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Abstract: This paper aims to present a robust computational technique utilizing finite difference
schemes for accurately solving time fractional reaction–diffusion models, which are prevalent in
chemical and biological phenomena. The time-fractional derivative is treated in the Caputo sense,
addressing both linear and nonlinear scenarios. The proposed schemes were rigorously evaluated for
stability and convergence. Additionally, the effectiveness of the developed schemes was validated
through various linear and nonlinear models, including the Allen–Cahn equation, the KPP–Fisher
equation, and the Complex Ginzburg–Landau oscillatory problem. These models were tested in one-,
two-, and three-dimensional spaces to investigate the diverse patterns and dynamics that emerge.
Comprehensive numerical results were provided, showcasing different cases of the fractional order
parameter, highlighting the schemes’ versatility and reliability in capturing complex behaviors in
fractional reaction–diffusion dynamics.
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1. Introduction

Throughout the history of mathematical modeling, traditional calculus has been the
primary tool for explaining the behavior of various phenomena, ranging from the physics
of kinetics and electromagnetism to the spread of diseases in biology and numerous other
systems in between. For a significant period, it was widely accepted that classical calculus
sufficed to model these systems comprehensively. However, contemporary research sug-
gests that a more generalized form of calculus, known as fractional calculus, offers superior
modeling capabilities for these phenomena [1–5]. The concept that fractional calculus might
provide more accurate models than traditional calculus is still under investigation. The
immediate implications of these enhanced models include a more detailed understanding
of the specifics behind systematic evolutions and anomalous behaviors in many physical
problems. Often, such nuances are overlooked when using traditional calculus models.
By comprehending fractional calculus, we can elucidate patterns in physical phenomena
that traditional methods have not yet captured. This deeper insight enhances our under-
standing of these problems and may drive innovative advancements in their modeling
techniques [6,7].

A reaction–diffusion model is a mathematical framework used to describe the behavior
of chemical or biological systems in which substances interact (reaction) and spread out
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in space (diffusion). This type of model is instrumental in understanding a wide range
of phenomena, from chemical reactions and biological pattern formation to ecological
dynamics and neural activity. A typical reaction–diffusion system is governed by a set of
partial differential equations (PDEs) of the form

∂ϑi
∂t

= di∆ϑi +Ri(ϑ1, ϑ2, . . . , ϑn), (1)

where ϑi = ϑi(x, t) represents the concentration of the i-th substance at position x and
time t, and di is the diffusion coefficient of the i-th substance, indicating how it spreads
through space. ∆ denotes the Laplacian operator, representing spatial diffusion and Ri
is the reaction term, describing the interactions between the substances, often involving
nonlinear functions of the concentrations.

Equation of the form (1) has been applied to model many physical phenomena. For
example, in chemistry, reaction–diffusion models describe how chemical species react
and diffuse in a medium. Classic examples include the Belousov–Zhabotinsky reaction,
which exhibits oscillatory behavior, and the formation of patterns in chemical gardens [8].
Reaction–diffusion models are fundamental in developmental biology, explaining how
patterns such as animal coat markings, the spatial organization of cells, and morphogenesis
(the development of the structure of an organism) arise [8,9]. Alan Turing’s seminal work
introduced the concept that reaction–diffusion systems can generate stable patterns, known
as Turing patterns [10]. In ecology, these models describe the spread of species, the inter-
action between predator and prey populations, and the dynamics of ecosystems [11–16].
They help understand phenomena like population waves, species invasion, and the spatial
distribution of organisms [17,18]. In neuroscience, reaction–diffusion models are used to
simulate the propagation of electrical signals in neurons and the dynamics of neurotrans-
mitter diffusion in the brain. They also model the activity patterns in neural networks,
explaining wave-like behaviors and pattern formation in brain activity.

Pattern formation is a critical phenomenon observed across various scientific disci-
plines, and its importance extends to several key areas. In biology, pattern formation is
essential in understanding how organisms develop complex structures, such as animal
skin patterns, plant leaf arrangements, and cellular organization during embryonic devel-
opment. Mechanisms like Turing instability explain how reaction–diffusion systems can
lead to spatial organization in biological tissues. In ecosystems, pattern formation helps
explain how species distributions and population densities are structured spatially, often in
response to environmental conditions. Predator–prey interactions, plant spacing in arid
regions, and animal grouping behavior often result in spatial patterns critical to the sustain-
ability of ecosystems. In chemistry, reaction–diffusion systems can lead to the formation of
patterns like chemical waves or Turing patterns. These are important for understanding
processes like catalysis, where certain reaction fronts propagate in a controlled manner,
influencing material synthesis and other chemical processes. Understanding pattern for-
mation is crucial in material science for creating new materials with tailored properties.
For example, self-assembly processes in nanotechnology rely on pattern formation at the
microscopic level to build structures with specific functionalities. In physics, pattern for-
mation helps explain phenomena like convection rolls, sand dune formations, and fluid
dynamics. These insights are essential for understanding and predicting the behavior of
natural and industrial processes. Understanding how patterns form in tissues can aid in
diagnosing and treating diseases. For example, irregular patterns in cellular structures
might be indicative of pathological changes such as tumor growth or degenerative diseases.

A fractional reaction–diffusion equation is an extension of the classical reaction–
diffusion equation, incorporating the concept of fractional calculus. This approach allows
for more accurate modeling of anomalous diffusion and non-local interactions, which are
observed in many complex systems where the assumptions of standard diffusion are not
valid. The benefits of fractional differential equations are particularly evident in modeling
the mechanical and electrical characteristics of real materials, as well as in describing
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the rheological properties of rocks. Additionally, they are extensively used in various
scientific and engineering disciplines, including fluid dynamics, practical applications,
diffusive transport analogous to diffusion, electrical circuits, electromagnetic theory, and
probability [1,2,5,19,20].

