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Abstract: The fractional orthotriple fuzzy set (FOFS) model is a recently created extension of fuzzy
sets (FS) for coping with ambiguity in DM. The purpose of this study is to define new exponen-
tial and Einstein exponential operational (EO) laws for fractional orthotriple fuzzy sets and the
aggregation procedures that accompany them. We present the operational laws for exponential
and Einstein exponential FOFSs which have crisp numbers as base values and fractional orthotriple
fuzzy numbers as exponents (weights). The proposed operations’ qualities and characteristics are
then explored. Based on the defined operation laws regulations, various new FOFS aggregation
operators, named as fractional orthotriple fuzzy weighted exponential averaging (FOFWEA), frac-
tional orthotriple fuzzy ordered weighted exponential averaging (FOFOWEA), fractional orthotriple
fuzzy hybrid weighted averaging (FOFHWEA), fractional orthotriple fuzzy Einstein weighted expo-
nential averaging (FOFEWEA), fractional orthotriple fuzzy Einstein ordered weighted exponential
averaging (FOFEOWEA), and fractional orthotriple fuzzy Einstein hybrid weighted exponential
averaging (FOFEHWEA) operators are presented. A decision-making algorithm based on the newly
defined aggregation operators is proposed and applied to a multicriteria group decision-making
(MCGDM) problem related to bank security. Finally, we compare our proposed method with other
existing methods.

Keywords: fractional orthotriple fuzzy set; exponential operational laws; Einstein exponential
operational laws; aggregation operators; decision making

MSC: 90B50; 91B06; 03E72; 47S40; 03B52

1. Introduction

The notion of fuzzy set (FS) theory [1] was introduced by Zadeh in 1965 by giving
membership value to every element of the group in the range [0, 1], and it is used to
describe circumstances where outcomes are inaccurate. This classic FS has been utilized in
a wide range of applications, including as DM, clustering analysis, pattern identification,
and medicinal treatment. Al-shami et al. [2] defined SR-fuzzy sets with weighted aggre-
gated operators and discussed their application to decision making. Also, Al-shami and
Mhemdi [3] suggested generalized frames for orthopair fuzzy sets: (m, n)-fuzzy sets and
their applications to multicriteria decision-making methods. Al-shami et al. [4] developed
a new generalization of fuzzy soft sets: (a, b)-Fuzzy soft sets. Unluckily, this conventional
FS theory only works with positive membership grade components. To address this issue,
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Atanassov proposed negative membership grade to fill gaps in FS theory, and the resultant
collection is recognized as an intuitionistic fuzzy set (IFS) [5]. As a result, IFS theory is a
development of FS theory. Atanassov dealt with both MD and NMD, when the total of the
two numbers is smaller than or equivalent to one (PĂ + NĂ ≤ 1). In rare circumstances,
decision-makers may supply values that are favored, such as PĂ = 0.5 and NĂ = 0.7, which
obviously encroach on the IFS criterion because the total of the two numbers is smaller
than or equal to one. To address such challenges, Yager [6] created the idea of Pythagorean
FS, with the requirement that Pğ

Ă
+ N ğ

Ă
≤ 1.

PFSs definitely control uncertainty more successfully than IFS, making Pythagorean
FS theory a more relevant and attractive study subject. Yager and Abbasov [7] proposed
many aggregation operations to tackle MCDM issues in a Pythagorean fuzzy environment.
Another significant generalization of classical fuzzy sets is the neutrosophic set [8], which
is expanded to neutrosophic cubic sets (NCSs) [9]. Many contributions to neutrosophic sets
(NSs) and NCSs associated with the operators of aggregation can be found in the literature.
Alia et al. [10] discussed NCS theory and used it in pattern recognition. In addition,
Je created operations and aggregating techniques for NCSs. Ajay et al. [11] used NCSs
for multicriteria decision making (MCDM) using geometric Bonferroni mean operations.
Latest, Atta et al. [12] used the concept of NSs for a higher-level picture steganography that
relied on modification direction. Gundogdu et al. [13] introduced the purpose of spherical
orthotriple FS and its accompanying theory, and this design is among the most recent
upgrades to FS hypothesis, which has a triplicate membership pattern consisting of an MF,
an NMF, and hesitancy function, and the total of the squares is one or less.

When compared to PFSs, the SFS model can manage uncertainty, imprecision, and
ambiguity more efficiently. A recent analysis of some of the most current literature reveals a
growing tendency in SFS research. Ashraf et al. [14] created aggregation operator sequences
in a spherical fuzzy environment. Ashraf et al. [15] established a gray technique (GRA)
dependent upon the innovative notion of spherical linguistic fuzzy Choquet integrals,
whereas Jin et al. [16] created and implemented the logarithmic operator for SFSs for
decision support systems. Rafiq et al. [17] presented a cosine similarity measure for the
spherical fuzzy set model to aid in making decisions in the face of ambiguous and inaccu-
rate data. Ashraf et al. [18] developed a multicriteria group decision-making (MCGDM)
approach in the context of the spherical fuzzy environment and used it for a multicrite-
ria group decision-making (MCGDM) issue. Gundogdu et al. [19] adapted the famous
VIKOR approach for the SFS model and used it to an MCDM issue in the context of the
spherical fuzzy effects. Acharjya and Rathi [20] developed an extensive decision-making
technique that combines models of fuzzy rough set with genetic algorithm, which they
used for an MCDM problem linked to smart agriculture. Sharaf et al. [21,22] investigated
a text overview extraction methodology based on fuzzy logic and suggested a document
categorization method based on a fuzzy clustering approach. Gou et al. [23] defined the
EO principles for IFSs and presented several recent operators of aggregation for the IFS
model, whereas Garg [24] presented recent EO principles for the PFS model and operators
of aggregation dependent upon these recently defined EO principles for better handling in-
formation ambiguity, impreciseness, and confusion. Furthermore, Borg et al. [25] employed
EO laws of PFSs to create projection models for decision making, whereas Haque et al. [26]
used the notion from EO principles for broad SFSs.

Akram et al. [27] investigated the purpose of the SF diagram and presented a few
findings on the symmetrical difference, dismissal degree, and absolute degree for spherical
fuzzy diagrams, whereas Ashraf et al. [28] developed a novel unified technique dependent
upon the famous MCDM approaches Technique for Order of Preference by Similarity to
Ideal Solution (TOPSIS) and Complex Proportional Assignment. Quek et al. [29] created
recent operational principles for the T-SFS model and presented Einstein aggregation opera-
tors of two types in this model, which they then used on the multiattribute multiperception
DM problem involving pollution degree in five major Chinese cities. Shishavan et al. [30]
presented the Jaccard, exponential, and square root cosine similarity measures in an FOF
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scenario and used them to execute those approaches for MCDM issues with medical evalu-
ation and manufacturer choice, while for the SFS model, Aydogdu and Gul [31] presented a
unique entropy measurement and evaluated its effectiveness against various other metrics
that are currently in use in the literature. While Garg et al. [32] recommended the idea of
power AO for the TSFS model and an MCDM algorithm centered on these AO, Ali et al. [33]
suggested the novel concept of complex T-SFSs and their operational principles, along with
two new operators of aggregation for this model. The T-fractional orthotriple fuzzy soft set
model and its AO were proposed by Liu et al. [34], Guleria, and Bajaj [35]. Furthermore,
the idea of linguistic T-fractional orthotriple fuzzy numbers was proposed, and two novel
MCDM algorithms and a weighted aggregation operator were proposed for this objective.

Regarding the use of SFS statistical frameworks for MCDM techniques, Sharaf and
Khalil [36] expanded on the famous MCDM procedure of Tomada De Decisao Interactive
Multicriterio (TODIM) to the SF surroundings to allow the decision-makers’ hesitation
degree to be described properly, while Mathew et al. [37] suggested an unusual model
for making decisions that integrates the famous Kahraman and Gundogdu established
notion of interval worth SFSs (IV-SFS). They described several crucial supporting notions
for this structure, such as the score and accuracy values, as well as the mean arithmetic
and geometric operations, in [38]. The writers then proposed an IV-SFS dependent TOPSIS
approach and used it to obtain MCDM issues connected to the option of 3D printers.
Barukab et al. [39] defined an extended measure of distance for SFSs dependent on spherical
orthotriple; the fuzzy entropy was used to calculate the undetermined values of the criterion.
Farrokhizadeh et al. [40] extended this to apply the original maximized variability approach
to the fractional orthotriple fuzzy atmosphere with only one value and a range of SFSs
toascertain. Akram et al. [41] suggested four novel AOs for the complex SFS designs and
applied them to expand the multicriteria improvement and compromising solution (VIKOR)
approach to the complex fractional orthotriple fuzzy surroundings, while Ali et al. [42]
presented a TOPSIS technique centered on a complex SFS model along with two kinds of
Bonferroni mean operators of aggregation.

Motivated by the abovementioned fast-moving studies on FOFS theory, the primary
purpose of this study is to establish exponential and Einstein exponential operating rules for
the FOFS model, resulting in conclusions in the prolonged closed range of [1, 2], along with
building exponential FOFWEA, FOFOEA, FOFHWEA, and Einstein exponential fractional
orthotriple fuzzy aggregation operators FOFEWEA, FOFEOWEA, and FOFEHWEA.

