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Abstract: In typical business situations, sellers usually offer discount schemes to buyers to increase
overall profitability. This study aims to design a supply chain network under uncertainty of demand
by integrating an all-unit quantity discount policy. The objective is to maximize the profit of the entire
supply chain. The proposed model is formulated as a mixed integer nonlinear programming model,
which is subsequently linearized into a mixed integer linear programming model and hence able to
obtain a global solution. Numerical examples in the manufacturing supply chain where customer
demand follows normal distributions are used to assess the effect of quantity discount policies. Key
findings demonstrate that the integration of quantity discount policies significantly reduces total
supply chain costs and improves inventory management under demand uncertainty, and decision
makers need to decide a balance level between service levels and profits.
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1. Introduction

Supply chain management (SCM) is essential for modern business success and compet-
itiveness. Effective SCM leads to significant cost savings through optimized procurement,
production, inventory management, and logistics. Optimal sourcing strategies and co-
ordination with all levels of the supply chain can reduce material and product costs.
Additionally, contemporary markets are characterized by ubiquitous volatilities and perpet-
ual shifts in supply and demand, resulting in uncertainty in supply chain (SC) operations.
Failure to integrate significant demand fluctuations into SC design can result in unmet
customer demand, leading to loss of market share and increase in stock-out cost or incur-
ring excessive inventory holding costs [1]. This negatively affects the operation of the SC
business, profits, and customer service level [2,3].

Due to the important role of uncertainty, uncertainty has become a hot topic in the
supply chain that many studies focus on. Peidro et al. [3] reviewed quantitative models
for supply chain planning under uncertainty. The study classified sources of uncertainty
into demand group, manufacturing group, and supply group. Simangunsong et al. [4]
reviewed and further revised sources of uncertainty. The study identified 14 sources of
uncertainty in the supply chain. In recent years, many studies [5–10] continued to cover
new articles and trends related to uncertainty in the supply chain. Without considering
uncertainty, it can harm and disrupt the supply chain.

A complex SC that includes many stakeholders can also lead to uncertainty [4]. To
mitigate the uncertainty from SC networks, many studies investigate on the design of the
SC network. Ates and Luzzini [11] provided a comprehensive framework of the complexity
of the supply network, including its definition, effects, antecedents, and categorization.
Govindan et al. [12] reviewed studies on supply chain networks under uncertainty and
categorized uncertain environments and sources of uncertainty. Chen et al. [10] focused on

Mathematics 2024, 12, 3228. https://doi.org/10.3390/math12203228 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12203228
https://doi.org/10.3390/math12203228
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0009-0006-2850-9003
https://doi.org/10.3390/math12203228
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12203228?type=check_update&version=1


Mathematics 2024, 12, 3228 2 of 16

a comprehensive literature on uncertainty analysis and optimization modeling in supply
chain management. To mitigate uncertainty, this study investigates the problem of SC
network design.

Among the uncertainty parameters in the SC network, the most popular uncertainty pa-
rameter in the supply chain network is the demand parameter [12]. Additionally, customer
demand plays a central role in planning and using company resources. If demand uncer-
tainty is not investigated and handled properly, it can cause SC disruption and unfulfillment
of customers. Due to the inherent variability in the demand of customers, the demand can
be in three environments in which decision makers know or do not know the probability
distributions of the demand or have ambiguity and vagueness about the demand. Many
studies [13–17] considered that demand will follow some probability distributions.

Stochastic programming is used with scenario modeling to expand on the multi-
period, multi-product, and multi-level model, integrating delivery dates, supplier prices,
and demand uncertainties [18]. A mixed integer linear programming model (MILP) is
constructed, considering multiple sites, multiple products, and multiple periods under
uncertainty of demand uncertainty addressed by the safety stock for mid-term SC produc-
tion planning [19]. Agrawal et al. [20] devised a stochastic linear optimization model that
determines manufacturing orders to maximize retailer profits using demand forecasts as
parameters. By integrating batch production and capacity expansion, a linearized mathe-
matical model is developed to plan product production, inventory, and transportation in
an SC network [21].

Two popular stochastic methodologies are often used to represent demand uncer-
tainty: the scenario-based approach and the distribution-based approach [22]. The former
approach requires forecasting potential outcomes of the uncertain parameter, potentially
leading to complexity when the scenarios are numerous or unanticipated. Robust program-
ming is used to handle worst-case scenarios [23–25]. The latter approach assumes that the
uncertain parameter follows some probability distributions. The demand is often modeled
by a normal distribution with a given mean and standard deviation [12]. Therefore, this
study adopts the normal distribution to deal with uncertainty of demand.