The fractional reaction–diffusion equation can be written as

∂τϑ(x, t)
∂tτ

= d∆2ϑ(x, t) +R(ϑ(x, t)), x ∈ [0, L], 0 < τ ≤ 1, or 1, τ ≤ 2, 0 < t ≤ T (2)

with conditions

ϑ(0, t) = 0, ϑ(L, t) = 0, ϑ(x, 0) = g0(x), ∂ϑ(x,0)
∂t = gL(x),

t > 0, x ∈ [0, L], L ≫ 0,

where ∂τϑ(x,t)
∂tτ is the fractional derivative of order 0 < τ ≤ 1, defined by the Caputo

operator as

∂τϑ(x, t)
∂tτ

= Dτ
t ϑ(x, t) =

1
β(2 − τ)

∫ t

0
(t − ξ)1−τ ∂2ϑ(x, ξ)

∂ξ2 dξ. (3)

Clearly, the Caputo derivative Dτ
t is made up of derivatives Dτ−1

t and Dt; that is,

Dτ
t ϑ(x, t) = 1

β(1−(τ−1)

∫ t
0 (t − ξ)−(τ−1) ∂

∂ξ
∂ϑ(x,ξ)

∂ξ dξ

= Dτ−1
t Dtϑ(x, t).

(4)

Given this makeup, the following holds true:

Theorem 1. The Caputo reaction–diffusion Equation (2) is equivalent to the integro-differential
equation

ϑ(x, t) = gL(x) +
d

β(τ − 1)

∫ t

0
(t − ξ)(τ−2) ∂ϑ(x, ξ)

∂x2 dξ +R(x, t), (5)

where R(x, t) = J τ−1
t R(x, t), and J η

t denotes the Riemann–Liouville fractional integral deriva-
tive of order η > 0 formulated as

J η
t R(x, t) =

1
β(η)

∫ t

0
(t − ξ)η−1R(x, ξ)dξ. (6)

Readers are referred to [21] and (4) for details of the proof.
Numerical methods play a crucial role in approximating solutions for time-fractional

reaction–diffusion equations, which model processes exhibiting anomalous diffusion
and memory effects. Among the popular techniques, finite difference methods (FDMs)
are widely utilized due to their simplicity and straightforward implementation [22,23].
These methods discretize the time-fractional derivatives using schemes like the Grunwald–
Letnikov or L1 approximation, enabling the transformation of the continuous problem into
a system of algebraic equations. The stability and convergence of these methods are often
analyzed to ensure accurate solutions, with recent studies focusing on improving their
efficiency and accuracy for complex problems. In contrast, finite volume methods (FVMs)
and spectral methods offer alternative approaches that can provide higher accuracy, espe-
cially for problems with complex geometries or requiring high-resolution solutions [23,24].
Finite volume methods, which conserve fluxes across control volumes, are particularly
effective for handling heterogeneous media and ensuring conservation laws. Spectral
methods, leveraging orthogonal polynomials or Fourier series, provide exponential con-
vergence for smooth problems and have been adapted for fractional derivatives using
fractional calculus [25,26]. Recent advancements include hybrid methods that combine
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FDM, FVM, implicit–explicit (IMEX), spectral methods, and a family of Adams–Bashforth
methods [27,28] to leverage their respective strengths, offering enhanced stability and
accuracy for simulating time-fractional reaction–diffusion processes in various applica-
tions [29,30].

Recent advancements in linearized transformed L1 methods and fast time-stepping
schemes have been significant, particularly in addressing fractional differential equations,
such as time-fractional diffusion and subdiffusion equations. These techniques are essen-
tial in solving complex fractional systems where standard numerical methods struggle
due to memory and computational demands caused by the nonlocal nature of fractional
derivatives. The linearized L1 scheme is one of the most commonly applied methods for
fractional differential equations. It effectively handles the fractional Caputo derivative and
has been extended through the use of transformed techniques, which improve computa-
tional efficiency and accuracy on non-uniform meshes. Recent works have demonstrated
the unconditional convergence and error estimates for linearized L1 methods, especially in
solving time-fractional Schrödinger and reaction–subdiffusion equations. These methods
are particularly useful for dealing with initial singularities in solutions, which are com-
mon in fractional models [31,32]. To improve computational speed, fast time-stepping
schemes like the L1 Galerkin finite element method have been developed. These schemes
are designed to handle nonlinear time-fractional diffusion equations with better mem-
ory efficiency. Additionally, fast algorithms such as the cosine pseudo-spectral method
and high-order difference schemes have been introduced to further reduce the time com-
plexity in solving fractional telegraph and subdiffusion equations. These fast algorithms
often leverage graded time meshes to accommodate the initial singular behavior, signifi-
cantly improving computational performance while maintaining high accuracy [32]. These
methods are being applied extensively to solve problems in mathematical physics, fluid
dynamics, and other areas where fractional models arise. They offer robust solutions with
improved stability and reduced error compared to classical methods, which are essential
for real-world applications involving complex dynamics over time.

The rest of the paper is organized as follows. In Section 2, we explore various nu-
merical approximation methods and analyze their convergence properties. Section 3
introduces three significant dynamic systems and discusses their applications in various
fields. Section 4 focuses on high-dimensional numerical experiments that examine pattern
formation arising from these dynamic examples. Finally, the conclusion summarizes the
findings and suggests future research directions.