The rest of the paper is structured as follows. Section 2 offers a summary of the cru-
cial fundamental information relevant to the FOFS model and its operations, operational laws,
and AO. Section 3 introduces the EO rules for the FOFS model, as well as the accompany-
ing operations and attributes. Following that, new exponential farctional orthotriple fuzzy
aggregation operations are introduced. Section 4 defines the Einstein exponential operation
principles for the FOFS model and their accompanying operations and attributes, as well as
the Einstein exponential fractional orthotriple fuzzy AO. Section 5 presents an MCDM method
dependent upon the newly developed fractional orthotriple fuzzy operators of aggregation.
In Section 6, the new relationships of technology utilization and utility fractional orthotriple
fuzzy aggregation operators are demonstrated through their use in an MCDM problem in-
volving the ranking of various ratings of several methods of psychotherapy for emotional
issues encountered by children. A comparison study is provided in Section 7 to validate the
suggested MCDM approach, in which the outcomes obtained utilizing our suggested strat-
egy are compared with the present literary results acquired utilizing fuzzy-based MCDM
approaches. Section 8 contains the conclusion of the paper.

2. Preliminaries

This section will discuss some fundamental ideas of fractional orthotriple fuzzy sets.

Definition 1 ([1]). An FS F is defined on a conversation universe U as the shape

F = {⟨PF(ŕ)⟩|ŕ ∈ U}, (1)
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where PF(ŕ) :→ [0, 1]. Here, PF(ŕ) represents the MF for every ŕ.

Definition 2 ([5]). An IFS Ă is defined as a collection of ordered pairs provided on a universal
collection,

Ă =
{〈

ŕ, (PĂ(ŕ), NĂ(ŕ))
〉
|ŕ ∈ U

}
, (2)

where PĂ(ŕ) : U → [0, 1], NĂ(ŕ) : U → [0, 1] and satisfy the condition PĂ(ŕ) + NĂ(ŕ) ≤ 1 for
every component ŕ ∈ U. Here, the MF and NMFs are denoted as PĂ(ŕ) and NĂ(ŕ), correspondingly.

Definition 3 ([43]). Let Ăŝ be an FOFS in the conversation universe U be defined by

Ăŝ =
{〈

ŕ, (PĂŝ
(ŕ)), NĂŝ

(ŕ), IĂŝ
(ŕ)
〉
|ŕ ∈ U

}
, (3)

where PAŝ(ŕ) : U → [0, 1], NĂŝ
(ŕ) : U → [0, 1] and 0 ≤ Pğ

Ăŝ
(ŕ)) + N ğ

Ăŝ
(ŕ) + I ğ

Ăŝ
(ŕ) ≤ 1 for each

ŕ, the values PĂŝ
(ŕ)), NĂŝ

(ŕ), IĂŝ
(ŕ) are MF, NMF, and hesitancy function of ŕ in Ăŝ, defined as

πĂŝ
(ŕ) = ğ

√
1 −

(
Pğ

Ăŝ
(ŕ), N ğ

Ăŝ
(ŕ), I ğ

Ăŝ
(ŕ)
)

Definition 4. The score function and accuracy function of the fractional orthotriple FS are defined
correspondingly as

ŝ
(

Ăŝ(ŕ)
)
= P f

Ăŝ
(ŕ)− N f

Ăŝ
(ŕ)− I f

Aŝ
(ŕ) (4)

and
Ă(Ăŝ(ŕ)) = P f

Ăŝ
(ŕ) + N f

Ăŝ
(ŕ) + I f

Ăŝ
(ŕ) (5)

Definition 5. The fundamental activities of fractional orthotriple fuzzy numbers are defined as

1. Ăŝ ⊕ Bŝ =


ğ

√
Pğ

Ăŝ
(ŕ) + Pğ

Bŝ
(ŕ)− Pğ

Ăŝ
(ŕ)Pğ

Ăŝ
(ŕ), N ğ

Ăŝ
(ŕ)N ğ

Bŝ
(ŕ),

ğ

√(
1 − Pğ

Bŝ
(ŕ)
)

I ğ
Ăŝ
(ŕ) +

(
1 − Pğ

Ăŝ
(ŕ)
)

I ğ
Bŝ
(ŕ)− I ğ

Ăŝ
(ŕ)I ğ

Bŝ
(ŕ)

;

2. Ăŝ ⊗ Bŝ =


PĂŝ

(ŕ)PBŝ(ŕ),
ğ

√
(N ğ

Ăŝ
(ŕ) + (N ğ

Bŝ
(ŕ)− (N ğ

Ăŝ
(ŕ).(N ğ

Bŝ
(ŕ),

ğ

√(
1 − (N ğ

Ăŝ
(ŕ)
)

I ğ
Ăŝ
(ŕ) +

(
1 − (N ğ

Ăŝ
(ŕ)
)

I ğ
Bŝ
(ŕ)− I ğ

Ăŝ
(ŕ)I ğ

Bŝ
(ŕ)

;

3. ϵ.Ăŝ =


ğ

√
1 −

(
1 − Pğ

Ăŝ
(ŕ)
)ϵ

, Nϵ
Ăŝ
(ŕ),

ğ

√(
1 − Pğ

Ăŝ
(ŕ)
)ϵ

−
(

1 − Pğ
Ăŝ
(ŕ)− I ğ

Ăŝ
(ŕ)
)ϵ

, ϵ > 0

4. Ăŝ =


Pϵ

Ăŝ
(ŕ), ğ

√
1 −

(
1 − N ğ

Ăŝ
(ŕ)
)ϵ

,

ğ

√(
1 − N ğ

Ăŝ
(ŕ)
)ϵ

−
(

1 − N ğ
Ăŝ
(ŕ)− I ğ

Ăŝ
(ŕ)
)ϵ

, ϵ > 0

3. Exponential Operational Laws of FOFSs

This section defines new EO principles of FOFSs and their operations.

Definition 6. Let U be the conversation universe, and βŝ = (Pβŝ , Nβŝ , Iβŝ) be a fractional or-
thotriple fuzzy number (FOFN); then, the exponential operations of βŝ is defined as

ϵβŝ =



ϵ
ğ
√

1−Pğ
βŝ ,

ğ
√

1 − ϵğNβŝ ,
ğ
√

1 − ϵğIβŝ

; ϵ ∈ (0, 1)( 1
ϵ )

ğ
√

1−Pğ
βŝ , ğ
√

1 − ( 1
ϵ )

ğNβŝ , ğ
√

1 − ( 1
ϵ )

ğIβŝ

; ϵ ≥ 1

(6)
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Theorem 1. For any FOFN βŝ, the value of ϵβŝ is an FOFN in the prolonged range [1, 2].

Proof. Let βŝ = (Pβŝ , Nβŝ , Iβŝ) be an FOFN, where Pβŝ , Nβŝ and Iβŝ belong to [0, 1] with the
condition that 0 ≤ Pβŝ + Nβŝ + Iβŝ ≤ 1

Case 1. Let ϵ ∈ (0, 1), then the values of ϵ
ğ
√

1−Pğ
βŝ ,

ğ
√

1− ϵğNβŝ , and
ğ
√

1− ϵğIβŝ lie in [0, 1],

meeting the requirement that 1 ≤ (ϵ
ğ
√

1−Pğ
βŝ )ğ +

(
ğ
√

1 − ϵğNβŝ

)ğ
+
(

ğ
√

1 − ϵğIβŝ

)ğ
≤ 2.

Case 2. When ϵ ≥ 1 and 0 ≤ 1
ϵ ≤ 1, it is self-evident that ϵβŝ is an FOFN. As a result of

the two situations, the values of ϵβŝ are FOFNs in the prolonged range [1, 2].
For example, let βŝ = (0.73, 0.28, 0.32) be an FOFN and ϵ = 0.82. Then,

ϵβŝ = 0.82(0.73,0.28,0.32), 0.82(0.73,0.28,0.32)

= (0.82
3√1−0.733

, 3
√

1 − 0.823∗0.28, 3
√

1 − 0.823∗0.32)

= (0.6958, 0.5354, 0.5577)

If

ϵ =

〈(
1
4

)βŝ

=

(
1
4

) 3√1−0.733

, 3

√
1 − (

1
4
)3∗0.28, 3

√
1 − (

1
4
)3∗0.32

〉
= (0.3877, 0.7348, 0.7669)

Furthermore, we list some of the fundamental operations on ϵβŝ .

