will be beneficial in establishing the separation theorem
for the space of symmetric matrices Sn.

Proposition 1. Let us suppose that W is a nonempty closed convex set in Sn. Moreover, we assume
that Q ̸∈ W . Then there exists a unique point P ∈ W such that the distance between P and Q is
minimum. Furthermore, P is at the minimum distance from Q if and only if

⟨P − P , Q−P⟩ ≤ 0, ∀P ∈ W .

Proof. Since W ̸= ∅, therefore there exists a point P ∈ W . Define,

W := W ∩ {P :∥ Q−P ∥≤∥ Q−Z ∥}.
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Then the problem of finding the point nearest to the point Q is the same as finding

inf{∥ Q−P ∥: P ∈ W}.

By Theorem 1, there exists a point P ∈ W nearest to the point Q. Let P ′ be another point
in W such that ∥ Q−P ∥=∥ Q−P ′ ∥. Since W is a convex set,

P + P ′

2
∈ W .

By the triangle inequality, we have∥∥∥∥∥Q− P + P ′

2

∥∥∥∥∥ ≤ 1
2
∥ Q−P ∥ +

1
2
∥ Q−P ′ ∥ . (1)

From the given hypothesis, it follows that P is the nearest point to Q. Hence, strict inequality
cannot hold in (1). Therefore,

Q−P = µ(Q−P ′), |µ| = 1.

We have µ ̸= −1 as Q ̸∈ W . Therefore, µ = 1. Hence, there exists a unique point that is at
a minimum distance from Q.

Moreover, let P ∈ W . Then

∥ Q−P ∥2=∥ Q−P + P −P ∥2=∥ Q−P ∥2 + ∥ P − P ∥2 +2⟨Q − P ,P −P⟩.

Therefore, for all P ∈ W ,
∥ Q−P ∥2>∥ Q−P ∥2 .

Hence, P is the point at the minimum distance from Q.
Conversely, we assume that

∥ Q−P ∥2>∥ Q−P ∥2, ∀P ∈ W .

Since W is a convex set, therefore

P + µ(P −P) ∈ W , for 0 ≤ µ ≤ 1.

Thus,
∥ Q−P − µ(P −P) ∥2≥∥ Q−P ∥2 . (2)

Further,

∥ Q−P − µ(P −P) ∥2=∥ Q−P ∥2 +µ2 ∥ P − P ∥2 −2µ⟨Q − P , P −P⟩. (3)

From (2) and (3), we get

2⟨Q − P , P −P⟩ ≤ µ ∥ P − P ∥2, 0 ≤ µ ≤ 1.

Letting µ → 0+, the result follows.

Remark 3. Proposition 1 generalizes Theorem 2.4.1 established in [49] from the Euclidean space to
the space of symmetric matrices.

Now, we prove the separation theorem for a closed convex set in Sn that will be
employed in establishing strong KKT-type necessary optimality conditions for NSMPP.
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Theorem 2 (Separation Theorem). Assume W to be a nonempty closed convex set in Sn. Let
Q ̸∈ W . Then there exist V ∈ Sn and a scalar β such that

⟨P , V⟩ ≤ β < ⟨Q, V⟩, ∀P ∈ W .

Proof. Let V = Q−P , Q ̸∈ W and β = ⟨P , V⟩. Then

⟨V, P⟩ = ⟨Q − P , P⟩.

Since Q ̸∈ W and W is a nonempty closed convex set, therefore, by Proposition 1, there
exists a unique point P ∈ W that is at minimum distance from Q satisfying

⟨P − P , Q−P⟩ ≤ 0, ∀P ∈ W
=⇒ ⟨P −P , V⟩ ≤ 0, ∀P ∈ W
=⇒ ⟨P , V⟩ ≤ β, ∀P ∈ W .

Now,
⟨Q, V⟩ − β = ⟨Q − P , V⟩ =∥ Q−P ∥2> 0.

Hence, the proof is complete.

Remark 4. Theorem 2 generalizes Theorem 2.4.4 derived in [49] from the Euclidean space to the
space of symmetric matrices.

3. Optimality Conditions

In this section, we consider a non-smooth semidefinite multiobjective programming
problem with mixed constraints NSMPP and establish FJ-type necessary optimality condi-
tions. Moreover, we introduce NSMPP-ACQ for NSMPP. Employing NSMPP-ACQ, we
derive the strong KKT-type necessary optimality conditions for NSMPP.

Let us consider the following non-smooth semidefinite multiobjective programming
problem with both inequality and equality constraints:

(NSMPP) Minimize Φ(Z) = (Φ1(Z), . . . , Φm(Z)),

subject to Ψ(Z) = (Ψ1(Z), . . . , Ψn(Z)) ≤ 0,

Θ(Z) = (Θ1(Z), . . . , Θp(Z)) = 0,

Z ∈ Sn
+,

where Φi : Sn → R, i ∈ I := {1, . . . , m}, Ψj : Sn → R, j ∈ J := {1, . . . , n} and
Θk : Sn → R, k ∈ K = {1, . . . , p} are extended real-valued functions. Moreover, we
assume that each function Φi, i ∈ I, Ψj, j ∈ J and Θk, k ∈ K admit bounded USRC. Let
J(Z) := {j ∈ J | Ψj(Z) = 0}. We define the set of all feasible solutions F of NSMPP as

F := {Z ∈ Sn : Ψj(Z) ≤ 0, j ∈ J, Θk(Z) = 0, k ∈ K, Z ∈ Sn
+}.