2. Numerical Methods

Here, we provide details of numerical approximation of the Caputo reaction–diffusion
equation. To discretize, we let Ωℏ =

{
xj
∣∣0 ≤ j ≤ P

}
to be an equal mesh on integration interval

[0, L], where xj = jℏ, 0 ≤ j ≤ P withℏ = L/P. In the same manner, we let Ωζ = {ts|0 ≤ j ≤ Q}
be a uniform mesh of interval [0, T], where ts = sζ, 0 ≤ s ≤ Q with ζ = T/Q. Assume
U =

{
Uj

∣∣0 ≤ j ≤ P, U0 = UP = 0
}

and Z =
{

Zj
∣∣0 ≤ j ≤ P, Z0 = ZP = 0

}
are the grid func-

tions on Ωℏ. We use a similar notation as suggested in [33]:

ψ+Uj = Uj+1 − Uj, ∥U∥∞ = max
1≤j≤P−1

|U1|∥U∥1 = ∑P−1
j=1 ℏ

∣∣Uj
∣∣,

< U, Z >= ∑P−1
j=1 ℏUjZj, ∥U∥2 =< U, ψ2Uj =< U, U >, ψ2Uj = Uj+1 − 2Uj +Uj−1.

It is not difficult to verify that

< ψ2U, Z >= − < ψ+U, ψ+Z > .

According to Lubich [34], there exists a numerical method for approximating the
Riemann–Liouville (RL) fractional integral.
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Lemma 1. Suppose R(t) = tη−1ϑ(t) with η > 0 and g continuous; then

J τ−1
t R(ts+1) = ζτ−1∑s+1

i=0 ρiR(ts+1−i) +O(ζ), (7)

where ρ0 = 1, ρi = (−1)i
(

1 − τ
i

)
for i ≥ 1. By applying the above lemma, one obtains a finite

difference method for the approximation of (5) as

ϑs+1
j − ϑs

j

ζ
= ϕj + dζτ−1∑s+1

i=0 Ωi
ϑs+1−i

j+1 − 2ϑs+1−i
j + ϑs+1−i

j−1

h2 +Rs+1
j , (8)

where 0 ≤ s ≤ Q − 1, 1 ≤ j ≤ M − 1, ϑs
j stands for the numerical solution of ϑ(xj, ts),

ϕj = ϕ(xj),Rs+1
j = R(xj, ts+1). The terms ϑxx(x, t) and ϑt(x, t) are, respectively, substituted

with the central difference scheme and classical backward Euler method.

Next, we rearrange the method above to obtain

ϑs+1
j − ϑs

j = cβ∑s+1
i=0 ρiψ

2ϑs+1−i
j + ζϕj + ζRs+1

j , (9)

where β = ζτ

h2 . We shall refer to this as first method. Likewise, using the Crank–Nicolson
method to discretize (6) results in another scheme

ϑs+1
j − ϑs

j =
dβ

2 ∑s+1
i=0 ρiψ

2ϑs+1−i
j +

dβ

2 ∑s
i=0 ρiψ

2ϑs−i
j + ζϕj +

ζ

2

(
Rs+1

j +Rs
j

)
. (10)

It should be mentioned that either of the first (9) or (10) schemes forms a tridiagonal
system of linear equations, which can be solved at each time step using the Thomas algorithm.

2.1. Convergence and Solvability Properties of the Difference Schemes

Hereafter, let D1 denote a positive constant that does not depend on ζ, h, j, and s,
though its value may vary in different contexts. We begin by applying the Gershgorin circle
theorem (GCT) to demonstrate the solvability of numerical Formulas (9) and (10).

Theorem 2. The Schemes (9) and (10) are uniquely solvable.

Proof. Since the two methods are similar, we present the solvability of only Scheme (9)
here, as follows:

−dβϑs+1
j−1 + (1 + 2dβ)ϑs+1

j − dβϑs+1
j−1

= ϑs
j + dβ∑s+1

i=1 ρi

(
ϑs+1−i

j+1 − 2ϑs+1−i
j + ϑs+1−i

j−1

)
+ ζϕj + ζFs+1

j .
(11)

Assume

A =



1 + 2dβ −dβ . . . . . .
−dβ 1 + 2dβ −dβ . . .
. . . .
. . . .
. −dβ 1 + 2dβ −dβ
. . . . . . −dβ 1 + 2dβ


,B =



−2 1 . . . . . .
1 −2 1 . . .
. . . .
. . . .
. 1 −2 1
. . . . . . 1 −2


(12)
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C =



1 − 2dβρ1 dβρ1 . . . . . .
dβ 1 − 2dβρ1 dβ . . . . . .
. . . .
. . . .
. −dβρ1 1 − 2dβρ1 −dβρ1
. . . . . . −dβρ1 1 − 2dβρ1


, (13)

ϑn =
(
ϑs

1, ϑs
2, . . . , ϑs

P−2, ϑP−1s
)T , ϕ = (ϕ1, ϕ2, . . . , ϕ1P − 2, ϕ1P − 1)T ,

Rs =
(
Rs

1,Rs
2, . . . ,Rs

P−2,Rs
P−1

)T
.

Bear in mind that we adopt the homogeneous boundary conditions for our Caputo
time-fractional reaction–diffusion problem (2), which allows Equation (11) to take the
matrix form

Aϑs+1 = Cϑs + dβ∑s+1
i=2 ρiBUs+1−i + ζ

(
ϕ + Fs+1

)
. (14)

By the GCT, the matrix A is invertible, which proves that Scheme (9) is solvable. □

The subsequent lemma, which addresses the non-negative nature of specific real
quadratic forms with a convolution structure, is attributed to [33]. Here, it is crucial for the
convergence analysis study.

Lemma 2. Suppose {an}∞
s=0 is monotonically decreasing function of positive real numbers with

condition as+1 + as−1 ≤ 2as(s ≤ 1); then, any integer i > 0 and real vector (U1, U2, . . . , UN)
T ∈

RN satisfies that

∑N−1
s=0

(
∑s

p=0 apUs+1−p

)
Us+1 ≥ 0.

Lemma 3. The sequence {ρs}∞
s=0, defined in (7), holds for ρn > 0, ρs < ρs−1, ρs+1 + ρs−1 >

2ρs(s ≤ 1).