Definition 7. Let βŝ1 and βŝ2 be two fractional orthotriple fuzzy numbers. Then the fundamental
exponential operational principles are mentioned, following:

1. ϵβŝ1 ⊕ ϵβŝ2 =



〈
ğ

√√√√√1 −

1 − ϵ
ğ
√

1−Pğ
βŝ1

(1 − ϵ
ğ
√

1−Pğ
βŝ2 )

,

ğ

√(
1 − ϵ

ğNβŝ1

)(
1 − ϵ

ğNβŝ2

)
,

ğ

√√√√√√√√√√√

1 − ϵ
ğ
√

1−Pğ
βŝ1

1 − ϵ
ğ
√

1−Pğ
βŝ2


−

ϵ
ğIβŝ1 − ϵ

ğ
√

1−Pğ
βŝ1

ϵ
ğIβŝ2 − ϵ

ğ
√

1−Pğ
βŝ2



〉



;

2. ϵβŝ1 ⊗ ϵβŝ2 =


〈

ϵ
ğ
√

1−Pğ
βŝ1

+ ğ
√

1−Pğ
βŝ2 ,

ğ
√

1 − ϵ
ğNβŝ1 ϵ

ğNβŝ1 ,
ğ
√

ϵ
ğNβŝ1 ϵ

ğNβŝ2 − (1 − ϵ
ğNβŝ1 − ϵ

ğNβŝ1 )(1 − ϵ
ğNβŝ2 − ϵ

ğNβŝ2 )

〉;

3. Kλβŝ =



〈 ğ

√√√√√1 −

1 − ϵ
ğ
√

1−Pğ
βŝ1

K

, ğ
√
(1 − ϵğNβŝ )K,

ğ

√√√√√
1 − ϵ

ğ
√

1−Pğ
βŝ1

K

−

ϵğIβŝ − ϵ
ğ
√

1−Pğ
βŝ1

K

〉


;

4. [ϵβŝ ]K =


〈

ϵ
ğ
√

1−Pğ
βŝ )K, ğ

√
1 − (ϵğNβŝ )K,

ğ
√
(ϵğNβŝ )K − (1 − ϵğNβŝ − ϵğIβŝ )K

〉, ∀K > 0.
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Theorem 2. Let βŝ1 = (Pβŝ1
, Nβŝ1

, Iβŝ1
) and βŝ2 = (Pβŝ2

, Nβŝ2
, Iβŝ2

) be fractional orthotriple
fuzzy numbers (FOFNs) and ϵ ∈ (0, 1). Then, the following holds:

(1) ϵβŝ1 ⊕ ϵβŝ2 = ϵβŝ2 ⊕ ϵβŝ1

(2) ϵβŝ1 ⊗ ϵβŝ2 = ϵβŝ2 ⊗ ϵβŝ1

Proof. The proof of Theorem 2 is straightforward from Definition 3.

Theorem 3. Let βŝ1 = (Pβŝ1
, Nβŝ1

, Iβŝ1
) for (p = 1, 2, 3) be three fractional orthotriple fuzzy

numbers (FOFNs) and ϵ ∈ (0, 1). Then, the following holds:
(1). (ϵβŝ1 ⊕ ϵβŝ2 )⊕ ϵβŝ3 = ϵβŝ1 ⊕ (ϵβŝ2 ⊕ ϵβŝ3 )

(2). (ϵβŝ1 ⊗ ϵβŝ2 )⊗ ϵβŝ3 = ϵβŝ1 ⊗ (ϵβŝ2 ⊗ ϵβŝ3 )

Proof. The proof of Theorem 3 is straightforward from Definition 3.

Theorem 4. Let βŝ1 = (Pβŝ1
, Nβŝ1

, Iβŝ1
) and βŝ2 = (Pβŝ2

, Nβŝ2
, Iβŝ2

) be fractional orthotriple
fuzzy numbers (FOFNs); K, K1, K2 > 0, be three real numbers; and ϵ, ϵ1, ϵ2 ∈ (0, 1). Then,
the following holds:

(1). K(ϵβŝ1 ⊕ ϵβŝ2 ) = K(ϵβŝ1 )⊕ K(ϵβŝ2 );
(2). (ϵβŝ1 ⊗ ϵβŝ2 )K = (ϵβŝ1 )K ⊗ (ϵβŝ2 )K;
(3). K1ϵβŝ1 ⊕ K2ϵβŝ2 = (K1 + K2)ϵ

βŝ1 ;
(4). (ϵβŝ1 )K1 ⊗ (ϵβŝ2 )K2 = (ϵβŝ1 )K1+K2 ;
(5). (ϵ1)

βŝ1 ⊗ (ϵ2)
βŝ2 = (ϵ1ϵ2)

βŝ1 .

Proof. For two fractional orthotriple fuzzy numbers βŝ1 and βŝ2 , by Definition 3, we obtain

ϵβŝ1 =

(ϵ
ğ
√

1−Pğ
βŝ1 ,

ğ
√

1 − ϵ
ğNβŝ1 ,

ğ
√

1 − ϵ
ğIβŝ1 )

, (7)

ϵβŝ2 =

(ϵ
ğ
√

1−Pğ
βŝ2 ,

ğ
√

1 − ϵ
ğNβŝ2 ,

ğ
√

1 − ϵ
ğIβŝ2 )

 (8)

and so by employing the EO principles specified in the Definition 4, we obtain

ϵβŝ1 ⊕ ϵβŝ2 =



〈
ğ

√√√√√1 −

1 − ϵ
ğ
√

1−Pğ
βŝ1

1 − ϵ
ğ
√

1−Pğ
βŝ2

,

ğ

√(
1 − ϵ

ğNβŝ1

)(
1 − ϵ

ğNβŝ2

)
,

ğ

√√√√√√√√√√√

1 − ϵ
ğ
√

1−Pğ
βŝ1

1 − ϵ
ğ
√

1−Pğ
βŝ2


−

ϵ
ğIβŝ1 − ϵ

ğ
√

1−Pğ
βŝ1

ϵ
ğIβŝ2 − ϵ

ğ
√

1−Pğ
βŝ2



〉



(9)

ϵβŝ1 ⊗ ϵβŝ2 =


〈

ϵ
ğ
√

1−Pğ
βŝ1

+ ğ
√

1−Pğ
βŝ2 ,

ğ
√

1 − ϵ
ğNβŝ1 ϵ

ğNβŝ2 ,
ğ
√

ϵ
ğNβŝ1 ϵ

ğNβŝ2 − (1 − ϵ
ğNβŝ1 − ϵ

ğNβŝ1 )(1 − ϵ
ğNβŝ2 − ϵ

ğNβŝ2 )

〉. (10)
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(1) For a real number K > 0, we have

K(ϵβŝ1 ⊕ ϵβŝ2 ) =



ğ

√
1 − (1 − ϵ

ğ
√

1−Pğ
βŝ1 )K(1 − ϵ

ğ
√

1−Pğ
βŝ2 )K,

ğ
√
(1 − ϵ

ğNβŝ1 )K(1 − ϵ
ğNβŝ2 )K,

ğ

√√√√√√ (1 − ϵ
ğ
√

1−Pğ
βŝ1 )K(1 − ϵ

ğ
√

1−Pğ
βŝ2 )K−

(ϵ
ğIβŝ1 − ϵ

ğ
√

1−Pğ
βŝ1 )K(ϵ

ğIβŝ2 − ϵ
ğ
√

1−Pğ
βŝ2 )K



=




ğ

√
1 − (1 − ϵ

ğ
√

1−Pğ
βŝ1 )K,

ğ
√
(1 − ϵ

ğNβŝ1 )K,
ğ

√
(1 − ϵ

ğ
√

1−Pğ
βŝ1 )K − (ϵ

ğIβŝ1 − ϵ
ğ
√

1−Pğ
βŝ1 )


⊕


ğ

√
1 − (1 − ϵ

ğ
√

1−Pğ
βŝ2 )K,

ğ
√
(1 − ϵ

ğNβŝ2 )K,
ğ

√
(1 − ϵ

ğ
√

1−Pğ
βŝ2 )K − (ϵ

ğIβŝ2 − ϵ
ğ ğ
√

1−Pğ
βŝ2 )




= K(ϵβŝ1 )⊕ K(ϵβŝ2 )

(2) For two fractional orthotriple fuzzy numbers βŝ1 and βŝ2 , and a real number K > 0,
we have

(ϵβŝ1 ⊗ ϵβŝ2 )K


ϵ

ğ
√

1−Pğ
βŝ1

Kϵ
ğ
√

1−Pğ
βŝ2

K

,
ğ
√

1 − (ϵ
ğNβŝ1 )K(ϵ

ğNβŝ2 )K

,

(
ğ
√
(ϵ

ğNβŝ1 )K(ϵ
ğNβŝ2 )K − (1 − ϵ

ğNβŝ1 − ϵ
ğNβŝ1 )K(1 − ϵ

ğNβŝ2 − ϵ
ğNβŝ2 )K

)


;

ϵ > 0

(ϵβŝ1 ⊗ ϵβŝ2 )K =




ϵ

ğ
√

1−Pğ
βŝ1

K

,
ğ
√
(1 − ϵ

ğNβŝ1 )K,

ğ
√
(ϵ

ğNβŝ1 )K − (1 − ϵ
ğNβŝ1 − ϵ

ğNβŝ1 )K



⊗


ϵ

ğ
√

1−Pğ
βs2

K

,
ğ
√
(1 − ϵ

ğNβŝ2 )K,

ğ
√
(ϵ

ğNβŝ2 )K − (1 − ϵ
ğNβŝ2 − ϵ

ğNβŝ2 )K




= (ϵβŝ1 )K ⊗ (ϵβŝ2 )K
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(3) For a fractional orthotriple fuzzy number βŝ1 = (Pβŝ1
, Nβŝ1