The following definitions of weak Pareto solutions and local weak Pareto solutions for
NSMPP will be utilized in the subsequent sections of the article.

Definition 6 ([45]). Let Z ∈ F . Then Z is said to be a weak Pareto solution of NSMPP if there
does not exist Z ∈ F such that Φ(Z) ≺ Φ(Z).

Definition 7 ([45]). Let Z ∈ F . Then Z is said to be a local weak Pareto solution of NSMPP if
for any neighborhood N of Z there does not exist Z ∈ N ∩F such that Φ(Z) ≺ Φ(Z).
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For convenience, we introduce the following notations that will be used throughout
the subsequent sections of this article:

F :=
⋃
i∈I

co ∂∗Φi(Z),

F i :=
⋃

j∈I\{i}
co ∂∗Φj(Z),

G :=
⋃

j∈J(Z)

co ∂∗Ψj(Z),

H :=
⋃

k∈K
co ∂∗Θk(Z) ∪ co ∂∗(−Θk)(Z),

Γ(Z) := (F i)− ∩ G− ∩H− ∩ Sn
+,

Λ(Z) := (F i)s ∩ Gs ∩Hs,

S = {Z ∈ Sn
+|Ψ(Z) ≤ 0, Θ(Z) := 0},

S i := {Z ∈ Sn
+|Φj(Z) ≤ Φj(Z), ∀j ∈ I\{i}, Ψ(Z) ≤ 0, Θ(Z) = 0}.

Now, using the properties of convexificators, we establish the FJ-type necessary optimality
conditions for NSMPP.

Theorem 3. Let us assume that Z is a local weak Pareto solution of NSMPP. Moreover, Φi, i ∈ I,
Ψj, j ∈ J(Z), ±Θk, k ∈ K admit bounded USRC and each Ψj, j ∈ J\J(Z) is continuous. Then
there exist λi ≥ 0, i ∈ I, µj ≥ 0, j ∈ J(Z), νk ≥ 0, τk ≥ 0, k ∈ K, U ∈ Sn

+; not all can be zero
simultaneously such that

0 ∈ ∑
i∈I

λi co ∂∗Φi(Z) + ∑
j∈J

µj co ∂∗Ψj(Z)

+ ∑
k∈K

[νk co ∂∗Θk(Z) + τk co ∂∗(−Θk)(Z)]− U,

⟨U,Z⟩ = 0, µjΨj(Z) = 0, ∀j ∈ J.

Proof. Let us define

∆ :=
[
F s +Z

]⋂ [
Gs +Z

]⋂ [
Hs +Z

]
.

We claim that
∆ ∩ Sn

++ = ∅. (4)

On the contrary, we suppose that Z ∈ ∆ ∩ Sn
++. Since Φi, i ∈ I, Ψj, j ∈ J(Z) and

±Θk, k ∈ K admit bounded USRC; we have

Φ+
i (Z ;Z −Z) < 0, ∀i ∈ I,

Ψ+
j (Z ;Z −Z) < 0, ∀j ∈ J(Z),

Θ+
k (Z ;Z −Z) < 0, ∀k ∈ K,

−Θ+
k (Z ;Z −Z) < 0, ∀k ∈ K.

Hence, there exists some δ1 > 0 such that for all t ∈ (0, δ1); we have

Φi(Z + t(Z −Z))− Φi(Z) < 0, ∀i ∈ I,

Ψj(Z + t(Z −Z)) < 0, ∀j ∈ J(Z),

Θk(Z + t(Z −Z))− Θk(Z) < 0, ∀k ∈ K,
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(−Θk)(Z + t(Z −Z))− (−Θk)(Z) < 0, ∀k ∈ K.

By the continuity of Ψj, j ∈ J\J(Z), there exists some δ2 > 0 such that

Ψj(Z + t(Z −Z)) < 0, ∀j ∈ J\J(Z), ∀t ∈ (0, δ2).

Using the convexity of Sn
+, we get a contradiction to the assumption that Z is a local weak

Pareto solution of NSMPP. Let us denote

ρΦ
i (Z) := sup

ξ1
i ∈∂∗Φi(Z)

⟨ξ1
i , Z −Z⟩, i ∈ I,

ρΨ
j (Z) := sup

ξ2
j ∈∂∗Ψj(Z)

⟨ξ2
j , Z −Z⟩, j ∈ J(Z),

ρΘ
k (Z) := sup

ξ3
k∈∂∗(Θk)(Z)

⟨ξ3
k , Z −Z⟩, k ∈ K,

ρ−Θ
k (Z) := sup

ξ3
k∈∂∗(−Θk)(Z)

⟨ξ3
k , Z −Z⟩, k ∈ K.