Proof. We observe

ρs = (−1)s
(

1 − τ
i

)
= (−1)s β(2−τ)

β(s+1)β(2−τ−s)

= (−1)(−1)s−1 β(2−τ)β(2−τ−s)
sβ(s)β(3−τ−s) = s−(2−τ)

s ρs−1

=
(
1 − 2−τ

s
)
ρs−1.

(15)

Since 1 < τ < 2 and ρ0 = 1, 0 < 1 − 2−τ
s+1 < 1, then ρs > 0, ρs < ρs−1.

In addition,

ρs+1 − 2ρs + ρs−1 =
(
1 − 2−τ

s+1
)(

1 − 2−τ
s

)
ρs−1

−2
(
1 − 2−τ

s
)
ρs−1 + ρs−1

= (2−τ)(3−τ)
s(s+1) ρs−1 > 0.

(16)

The proof is completed. □

2.2. Analysis of Convergence for Scheme (9)

Assume

|ϑtt| ≤ D1, |ϑxxxx| ≤ D1 for (x, t) ∈ [0, L]× [0, T], (17)
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then, for (9), we obtain

ϑ(xj, ts+1)− ϑ(xj, ts) = dβ∑s+1
i=0 ρiψ

2ϑ(xj, ts+1−i) + ζϕj + ζFs+1
j + O(ζ2 + ζh2). (18)

Theorem 3. Suppose ϑ(x, t) and
{

ϑs
i
}

are the numerical solutions to time-fractional reaction–
diffusion problems (2) and (9), respectively, and that ϑ(x, t) meets the smoothness criteria of (17).
Then, for sufficiently small ζ and h,

∥es∥ = O(ζ + h2), s ≤ 1, (19)

where es
j = ϑ(xj, ts)− ϑs

j .

Proof. By taking (9) from (18), one obtains the error equation

es+1
j − es

j = dβ∑s
i=0 ρiψ

2es+1−i
j + rs+1

j , for 0 ≤ s ≤ Q − 1, 1 ≤ j ≤ P − 1 (20)

where rs+1
j = O(ζ2 + ζh2).

Next, we multiply both sides of (20) by hes+1
j and add for i from 1 to M − 1 to obtain

∥∥∥es+1
∥∥∥2
− < es, es+1 >= dβ∑s

i=0 ρi < ψ2es+1−i, es+1 > + < rs+1, es+1 > . (21)

In particular,∥∥∥es+1
∥∥∥2
− < es, es+1 >= dβ∑s

i=0 ρi < ψ2es+1−i, es+1 > + < rs+1, es+1 >,

∥es∥2− < es−1, es >= dβ∑s−1
i=0 ρi < ψ2es−i, es > + < rs, es >,∥∥∥e2

∥∥∥2
− < e1, e2 >= dβ∑s−1

i=0 ρi < ψ2e2−i, e2 > + < r2, e2 >,∥∥∥e1
∥∥∥2

= dβ∑s−1
i=0 ρi < ψ2e1−i, e1 > + < r1, e1 >, (22)

Applying the inequality < V, W >≤ ∥V∥·∥W∥ ≤ 1
2 ∥ V|2 + 1

2∥W∥2, we have∥∥∥es+1
∥∥∥2

− 1
2

∥∥∥es+1
∥∥∥2

− 1
2
∥es∥2 = dβ∑s

i=0 ρi < ψ2es+1−i, es+1 > + < rs+1, es+1 >,

∥es∥2 − 1
2
∥es∥2 − 1

2

∥∥∥es−1
∥∥∥2

= dβ∑s
i=0 ρi < ψ2es−i, es > + < rs, es >,∥∥∥e2

∥∥∥2
− 1

2

∥∥∥e2
∥∥∥2

− 1
2

∥∥∥es1
∥∥∥2

= dβ∑s
i=0 ρi < ψ2e2−i, e2 > + < r2, e2 >,∥∥∥e1

∥∥∥2
= dβ∑0

i=0 ρi < ψ2e1−i, e1 > + < r1, e1 >,

By summing up the inequities above results to∥∥es+1
∥∥2 ≤ 2dβ∑s

p=0 ∑s
i=0 ρi < ψ2ep+1−i, ep+1 > +2∑s+1

p=0 < rp, ep >

= −2dβ∑s
p=0 ∑s

i=0 ρi < ψep+1−i, ψ+ep+1 > +2∑s+1
p=0 < rp, ep >

≤ 2
√

LM(s + 1)D1(ζ
2 + ζh2) ≤ 2

√
LMTD1

(
ζ + h2)

where M = max1≤p≤Q∥ep∥ and has applied the inequality

∥ ep|1 ≤
√

Ph∥ep∥ ≤
√

L∥ep∥,
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Theorem 2 is the result. Thus, condition (19) holds. □

Using a method analogous to that employed in the convergence proof, we can demon-
strate the stability of the Scheme (9); that is,∥∥∥ϑs+1

∥∥∥ ≤ D1

(
∥ϕ∥+ ∥ϕ∥+ ζ∑s+1

i=1

∥∥∥Ri
∥∥∥), 0 ≤ s ≤ Q − 1. (23)

2.3. Analysis of Convergence for Scheme (10)

Assume ϑxxxx and ϑt are continuous and differentiable on interval [0, L]× [0, T], with
|ϑtt| ≤ D1tτ−2. This assumption is likely the minimal condition required for the existence
of the Caputo-in-time derivative of order 0 < τ < 0 (for subdiffusion process) or 1 < τ < 2
(in the case of superdiffusion scenarios).

For any R(t) ∈ D1([0, T] )
⋂

D3((0, T
]
) satisfying |R′′ (t)| ≤ D1tτ−2 and

| f ′′(t)| ≤ D1tτ−3 as t → 0 , we will approximate J τ−1
t R(t) numerically. We can generalize

the result in [33] to the formulas as follows:
For any R(t) ∈ D1([0, T] )

⋂
D3((0, T

]
) that satisfies |R′′ (t)| ≤ D1tτ−2 and

|R′′ (t)| ≤ D1tτ−3 as t → 0 , we approximate J τ−1
t R(t) numerically. The result from [35]

can be generalized to the following formulas.