, Iβŝ1
), and a real number

K1, K2 > 0,

K1ϵβŝ1 ⊕ K2ϵβŝ2 =




ğ

√
1 − (1 − ϵ

ğ
√

1−Pğ
βŝ1 )K1 ,

ğ
√
(1 − ϵ

ğNβŝ1 )K1 ,
ğ

√
(1 − ϵ

ğ
√

1−Pğ
βŝ1 )K1 − (ϵ

ğIβŝ1 − ϵ
ğ
√

1−Pğ
βŝ1 )K1)


⊕


ğ

√
1 − (1 − ϵ

ğ
√

1−Pğ
βŝ2 )K2 ,

ğ
√
(1 − ϵ

ğNβŝ2 )K2 ,
ğ

√
(1 − ϵ

ğ
√

1−Pğ
βŝ2 )K2 − (ϵ

ğIβŝ2 − ϵ
ğ
√

1−Pğ
βŝ2 )K2




=


(

ğ

√
1 − (1 − ϵ

ğ
√

1−Pğ
βŝ1 )K1+K2 ,

ğ
√
(1 − ϵ

ğNβŝ1 )K1+K2 ,
ğ

√
(1 − ϵ

ğ
√

1−Pğ
βŝ1 )K1+K2 − (ϵ

ğIβŝ1 − ϵ
ğ
√

1−Pğ
βŝ1 )K1+K2


= (K1 + K2)ϵ

βŝ1

(4) For a fractional orthotriple fuzzy number βŝ1 = (Pβŝ1
, Nβŝ1

, Iβŝ1
), and a real number

K1, K2 > 0,

(ϵβŝ1 )K1 =


ϵ

ğ
√

1−Pğ
βŝ1

K1

,
ğ
√
(1 − ϵ

ğNβŝ1 )K1 ,

ğ
√
(ϵ

ğIβŝ1 )K1 − (1 − ϵ
ğNβŝ1 − ϵ

ğNβŝ1 )K1

, ∀K1 > 0.

(ϵβŝ2 )K2 =


ϵ

ğ
√

1−Pğ
βs2

K2

,
ğ
√
(1 − ϵ

ğNβŝ2 )K2 ,

ğ
√
(ϵ

ğNβŝ2 )K2 − (1 − ϵ
ğNβŝ2 − ϵ

ğNβŝ2 )K2

, ∀K2 > 0.

(ϵβŝ1 )K1 ⊗ (ϵβŝ2 )K2 =




ϵ

ğ
√

1−Pğ
βŝ1

K1

,
ğ
√
(1 − ϵ

ğNβŝ1 )K1 ,

ğ
√
(ϵ

ğNβŝ1 )K1 − (1 − ϵ
ğNβŝ1 − ϵ

ğNβŝ1 )K1



⊗


ϵ

ğ
√

1−Pğ
βs2

K2

,
ğ
√
(1 − ϵ

ğNβŝ2 )K2 ,

ğ
√
(ϵ

ğNβŝ2 )K2 − (1 − ϵ
ğNβŝ2 − ϵ

ğNβŝ2 )K2





=


ϵ

ğ
√

1−Pğ
βŝ1

K1+K2

,
ğ
√
(1 − ϵ

ğNβŝ1 )K1+K2 ,

ğ
√
(ϵ

ğNβŝ1 )K1+K2 − (1 − ϵ
ğNβŝ1 − ϵ

ğNβŝ1 )K1+K2


= (ϵβŝ1 )K1+K2
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(5). For a fractional orthotriple fuzzy number βŝ1 = (Pβŝ1
, Nβŝ1

, Iβŝ1
), and a real number

ϵ1, ϵ2 > 0,

(ϵ1)
βŝ1 ⊗ (ϵ2)

βŝ2 =


((ϵ1)

ğ
√

1−Pğ
βŝ1 ,

ğ

√
1 − ϵ

N ğ
βŝ1

1 ,
ğ

√
1 − ϵ

I ğ
βŝ1

1 )

⊗((ϵ2)
ğ
√

1−Pğ
βŝ1 ,

ğ

√
1 − ϵ

N ğ
βŝ1

2 ,
ğ

√
1 − ϵ

I ğ
βŝ1

2 )


=


(ϵ1ϵ2)

ğ
√

1−Pğ
βŝ1 ,

ğ

√
1 − (ϵ

N ğ
βŝ1

1 )(ϵ
N ğ

βŝ1
2 ),

ğ

√
ϵ

ğNβŝ1
1 ϵ

ğNβŝ1
2 − (1 − ϵ

ğNβŝ1
1 − ϵ

ğIβŝ1
1 )(1 − ϵ

ğNβŝ1
2 − ϵ

ğIβŝ1
2 )


= (ϵ1ϵ2)

βŝ1

Theorem 5. Let βŝ = (Pβŝ , Nβŝ , Iβŝ) be a fractional orthotriple fuzzy number and ϵ1, ϵ2 > 0.
When ϵ1 ≥ ϵ2, we can obtain (ϵ1)

βŝ ≥ (ϵ2)
βŝ for ϵ1, ϵ2 ∈ (0, 1) and (ϵ1)

βŝ ≤ (ϵ2)
βŝ for

ϵ1, ϵ2 ≥ 1.

Proof. If ϵ1 ≥ ϵ2 and ϵ1, ϵ2 ∈ (0, 1), then, using FOFN’s EO rules, we obtain

(ϵ1)
βŝ = {((ϵ1)

ğ
√

1−(Pğ
βŝ
)
,

ğ

√
1 − ϵ

N ğ
βŝ

1 ,
ğ

√
1 − ϵ

I ğ
βŝ

1 )} (11)

(ϵ2)
βŝ = {((ϵ2)

ğ
√

1−(Pğ
βŝ
)
,

ğ

√
1 − ϵ

N ğ
βŝ

2 ,
ğ

√
1 − ϵ

I ğ
βŝ

2 )} (12)

The score values of (ϵ1)
βŝ and (ϵ2)

βŝ are indicated as follows: ŝ((ϵ1)
βŝ) and ŝ((ϵ2)

βŝ)
are defined by

ŝ((ϵ1)
βŝ) =

(ϵ1)
ğ
√

1−(Pğ
βŝ
)
−

ğ

√
1 − ϵ

I ğ
βŝ

1

ğ

−

 ğ

√
1 − ϵ

N ğ
βŝ

1 −
ğ

√
1 − ϵ

I ğ
βŝ

1

ğ

ŝ((ϵ2)
βŝ) =

(ϵ2)
ğ
√

1−(Pğ
βŝ
)
−

ğ

√
1 − ϵ

I ğ
βŝ

2

ğ

−

 ğ

√
1 − ϵ

N ğ
βŝ

2 −
ğ

√
1 − ϵ

I ğ
βŝ

2

ğ

The values of membership βŝ ∈ [0, 1], which indicates that the values of membership
grades Pβŝ , the nonmembership grades Nβŝ , and the hesistancy grades Iβŝ lie in [0, 1].

Since ϵ1 ≥ ϵ2, (ϵ1)
ğ
√

1−(Pğ
βŝ
)
≥ (ϵ2)

ğ
√

1−(Pğ
βŝ
)
, 1 − ϵ

N ğ
βŝ

1 ≤ 1 − ϵ
N ğ

βŝ
2 , and 1 − ϵ

I ğ
βŝ

1 ≤

1 − ϵ
I ğ
βŝ

2 , then ŝ((ϵ1)
βŝ) ≥ ŝ((ϵ2)

βŝ). The following two scenarios arise:
(1) If ŝ((ϵ1)

βŝ) > ŝ((ϵ2)
βŝ), then (ϵ1)

βŝ > (ϵ2)
βŝ .

(2) If ŝ((ϵ1)
βŝ) = ŝ((ϵ2)

βŝ), then (ϵ1)
ğ
√

1−(Pğ
βŝ
)
= (ϵ2)

ğ
√

1−(Pğ
βŝ
)
, 1 − ϵ

N ğ
βŝ

1 = 1 − ϵ
N ğ

βŝ
2 and

1 − ϵ
I ğ
βŝ

1 = 1 − ϵ
I ğ
βŝ

2 , which implies that H((ϵ1)
βŝ) = H((ϵ2)

βŝ) and, hence, (ϵ1)
βŝ = (ϵ2)

βŝ .
Thus, by combining these two cases, we obtain (ϵ1)

βŝ ≥ (ϵ2)
βŝ . Suppose that ϵ1, ϵ2 ≥ 1

and ϵ1 ≥ ϵ2, then we obtain 0 ≤ 1
ϵ1

≤ 1
ϵ2

≤ 1. Similarly, we can obtain (ϵ1)
βŝ ≤ (ϵ2)

βŝ .
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Exponential Aggregation Operator for FOFNs

Definition 8. Let βŝ1 = (Pβŝ1
, Nβŝ1

, Iβŝ1
) be a collection of fractional orthotriple fuzzy number

and ϵp, (p = 1, 2, ..., n) be a grouping of actual values; then, FOFWEA : ŝn → ŝ, is known as the
fractional orthotriple fuzzy weighted exponential averaging operator, mentioned below:

FOFWEA(ϵ
βŝ1
p , ϵ

βŝ2
p , ..., ϵ

βŝn
p ) = ϵ

βŝ1
p ⊗ ϵ

βŝ2
p ⊗ ...ϵβŝn

p (13)

where ŝ is the grouping of FOFNs and βŝp are the exponential weights of ϵp(p = 1, 2, ..., n).