It is notable that ρΦ
i (.), ρΨ

j (.), and ρΘ
k (.) are convex functions. From (4), we deduce that the

subsequent system does not possess a solution:

(K )



ρΦ
i (Z) < 0, if i ∈ I,

ρΨ
j (Z) < 0, if j ∈ J(Z),

ρΘ
k (Z) < 0, if k ∈ K,

ρ−Θ
k (Z) < 0, if k ∈ K,

Z ∈ Sn
++.

By Lemma 2, there exist non-negative multipliers λi ≥ 0, i ∈ I, µj ≥ 0, j ∈ J(Z), νk ≥ 0,
τk ≥ 0, k ∈ K and U ∈ Sn

+; not all can be zero simultaneously such that

Π(Z) := ∑
i∈I

λiρ
Φ
i (Z) + ∑

j∈J
µjρ

Ψ
j (Z) + ∑

k∈K
νkρΘ

k (Z) + ∑
k∈K

τkρ−Θ
k (Z)− ⟨U, V⟩ ≥ 0. (5)

From (5), we have ⟨U,Z⟩ ≤ 0. Since U, Z ∈ Sn
+, hence ⟨U,Z⟩ = 0. Consequently, Π(Z)

is a convex function and Π(Z) = 0. Thus 0 ∈ ∂Π(Z), where ∂ represents the symbol
of subdifferential in the context of convex analysis. Therefore, there exist λi ≥ 0, i ∈ I,
µj ≥ 0, j ∈ J(Z), νk ≥ 0, τk ≥ 0, k ∈ K such that

0 ∈ ∑
i∈I

λi co ∂∗Φ(Z) + ∑
j∈J(Z)

µj co ∂∗Ψj(Z)

+ ∑
k∈K

[νk co ∂∗Θk(Z) + τk co ∂∗(−Θk)(Z)]− U,

⟨U, Z⟩ = 0.

Taking µj = 0 for j ∈ J\J(Z). This completes the proof.

Remark 5. For m = 1 and K = ∅, Theorem 3 extends Theorem 3.1 derived by Golestani and
Nobakhtian [43] from non-smooth semidefinite single-objective programming problems to a more
general programming problem, NSMPP.

In the subsequent definition, we introduce generalized Abadie constraint qualification
(NSMPP-ACQ) in the context of NSMPP, which will prove to be useful in deriving strong
KKT-type necessary optimality conditions for local weak Pareto solutions of NSMPP.
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Definition 8. The Abadie constraint qualification NSMPP-ACQ is said to satisfy at Z ∈ S , if for
every r ∈ I,

Dr := cone coF r + cone coG + cone coH− Sn
+.

is closed and
Γ(Z) ⊂ T(S r,Z).

Now, using the properties of convexificators, we establish the strong KKT-type neces-
sary optimality conditions for NSMPP.

Theorem 4. Let Z ∈ F be a local weak Pareto solution of NSMPP. Suppose that at Z , Φi, i ∈ I,
Ψj, j ∈ J and ±Θk, k ∈ K admit bounded USRC. Moreover, assume that NSMPP-ACQ is
satisfied at Z . Then there exist λi > 0, i ∈ I, µj ≥ 0, j ∈ J, νk ≥ 0, τk ≥ 0, k ∈ K and U ∈ Sn

+

such that

0 ∈ ∑
i∈I

λi co ∂∗Φi(Z) + ∑
j∈J

µj co ∂∗Ψj(Z)

+ ∑
k∈K

[νk co ∂∗Θk(Z) + τk co ∂∗(−Θk)(Z)]− U,
(6)

⟨U,Z⟩ = 0, µjΨj(Z) = 0, ∀j ∈ J. (7)

Proof. To derive the above result, it is sufficient to show that for every i ∈ I, the following
inclusion relation holds:

0 ∈ co ∂∗Φi(Z) + Di. (8)

On the contrary, let us assume that there exists r ∈ I such that

0 ̸∈ co ∂∗Φr(Z) + Dr.

Since Φr, r ∈ I admits bounded USRC, thus co ∂∗Φr(Z) is compact and convex set
in Sn. From the definition of NSMPP-ACQ, Dr is a closed convex set in Sn. Hence,
co ∂∗Φr(Z) + Dr is a closed convex set in Sn. By employing the separation theorem, there
exists V ∈ Sn such that

⟨ξ + ζ, V⟩ < 0, ∀ξ ∈ co ∂∗Φr(Z), ∀ζ ∈ Dr.

Since zero is contained in every cone, we get

⟨ξ, V⟩ < 0, ∀ξ ∈ co ∂∗Φr(Z).

Thus,
Φ+

r (Z ;V) < 0.

Hence, ∃κ > 0 such that

Φr(Z + tV) < Φr(Z), ∀t ∈ (0, κ). (9)

Moreover, we deduce that
⟨ζ, V⟩ ≤ 0, ∀ ζ ∈ Dr.