J τ−1
t R(ts+1/2) =

1
2

[
J τ−1

t f (ts) + J τ−1
t R(ts+1)

]
+O

(
ζ2tτ−3

s

)
, s ≥ 1 (24)

and
J τ−1

t R(t1/2) =
1
2
J τ−1

t R(t1) +O
(

ζτ−1
)

. (25)

Since tτ−3
s ≤ 23−τtτ−3

s+1 for s ≤ 1, the result is

J τ−1
t R(ts+1/2) =

1
2

[
J τ−1

t R(ts) + J τ−1
t R(ts+1)

]
+O

(
ζ2tτ−3

s+1

)
, for s ≥ 0. (26)

Furthermore, we can verify that

R′(ts+1/2) =
R(ts+1)− R(ts)

ζ
+ O

(
ζ2tτ−3

s+1

)
, s ≥ 0. (27)

When Equations (7), (26) and (27) are combined, we have

ϑ(xj, ts+1)− ϑ(xj, ts) = dβ
2 ∑s+1

i=0 ρiψ
2ϑ(xj, ts+1−i) +

dβ
2 ∑s

i=0 ρiψ
2ϑ(xj, ts−i)

+ζϕj +
ζ
2

(
Rs+1

j +Rs
j

)
+O

(
ζ2 + ζh2).

(28)

Next, we report the error estimate for the second Scheme (10) as follows.

Theorem 4. Suppose that the solution to Caputo reaction–diffusion Equation (2) meets the
given smoothness requirements. Denote u(x, t) as the solution of (2) and

{
us

j

}
be the solution of

numerical Scheme (10). Then, as ζ and h independently approach zero

|es| = O
(

ζ + h2
)

, s ≥ 1. (29)

Proof. Taking (7) from (28), we obtain

es+1
j − es

j = dβ
2 ∑s

i=0 ρi

(
ψ2es+1−i

j + ψ2es−i
j

)
+Rs+1

j , 0 ≤ s ≤ Q − 1, 1 ≤ j ≤ P − 1.
(30)
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where Rs+1
j = O

(
ζ3tτ−3

s+1 + ζ2 + ζh2
)

. We multiply h(es+1
j + es

j) on both sides of Equation (30),
adding in terms of i, to have∥∥es+1

∥∥2 − ∥es∥2 = dβ
2 ∑s

i=0 ρi < ψ2(es+1−i + es−i), es+1 + es >
< Rs+1, es+1 + es > .

(31)

Adding over n results in∥∥es+1
∥∥2 − ∥es∥2 = dβ

2 ∑s
p=0 ∑s

i=0 ρi < ψ2(ep+1−i + ep−i), ep+1 + ep >

+∑s
p=0 < Rp+1, ep+1 + ep >

≤ −Dβ
2 ∑s

p=0 ∑s
i=0 ρi < ψ+

(
ep+1−i + ep−i), ψ+

(
ep+1 + ep) >

+∑s
p=0

∣∣Rp+1
∣∣
∞

(∥∥ep+1 + ep
∥∥+ ∥ep∥1

)
≤ D1M

(
ζ + h2 + ζτ∑s

p=0 (p + 1)τ − 3
)

.

(32)

For superdiffusive process (1 < τ < 2), the series ∑s
p=0 (p+ 1)τ−3 in (32) is convergent,

which satisfies
∥es∥ = O(ζ + h2), for s ≥ 1. (33)

In the same way, it can be verified that the numerical Scheme (10) is stable and satisfies
the inequality condition. □

∥∥∥ϑs+1
∥∥∥ ≤ D1

(
∥ϕ∥+ ∥ϕ∥ = ζ∑s

i=0

∥∥∥Ri+1 +Ri
∥∥∥), 0 ≤ s ≤ Q − 1. (34)

Based on the error estimates (19) and (29), both schemes exhibit first-order accuracy
in time and second-order accuracy in space. However, Scheme (10) has less stringent
smoothness requirements compared to Scheme (9), allowing it to be applied across a wider
range of scenarios.

In the works [33,35,36], numerical discussions are presented for a partial integro-
differential equation similar to (6) with a fractional order of τ = 1.5. Sanz-Serna introduces
a temporal semi-discrete first-order algorithm. Lopez proposes a difference scheme based
on the backward Euler method, with an error estimation of O(ζ

∣∣∣lnζ|1/2 + h2) . Tang
employs the Crank–Nicolson method and the product trapezoidal method to develop
a difference scheme with an accuracy of O(ζ3/2 + h2). However, it remains uncertain
whether this approach can be extended to any τ ∈ (1, 2).

3. Model Equations

In these sections, we present and briefly discuss some practical reaction–diffusion
models that continue to be of significant interest due to their wide-ranging applications
in various fields. These models are essential for understanding complex systems in both
natural and engineered environments.

3.1. Fractional Allen–Cahn Equation

The Allen–Cahn equation, named after John W. Cahn and Sam Allen, is a pivotal
reaction–diffusion equation in mathematical physics. This equation is crucial for modeling
the process of phase separation in multi-component alloy systems, which includes phenom-
ena such as order–disorder transitions. Phase separation is a fundamental process where a
homogeneous mixture of components evolves into distinct regions or phases, each enriched
in different components. This process is driven by the system’s tendency to minimize its
free energy. The Allen–Cahn (AC) equation provides a mathematical framework to describe
the temporal evolution of this separation, capturing the complex interplay between reaction
kinetics and diffusion [37].
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Mathematically, the Allen–Cahn equation is typically written as

Dτ
t ϑ = α∆2ϑ −N (ϑ) (35)

Here, ϑ = ϑ(x, t) represents the order parameter, which indicates the local state of
the system (e.g., the concentration of a particular component). The term α∆ϑ represents
the diffusion term, where ∆ is the Laplacian operator, reflecting how the order parameter
spreads out over time. The function N (ϑ) is a nonlinear term derived from the free energy
of the system, often taking the form of the derivative of a double-well potential, such as
N (ϑ) = ϑ − ϑ3.

