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Abstract: This paper introduces a novel leader–follower formation control strategy for autonomous
vehicles, aimed at achieving precise trajectory tracking in uncertain environments. The approach
is based on a graph guidance law that calculates the desired yaw angles and velocities for follower
vehicles using the leader’s reference trajectory, improving system stability and predictability. A key
innovation is the development of a Neural Adaptive Prescribed Performance Controller (NA-PPC),
which incorporates a Radial Basis Function Neural Network (RBFNN) to approximate nonlinear
system dynamics and enhances disturbance estimation accuracy. The proposed method enables
high-precision trajectory tracking and formation maintenance under random disturbances, which are
vital for autonomous vehicle logistics and detection technologies. Leveraging a graph-based guidance
law reduces control complexity and improves robustness against external disturbances. The inclusion
of second-order filters and adaptive RBFNNs further enhances nonlinear error handling, improving
control performance, stability, and accuracy. The integration of guidance laws, leader–follower control
strategies, backstepping techniques, and RBFNNs creates a robust formation control system capable
of maintaining performance under dynamic conditions. Comprehensive computer simulations
validate the effectiveness of this controller, highlighting its potential to advance autonomous vehicle
formation control.

Keywords: autonomous vehicle; trajectory tracking; leader–follower formation control; prescribed
performance

MSC: 92C15; 93C40; 93C85

1. Introduction

The coordination of multi-autonomous vehicles has become a significant area of
research, with a focus on diverse formation control strategies, including behavior-based
control [1], virtual structure [2], and decentralized control [3]. Behavior-based formation
control emphasizes local interactions among vehicles to form desired patterns, while virtual
structure formation control guides the vehicles to maintain their relative positions within
an invisible geometric framework. In decentralized control systems, individual vehicles
autonomously make decisions based on locally available information and interactions with
neighboring entities. This paper investigates leader–follower formation control for multi-
autonomous vehicles, selecting this approach due to its simplicity, ease of implementation,
and potential for achieving robust performance under specific conditions [4–6].

A significant amount of research has been conducted on the subject, and a consider-
able portion of it is of high quality. Yang and Gu [7] implemented nonlinear formation
alignment and docking control for a fleet of autonomous underwater vehicles by combin-
ing Lyapunov’s direct method with a smooth feedback control law. A leader–follower
framework has been employed to develop a guided formation control scheme using a
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modular design approach, incorporating concepts from integrator backstepping and cas-
cade theory [8]. These methods are straightforward and relatively easy to implement;
however, they encounter significant challenges when subjected to large disturbances. Es-
sentially, these methods lack the capability to autonomously adjust or effectively resist such
disturbances, underscoring a significant limitation in their adaptability and robustness.
Numerous approaches have been proposed for designing stable controllers, with the sliding
mode control (SMC) method emerging as a particularly favored option. SMC is a robust
control strategy that effectively mitigates the effects of external disturbances and modeling
uncertainties, making it particularly suitable for applications characterized by nonlinear
and unpredictable dynamics [9–12]. Wu et al. [10] combined SMC and backstepping tech-
niques to design a closed-loop control system to deal with uncertainty in formation control.
Wang et al. [11] introduced a method to address uncertainties by integrating SMC, multi-
layer neural networks, and adaptive robust techniques to develop an effective formation
controller for underwater vehicles. Also, Su et al. [13] developed an adaptive fixed-time
integral sliding mode observer to precisely estimate compound disturbances. However, the
implementation of SMC is associated with a significant drawback known as chattering [14].

To address this issue and enhance system robustness, various methods have been
proposed, among which the backstepping method is notable. Backstepping control pro-
vides a systematic and recursive approach to designing control laws for complex nonlinear
systems, ensuring stability while offering flexibility in managing uncertainties and distur-
bances, thus presenting advantages over SMC [15–17]. The Lyapunov-based backstepping
approach has been developed and proven to be able to work effectively [15,16]. Also,
Wang et al. [18] built a graph-theory-based backstepping controller to deal with the dis-
turbance. Zaidi et al. [19] combined the chatter-free SMC and backstepping techniques
in their design. Yang et al. [20] presented a controller that combines backstepping and
SMC techniques to effectively address external disturbances. These combination strategies
enhance resistance to perturbations. However, the method imposes a higher computational
burden and remains susceptible to instability caused by uncertainty disturbances.