The ubiquity of the application of quantity discounts in practice results in a substantial
number of related literature, from exhaustive reviews [26] to an extensive survey of various
issues from a marketing research angle [27]. One way to address this challenge is to imple-
ment quantity discount policies. Dolan [27] nominated two types of nonlinear schedules,
including (i) a two-block tariff or an incremental quantity discount (i.e., a per unit price
p1 is charged for any units up to a specified quantity x; if the purchased amount exceeds
x, then the per unit price changes to p2, which is lower than p1, applied for surpassed
units), and (ii) an all-unit quantity discount (i.e., if the purchased quantity exceeds quantity
threshold, the price applies to all units, not just those incremental to the breakpoint).

A more comprehensive incremental and all-unit discount scheme is presented that
incorporates multiple breakpoints, generally called quantity thresholds [28]. Heydari
and Momeni [29] analyzed the benefits and challenges of a coalition of retailers when
an all-unit quantity discount is applied. Wangsa et al. [30] also considered this discount
scheme in an integrated inventory model to achieve a minimal integrated total cost. Pric-
ing remains a sensitive issue in supplier–buyer relationships, often involving a trade-off
relationship [31]. Tsai [32] expanded the application of various quantity discount schemes
in an SC with multiple echelon and multiple periods and adopted a stepwise function to
obtain a global optimum. Altintas et al. [33] examined how the all-unit quantity discount
with a single break is considered under demand uncertainty, taking both the supplier’s and
the buyer’s perspectives. This study adopts quantity discount policies to investigate the
effect of pricing.

Effective SCM is crucial not only for cost reduction, but also for maintaining high
service levels, ensuring demand fulfillment, and ensuring appropriate stock levels under
demand uncertainty. Some studies [23–25] used robust optimization with quantity discount
to find the optimal solution to the worst-case scenario. The method requires the forecasting
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methods to predict the range of uncertain parameters. However, many events follow
normal distributions such as people’s height, bread weights, and cow milk production [34]
and do not require forecasting methods. Those events can be closely related to customer
demand; that is, height is closely related to the size of clothes. Instead of using robust
optimization, this study adopts the model of Lin et al. [21] to optimize the supply chain
network under assumption that demands follow normal distributions.

The central problem is to optimize the total profit of the supply chain while finding
the optimal balance between maintaining suitable service levels, capitalizing on cost advan-
tages by determining material and product quantities, and considering quantity discounts
in vendor–manufacturer relationships. This research proposes a comprehensive model
when it comes to discount policies between vendors and manufacturers, as well as opti-
mizing safety stocks to mitigate uncertainty. Since mixed integer nonlinear programming
(MINLP) is challenging to solve optimally with a commercial optimization solver and the
original model is MINLP [35], the model is then reconstructed as a mixed integer linear
programming (MILP) model employing a linearization technique. The globally optimal
solution of this study on SC design can help businesses maintain the equilibrium between
cost savings and fulfillment of customer needs. The primary contributions of this research
are considered as follows.

- Proposing a comprehensive SC network model considering discount policies under
demand uncertainty;

- Applying the linearization technique to reconstruct the original model to an MILP
formulation to solve and provide optimal global solutions.

2. Model and Methods
2.1. Modeling the Problem

This study develops a model that considers discount policies under demand uncer-
tainty. The model uses a multi-echelon multi-product multi-period SC network system.
The SC network (illustrated in Figure 1) consists of 4 echelons, which are V vendors,
P producers, D distributors, and C clients. This paper inherits the model of Lin et al. [21].
However, we have excluded batch production and capacity expansion to simplify the
model and focus on the core aspects. The extension of this model is the integration of an
all-unit discount policy.
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Figure 1. The supply chain network considered in this study.

The model aims to maximize the total profit of the supply chain over the planning
timeframe. The objective includes the costs of vendors, producers, and distributors and
the income generated from selling products. Producers purchase raw materials m(i) from
vendors under their offered discount pricing schemes. The finished product f (n) is then
delivered to distributors and sold to customers. This model assumes that inventory is
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stored only in the warehouses of producers and distributors. The assumptions related to
demand are that each product follows a normal distribution as predicted and independent
of each other, with the standard deviation and mean of the product f (n) being known.

2.2. Mathematical Model

The nomenclature utilized in this model refers to Lin et al. [21]. This study models
a multi-echelon, multi-product, and multi-period supply chain system under demand
uncertainty. Demand uncertainty is represented by a normal distribution for each product,
with known mean and standard deviation values. The supply chain operates under an
all-unit quantity discount policy, wherein the price per unit decreases once an order exceeds
a predefined quantity threshold. This integration of demand uncertainty and quantity
discount policies aims to optimize both cost efficiency and service levels across the entire
supply chain. The following subsections present the original model with batch production
excluded and its extension.