Consequently,
⟨ηi, V⟩ ≤ 0, ∀ηi ∈ co ∂∗Φi(Z), ∀i ∈ I\{r}, (10)

⟨ηj, V⟩ ≤ 0, ∀ηj ∈ co ∂∗Ψj(Z), ∀j ∈ J(Z), (11)

⟨ηk, V⟩ ≤ 0, ∀ηk ∈ co ∂∗Θk(Z) ∪ co ∂∗(−Θk)(Z), ∀k ∈ K, (12)

⟨U, V⟩ ≥ 0, ∀U ∈ Sn
+. (13)
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From (10)–(13) and Lemma 1, we get

V ∈ T(S r,Z).

Therefore, there exists tn ↓ 0 and Vn → V such that

Z + tnVn ∈ S r.

Then for t small enough and n large enough, we have

Z + tV ∈ S r. (14)

From (9) and (14), we arrive at a contradiction with the local weak Pareto solution at Z .
Hence, (8) holds. Therefore, there exist λi > 0, µj ≥ 0, νk ≥ 0 and τk ≥ 0 such that

0 ∈ ∑
i∈I

λi co ∂∗Φi(Z) + ∑
j∈J

µj co ∂∗Ψj(Z)

+ ∑
k∈K

[νk co ∂∗Θk(Z) + τk co ∂∗(−Θk)(Z)]− U,

⟨U,Z⟩ = 0, µjΨj(Z) = 0, ∀j ∈ J.

This completes the proof.

Remark 6.

1. Theorem 4 generalizes Theorem 3.2 established by Golestani and Nobakhtian [30] from the
Euclidean space to the space of symmetric matrices.

2. For m = 1 andK = ∅, Theorem 4 extends Theorem 3.3 derived by Golestani and Nobakhtian [43]
from non-smooth semidefinite single-objective programming problems to a more general pro-
gramming problem NSMPP.

3. Theorem 4 generalizes Theorem 4.1 established by Giorgi et al. [34] from the Euclidean space
setting to the space of symmetric matrices in terms of convexificators.

Now, in the subsequent example, utilizing NSMPP-ACQ, we examine the Lagrange
multipliers of NSMPP to illustrate the significance of the Theorem 4.

Example 1. We consider the following mathematical programming problem with mixed constraints
given by

(P1) Minimize Φ(Z) = (Φ1(Z), Φ2(Z)) := (|z1|, |z3|),
subject to Ψ(Z) := −2z2 ≤ 0,

Θ(Z) := 2z2 = 0,

Z ∈ S2
+,

where Φi : S2 → R, i ∈ {1, 2}, Ψ : S2 → R and Θ : S2 → R. The set consisting of all feasible
solutions of (P1) is given by

F :=
{
Z =

[
z1 z2
z2 z3

]
∈ S2 : z2 = 0, Z ∈ S2

+

}
.

It is evident that Z =

[
0 0
0 0

]
is a local weak Pareto solution of (P1). Moreover, it can be verified that

∂∗Φ1(Z) =

{[
−1 0
0 0

]
,
[

1 0
0 0

]}
, ∂∗Φ2(Z) =

{[
0 0
0 −1

]
,
[

0 0
0 1

]}
,
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∂∗Ψ(Z) =

{[
0 −1
−1 0

]}
, ∂∗Θ(Z) =

{[
0 1
1 0

]}
,

∂∗(−Θ)(Z) =

{[
0 −1
−1 0

]}
.

Therefore, we have

co ∂∗Φ1(Z) =

{[
a 0
0 0

]
: a ∈ [−1, 1]

}
,

co ∂∗Φ2(Z) =

{[
0 0
0 b

]
: b ∈ [−1, 1]

}
.

It is evident that

Γ(Z) =

{[
0 0
0 0

]}
⊂ T(S r,Z).

Since Dr is a closed set, NSMPP-ACQ is satisfied at Z . Moreover, there exist

ξ1 =

[
0 0
0 0

]
∈ co ∂∗Φ1(Z), ξ2 =

[
0 0
0 1

]
∈ co ∂∗Φ2(Z),

ξ3 =

[
0 −1
−1 0

]
∈ co ∂∗Ψ(Z), ξ4 =

[
0 1
1 0

]
∈ co ∂∗Θ(Z),

ξ5 =

[
0 −1
−1 0

]
∈ co ∂∗(−Θ)(Z),

such that for λ1 = 1, λ2 = 1, µ = 0, ν = 1, τ = 1 and U =

[
0 0
0 1

]
Equations (6) and (7) hold

true at Z . Hence, strong KKT-type necessary optimality conditions are satisfied at a local weak
Pareto solution Z of the considered problem (P1).

Now, in the subsequent theorem, under the assumptions of generalized convexity, we
establish sufficient optimality conditions for a weak Pareto solution of NSMPP.

Theorem 5. Let Z ∈ F satisfy the strong KKT-type necessary optimality conditions established
in Theorem 4. Assume that Φi, i ∈ I, are ∂∗-pseudoconvex at Z and Ψj, j ∈ J, ±Θk, k ∈ K are
∂∗-quasiconvex at Z . Then Z is a weak Pareto solution of NSMPP.