Theorem 6. Let βŝp = (Pβŝp
, Nβŝp

, Iβŝp
) be a grouping of FOFNs. The total value obtained by

applying the FOFWEA operator also serves as a type of FOFN in the prolonged range [1, 2], where

FOFWEA(βŝ1 , βŝ2 , ..., βŝn)

=



(Πn
p=1ϵ1

ğ
√

1−(Pğ
βŝ
)
,

ğ

√
1 − Πn

p=1ϵ
ğNβŝp
p ,

ğ

√
Πn

p=1ϵ
ğNβŝp
p − Πn

p=1(1 − ϵ
ğNβŝp
p − ϵ

ğIβŝp
p )); ϵp ∈ (0, 1);

(Πn
p=1(

1
ϵp
)

ğ
√

1−(Pğ
βŝp

)
, ğ

√
1 − Πn

p=1(
1
ϵp
)

ğNβŝp ,

ğ

√
Πn

p=1(
1
ϵp
)

ğNβŝp − Πn
p=1(1 − ( 1

ϵp
)

ğNβŝp − ( 1
ϵp
)

ğIβŝp )); ϵp ≥ 1.


(14)

and βŝp are the exponential weights of ϵp, (p = 1, 2, ..., n).

Proof. We demonstrate the aforementioned AO, FOFWEA(βŝ1 , βŝ1 , ..., βŝ1) based on induc-
tion in mathematics n. Let ϵp ∈ (0, 1). Since βŝp is FOFN for each p, 0 ≤ Pβŝp

, Nβŝp
, Iβŝp

≤ 1

and Pğ
βŝp

+ N ğ
βŝp

+ I ğ
βŝp

≤ 1.

Step 1: When n = 2, we can see that

ϵ
βŝ1
1 = (ϵ1

ğ
√

1−(Pğ
βŝ1

)
,

ğ

√
1 − ϵ

ğNβŝ1
1 ,

ğ

√
1 − ϵ

ğIβŝ1
1 ),

ϵ
βŝ2
2 = (ϵ2

ğ
√

1−(Pğ
βŝ2

)
,

ğ

√
1 − ϵ

ğNβŝ2
2 ,

ğ

√
1 − ϵ

ğIβŝ2
2 ).

are FOFNs. Then,

FOFWEA(βŝ1 , βŝ2) = ϵ
βŝ1
1 ⊗ ϵ

βŝ2
2

=


ϵ1

ğ
√

1−(Pğ
βŝ1

)
ϵ2

ğ
√

1−(Pğ
βŝ2

)
,

ğ

√
1 − ϵ

ğIβs1
1 ϵ

ğIβŝ2
2 ,

ğ

√
ϵ

ğNβŝ1
1 ϵ

ğNβŝ2
2 − (1 − ϵ

ğNβŝ1
1 − ϵ

ğIβŝ1
1 )(1 − ϵ

ğNβŝ2
2 − ϵ

ğIβŝ2
2 ))


=

Π2
p=1ϵ

ğ
√

1−(Pğ
βŝp

)

p ,
ğ

√
1 − Π2

p=1ϵ
ğNβŝp
p ,

ğ

√
Π2

p=1ϵ
ğNβŝp
p − Π2

p=1(1 − ϵ
ğNβŝp
p − ϵ

ğIβŝp
p ))


is also an FOFN in the extended interval [1, 2].

Step 2: Consider that the aggregation operator FOFWEA(βŝ1 , βŝ2 , ..., βŝn) holds for
n = K. Then,
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FOFWEA(βŝ1 , βŝ2 , ..., βŝK )

=

(ΠK
p=1ϵ

ğ
√

1−(Pğ
βŝp

)

p ,
ğ

√
1 − Π2

p=1ϵ
ğNβŝp
p ,

ğ

√
Π2

p=1ϵ
ğNβŝp
p − Π2

p=1(1 − ϵ
ğNβŝp
p − ϵ

ğIβŝp
p )


and the aggregated value is an FOFN.

Step 3: When n = K + 1, we have

FOFWEA(βŝ1 , βŝ2 , ..., βŝK ) = ϵ
βŝ1
1 ⊗ ϵ

βŝ2
2 ⊗ ... ⊗ ϵ

βŝK
K ⊗ ϵ

βŝK+1
K+1

=



 ΠK
p=1ϵ

ğ
√

1−(Pğ
βŝp

)

p ,
ğ

√
1 − ΠK

p=1ϵ
ğNβŝp
p ,

ğ

√
ΠK

p=1ϵ
ğNβŝp
p − ΠK

p=1(1 − ϵ
ğNβŝp
p − ϵ

ğIβŝp
p )


⊗

ϵ

ğ
√

1−(Pğ
βŝK+1

)

K+1 ,
ğ

√
1 − ϵ

ğNβŝK+1
K+1 ,

ğ

√
ϵ

ğNβŝK+1
K+1 − (1 − ϵ

ğNβŝK+1
K+1 − ϵ

ğIβŝK+1
K+1 )




=

ΠK+1
p=1 ϵ

ğ
√

1−(Pğ
βŝp

)

p ,
ğ

√
1 − ΠK+1

p=1 ϵ
ğNβŝp
p ,

ğ

√
ΠK+1

p=1 ϵ
ğNβŝp
p − ΠK+1

p=1 (1 − ϵ
ğNβŝp
p − ϵ

ğIβŝp
p )

,

whose aggregated value is also an FOFN in the extended interval [1, 2]. Therefore,
Definition 13 holds. On the other hand, when ϵp ≥ 1, and 0 ≤ 1

ϵp
≤ 1, we can also obtain

FOFWEA(βŝ1 , βŝ2 , ..., βŝK )

=


Πn

p=1(
1
ϵp
)

ğ
√

1−(Pğ
βŝp

)
, ğ

√
1 − Πn

p=1(
1
ϵp
)

ğNβŝp ,

ğ

√
Πn

p=1(
1
ϵp
)

ğNβŝp − Πn
p=1(1 − ( 1

ϵp
)

ğNβŝp − ( 1
ϵp
)

ğIβŝp


and the aggregated value is an FOFN in the prolonged range [1, 2]. Hence, the proof.

4. Einstein Exponential Operational Laws of FOFSs

This section will discuss the Einstein exponential operational laws of fractions for the
FOFS model, as well as few of its features.

Definition 9. Let ϵĂŝ = (ϵ
ğ
√

1−Pğ
Ăŝ ,

ğ
√

1− ϵ
ğNĂŝ ,

ğ
√

1− ϵ
ğIĂŝ and ϵBŝ = (ϵ

ğ
√

1−Pğ
Bŝ ,

ğ
√

1 − ϵğNBŝ ,
ğ
√

1 − ϵğIBŝ be two families of exponential fractional orthotriple fuzzy numbers, for all ϵ ∈ (0, 1),
where Ăŝ = (PĂŝ

, NĂŝ
, IĂŝ

), Bŝ = (PBŝ , NBŝ , IĂŝ
) are fractional orthotriple fuzzy numbers. Then,

the fundamental Einstein EO principles of fractional orthotriple fuzzy operators are as mentioned,
following:

1. ϵĂŝ ⊕ ϵBŝ =



〈 ϵ

ğ
√

1−Pğ
Ăŝ +ϵ

ğ
√

1−Pğ
Bŝ

1+

ϵ

ğ
√

1−Pğ
Ăŝ

.

ϵ
ğ
√

1−Pğ
Bŝ


,

ğ
√

1−ϵ
ğNĂŝ .

ğ
√

1−ϵ
ğNBŝ

1+

(
1−

ğ
√

1−ϵ
ğNĂŝ

)
.
(

1−
ğ
√

1−ϵ
ğNBŝ

) ,

ğ
√

1−ϵ
ğIĂŝ .

ğ
√

1−ϵ
ğIBŝ

1+

(
1−

ğ
√

1−ϵ
ğIĂŝ

)
.
(

1−
ğ
√

1−ϵ
ğIBŝ

)

〉


;
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2. ϵĂŝ ⊗ ϵBŝ =



〈
ϵ

ğ
√

1−Pğ
Ăŝ

.

ϵ
ğ
√

1−Pğ
Bŝ



1+

ϵ

ğ
√

1−Pğ
Ăŝ

.