First, there is a list of indices that serve to uniquely identify and differentiate between
the various parameters and variables of the model.
Indices

v Vendors that supply raw materials to producers, v = 1, 2, . . . , V;
p Producers producing finished products delivered to distributors, p = 1, 2, . . . , P;
d Distributors selling finished products to clients, d = 1, 2, . . . , D;
c Clients, c = 1, 2, . . . , C;

m(i) Raw materials, indicated by types i = 1, 2, . . . , I;
f (n) Finished products, indicated by types n = 1, 2, . . . , N;
t Examined phase, t = 1, 2, . . . , T.

Secondly, all parameters are listed as follows.
Parameters

TCm(i)
tvp Transportation cost (per unit) for vendor v to ship raw materials m(i) to producer p in

phase t;
TC f (n)

tpd Transportation cost (per unit) for producer p to ship product f (n) to distributor d in
phase t;

TC f (n)
tdc Transportation cost (per unit) for distributor d to ship product f (n) to clients c in the

phase t;
MCm(i)

tv Unit price of raw materials m(i) offered by vendor v in the phase t;
C f (n)

tp Production cost (per unit) of product f (n) for producer p in phase t;

ICm(i)
tp Inventory storing cost (per unit) of raw materials m(i) for producer p in phase t;

IC f (n)
tp Inventory storing cost (per unit) of product f (n) for producer p in phase t;

IC f (n)
td Inventory storing cost (per unit) of product f (n) for distributor d in phase t;

SCm(i)
tp Stock-out cost (per unit) of raw materials m(i) sent to producer p in phase t;

SC f (n)
td Stock-out cost (per unit) of product f (n) sent to distributor d in phase t;

SC f (n)
tc Stock-out cost (per unit) of product f (n) sent to client c in phase t;

CQm(i)
f (n) Amount of raw materials m(i) needed to make one unit of product f (n);

GP f (n)
tc Charge amount of client c when buying product f (n) in phase t;

Tvp Delivery time from vendor v to producer p;
Tpd Delivery time from producer p to distributor d;
Tdc Delivery time from distributor d to client c;
TPp Time taken for producer p to manufacture product f (n);
LTp Lead time at producer p, starting from the time raw materials being ordered to the time

producer p receiving them;
LTd Lead time at distributor d, starting from the time finished products being ordered to the

time distributor d receiving them;
LTc Lead time at client c, starting from the time finished products being ordered to the time

client c receiving them;

D f (n)
tc Amount of product f (n) needed by client c in phase t.
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Finally, the decision variables that need to be determined are listed below.
Decision variables

Rm(i)
tvp Quantity of raw materials m(i) sent from vendor v to producer p in phase t;

R f (n)
tpd Quantity of product f (n) sent from producer p to distributor d in phase t;

R f (n)
tdc Quantity of product f (n) sent from distributor d to client c in phase t;

Om(i)
tvp Quantity of raw materials m(i) that producer p places an order from vendor v in phase t;

O f (n)
tpd Quantity of product f (n) that distributor d places an order from producer p in phase t;

O f (n)
tdc Quantity of product f (n) that client c places and order from distributor d in phase t;

Im(i)
tp Raw materials m(i) inventory stored in producer p in phase t;

I f (n)
tp Product f (n) inventory stored in producer p in phase t;

I f (n)
td Product f (n) inventory stored in distributor d in phase t;

DQ f (n)
td Total quantity of product f (n) available for distributor d in phase t;

SS f (n)
td Product f (n) that distributor d holds as safety stock in phase t;

Q f (n)
tp Quantity of product f (n) that producer p plans to produce in phase t;

AQ f (n)
tp Actual quantity of product f (n) that producer p produces in phase t;

SQm(i)
tvp Quantity of raw materials m(i) out of stock from vendor v at producer p in phase t;

SQm(i)
tp Quantity of raw materials m(i) out of stock at producer p in phase t;

SQ f (n)
td Quantity of product f (n) out of stock at distributor d in phase t;

SQ f (n)
tc Quantity of product f (n) out of stock at client c in phase t;

Cost Total cost of vendors, producers, distributors, and clients.
As the objective is to maximize the total profit of the SC over the planning timeframe,

the objective function can be written as follows.