Proof. Since Z ∈ F satisfies the strong KKT-type necessary optimality conditions, there
exist λi > 0, i ∈ I, µj ≥ 0, j ∈ J, νk ≥ 0, τk ≥ 0, k ∈ K and U ∈ Sn

+ such that

0 ∈ ∑
i∈I

λi co ∂∗Φi(Z) + ∑
j∈J

µj co ∂∗Ψj(Z)

+ ∑
k∈K

[νk co ∂∗Θk(Z) + τk co ∂∗(−Θk)(Z)]− U.
(15)

Assume, on the contrary, that Z is not a weak Pareto solution of NSMPP. Then there
exists Y ∈ F such that Φ(Y) ≺ Φ(Z). From the ∂∗-pseudoconvexity of Φi, i ∈ I at Z ,
we have

⟨ξ1
i , Y −Z⟩ < 0, ∀ξ1

i ∈ ∂∗Φi(Z), ∀i ∈ I. (16)

At feasible point Y of NSMPP, we have

Ψj(Y) ≤ Ψj(Z), ∀j ∈ J(Z).

Therefore, from the ∂∗-quasiconvexity of Ψj, j ∈ J(Z), we have

⟨ξ2
j , Y −Z⟩ ≤ 0, ∀ ξ2

j ∈ ∂∗Ψj(Z), ∀j ∈ J(Z). (17)
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Similarly, we get
⟨ξ3

k , Y −Z⟩ ≤ 0, ∀ξ3
k ∈ ∂∗Θk(Z), ∀k ∈ K, (18)

⟨ξ4
k , Y −Z⟩ ≤ 0, ∀ξ4

k ∈ ∂∗(−Θk)(Z), ∀k ∈ K. (19)

Since U, Y ∈ Sn
+, we get

⟨−U, Y −Z⟩ = −⟨U, Y⟩+ ⟨U,Z⟩ ≤ 0. (20)

From (16)–(20), there exist λi > 0, i ∈ I, µj ≥ 0, j ∈ J(Z), νk ≥ 0, τk ≥ 0, k ∈ K such that〈
∑
i∈I

λiξ
1
i + ∑

j∈J(Z)

µiξ
2
j + ∑

k∈K
[νΘ

k ξ3
k + τΘ

k ξ4
k ]− U, Y −Z

〉
< 0. (21)

Hence, we arrive at a contradiction with (15). This completes the proof.

Remark 7. For m = 1 and K = ∅, Theorem 4 and Theorem 5 reduce to Theorem 3.2 and Theorem
3.5, respectively, derived in [43] from non-smooth semidefinite single-objective programming
problems to a more general programming problem NSMPP.

To illustrate the results established in Theorem 5, we furnish a non-trivial illustrative
example as follows:

Example 2. We investigate the following mathematical programming problem incorporating mixed
constraints given by

(P2) Minimize Φ(Z) = (Φ1(Z), Φ2(Z)) := (z2, z3),

subject to Ψ(Z) := −|z3| ≤ 0,

Θ(Z) := z2 = 0,

Z ∈ S2
+,

where Φi : S2 → R, i ∈ {1, 2}, Ψ : S2 → R and Θ : S2 → R. The set of all feasible solutions of
(P2) is given by

F :=
{
Z =

[
z1 z2
z2 z3

]
∈ S2 : −|z3| ≤ 0, z2 = 0, Z ∈ S2

+

}
.

Since there exist λ1 = 1, λ2 = 1, µ = 1, ν = 1, τ = 2 and U =

[
0 0
0 0

]
such that at Z =

[
0 0
0 0

]
the strong KKT-type necessary optimality conditions are satisfied. Moreover, Φi, i ∈ {1, 2} are
∂∗-pseudoconvex and Ψ, ±Θ are ∂∗-quasiconvex at Z . Hence, conditions of Theorem 5 are satisfied
at Z .

4. Constraint Qualifications

In this section, we introduce generalized versions of some well-known constraint qual-
ifications for the considered problem, NSMPP. Moreover, we establish the interrelationship
among the various constraint qualifications introduced in this section.

Definition 9. The generalized Kuhn-Tucker constraint qualification NSMPP-KTCQ is satisfied at
Z ∈ S if for every r ∈ I, the set Dr is closed and

Γ(Z) ⊂ A(S r,Z).
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Remark 8. Definition 9 extends the Definition 4.1 defined in [30] from the non-smooth multi-
objective programming problems in the Euclidean space to a more general programming prob-
lem NSMPP.

Definition 10. The Zangwill constraint qualification NSMPP-ZCQ is satisfied at Z ∈ S if for
every r ∈ I, the set Dr is closed and

Γ(Z) ⊂ cl D(S r,Z).

Remark 9. Definition 10 extends the Definition 4.2 defined in [30] from the non-smooth multiobjec-
tive programming problems in the Euclidean space to a more general programming problem, NSMPP.