ϵ
ğ
√

1−Pğ
Bŝ


,

ğ
√

1−ϵ
ğNĂŝ +

ğ
√

1−ϵ
ğNBŝ

1+

(
1−

ğ
√

1−ϵ
ğNĂŝ

)
.
(

1−
ğ
√

1−ϵ
ğNBŝ

) ,

ğ
√

1−ϵ
ğIĂŝ +

ğ
√

1−ϵ
ğIBŝ

1+

(
1−

ğ
√

1−ϵ
ğIĂŝ

)
.
(

1−
ğ
√

1−ϵ
ğIBŝ

)

〉


;

3. K.ε(ϵĂŝ) =



〈
1+ϵ

ğ
√

1−Pğ
Ăŝ


K

−

1−ϵ

ğ
√

1−Pğ
Ăŝ


K

1+ϵ

ğ
√

1−Pğ
Ăŝ


K

+

1−ϵ

ğ
√

1−Pğ
Ăŝ


K ,

2

[
ğ
√

1−ϵ
ğNĂŝ

]K

[
2−

ğ
√

1−ϵ
ğNĂŝ

]K

+

[
ğ
√

1−ϵ
ğNĂŝ

]K ,

2

[
ğ
√

1−ϵ
ğIĂŝ

]K

[
2−

ğ
√

1−ϵ
ğIĂŝ

]K

+

[
ğ
√

1−ϵ
ğIĂŝ

]K

〉


.

Theorem 7. Let ϵβŝ , ϵβŝ1 , and ϵβŝ2 be three-exponent family fractional orthotriple fuzzy numbers
of βŝ = (Pβŝ , N

βŝ
, I

βŝ
), βŝ1 = (Pβŝ1

, N
βŝ1

, I
βŝ1

) and βŝ2 = (Pβŝ2
, N

βŝ2
, I

βŝ2
); correspondingly,

K1, K2, K3 > 0 be three real numbers, and ϵ ∈ (0, 1). Then, there are a few more:
(1) ϵβŝ1 ⊕ ελβŝ2 = ϵβs2 ⊕ ελβŝ1 ;
(2) K.ε(ϵβŝ1 ⊕ ελβŝ2 ) = K.ε(ϵβŝ1 )⊕ εK.ε(ϵβŝ2 );
(3) K1.ε(ϵβŝ)⊕ εK2.ε(ϵβŝ) = (K1 + K2).ε(ϵβŝ);
(4) (K1.K2).εϵβŝ = K1.ε(K2.εϵβŝ ).

Proof. The proof is comparable to the proof of Theorem 4, and, as a result, is left out.

Einstein Exponential Aggregation Operator for FOFNs

This section introduces fractional orthotriple fuzzy, a novel Einstein exponential
aggregation operator utilizing fractional orthotriple fuzzy information. To aggregate
fractional orthotriple fuzzy information, the Einstein weighted exponential averaging
operator was created.

Definition 10. Let ϵ
βŝp
p , (p = 1, 2, ..., n) be a family of exponential of FOFNs with respect to

βŝp = (Pβp , Nβp , Iβp), where ϵp are real values. Let Kp = (K1, K2, ..., Kn)T be the weighting vector

of ϵ
βŝp (p = 1, 2, ..., n), in such a way that Kp ∈ [0, 1] ∑n

p=1 Kp = 1; then, for an FOFEWEA, the
operation on n is a mapping. FOFEWEA : (ϵβŝ)∗ → ϵβŝ , and

FOFEWEA(ϵ
βŝ1
1 , ϵ

βŝ2
2 , ..., ϵ

βŝn
n ) = K1.εϵ

βŝ1
1 ⊕ εK2.εϵ

βŝ2
2 ⊕ ε... ⊕ εK1.εϵ

βŝn
n (15)

Theorem 8. Let ϵ
βŝp
p , (p = 1, 2, ..., n) be an exponential family of FOFNs with respect to βŝp =

(Pβp , Nβp , Iβp); then, using the aggregated numbers, the FOFEWEA operator is also a type of FOFN
in the extended interval [1, 2], and
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FOFWEA(ϵ
βŝ1
1 , ϵ

βŝ2
2 , ..., ϵ

βŝn
n ) (16)

=



〈Πn
p=1

1+ϵ

ğ
√

1−Pğ
βŝp


Kp

−Πn
p=1

1−ϵ

ğ
√

1−Pğ
βŝp


Kp

Πn
p=1

1+ϵ

ğ
√

1−Pğ
βŝp


Kp

+Πn
p=1

1−ϵ

ğ
√

1−Pğ
βŝp


Kp

2Πn
p=1

 ğ
√

1−ϵ
ğNβŝp
p

Kp

Πn
p=1

2−
ğ
√

1−ϵ
ğNβŝp
p

Kp

+Πn
p=1

 ğ
√

1−ϵ
ğNβŝp
p

Kp

2Πn
p=1

 ğ
√

1−ϵ
ğIβŝp
p

Kp

Πn
p=1

2−
ğ
√

1−ϵ
ğIβŝp
p

Kp

+Πn
p=1

 ğ
√

1−ϵ
ğIβŝp
p

Kp

〉
; ϵp ∈ (0, 1).



.

where Kp = (K1, K2, ..., Kn)T is the weighting vector of βŝp = (Pβp , Nβp , Iβp) in such a way that
Kp ∈ [0, 1], (p = 1, 2, ..., n) and ∑n

p=1 Kp = 1.

Proof. We will use the mathematical induction principle to prove this theorem. It is evident
that Equation (16) is true for n = 1. Now, suppose that Equation (16) is true for n = δ, i.e.,

FOFWEA(ϵ
βŝ1
1 , ϵ

βŝ2
2 , ..., ϵ

βŝδ
δ )

=



〈Πδ
p=1

1+ϵ

ğ
√

1−Pğ
βŝp


Kp

−Πδ
p=1

1−ϵ

ğ
√

1−Pğ
βŝp


Kp

Πδ
p=1

1+ϵ

ğ
√

1−Pğ
βŝp


Kp

+Πδ
p=1

1−ϵ

ğ
√

1−Pğ
βŝp


Kp

2Πδ
p=1

 ğ
√

1−ϵ
ğNβŝp
p

Kp

Πδ
p=1

2−
ğ
√

1−ϵ
ğNβŝp
p

Kp

+Πδ
p=1

 ğ
√

1−ϵ
ğNβŝp
p

Kp

2Πδ
p=1

 ğ
√

1−ϵ
ğIβŝp
p

Kp

Πδ
p=1

2−
ğ
√

1−ϵ
ğIβŝp
p

Kp

+Πδ
p=1

 ğ
√

1−ϵ
ğIβŝp
p

Kp

〉
; ϵp ∈ (0, 1).


Let

t1 = Πδ
p=1

1 + ϵ

ğ
√

1−Pğ
βŝp

p

Kp

, w1 = Πδ
p=1

1 − ϵ

ğ
√

1−Pğ
βŝp

p

Kp

,

q1 = Πδ
p=1

(
ğ

√
1 − ϵ

ğNβŝp
p

)Kp

, r1 = Πδ
p=1

(
ğ

√
1 − ϵ

ğIβŝp
p

)Kp

,

e1 = Πδ
p=1

(
2 −

ğ

√
1 − ϵ

ğNβŝp
p

)Kp

, f1 = Πδ
p=1

(
2 −

ğ

√
1 − ϵ

ğIβŝp
p

)Kp
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FOFWEA(ϵ
βŝ1
1 , ϵ

βŝ2
2 , ..., ϵ

βŝn
n ) =

〈
t1 − w1

t1 + w1
,

2q1

e1 + q1
,

2r1

f1 + r1

〉
Then, if n = δ + 1, we have

FOFWEA(ϵ
βŝ1
1 , ϵ

βŝ2
2 , ..., ϵ

βŝδ+1
δ+1 )

= K1.ε(ϵ
βŝ1
1 )⊕ ε... ⊕ Kδ.ε(ϵ

βŝδ
δ )⊕ εKδ+1.ε(ϵ

βŝδ+1
δ+1 )

= FOFWEA(ϵ
βŝ1
1 , ϵ

βŝ2
2 , ..., ϵ

βŝδ
δ )⊕ εKδ+1.ε(ϵ

βŝδ+1
δ+1 )

Let

t2 =

1 + ϵ

ğ
√

1−Pğ
βŝδ+1

δ+1

Kδ+1

, w2 =

1 − ϵ

ğ
√

1−Pğ
βŝδ+1

δ+1

Kδ+1

,

q2 =

(
ğ

√
1 − ϵ

ğNβŝδ+1
δ+1

)Kδ+1

, r2 =

(
ğ

√
1 − ϵ

ğIβŝδ+1
δ+1

)Kδ+1

e2 =

(
2 −

ğ

√
1 − ϵ

ğNβŝδ+1
δ+1

)Kδ+1

, f2 =

(
2 −

ğ

√
1 − ϵ

ğIβŝδ+1
δ+1

)Kδ+1

Then,

Kδ+1.ε(ϵ
βŝδ+1
δ+1 ) =

〈
t2 − w2

t2 + w2
,

2q2

e2 + c2
,

2r2

f2 + d2

〉
;

As a result of Einstein’s operational law, we have

FOFEWEA(ϵ
βŝ1
1 , ϵ

βŝ2
2 , ..., ϵ

βŝδ+1
δ+1 )