Maximize ∑T
t=1 ∑C

c=1 ∑N
n=1 GP f (n)

tc

(
∑D

d=1 R f (n)
tdc

)
− Cost (1)

The objective function contains two parts: (i) the total income of the SC generated
from sales of finished products, which is calculated by the price charge of customers GP f (n)

tc

multiplied by the total amount of sold products R f (n)
tdc , and (ii) the total cost of vendors,

producers, distributors, and clients, which is detailed below:

Cost = TCV + SCV + MCP + PCP + ICP + TCP + SCP + ICD + TCD + SCD

= ∑T
t=1 ∑P

p=1

(
∑V

v=1 ∑I
i=1 Rm(i)

tvp TCm(i)
tvp

)
+ ∑T

t=1 ∑P
p=1 ∑I

i=1 SQm(i)
tp SCm(i)

tp

+∑T
t=1 ∑P

p=1

(
∑V

v=1 ∑I
i=1 Rm(i)

tvp MCm(i)
tv

)
+ ∑T

t=1 ∑P
p=1 ∑N

n=1 Q f (n)
tp C f (n)

tp

+∑T
t=1

(
∑P

p=1 ∑I
i=1 Im(i)

tp ICm(i)
tp + ∑P

p=1 ∑N
n=1 I f (n)

tp IC f (n)
tp

)
+∑T

t=1 ∑P
p=1 ∑D

d=1 ∑N
n=1 R f (n)

tpd TC f (n)
tpd + ∑T

t=1 ∑D
d=1 ∑N

n=1 SQ f (n)
td SC f (n)

td

+∑T
t=1 ∑D

d=1 ∑N
n=1 I f (n)

td IC f (n)
td + ∑T

t=1 ∑D
d=1 ∑C

c=1 ∑N
n=1 R f (n)

tdc TC f (n)
tdc

+∑T
t=1 ∑C

c=1 ∑N
n=1 SQ f (n)

tc SC f (n)
tc

where
Vendors’ costs: TCV Total delivery cost

SCV Total stock-out cost
Producers’ costs: MCP Total procurement cost

PCP Total production cost as planned
ICP Total inventory cost including raw materials and finished products
TCP Total delivery cost
SCP Total stock-out cost

Distributors’ costs: ICD Total inventory cost
TCD Total delivery cost
SCD Total stock-out cost

Model 1 with the objective (1) is subject to constraints (2)–(20) which are discussed next.
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(i) Inventory constraints: Inventory in producers and distributors follows the principle
that the quantity of inventory in the next period must be equal to the current quantity plus
the total purchased amount and then minus the total amount consumed or sold in this
period. Therefore, the inventory constraints of raw materials m(i) and finished product f (n)
at producer p, and finished product f (n) at distributor d, are shown below, respectively:

Im(i)
tp + ∑V

v=1 Rm(i)
(t−Tvp)vp − ∑N

n=1 Q f (n)
tp CQm(i)

f (n) = Im(i)
(t+1)p, ∀t, p, i (2)

I f (n)
tp + Q f (n)

(t−TPp)p − ∑D
d=1 R f (n)

tpd = I f (n)
(t+1)p, ∀t, p, n (3)

I f (n)
td + ∑P

p=1 R f (n)
(t−Tpd)pd − ∑C

c=1 R f (n)
tdc = I f (n)

(t+1)d, ∀t, d, n (4)

(ii) Stock-out constraints: The stock-out amount at the current echelon at period
t + LTm is constrained to be equal to the quantity that is ordered at period t minus the
quantity delivered from the preceding echelon at period t + LTm − Tsm, which means
the following:

Om(i)
tvp − Rm(i)

(t+LTp−Tvp)vp = SQm(i)
(t+LTp)vp, ∀ t, p, i (5)

∑V
v=1 (O

m(i)
tvp − Rm(i)

(t+LTp−Tvp)vp) = SQm(i)
(t+LTp)p, ∀ t, p, i (6)

∑P
p=1 (O

f (n)
tpd − R f (n)

(t+LTd−Tpd)pd) = SQ f (n)
(t+LTd)d

, ∀ t, d, n (7)

∑D
d=1 (O

f (n)
tdc − R f (n)

(t+LTc−Tdc)dc) = SQ f (n)
(t+LTc)c

, ∀ t, c, n (8)

Although Equation (5) specifies the quantity of raw materials m(i) that is out of stock
from each vendor v at producer p in stage t + LTm, Equation (6) indicates the constraint
for the quantity of raw materials m(i) stocking from all vendors at producer p. Similarly,
Equations (7) and (8) represent the stock-out quantity of finished products f (n) at distrib-
utors and clients in turn. Additionally, the quantities of materials and products received
should not exceed those ordered to minimize the cost.

(iii) Mass balance constraints: These constraints ensure an equilibrium and coherence be-
tween order and demand quantities in the production and distribution process. Equation (9)
says that at any given time t, the total quantity ordered of product f (n) by client c from
all distributors should be equal to its demand at the time t + LTc. Equation (10) ensures
that the available quantity of product f (n) in phase t + LTc − Tdc (i.e., when distributor
d delivers product f (n) to all customers) in distributor d is larger than or equivalent to
the amount that all customers order in period t adding the safety stock at t + LTc − Tdc.
Equation (11) signifies that the total quantity ordered by distributor d is equal to the quan-
tity available for distributor d at a later period (i.e., t + LTd) subtracting the inventory held
by distributor d at that time. Equation (12) implies that the total order quantity of materials
m(i) from all vendors is equal to the quantity needed for production minus the inventory
of raw materials in the producer at that time.