In the following proposition, we establish the interrelationship among NSMPP-ZCQ,
NSMPP-KTCQ, and NSMPP-ACQ.

Proposition 2. Suppose that Z is a feasible solution of NSMPP. Moreover, assume that NSMPP-
ZCQ is satisfied at Z . Then

NSMPP-ZCQ =⇒ NSMPP-KTCQ =⇒ NSMPP-ACQ.

Proof. Since
cl F(S r,Z) ⊆ A(S r,Z) ⊆ T(S r,Z). (22)

Therefore, from (22), we get the desired result.

Remark 10. The above three cones may exhibit strict containment; therefore, the reverse implication
may not hold true.

Definition 11. The Mangasarian-Fromovitz constraint qualification NSMPP-MFCQ is satisfied
at Z ∈ S if for every r ∈ I,

Λ(Z) ∩ Sn
++ ̸= ∅.

Remark 11. Definition 11 extends the Definition 4.4 defined in [30] from the non-smooth mul-
tiobjective programming problems in the Euclidean space to a more general programming prob-
lem NSMPP.

Definition 12. The basic constraint qualification NSMPP-BCQ is satisfied at Z ∈ S if for every
U ∈ Sn

+,
U ̸∈ co ∆(Z),

where

∆(Z) :=

 ⋃
i∈I\{r}

co ∂∗Φi(Z)

 ⋃ ⋃
j∈J(Z)

co ∂∗Ψj(Z)


⋃(⋃

s∈S
co ∂∗Θk(Z)

)⋃(⋃
s∈S

co ∂∗(−Θk)(Z)

)
.

Remark 12. Definition 12 extends the Definition 4.5 defined in [30] from the non-smooth mul-
tiobjective programming problems in the Euclidean space to a more general programming prob-
lem NSMPP.

In the following proposition, we establish that the NSMPP-BCQ implies NSMPP-MFCQ.

Proposition 3. Assume that Φi, i ∈ I, Ψj, j ∈ J(Z) and ±Θk, k ∈ K admit bounded USRC.
Then, NSMPP-BCQ implies NSMPP-MFCQ.
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Proof. Let us assume that NSMPP-BCQ is satisfied at Z . Then

U ̸∈ co ∆(Z).

Moreover, co(∆(Z)) being a compact convex set and Sn
+ is a closed convex set, em-

ploying the separation theorem, there exist scalar β and a nonzero V ∈ Sn such that

⟨ζ, V⟩ < β < ⟨η, V⟩, ∀ζ ∈ co(∆(Z)), ∀η ∈ Sn
+. (23)

Since 0 ∈ Sn
+, we get

⟨ζ, V⟩ < 0, ∀ζ ∈ co(∆(Z)).

Thus,
⟨ζ1

i , V⟩ < 0, ∀ ζ1
i ∈ co ∂∗Φi(Z), ∀i ∈ I\{r},

⟨ζ2
j , V⟩ < 0, ∀ ζ2

j ∈ co ∂∗Ψj(Z), ∀j ∈ J(Z),

⟨ζ3
k , V⟩ < 0, ∀ ζ3

k ∈ co ∂∗Θk(Z), ∀k ∈ K,

⟨ζ4
k , V⟩ < 0, ∀ ζ4

k ∈ co ∂∗(−Θk)(Z), ∀k ∈ K.

Therefore,
V ∈ Λ(Z) ∩ Sn

++. (24)

Since Sn
+ is a cone, from (23), we get

⟨η, V⟩ ≥ 0, ∀η ∈ Sn
+. (25)

From Lemma 1 and (25), we get V ∈ Sn
+. Since clSn

++ = Sn
+. If V ∈ Sn

++, NSMPP-MFCQ
holds from (24). Alternatively, considering the density of Sn

++ and the openness of the
right-hand side of (24), we have Λ(Z) ∩ Sn

++ ̸= ∅. Hence, NSMPP-MFCQ holds at Z .

The following example illustrates the result established in Proposition 3, that at a
feasible point of a multiobjective programming problem with mixed constraints, NSMPP-
BCQ implies NSMPP-MFCQ.

Example 3. We consider the following mathematical programming problem given by

(P3) Minimize Φ(Z) = (Φ1(Z), Φ2(Z)) := (−z1,−z3),

subject to Ψ(Z) := 2z2 ≤ 0,

Z ∈ S2
+,

where Φi : S2 → R, i ∈ {1, 2}, Ψ : S2 → R and Θ : S2 → R. The set of all feasible solutions of
(P3) is given by

F :=
{
Z =

[
z1 z2
z2 z3

]
∈ S2 : 2z2 ≤ 0, Z ∈ S2

+

}
.

It is evident that Z =

[
0 0
0 0

]
is a feasible solution of (P3). Moreover, it can be verified that

∂∗Φ1(Z) =

{[
−1 0
0 0

]}
, ∂∗Φ2(Z) =

{[
0 0
0 −1

]}
,

∂∗Ψ(Z) =

{[
0 1
1 0

]}
.