In reaction–diffusion dynamics, the AC equation combines the effects of local reactions
(described by N (ϑ)) and diffusion (described by α∆ϑ). This combination allows it to
model the competition between different phases in a material. In multi-component alloy
systems, the equation is particularly useful for studying order–disorder transitions. These
transitions occur when a system changes from a disordered state, where components are
randomly distributed, to an ordered state, where components are arranged in a regular
pattern. The equation also describes the dynamics of interfaces between different phases.
As time progresses, these interfaces move and evolve according to the balance between
diffusive spreading and the local reaction kinetics [38]. In materials science, the Allen–Cahn
equation is widely used to simulate and understand the microstructural evolution of alloys.
For instance, it can predict how different phases nucleate, grow, and coarsen over time,
providing insights into the material’s properties.

The Allen–Cahn equation has been extensively studied both analytically and nu-
merically. Analytical approaches often involve studying the stability and bifurcation of
solutions, which provide insights into the conditions under which different phases form
and evolve. Numerical simulations, on the other hand, allow for the detailed visualization
of phase separation processes and the exploration of complex scenarios that are analytically
intractable. The AC equation is closely related to the Cahn–Hilliard equation, which also
describes phase separation but focuses on conserved quantities. While the Allen–Cahn
equation models non-conserved order parameters (like the local state of order), the Cahn–
Hilliard equation deals with conserved quantities (like concentration). Both equations are
fundamental in the study of pattern formation and are used to describe different aspects of
phase separation dynamics.

3.2. The Fractional KPP–Fisher Equation

In mathematical physics, the KPP–Fisher equation, named after Andrey Kolmogorov,
Ivan Petrovsky, Nikolai Piskunov, and Ronald Fisher, is a prominent partial differential
equation. It is also commonly referred to as the KPP equation, the Fisher equation [39], or
the Fisher–KPP equation [40,41]. This equation is significant in various fields, including
population genetics, ecology, and the study of reaction–diffusion systems.

The general KPP–Fisher equation is typically expressed as

Dτ
t ϑ = δ∆2ϑ + κϑ(1 − ϑq) (36)

Here, ϑ = ϑ(x, t) represents the density of the population or the concentration of a
chemical substance at position x and time t. The term δ∆2ϑ = ∂2ϑ

∂x2 is the Laplacian operator
that represents the diffusion component, where δ is the diffusion coefficient, indicating how
the substance spreads out in space. The term κϑ(1 − ϑq), q > 0 is the reaction component,
where κ is the growth rate of the population or reaction rate of the chemical substance. It
should be noted that whenever κ = 1 and q = 2, we recover the Allen–Cahn Equation (35).
The KPP–Fisher equation is related to other reaction–diffusion equations like the Allen–
Cahn equation and the Cahn–Hilliard equation. While the KPP–Fisher equation primarily
focuses on traveling wave solutions and logistic growth, the Allen–Cahn equation model’s
phase separation with non-conserved order parameters and the Cahn–Hilliard equation
deals with conserved quantities in phase separation processes.
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The Fisher equation was originally derived to describe the spread of an advantageous
gene in a population. The term κϑ(1 − ϑq) models logistic growth, where ϑ grows quickly
when it is small but slows down as it approaches the carrying capacity (normalized to 1).
One of the notable features of the KPP–Fisher equation is its ability to describe traveling
wave solutions. These are wave-like fronts that move with a constant speed, representing
the spread of a gene, population, or chemical concentration through space over time. The
minimum speed of these waves is given by v = 2

√
κδ. In an ecological context, the equation

models the spread of a species through a habitat. It accounts for both the natural diffusion
of the species and their growth and competition dynamics. Similarly, in the context of
chemical reactions, the equation describes the spread of reactants in a medium, combining
the effects of chemical kinetics and molecular diffusion. Analytically, the KPP–Fisher
equation has been studied for its traveling wave solutions, the stability of these waves, and
the long-term behavior of solutions. Understanding the minimum wave speed and the
conditions for wave formation are key analytical challenges. Numerical simulations are
extensively used to explore the dynamics of the equation in more complex scenarios, such
as heterogeneous environments or higher-dimensional spaces.

3.3. Ginzburg–Landau Equation

The Ginzburg–Landau equation, named after Vitaly Ginzburg and Lev Landau, is
a fundamental equation in the field of nonlinear dynamics and pattern formation. It
describes the evolution of small disturbances near a finite wavelength bifurcation, where
a system transitions from a stable to an unstable state. This equation plays a critical
role in understanding how complex patterns emerge in various physical, chemical, and
biological systems.

The Ginzburg–Landau equation is typically given as [42,43]

Dτ
t ϑ = σϑ + δ∆2ϑ − β

∣∣∣ϑ|2ϑ (37)

where ϑ = ϑ(x, t) is the complex amplitude of the disturbance, σ is a small parameter
representing the distance from the bifurcation point, δ is a coefficient related to the spatial
diffusion of the amplitude, and β is the nonlinear coefficient. The real part of ϑ is particularly
important for describing the physical aspects of the system’s state.