∑D
d=1 O f (n)

tdc = D f (n)
(t+LTc)c

, ∀ t, c, n (9)

DQ f (n)
(t+LTc−Tdc)d

≥
(
∑C

c=1 O f (n)
tdc

)
+ SS f (n)

(t+LTc−Tdc)d
, ∀ t, d, n (10)

∑P
p=1 O f (n)

tpd = DQ f (n)
(t+LTd)d

− I f (n)
(t+LTd)d

, ∀ t, d, n (11)

∑V
v=1 Om(i)

(t−LTp−TPp)vp = ∑N
n=1 CQm(i)

f (n)

(
∑D

d=1 Op(n)
(t−LTd+Tpd)pd

)
− Im(i)

(t−TPp)p, ∀ t, p, i (12)
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(iv) Production planning constraints: Equation (13) implies that the quantity of product
f (n) planned at time t − TPm must actually be produced in phase t.

Q f (n)
(t−TPp)p = AQ f (n)

tp , ∀ t, p, n (13)

(v) Lower-bound and upper-bound constraints: The constraints shown below set the
limit for the amount of raw materials and finished products moving along the SC, since
warehouses and transportation vehicles are limited in space.

0 ≤ Rm(i)
tvp ≤ Rm(i)

tvp , ∀ t, v, p, i (14)

0 ≤ R f (n)
tpd ≤ R f (n)

tpd , ∀ t, p, d, n (15)

0 ≤ R f (n)
tdc ≤ R f (n)

tdc , ∀ t, d, c, n (16)

Im(i)
tp ≤ Im(i)

tp ≤ Im(i)
tp , ∀ t, p, i (17)

I f (n)
tp ≤ I f (n)

tp ≤ I f (n)
tp , ∀ t, p, n (18)

I f (n)
td ≤ I f (n)

td ≤ I f (n)
td , ∀ t, d, n (19)

(vi) Distribution-based constraints for demand uncertainty: Customer demands are as-
sumed to follow a normal distribution with a specified mean and standard deviation. Safety
stock is used to provide a certain degree of buffer against the deviation of the amount
of demand variability. It is calculated by multiplying the standard deviation of the de-
mand

(
STD f (n)

td

)
, lead time (LTd), and the number of standard deviations of demand

variability—represented by the z-score (z):

SS f (n)
td = z

(
STD f (n)

td

)√
LTd, ∀ t, d, n (20)

This study extends the model of Lin et al. [21] by applying an all-unit discount quantity
for the unit price of raw materials m(i), which is denoted as MCm(i)

tv . However, all-unit
discount quantity can add nonlinear terms to the model; hence, the model can be unsolvable
by commercial solvers. A technique developed by Tsai [32] is used to transform nonlinear
terms to linear terms without changing any assumption of the model. Hence the globally
optimal solutions of the model can be found by commercial optimization solvers.

Remark 1 (Tsai [32]). The step function that determines the price according to the quantity
P(Q) (Figure 2) can be expressed as follows:

P(Q) = ∑a−1
j=1 Pjuj,

where
∑a−1

j=1 ujQj ≤ Q ≤ ∑a−1
j=1 ujQj+1,

∑a−1
j=1 uj = 1, uj ∈ {0, 1}.
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Proposition 1 (Tsai [32]). A product term z = u f (x) can be converted into linear inequalities
as follows:

(i) E(u − 1) + f (x) ≤ z ≤ E(1 − u) + f (x),
(ii) −Eu ≤ z ≤ Eu,

where u ∈ {0, 1}, z is an unrestricted in sign variable, and E is a large constant.

Extension 1. Calculating procurement cost using quantity discount function:
The unit price of the raw material m(i) offered by the vendor v in phase t is expressed as

follows:

MCm(i)
tv =


MCm(i)

1tv i f Rm(i)
1tvp < Rm(i)

tvp ≤ Rm(i)
2tvp

MCm(i)
2tv i f Rm(i)

2tvp < Rm(i)
tvp ≤ Rm(i)

3tvp
. . .

MCm(i)
(a−1)tv i f Rm(i)

(a−1)tvp < Rm(i)
tvp ≤ Rm(i)

atvp

This is equivalent to

MCm(i)
tv = ∑a−1

j=1 MCm(i)
jtv um(i)

jtv , ∀ t, v, i, um(i)
jtv ∈ {0, 1}.