It is evident that for all U ∈ S2
+,

U ̸∈ co ∆(Z).
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Hence, NSMPP-BCQ holds at Z . Furthermore,

Λ(Z) ∩ Sn
++ ̸= ∅,

which implies that NSMPP-MFCQ holds at Z .

The following proposition states that if both the objective functions and the active
constraint functions admit bounded USRC and the active constraints are continuous, then
NSMPP-MFCQ implies NSMPP-ACQ.

Proposition 4. Let Z be a feasible solution of NSMPP. Suppose that Φi, i ∈ I, Ψj, j ∈ J(Z)

and ±Θk, k ∈ K admit bounded USRC and Ψj, j ∈ J\J(Z) are continuous. Moreover, if for each
r ∈ I, the set Dr is closed and NSMPP-MFCQ holds at Z , then NSMPP-ACQ also holds at Z .

Proof. Let NSMPP-MFCQ hold at Z . Therefore, there exists V ∈ Sn
+ such that V ∈

Λ(Z) ∩ Sn
++. From the assumptions, both the objective and the active constraint functions

admit bounded USRC. Hence, we have

Φ+
i (Z ;V) < 0, ∀i ∈ I\{r}, (26)

Ψ+
j (Z ;V) < 0, ∀j ∈ J(Z), (27)

Θ+
k (Z ;V) < 0, ∀k ∈ K. (28)

(−Θk)
+(Z ;V) < 0, ∀k ∈ K. (29)

Sn
+ being a convex cone, there exists κ > 0 such that

Ψj(Z + λV) < 0, j ∈ J(Z), Z + λV ∈ Sn
+, ∀λ ∈ (0, κ).

From (26)–(29), we have

Φi(Z + tV)− Φi(Z) < 0, ∀i ∈ I\{r},

Ψj(Z + tV) < 0, ∀j ∈ J(Z),

Θk(Z + tV)− Θk(Z) < 0, ∀k ∈ K,

(−Θk)(Z + tV)− (−Θk)(Z) < 0, ∀k ∈ K.

As assumed, Ψj, j ∈ J\J(Z) is continuous; it follows that Z + tV ∈ S r. Thus, V ∈ T(S r,Z).
Hence,

Γ(Z) = (F r)− ∩ G− ∩H− ∩ Sn
+

= cl(F r)s ∩ clGs ∩ clHs ∩ clSn
++

= cl((F r)s ∩ Gs ∩Hs ∩ Sn
++)

= cl(Λ(Z) ∩ Sn
++)

⊂ cl T(S r,Z)

= T(S r,Z).

This completes the proof.

Remark 13. If m = 1 and K = ∅, then Proposition 4 established in this article reduces to
Proposition 3.3 derived by Golestani and Nobakhtian [43].

The subsequent example illustrates that NSMPP-ACQ does not necessarily imply
NSMPP-MFCQ.
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Example 4. We investigate the following mathematical programming problem given by

(P4) Minimize Φ(Z) = (Φ1(Z), Φ2(Z)) := (|z1|, |z3|),
subject to Ψ(Z) := −2z2 ≤ 0,

Θ(Z) := z2 = 0,

Z ∈ S2
+,

where Φi : S2 → R, i ∈ {1, 2}, Ψ : S2 → R and Θ : S2 → R. The set of all feasible solutions of
(P4) is given by

F :=
{
Z =

[
z1 z2
z2 z3

]
∈ S2 : z2 = 0, Z ∈ S2

+

}
.

It is evident that  ⋃
i∈I\{2}

co ∂∗Φi(Z)

s

= ∅,

 ⋃
i∈I\{1}

co ∂∗Φi(Z)

s

= ∅.

Therefore, we have Λ(Z) ∩ S2
++ = ∅. However, from Example 1, it is evident that NSMPP-ACQ

is satisfied at Z . Hence, NSMPP-ACQ is satisfied at Z but not NSMPP-MFCQ.

Through the following example, employing NSMPP-ACQ, we verify the strong KKT-
type necessary optimality conditions for NSMPP. Moreover, the following example illus-
trates that NSMPP-ACQ does not necessarily imply NSMPP-MFCQ.

Example 5. We consider the following mathematical programming problem with mixed constraints
given by

(P5) Minimize Φ(Z) = (Φ1(Z), Φ2(Z), Φ3(Z)) := (|z11|ez11 , e|z22|, |z33 − 1|),
subject to Ψ1(Z) := z22(z22 − 1) ≤ 0,

Ψ2(Z) := −z2
33 − |z33| ≤ 0,

Θ(Z) := z2
13 + z2

23 + |z12| = 0,

Z ∈ S3
+,

where Φi : S3 → R, i ∈ {1, 2, 3}, Ψj : S3 → R, j ∈ {1, 2} and Θ : S3 → R. The set consisting
of all feasible solutions of (P1) is given by

F :=
{
Z =

z11 z12 z13
z21 z22 z23
z13 z23 z33

 ∈ S3 : z22(z22 − 1) ≤ 0, −z2
33 − |z33| ≤ 0,

z2
13 + z2

23 + |z12| = 0, Z ∈ S3
+

}
.