= FOFWEA(ϵ
βŝ1
1 , ϵ

βŝ2
2 , ..., ϵ

βŝδ
δ )⊕ εKδ+1.ε(ϵ

βŝδ+1
δ+1 )

=

〈
t1 − w1

t1 + w1
,

2q1

e1 + q1
,

2r1

f1 + r1

〉
⊕ ε

〈
t2 − w2

t2 + w2
,

2q2

e2 + q2
,

2r2

f2 + r2

〉
=

〈
t1t2 − w1w2

t1t2 + w1w2
,

2q1q2

e1e2 + q1q2
,

2r1r2

f1 f2 + r1r2

〉

FOFWEA(ϵ
βŝ1
1 , ϵ

βŝ2
2 , ..., ϵ

βŝδ+1
δ+1 )

=



Πδ+1
p=1

1+ϵ

ğ
√

1−Pğ
βŝp

p


Kp

−Πδ+1
p=1

1−ϵ

ğ
√

1−Pğ
βŝp

p


Kp

Πδ+1
p=1

1+ϵ

ğ
√

1−Pğ
βŝp

p


Kp

+Πδ+1
p=1

1−ϵ

ğ
√

1−Pğ
βŝp

p


Kp ,

2Πδ
p=1

 ğ
√

1−ϵ
ğNβŝp
p

Kp

Πδ+1
p=1

2−
ğ
√

1−ϵ
ğNβŝp
p

Kp

+Πδ+1
p=1

 ğ
√

1−ϵ
ğNβŝp
p

Kp ,

2Πδ+1
p=1

 ğ
√

1−ϵ
ğIβŝp
p

Kp

Πδ+1
p=1

2−
ğ
√

1−ϵ
ğIβŝp
p

Kp

+Πδ+1
p=1

 ğ
√

1−ϵ
ğIβŝp
p

Kp

; ϵpϵ(0, 1)


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Hence, (16) is true for n = δ + 1. Therefore, (16) is true for all n, and this completes the
theorem’s proof.

Similarly, we can easily obtain the FOFEWEA(ϵ
βŝ1
1 , ϵ

βŝ2
2 , ..., ϵ

βŝδ+1
δ+1 ) operator, the value

of ϵp ≥ 1, and 0 ≤ 1
ϵp

≤ 1. Also, the aggregated figures are FOFN in the extended
interval [1, 2].

5. Decision-Making Algorithm Based on the Proposed Aggregation Operators

This section suggests an MCGDM technique dependent upon operators, which in-
cludes the phases listed below:

Step 1: Consider a decision-making problem with n choices Ăp(p = 1, 2, ..., n) and
m attributes Bp(j = 1, 2, ..., m) whose fractional orthotriple fuzzy weight vector val-
ues are βŝj = (βŝ1 , βŝ2 , ..., βŝm)(j = 1, 2, ..., m) in such a way that βŝj = (Pβŝj

, Nβŝj
, Iβŝj

);

0 ≤ Pβŝj
, Nβŝj

, Iβŝj
≤ 1 and 0 ≤ Pğ

βŝj
+ N ğ

βŝj
+ I ğ

βŝj
≤ 1. The offered choices are then reviewed

by experts based on a set of qualities, and they provide their preferred numbers based on
the fuzzy data signified by ϵij(p = 1, 2, ..., n)(j = 1, 2, ..., m) and 0 ≤ ϵij ≤ 1. In general,
there are two kinds of attributes: the first one being the benefit type (B1) and another cost
type (B2). If the MCGDM characteristics are of a similar kind, the preferred numbers are
not necessary to normalize. If the characteristics are of different types, we use the formula
below to convert the benefit type of preferred numbers to cost type values.

ϵij =

{
ϵij; j ∈ B1
ϵc

ij; j ∈ B2

Step 2: Use the operators of aggregation in such a way that FOFWEA, FOFOWEA,
FOFHWEA, FOFEWEA, FOFEOWEA, and FOFEHWEA will aggregate each different
alternative’s preference ratings into aggregate values αp(p = 1, 2, ..., n).

Step 3: Compute the aggregated score numbers FOFNs αp(p = 1, 2, ..., n).
Step 4: By using exponential aggregation operators, we compute the aggregated values.
Step 5: Ranking the choices depends upon their score numbers.
In Section 6, the aforementioned technique will be explained using a real-world

numerical example.

6. Illustrative Example

In this part, we use the suggested approach to solve a mathematical issue related to
the improvement of an online bank security management system in order to illustrate its
significance and reliability.

Description of the Problem

As the world becomes increasingly automated, Internet-based banking has become a
fundamental component of our everyday life. Yet, the rising popularity of internet-based
banking has culminated in an increase in haphazardness and fraud. There have been
numerous instances of cyberattacks on banking organizations in the past decade, leading
to enormous amounts of money lost and loss of client trust. To solve this problem, five
suggestions Ă1, Ă2, Ă3, Ă4, and Ă5 have been provided by a security firm. A popular
bank in Pakistan intends to pick the best possible option for banking security and has
appointed three safety specialists D1, D2, and D3 that serve as a specialist with weight
vector w = (w1, w2, w3) = (0.35, 0.40, 0.25)T , which demonstrates the experts’ respective
skill. The panel of specialists identified five essential requirements after determining the
security elements and attacks on computers on online banking platforms, Z1, Z2, Z3, Z4,
and Z5, upon which the best suggestion is chosen. The significance of these criteria are
described below:

Z1: Compliance
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The safety system should adhere to the suitable legal requirements and monetary
safety regulations, such as PCI DSS, ISO 27001, and NIST. As a result, conformance is
critical in Internet banking to secure user data, preserve fairness, minimize risk, promote
confidence, and prevent legal problems. Banks may establish a secure and safe atmosphere
for users to conduct banking operations by adhering to legislation and applying efficient
safety precautions.

Z2 : Encryption
Encryption is a crucial safety component of internet banking because it secures confi-

dential client information from illicit access and aids in data breach detection. Encrypting
user data permits banks to enhance trust among customers while additionally minimizing
their accountability in the event of a breach of security.

Z3 : Multifactor Authentication
MFA (Multifactor Authentication) plays a vital role in internet banking security be-

cause it brings another level safety to user accounts. MFA demands that users give at least
two kinds of identification, such as their username and password and a security token,
before they may access their account information. This makes it far more difficult for
cybercriminals to obtain illicit entry to the account, although they have stolen the login
information.

Z4 : Access Control, Incident Response, and Recovery
Banking security rests substantially on controls over access, response to emergencies,

and recovery. By taking these actions, banks may help to secure sensitive money-related
information, limit the impact on safety events, and recover quickly in the event of an
incident of security.

Z5 : Employee Training and Awareness
Bankers and financial organizations should teach their personnel best practices in cy-

bersecurity, such as recognizing and reacting to security hazards. Here are some particular
reasons why awareness and education are vital for banking employees: they minimize
human error, raise awareness, improve reaction times, and foster a secure environment.

Step 1. We obtanied FOF information given in Tables 1–3.

Table 1. Opportunities investing in a wealth management organization R1.

Ă1 Ă2 Ă3 Ă4

Z1 (0.7, 0.6, 0.2) (0.4, 0.8, 0.5) (0.2, 0.9, 0.6) (0.3, 0.7, 0.5)
Z2 (0.1, 0.4, 0.8) (0.5, 0.7, 0.3) (0.5, 0.6, 0.6) (0.3, 0.5, 0.2)
Z3 (0.3, 0.6, 0.3) (0.7, 0.8, 0.1) (0.2, 0.6, 0.8) (0.6, 0.2, 0.7)
Z4 (0.2, 0.7, 0.6) (0.2, 0.6, 0.7) (0.3, 0.7, 0.8) (0.4, 0.3, 0.7)
Z5 (0.3, 0.5, 0.7) (0.2, 0.4, 0.7) (0.6, 0.9, 0.2) (0.5, 0.7, 0.2)

Table 2. Opportunities investing in a wealth management organization R2.

Ă1 Ă2 Ă3 Ă4

Z1 (0.8, 0.6, 0.4) (0.7, 0.6, 0.4) (0.5, 0.2, 0.3) (0.4, 0.3, 0.5)
Z2 (0.3, 0.8, 0.6) (0.5, 0.6, 0.8) (0.4, 0.1, 0.7) (0.6, 0.3, 0.6)
Z3 (0.4, 0.6, 0.7) (0.2, 0.4, 0.4) (0.6, 0.3, 0.6) (0.7, 0.3, 0.1)
Z4 (0.2, 0.6, 0.8) (0.6, 0.7, 0.5) (0.7, 0.3, 0.5) (0.6, 0.3, 0.6)
Z5 (0.4, 0.5, 0.7) (0.4, 0.6, 0.8) (0.5, 0.8, 0.2) (0.4, 0.6, 0.8)

Table 3. Opportunities investing in a wealth management organization R3.