The procurement cost can be transformed into a step quantity discount function by
deploying the remark and proposition mentioned above. This results in the expression of
the procurement cost function as follows.

Minimize ∑T
t=1 ∑P

p=1 ∑V
v=1 ∑I

i=1 ∑a−1
j=1 MCm(i)

jtv γ
m(i)
j

subject to

∑a−1
j=1 um(i)

jtv Rm(i)
jtvp ≤ Rm(i)

tvp ≤ ∑a−1
j=1 um(i)

jtv Rm(i)
(j+1)tvp, ∀ t, v, p, i (21)

∑a−1
j=1 um(i)

jtv = 1, um(i)
jtv ∈ {0, 1} (22)

E
(

um(i)
jtv − 1

)
+ Rm(i)

tvp ≤ γ
m(i)
j ≤ E

(
1 − um(i)

jtv

)
+ Rm(i)

tvp , ∀t, v, p, i, j (23)

−Eum(i)
jtv ≤ γ

m(i)
j ≤ Eum(i)

jtv , ∀t, v, i, j (24)

where γ
m(i)
j = Rm(i)

tvp um(i)
jtv , and E is a large constant.
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While constraints (21) and (22) ensure the principles of the all-unit discount scheme,
the latter verify the linearity of the procurement cost function. Model M1 can then be
reformulated as the following linear model M2:

Maximize ∑T
t=1 ∑C

c=1 ∑N
n=1 GP f (n)

tc

(
∑D

d=1 R f (n)
tdc

)
− Cost (25)

subject to constraints (2) to (24).
Solving Model 2 with the objective (25) provides the global optimality of the SC under

demand uncertainty. By linearizing Model 1, Model 2 adds some variables and constraints
to decrease the complexity of the nonlinear model. The computational efficiency of the
proposed technique is presented in the next section.

3. Numerical Example

The proposed model is applied to a small-scale production planning problem to
demonstrate its effectiveness. This study adopts and revises the data used by Lin et al. [21].
The scenario comprises two vendors v1 and v2 that provide two types of raw materials m(1)
and m(2), one type of producer p1 that produces one product f (1), and one distributor d1
that distributes products to three clients c1, c2, and c3. The planning time horizon spans
eight time periods. It takes a period of time for the producer to produce a product (i.e.,
TPp = 1). The lead times at the producer, distributor, and client are one, three, and four,
respectively (LTp = 1, LTd = 3, LTc = 4). For the production of each product f (1), the
producer consumes two units of materials m(1) and four units of materials m(2), indicated
by CQm(1)

f (1) = 2 and CQm(2)
f (1) = 4, respectively. It costs 0.8 units of currency to manufacture

the product f (1), which means Cm(1)
tp = 0.8. The details of the data are described in the

following sections.

3.1. Raw Materials Price

The unit prices of the raw materials offered by the two vendors are detailed in Table 1.
Vendor v2 introduces an all-unit quantity discount scheme for material m(1). The pricing
scheme has three quantity intervals that correspond to three price levels.

Table 1. Unit price of raw materials offered by vendors.

Vendor Raw Material Quantity Discount MCm(i)
tv

v1
m(1) No 20
m(2) No 12

v2
m(1)

0–100 21
101–300 20
Over 300 19

m(2) No 14

3.2. Inventory

Initially, the producer stores the inventories of raw materials m(1) and m(2), as well as
the finished product f (1), ranging from 140, 280, and 20 units, respectively (i.e., Im(1)

t1p1
= 140,

Im(2)
t1p1

= 280, I f (1)
t1p1

= 20). The starting product inventory level at distributor d1 is indicated

as I f (1)
t1d1

= 60. The upper and lower bounds of the inventory in producers and distributors
are shown in Table 2.
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Table 2. Lower and upper bounds of the inventory at producer and distributor.

Producer Distributor

p1 d1
m(1) m(2) f(1) f(1)

Lower bound 20 40 20 20
Upper bound 4000 8000 700 1000

Unit costs associated with inventory and stock-outs are detailed in Table 3. Addition-
ally, Table 3 lists the price of the product sold to each client.

Table 3. Relevant unit costs and unit price in the supply chain.

Producer Distributor Client

p1 d1 c1 c2 c3

Inventory holding cost
(per unit)

m(1) 0.06 f (1) 0.04
m(2) 0.04

f (1) 0.02

Stock-out cost
(per unit)

m(1) 44 f (1) 500
680 640 600m(2) 32

Product sale price
(per unit) 120 240 360

Regarding the safety stock considerations at the distributor, the safety stock factor z
given in Table 4 reflects different service levels under normally distributed demand. This
study primarily explores outcomes aligned with a service level of 98%. However, the next
section also presents objective values corresponding to different service levels to reveal the
effect of service-level variations on the total profit of the SC.