At the onset of a finite wavelength bifurcation, the system becomes unstable for
a critical wavenumber ωc, which is non-zero. This instability leads to the growth of
disturbances characterized by this wavenumber. Near the bifurcation, the disturbances
evolve with a Fourier mode corresponding to ωc and a slowly varying amplitude ϑ. The
Ginzburg–Landau equation governs the dynamics of this amplitude ϑ, capturing how
the disturbances grow, saturate, and interact over time. It should be mentioned that for
oscillatory behavior, ϑ satisfies the novel complex Ginzburg–Landau equation [44]. The
Ginzburg–Landau equation is typically given as

Dτ
t ϑ = (1 + iδ)∆2ϑ + ϑ − (1 + iβ)ϑ

∣∣∣ϑ|2ϑ (38)

where δ and β are treated as real constants. The solution of (38) often results in two
important modes. The non-oscillatory modes represent steady-state patterns that do not
change in time once they have fully developed. The disturbances grow until they reach a
stable amplitude and form stationary spatial structures, and the oscillatory modes lead to
time-dependent patterns that oscillate as they evolve. The amplitude ϑ varies not only in
space but also in time, leading to complex temporal behavior.

The Ginzburg–Landau equation is crucial in the study of pattern formation. It de-
scribes how simple initial disturbances can grow and form intricate spatial and temporal
patterns [45]. This is observed in a wide range of systems, from chemical reactions (like the
Belousov–Zhabotinsky reaction) to fluid dynamics (such as Rayleigh–Benard convection).
In the context of superconductivity, the equation helps describe the behavior of the order
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parameter near the critical temperature. It provides insights into the formation of vortices
and other phenomena in superconducting materials. For nonlinear optics, the GL equation
models the propagation of light in nonlinear media, explaining the formation of optical
patterns and solitons in lasers and other optical systems. In biology, it is conducive to an
understanding of the development of patterns in animal skins, the dynamics of populations,
and other phenomena where spatial and temporal variations are critical.

Analytically, the Ginzburg–Landau equation is studied to understand the stability
and bifurcation behavior of solutions. Researchers investigate how solutions change as
parameters like σ and δ vary and how nonlinear interactions lead to saturation and pattern
formation. Numerically, simulations of the Ginzburg–Landau equation reveal detailed
behavior of the amplitude ϑ over time and space [46,47]. These simulations help visualize
complex phenomena that are analytically intractable, providing deeper insights into the
dynamics of the system.

4. Numerical Experiments and Results

In this section, we carry out some numerical experiments to investigate the dynamic
behavior of the Allen–Cahn Equation (35), KPP–Fisher Equation (36), and the Ginzburg–
Landau Equation (38) in one-, two-, and three-dimensional spaces on an Alienware com-
puter using the Matlab R2021a software.

At first, one must justify the performance of Schemes (9) and (10) before solving
the main problems. To achieve this, we consider the Caputo time-fractional diffusion
problem (2) as

Dτ
t ϑ = d∆2ϑ(x, t) +R(x, t), x ∈ (0, L), t ∈ (0, T), and τ ∈ (0, 1). (39)

With choice

R(x, t) =
(

2t2−τ

Γ(3 − τ)
+ 4π2t2

)
, d = 1, ϑ(x, 0) = 0, ϑ(0, t) = 0,

we compute with exact solution ϑ(x, t) = t2sin(2πx). The maximum error

Emax = max
0≤j≤P

|ϑj − ϑj|, ϑj(exact solution), ϑj(numerical solution)

is displayed in Table 1 for different instances of t and fractional power τ for both schemes.
For the purpose of comparison with the existing method, we adapt the implicit (back-
ward Euler) scheme, as discussed in [48], to solve the Caputo time-fractional diffusion
problem (39). The results are presented in Table 2.

Table 1. The maximum error values showing the performances of methods (9) and (10) for various
fractional values of τ and time t with ζ = 0.01, ℏ = 0.125.

Scheme (9) Scheme (10)

t τ = 0.73 τ = 0.96 τ = 0.73 τ = 0.96
0.1 4.5275 × 10−8 2.3178 × 10−10 2.7468 × 10−10 7.2828 × 10−13

0.2 6.8127 × 10−8 2.2153 × 10−9 3.2182 × 10−10 3.3015 × 10−12

0.3 2.1546 × 10−8 4.6825 × 10−9 2.0548 × 10−10 2.4502 × 10−11

0.4 2.4584 × 10−8 6.6329 × 10−9 2.4594 × 10−10 4.3335 × 10−11

0.5 2.7013 × 10−8 2.3539 × 10−8 2.6138 × 10−10 6.3537 × 10−11

0.6 2.8045 × 10−8 2.3827 × 10−8 2.8235 × 10−10 2.0504 × 10−10

0.7 1.9832 × 10−8 2.5026 × 10−8 1.6830 × 10−9 1.7049 × 10−10

0.8 1.7939 × 10−7 2.6685 × 10−8 2.7328 × 10−9 2.6566 × 10−10

0.9 1.8132 × 10−7 2.0183 × 10−7 5.4933 × 10−9 4.8488 × 10−10
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Table 2. Comparison result with the implicit scheme in [48] for some values of τ and time t.

t τ = 0.73 τ = 0.96
0.1 2.88184 × 10−3 4.56621 × 10−4

0.2 2.94985 × 10−3 4.78469 × 10−4

0.3 3.02115 × 10−3 4.90196 × 10−4

0.4 3.08642 × 10−3 5.00000 × 10−4

0.5 3.16456 × 10−3 5.12821 × 10−4

0.6 3.31126 × 10−3 5.23560 × 10−4

0.7 3.47222 × 10−3 5.37634 × 10−4

0.8 3.71747 × 10−3 5.61798 × 10−4

0.9 3.98406 × 10−3 6.02410 × 10−4

For all the experiments, we utilize the homogeneous (zero-flux) boundary conditions
and the following initial conditions:

ϑ(x, 0) = exp(−20((x − φ/3)2)/φ)− exp(−20((x − φ/2)2)/φ)
+exp(−20(x − φ)2/φ),

(40)

ϑ(x, y, 0) = exp(−20((x − φ/3)2 + (y − φ/3)2)/φ)
−exp(−20((x − φ/2)2 + (y − φ/2)2)/φ)
+exp(−20((x − φ)2 + (y − φ)2)/φ),

(41)

ϑ(x, y, 0) = 2exp(−20(x − 1)2) + 2.05exp(−10(y − 1)2) + exp(−20(x + y)2), (42)

and

φ(x, y, z, 0) = exp(−20((x − φ/3)2 + (y − φ/3)2 + (z − φ/3)2)/φ)
−exp(−20((x − φ/2)2 + (y − φ/2)2 + (z − φ/2)2)/φ)
+exp(−20((x − φ)2 + (y − φ)2 + (z − φ)2)/φ).