Previous studies have employed Particle Swarm Optimization (PSO), Genetic Al-
gorithm (GA), and Fuzzy Logic Control (FLC) to optimize and effectively address the
problem, demonstrating the efficiency of these methods [21–23]. Also, neural network
technology is continuously developing and has gained popularity in recent years for han-
dling uncertainty disturbances [24–26]. Neural networks possess the property of universal
function approximation, enabling them to approximate any continuously differentiable
function. Utilizing Radial Basis Function Neural Networks (RBFNNs) to address uncer-
tainties has been shown to be highly efficient [27,28]. Zhao et al. [29] proposed using
RBFNNs and combining Lyapunov–Krasovskii functionals (LKFs) and backstepping tech-
niques as the control scheme. However, if the output of the RBFNN is not fed back to the
control system promptly to adjust the control strategy, the stability of the system will be
significantly compromised.

To enhance the robustness and adaptive performance of the system by adjusting
control inputs based on the error estimates from the RBFNN and clarifying the control
decision-making framework, the guidance law emerges as an effective solution [30–32].
Achieving stable performance of the system is challenging; however, a breakthrough was
first achieved with the development of the prescribed performance control (PPC) method,
despite the inherent difficulties in maintaining stable system performance. The core concept
of attaining predetermined levels of transient and steady-state performance in tracking
output errors is captured by an innovative PPC approach introduced in [33], employing
a transformation function that strictly increases or decreases the tracking error. Recently,
more PPC methods have been developed [20,34–36]. They have achieved good results,
but the challenge for formation control remains [37]. Mehdifar et al. [38] introduced a
distributed graph-based formation control method for leader–follower multi-agent systems,
employing a prescribed performance strategy that achieved promising results. Neverthe-
less, the method does not account for external disturbances. Dai et al. [37] incorporates
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barrier Lyapunov functions and an adaptive backstepping procedure to ensure the stabil-
ity of the closed-loop systems while maintaining transient performance within specified
bounds. The barrier Lyapunov Function is essential when state constraints must be strictly
enforced, while a conventional Lyapunov function is sufficient for general stability with-
out explicit state constraints. However, their method heavily relies on the accuracy of
dynamic modeling, which implies that its robustness and adaptability may be limited.
Jiang et al. [36] suggested a prescribed-time formation control approach for second-order
nonlinear multi-agent systems with a directed graph. Nonetheless, potential remains for
further optimization of the system responsiveness. In summary, the formation members
have limited communication capabilities, and complex algorithms may impede controller
performance. Moreover, accurately approximating disturbances poses a challenge, which
can affect the robustness and adaptability of a system [6,39,40].

In this paper, a controller is proposed for autonomous vehicle formation control,
combining the leader–follower method and backstepping technique. The predefined
trajectory of the leader and the desired formation shape direct the generation of desired
yaw angles and velocities for the followers through a graph-based guidance law. Nonlinear
error handling is achieved through a second-order filter and RBFNN, complemented by an
adaptive law. Furthermore, a barrier Lyapunov function is utilized to accomplish controlled
performance objectives.

Despite significant progress in vehicle formation control, many existing methods
struggle to maintain precise trajectory tracking and formation under random disturbances
or unknown nonlinearities. Additionally, these approaches often do not adequately
address the balance between control complexity and system robustness in highly dy-
namic environments. Previous studies have also lacked detailed comparisons with meth-
ods using predefined performance constraints (PPCs), which are crucial for evaluating
real-world effectiveness.