It is evident that Z =

0 0 0
0 0 0
0 0 1

 is a local weak Pareto solution of (P5). Moreover, it can be

verified that
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∂∗Φ1(Z) =


−1 0 0

0 0 0
0 0 0

,

1 0 0
0 0 0
0 0 0

, ∂∗Φ2(Z) =


0 0 0

0 −1 0
0 0 0

,

0 0 0
0 1 0
0 0 0

,

∂∗Φ3(Z) =


0 0 0

0 0 0
0 0 −1

,

0 0 0
0 0 0
0 0 1

, ∂∗Ψ1(Z) =


0 0 0

0 −1 0
0 0 0

,

∂∗Ψ2(Z) =


0 0 0

0 0 0
0 0 −1

,

0 0 0
0 0 0
0 0 1

, ∂∗Θ(Z) =


 0 − 1

2 0
− 1

2 0 0
0 0 0

,

0 1
2 0

1
2 0 0
0 0 0

,

∂∗(−Θ)(Z) =


 0 − 1

2 0
− 1

2 0 0
0 0 0

,

0 1
2 0

1
2 0 0
0 0 0

.

It can be verified that Dr is closed set and Γ(Z) ⊂ T(S r,Z). Hence, NSMPP-ACQ is satisfied at
Z . Furthermore, there exist

η1 =

1 0 0
0 0 0
0 0 0

 ∈ co ∂∗Φ1(Z), η2 =

0 0 0
0 1 0
0 0 0

 ∈ co ∂∗Φ2(Z),

η3 =

0 0 0
0 0 0
0 0 1

 ∈ co ∂∗Φ3(Z), η4 =

0 0 0
0 −1 0
0 0 0

 ∈ co ∂∗Ψ1(Z),

η5 =

0 0 0
0 0 0
0 0 −1

 ∈ co ∂∗Ψ2(Z), η6 =

 0 − 1
2 0

− 1
2 0 0

0 0 0

 ∈ co ∂∗(−Θ)(Z),

η7 =

0 1
2 0

1
2 0 0
0 0 0

 ∈ co ∂∗Θ(Z),

such that for λ1 = 1, λ2 = 2, λ3 = 1 µ1 = 1, µ2 = 1, ν = 2, τ = 2 and U =

1 0 0
0 1 0
0 0 0


Equations (6) and (7) hold true at Z . Hence, strong KKT-type necessary optimality conditions are
satisfied at a local weak Pareto solution Z of the considered problem (P5).

In addition to this, it can be verified that

Λ(Z) ∩ S2
++ = ∅.

Thus, NSMPP-ACQ is satisfied at Z , but not NSMPP-MFCQ. Hence, NSMPP-ACQ does not
necessarily imply NSMPP-MFCQ.

The following Figure 1 summarizes the above results and illustrates the interrelation-
ships among the different constraint qualifications introduced for NSMPP.

Figure 1. Relationship among the different constraint qualifications.
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5. Conclusions and Future Directions

In this article, we explored a class of non-smooth semidefinite multiobjective pro-
gramming problems with mixed constraints (NSMPP). We have established the separation
theorem for the space of symmetric matrices. We have established FJ-type necessary opti-
mality conditions for NSMPP. Moreover, we have introduced NSMPP-ACQ for NSMPP
in terms of convexificator and employed it to establish strong KKT-type necessary op-
timality conditions for a local weak Pareto solution of NSMPP. Furthermore, we have
introduced NSMPP-ZCQ, NSMPP-KTCQ, NSMPP-MFCQ, and NSMPP-BCQ for NSMPP
and established interrelationships among them. Several non-trivial examples are furnished,
illustrating the significance of the established results.

The constraint qualifications and optimality conditions established in this article ex-
tend several well-known results existing in the literature for non-smooth multiobjective
programming problems to a more general programming problem, NSMPP, in terms of
convexificators. In particular, we have generalized the various constraint qualifications in-
troduced in [30] from non-smooth multiobjective problems to a more general programming
problem, NSMPP. Moreover, the results derived in this article generalize the corresponding
results derived in [34] from the Euclidean space to the space of symmetric matrices in
terms of convexificators. Furthermore, we have generalized the results established in [43]
from non-smooth single-objective programming problems to a more general programming
problem, NSMPP.

It is worthwhile to mention that inequality and equality constraints are assumed
to be finite in the considered problem, NSMPP. Therefore, the results established in this
article cannot be applied to the class of problems involving infinite inequality or equality
constraints. This may be considered a limitation of this article. We intend to address this
limitation in our future course of study.

The results established in this article open up several possibilities for future research.
For instance, in view of the work presented by Ardali et al. [50,51], it would be intriguing
to introduce constraint qualifications and to establish optimality conditions for non-smooth
multiobjective semidefinite programming problems with equilibrium constraints. In ad-
dition to this, it would be interesting to solve the NSMPP employing the augmented
Lagrangian method and its splitting method proposed by Bai et al. [52].
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