Table 4. Z-score corresponding to different service levels [22].

Desired Service Level

95 97 98 99 99.9

z-score 1.65 1.88 2.05 2.33 3.09

3.3. Product Demand

Demands are assumed during the initial four periods, as is certainly known. However,
from the fifth period onward, demands are anticipated using the simple moving average
technique. Average demand over a four-period period is forecasted for the subsequent
period. The specific quantities of the three clients are listed in Table 5, where the total
demand column represents the aggregate demands of all clients, and the final column
indicates the standard deviation of the demands.

Table 5. Customer demands over eight periods of time.

Time Period
Client Total Demand Standard Deviation

c1 c2 c3 ∑ STDf(1)
td1

t1 100 60 160 320
t2 200 140 120 460
t3 240 40 100 380
t4 320 100 140 560
t5 215 85 130 430 103.92
t6 244 92 123 459 75.88
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Table 5. Cont.

Time Period
Client Total Demand Standard Deviation

c1 c2 c3 ∑ STDf(1)
td1

t7 255 80 124 459 75.87
t8 259 90 130 479 57.00

3.4. Transportation

The shipping time from the vendor to the producer, the producer to the distribu-
tor, and the distributor to the client is one period, denoted as Tvp = Tpd = Tdc = 1.
Furthermore, the upper bound and the transportation costs for all levels are, in turn,
shown in Tables 6 and 7.

Table 6. Upper bound of the amount of delivery from vendor to producer, from producer to
distributor, and from distributor to client.

Producer Distributor Clients

p1 d1 c1 c2 c3

Vendor
s1

m(1) 4000
m(2) 8000

s1
m(1) 4000
m(2) 8000

Producer p1 900
Distributor d1 1000 1000 1000

Table 7. Transportation unit cost.

To Producer Distributor Clients
From p1 d1 c1 c2 c3

Vendor
v1 0.02
v2 0.02

Producer p1 0.04
Distributor d1 0.6 0.8 1

3.5. Numerical Results

The problem is solved by a device with an Intel Core i5-8265U CPU at 1.60 GHz and
4 GB memory, using Gurobi Optimizer version 11.0.0.

3.5.1. Numerical Results with an All-Unit Quantity Discount Applied

The solution obtained ensures global optimality by employing a step quantity dis-
count function to linearize the model despite the increase in the number of variables and
constraints. The solved model yields an objective value of 207,131.68, achieved within a
CPU time of 1.27 s.

Figure 3 illustrates the flow of the SC network spanning from period t1 to period t5. To
meet the demands of client c1, c2, and c3 in period t5, anticipated at 215, 85, and 130 units,
respectively, 740 units of materials m(1) and 1480 units of materials m(2) are dispatched to
producer p1 from vendor v2 and vendor v1 in turn. Despite its higher base price, vendor v2
secures the selection due to its quantity discount offer. This also reduces the procurement
cost to 170,796.
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Figure 3. Optimal supply chain network with an all-unit quantity discount, from phase 1 to phase 5
(i.e., when clients receive products for the first time).

After receiving raw materials, p1 starts producing products f (1) during period t2 and
transports 390 units to distributor d1 in the next phase. These products are distributed
to customers in period t4, with delivery completed in period t5. Figure 4 indicates the
flow of goods within the SC from period t2 to period t8. Table 8 indicates the quantities
of orders, deliveries, and production for every entity in the SC network, resulting from
the solved model.
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Figure 4. Optimal supply chain network with an all-unit quantity discount, from period t2 to
period t8.

Figure 5 illustrates the inventory dynamics at the producer and distributor. Through-
out the duration examined, the inventory levels of materials at the producer witness a
declining trend, as the consumption to produce products decreases and maintaining min-
imal stock levels for cost optimization is exhibited. The levels of product inventory at
the producer peak in period t4 before gradually dropping to the lowest level in the final
interval. In contrast, the distributor’s inventory levels inflate in later periods, reflecting the
need to fulfill customer demands and safeguard against demand uncertainty by storing
safety stock. No stock-out cost occurs during the examined time span.
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Table 8. Delivery, order, and production quantity for every echelon of the supply chain with discount
in quantity, from period t1 to t8.