Ă1 Ă2 Ă3 Ă4

Z1 (0.2, 0.7, 0.4) (0.2, 0.4, 0.7) (0.2, 0.6, 0.7) (0.4, 0.5, 0.8)
Z2 (0.7, 0.4, 0.5) (0.8, 0.1, 0.4) (0.3, 0.5, 0.7) (0.3, 0.9, 0.5)
Z3 (0.6, 0.7, 0.3) (0.5, 0.7, 0.2) (0.3, 0.6, 0.3) (0.4, 0.6, 0.2)
Z4 (0.3, 0.6, 0.7) (0.4, 0.6, 0.2) (0.2, 0.3, 0.7) (0.4, 0.2, 0.5)
Z5 (0.4, 0.6, 0.2) (0.5, 0.3, 0.6) (0.3, 0.7, 0.2) (0.5, 0.3, 0.6)
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Step 2. We use FOFWEA on Tables 1–3 to obtain the following results given in Table 4.

Table 4. Aggregated values using FOFWEA operator.

Ă1 Ă2

Z1 (0.8682, 0.7992, 0.9186) (0.8428, 0.7832, 0.8724)
Z2 (0.8404, 0.7832, 0.8808) (0.8624, 0.8269, 0.8196)
Z3 (0.8368, 0.8389, 0.8533) (0.8462, 0.8602, 0.8271)
Z4 (0.8223, 0.8389, 0.8495) (0.8358, 0.8269, 0.8322)
Z5 (0.8284, 0.7832, 0.9183) (0.8308, 0.7236, 0.9313)

Ă3 Ă4

(0.8277, 0.8602, 0.7591) (0.8284, 0.8389, 0.8123)
(0.8318, 0.7992, 0.8368) (0.8348, 0.8269, 0.8358)
(0.8337, 0.7832, 0.8841) (0.8545, 0.7832, 0.9164)
(0.8408, 0.7655, 0.9028) (0.8389, 0.7236, 0.9239)
(0.8402, 0.8862, 0.7920) (0.8372, 0.8501, 0.8425)

Step 3. By using exponential aggregation operators, we computed the aggregated
values, which are given in Tables 5–7.

Table 5. Aggregated value using FOFWEA operator.

Z1 (0.5937, 0.9503, 0.4739)
Z2 (0.5944, 0.9399, 0.4608)
Z3 (0.5965, 0.9419, 0.4716)
Z4 (0.5899, 0.9388, 0.4977)
Z5 (0.5895, 0.9349, 0.4812)

Table 6. Aggregated value using FOFOWEA operator.

Z1 (0.6035, 0.9521, 0.5128)
Z2 (0.5931, 0.9412, 0.5227)
Z3 (0.5929, 0.9413, 0.5224)
Z4 (0.5912, 0.9369, 0.5341)
Z5 (0.5871, 0.9402, 0.5254)

Table 7. Aggregated value using FOFHWEA operator.

Z1 (0.2563, 0.9702, 0.4921)
Z2 (0.2039, 0.9484, 0.4826)
Z3 (0.2004, 0.9507, 0.4887)
Z4 (0.1754, 0.9476, 0.5121)
Z5 (0.1761, 0.9431, 0.4964)

Step 4. By using Einstein exponentonal aggregation operators, we computed the
aggregated values, which are given in Tables 8–10.

Table 8. Aggregated value using FOFEWEA operator.

Z1 (0.8632, 0.6794, 0.5228)
Z2 (0.8644, 0.6779, 0.4904)
Z3 (0.8639, 0.6787, 0.5095)
Z4 (0.8623, 0.6716, 0.5429)
Z5 (0.8620, 0.6760, 0.5135)
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Table 9. Aggregated value using FOFEOWEA operator.

Z1 (0.8651, 0.6829, 0.6842)
Z2 (0.8627, 0.6772, 0.6881)
Z3 (0.8632, 0.6776, 0.6892)
Z4 (0.8624, 0.6702, 0.6902)
Z5 (0.8611, 0.6754, 0.6869)

Table 10. Aggregated value using FOFEHWEA operator.

Z1 (0.8566, 0.6658, 0.4719)
Z2 (0.8561, 0.6655, 0.4347)
Z3 (0.8559, 0.6664, 0.4421)
Z4 (0.8543, 0.6572, 0.4799)
Z5 (0.8541, 0.6594, 0.4583)

Step 5. The score value and ranking of the alternatives of all operators is given in
Table 11.

Table 11. Score value and ranking using defined aggregation operators.

Operator ŝ(Z1) ŝ(Z2) ŝ(Z3) ŝ(Z4) ŝ(Z5) Ranking

FOFWEA −0.212 −0.211 −0.205 −0.186 −0.194 Z4 > Z5 > Z3 > Z1 > Z2
FOFOWEA −0.184 −0.170 −0.170 −0.158 −0.168 Z4 > Z5 > Z2 > Z3 > Z1
FOFHWEA −0.172 −0.139 −0.130 −0.076 −0.096 Z4 > Z5 > Z3 > Z2 > Z1
FOFEWEA 0.091 0.104 0.096 0.085 0.095 Z4 > Z1 > Z5 > Z3 > Z2

FOFEOWEA 0.032 0.030 0.030 0.029 0.030 Z4 > Z3 > Z5 > Z2 > Z1
FOFEHWEA 0.110 0.124 0.120 0.108 0.116 Z4 > Z1 > Z5 > Z3 > Z2

7. Comparison Analysis

In this section, we build the framework for a collaborative examination of the previ-
ously given material by employing a few well-known methodologies. The key points of
the discussion are outlined below.

Here, we compare our work with the following concepts: Einstein exponential op-
eration laws of spherical fuzzy sets and aggregation operators in decision making [44];
fractional orthotriple fuzzy rough Hamacher aggregation operators and their applica-
tion on service quality of wireless network selection [43]; fractional orthotriple fuzzy
Choquet–Frank aggregation operators and their application in optimal selection for EEG of
depression patients [45]. The final results are presented in Table 12 for this discussion.

Table 12. Different aggregation operators and score values and ranking.

Operator ŝ(Z1) ŝ(Z2) ŝ(Z3) ŝ(Z4) ŝ(Z5) Ranking

SFWEA [44] −0.184 −0.170 −0.170 −0.158 −0.168 Z4 > Z5 > Z2 > Z3 > Z1
SFEWEA [44] −0.184 −0.170 −0.170 −0.158 −0.168 Z4 > Z5 > Z2 > Z3 > Z1

FOFRHWA [43] 0.287 0.319 0.318 0.237 0.266 Z4 > Z5 > Z1 > Z3 > Z2
FOFRHWG [43] 0.091 0.104 0.096 0.085 0.095 Z4 > Z1 > Z5 > Z3 > Z2
FOFCFWA [45] 0.032 0.030 0.030 0.029 0.030 Z4 > Z1 > Z5 > Z3 > Z2
FOFCFWA [45] 0.110 0.124 0.120 0.108 0.116 Z4 > Z3 > Z5 > Z2 > Z1

Sensitivity Analysis

The suggested approach yielded the subsequent results of fractional orthotriple fuzzy
operators of aggregation and the present famous fuzzy MCGDM framework that are
presented in Table 11, and we find that the alternative Z4 is suggested as the ideal solution.

From Table 11, we are able to observe that the order of rank determined by the
FOFWEA operator differs significantly from the other approaches because of its specific
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characteristics. The FOFEWEA operator works with fractional fuzzy numbers additional
to the assigned values. Therefore, when employing the FOFEWEA operator, the score
numbers are positive; however, regardless of the weighing factors of the characteristics,
the FOFEWEA operatortion generates negative grades. This examination considers the
techniques’ and suggested operators’ reliability.

8. Conclusions

Fractional orthotriple sets are more strong tools than picture fuzzy sets and spherical
fuzzy sets, and they provide extra options to decision-makers for several real-life problems.
Also, aggregation operators want to reduce the set of finite values into one value, so they
were motivated by the generality of fractional orthotriple fuzzy set and basic characteristics
of aggregation operators during this article. In this paper, the exponential and Einstein
exponential operational laws for the FOFS are defined, and their distinctive characteristics
are thoroughly studied. The main finding in the exponential operational laws of FOFSs
is that by implementing our fractional orthotriple fuzzy figures with the situation 0 ≤
Pğ

Ăŝ
(ŕ) + N ğ

Ăŝ
(ŕ) + I ğ

Ăŝ
(ŕ) ≤ 1, then the exponential operation on fractional orthotriple

fuzzy numbers provides values in the prolonged range [1, 2] with the constraint that

1 ≤ (ϵ
ğ
√

1−
Pğ

Ăŝ )ğ + (
ğ
√

1 − ϵ
ğNĂŝ )ğ + (

ğ
√

1 − ϵ
ğIĂŝ )ğ ≤ 2.

Also, new AOs such as the FOFWEA, FOFOWEA, FOFHWEA, FOFEWEA, FOFE-
OWEA, and FOFEHWEA were presented in a fractional orthotriple fuzzy environment and
their features were investigated. Eventually, the suitability and the value of the suggested
AOs were shown by applying a real-world example.

Further, some new aggregation operators, such as Einstein geometric aggregation op-
erator, Bonferroni mean aggregation operator, and Yager ordered weighted average (OWA)
aggregation operators, will be established in the future for the FOFS models, applying the
exponential operational principles and Einstein exponential operational principles.
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