(43)

The dynamic behavior of the fractional Allen–Cahn Equation (35) in 1D, 2D, and 3D are
displayed in Figures 1, 2, and 3, respectively, with φ = 10. Figure 1 is obtained for varying τ,
and α = 0.5 depicts the exact behavior of the standard Allen–Cahn equation in [47]. In the
experiments, the equation exhibits stable equilibria at ϑ = ±1 and an unstable equilibrium
at ϑ = 0. A notable aspect of this equation is its metastability. Solutions close to ±1 tend to
have flat surfaces, with the interface between these regions remaining stable for extended
periods before experiencing a sudden change. In 2D, we observed different spiral patterns,
as shown in Figure 2. The 3D dynamics for subdiffusive (0 < τ < 1) and superdiffusive
(1 < τ < 2) are displayed in Figure 3, showing both stable and unstable evolution.

The Allen–Cahn equation is a fundamental tool in mathematical physics and materials
science, providing deep insights into the process of phase separation and order–disorder
transitions in multi-component systems. Its ability to model the interplay between diffusion
and reaction kinetics makes it indispensable for understanding and predicting the behavior
of complex materials.

Figures 4–7 illustrate the numerical solutions of the KPP–Fisher Equation (36) in one,
two, and three dimensions. The 1D dynamics show a stable spatiotemporal evolution, as
depicted in Figure 4 (see caption for details). The 2D dynamics resemble the Allen–Cahn
distribution due to similarities between the two equations. Simulations with the initial
Conditions (41) and (42) produce the results shown in Figures 5 and 6, respectively. The
complex dynamics of the 3D evolution, starting from the initial condition in (43), are
presented in Figure 7.
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Figure 1. Allen–Cahn solution in 1D with different τ values.

The KPP–Fisher equation is a fundamental partial differential equation in mathematics
and applied sciences. Its ability to model the spread of populations, genes, or chemical
substances makes it a versatile tool in population genetics, ecology, and chemical kinetics.
The equation’s traveling wave solutions provide deep insights into how advantageous
genes spread through a population, how species expand their habitats, and how chemical
reactions propagate through space. Understanding and solving the KPP–Fisher equation
continues to be a significant area of research, with applications in various scientific and
engineering disciplines.
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Furthermore, we present numerical results for the fractional complex Ginzburg–
Landau (CGL) Equation (38) as displayed in Figures 8–11. Finally, numerical solutions for
both instances of time and fractional parameters are given in Figure 12. The CGL equation
is known for its oscillatory and spiral distribution behavior; this is evident in the 2D and
3D dynamics.
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Figure 9. Spatiotemporal chaos distribution of Ginzburg–Landau equation in 2D showing regular 
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Figure 10. Ginzburg–Landau equation in 2D showing spatiotemporal spiral patterns. 
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The Ginzburg–Landau equation is a cornerstone in the study of nonlinear dynamics
and pattern formation, as evident in Figures 8–11. Describing the evolution of disturbances
near a finite wavelength bifurcation provides a powerful framework for understanding
how complex structures emerge in a variety of physical, chemical, and biological systems.
Its applications span numerous fields, making it a versatile and essential tool in both
theoretical and applied research.

Apart from the Caputo derivative used in the present work, many other fractional
derivative operators have been widely employed to model reaction–diffusion problems,
particularly due to their ability to capture memory effects and anomalous diffusion, which
classical integer-order models fail to represent. Some commonly used fractional derivatives
in this context include the Caputo and Riemann–Liouville fractional derivatives, which
are often applied in space-fractional diffusion equations to describe subdiffusive behav-
iors where the rate of diffusion decreases over time. The Riesz and Grünwald–Letnikov
derivatives are also frequently used in numerical implementations of fractional diffusion
equations. Additionally, the Caputo–Fabrizio, Atangana–Baleanu fractional derivative,
with its non-singular and non-local kernel, has gained popularity for modeling more re-
alistic physical processes where both memory and hereditary properties are important.
These fractional operators provide flexibility in describing complex dynamics in reaction–
diffusion systems, such as in biological pattern formation, chemical kinetics, and ecological
systems. Further numerical techniques have been suggested in [49–53] for the solution of
time-dependent reaction–diffusion problems.
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Figure 12. Numerical results in 2D obtained for some final simulation time t = (1, 40, 80, 120, 160, 200)
and different instances fractional order τ = (1.45, 1.75, 2.00) for Ginzburg–Landau equation.

5. Conclusions

This study focused on developing efficient numerical methods utilizing fractional
difference schemes in the Caputo sense. The stability and convergence of these schemes
were thoroughly analyzed. They were applied to solve the Allen–Cahn equation, the
KPP–Fisher equation, and the complex Ginzburg–Landau equation across one, two, and
three dimensions. These examples highlight the versatility and importance of reaction–
diffusion models in various scientific and engineering disciplines. The ability to model and
predict the behavior of complex systems makes these models invaluable tools for research
and practical applications. The numerical experiments conducted revealed a variety of
spatiotemporal patterns, showcasing their potential applications in physics, biology, and
engineering processes. Future research will extend the presented methodology to address
coupled real-life problems, enhancing its practical applicability.
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