From To Time Period

t1 t2 t3 t4 t5 t6 t7 t8

Vendor Delivery
Rm(i)

tvp v1 p1 m(1)
m(2) 1480 3188 1400 1876

v2 p1 m(1) 740 1594 700 938
m(2)

Producer Order v1 p1 m(1)
Om(i)

tvp m(2) 1480 3188 1400 1876

v2 p1 m(1) 740 1594 700 938
m(2)

Production

Q f (n)
tp p1 f (1) 50 380 798 349 469

AQ f (n)
tp p1 f (1) 50 380 798 349 469

Delivery
Rm(n)

tpd
p1 f (1) 390 807 360 479 10

Distributor Order
O f (n)

tpd
p1 f (1) 390 808 359 479 10 10

Delivery

R f (n)
tpd

d1 c1 f (1) 215 244 255 259

c2 f (1) 85 92 80 90
c3 f (1) 130 123 124 130
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Figure 5. Inventory levels at producer and distributor.

Higher service levels improve the fulfillment of customer demands. However, they
lead to an increase in safety stock levels of the distributor. The producer must produce
more to fulfill the orders of the distributor. As a result, the costs of material procurement,
production, and shipping rise concurrently, leading to a reduction in overall profit. The
results listed in Table 9 illustrate the above statement.
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Table 9. Total profit of the supply chain corresponding to multiple service levels, with quantity discount.

Service Level

95.00% 97.00% 98.00% 99.00% 99.90%

Total profit 211,830.44 209,082.32 207,131.68 203,850.84 194,946.04
Change in total profit - −1.30% −2.22% −3.77% −7.97%

3.5.2. Numerical Results without an All-Unit Quantity Discount Policy

There are usual instances where no quantity discount scheme is applied. In this
circumstance, the price of materials m(1) offered by vendor v2 remains at the base rate,
which is higher than that of vendor v1 (as listed in Table 10). This causes the vendor v2
to be selected, as it has no advantage in price. Therefore, vendor v1 serves as the solitary
source in this model, as elucidated in Figure 6.

Table 10. Raw material price without quantity discount scheme.

Vendor Raw Material MCm(i)
tv Vendor Raw Material MCm(i)

tv

v1
m(1) 20 v2

m(1) 21
m(2) 12 m(2) 14
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Compared to the previous model, these results show the same quantities of materials
and finished products in each shipment and inventory levels throughout the periods. This
suggests that the behaviors of each level in the SC are not affected by the discount.

In contrast, the materials purchase cost of producer p1 rises from 170,796 to 174,768
compared to the model with a quantity discount, marking an increase of 2.33% compared
to the previous model. Consequently, this results in a reduction in total profit to 203,159.28.

4. Discussions

This study used a linearization technique to transform an MINLP model to an MILP
model so the model can find a globally optimal design of the supply chain under demand
uncertainty. The comparison of the two models, with and without quantity discounts,
indicates that the discount price must encourage the producer more to increase produc-
tion quantities or purchase materials. However, the results reveal the benefit of offering
quantity discount schemes. The vendor becomes significantly more competitive in price,
thus significantly enhancing their market position and increasing their chances of being
chosen in the sourcing process. Additionally, the total profit of the SC improves thanks
to the quantity discount policy. This study provides management solutions to optimize
inventory while ensuring customer satisfaction and avoiding stock-out costs, ultimately
improving SC companies’ resilience and sustainable competitive advantage in today’s
volatile business landscape.
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The managerial implication of this research is the potential for improved cost manage-
ment within SCs. By incorporating quantity discount policies into their decision-making
processes, companies can strategically negotiate with suppliers to secure cost-effective raw
materials. It is also crucial for businesses to strike a balance between leveraging discounts
and avoiding excess inventory, which increases holding costs. Implementing strategies
such as safety stock optimization can mitigate this risk while maintaining service levels.
This can lead to significant cost savings and improved profitability over time. Moreover,
service levels need to be carefully chosen. If the service levels are increased to a nearly
perfect level under demand uncertainty, it can result in a large increase in safety stock levels
which leads to a sharp decrease in profit. Hence, companies need to find a balance level
between service levels and profits.

5. Conclusions

This study proposes a comprehensive model to design an efficient supply chain amid
demand uncertainty, particularly in the context of integrating quantity discount policies.
Using a step function technique to linearize the MINLP model, global optimal solutions can
be achievable with commercial optimization solvers. The results of numerical examples
show that quantity discount policies in vendors increases the total profit of the supply chain.
The results also indicate that the decision makers need to find a balance level between
service levels and profits since there is a tradeoff between service levels and profits.

Although the proposed model presents a valuable tool for practitioners seeking to
navigate the challenges of modern SC operations, limitations still need to be addressed.
First, the model optimizes producers’ and distributors’ planning processes, neglecting
vendors’ profitability. Second, quantity discount policies can also be applied for producers
and distributors. Finally, the numerical examples can be larger and the supply chain
network may exhibit complex behaviors. Further research can explore how quantity
discount policies affect SC behaviors with respect to changes in demand reflected in price
changes in large-scale problems.
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