The key contributions of this work are summarized as follows: (1) This work en-
ables precise trajectory tracking and formation maintenance under random disturbances,
addressing a key limitation in current autonomous vehicle formation control methods.
This contribution is particularly relevant to future logistics and autonomous vehicle de-
tection technologies. (2) A graph-based guidance law is designed for preemptive input
optimization and adjustment, reducing control complexity and significantly enhancing
system robustness, allowing PPC systems to handle external variations more effectively
and maintain predetermined performance standards. (3) The use of second-order filters
and RBFNNs effectively handles nonlinear errors, improving control performance by miti-
gating nonlinearities, enhancing stability, and tracking accuracy. The adaptive law further
enhances adaptability to changing dynamics. (4) This approach successfully integrates the
guidance law, leader–follower control, backstepping technique, and RBFNNs to achieve
robust formation control under external random disturbances, increasing system robustness
while decreasing controller complexity.

The remainder of this study is organized as follows: In Section 2, the kinetic and
dynamic model of the vehicle is presented. Section 3 outlines the development of the
proposed controller, utilizing a Lyapunov function to establish stability. Section 4 details
the simulation outcomes for formation trajectory tracking under external disturbances.
Finally, Section 5 provides a summary and the conclusions of this study.

2. Kinematics and Dynamics Models

Referring to Figure 1, the kinematics and dynamics of the i-th vehicle can be expressed
as follows: 

ẋi = vi cos(θi)

ẏi = vi sin(θi)

θ̇i = σ−1
i vi tan(δi) + fθ,i(θi) + dθ,i

v̇i = Fi + fv,i(vi) + dv,i

(1)
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where the constant σi > 0 is the length of the i-th vehicle; (xi, yi) denotes the reference
point of the i-th vehicle positioned at the midpoint of the rear axle; xi ∈ R represents the
longitudinal position; and yi ∈ (−a, a) denotes the lateral position of the vehicle in an
inertial frame with Cartesian coordinates (X, Y). The speed of the i-th vehicle at point
(xi, yi) is denoted by vi, while θi ∈

(
−π

2 , π
2
)

represents the angular orientation of the vehicle
relative to the X axis. The steering angle of the front wheels relative to the orientation of
the i-th vehicle θi is denoted by δi, and the acceleration of the i-th vehicle is denoted by Fi.
Note that fθ,i(θi) and fv,i(vi) are unknown nonlinear functions; dθ,i(t) and dv,i(t) denote
the unknown and bounded external disturbances, respectively.

Figure 1. Vehicle model.

Lemma 1. The nonlinear function g(x) can be approximated by an RBFNN with a specified
accuracy ε̄ > 0. Specifically, g(x) is expressed as

g(x) = WTφ(x)+ ε(x),

where W ∈ Rl×l represents the ideal constant weight matrix, and ε(x) ∈ Rl is the approximation er-
ror satisfying |ε(x)| ≤ ε̄. Here, φ(x) = (φ1(x), φ2(x), . . . , φl(x))

T denotes the vector of Gaussian

basis function, where φj(x) = exp
(
− ∥x−ϱj∥2

2σ2
j

)
, for j = 1, 2, . . . , l, with ϱj and σj representing the

center and width of the Gaussian basis function φj(x), respectively. Here, x =
(
x1, x2, . . . , xq

)T .
Furthermore, there is ∥φ(x)∥2 ≤ ∥φ(ẋ)∥2, where ẋ = (ẋ1, ẋ2, . . . , ẋr)

T , r ≤ q.

Lemma 2. For all a, b ≥ 0, and p, q > 0, with 1/p + 1/q = 1, the inequality ab ≤ ap

p + bq

q
is satisfied.

3. Controller Design

In this section, a formation tracking controller is proposed for the vehicle formation
members. Figure 2 describes the structure and the workflow of the proposed system. Figure 3
illustrates the geometric relationship between the leader and the i-th follower and shows how
the leader–follower mechanism works, where the i-th member follows the leader as its follower.
The whole system is designed using the backstepping technique. Given the desired trajectory
of the leader and considering the kinematics and dynamics involved, the desired velocity and
steering angle are formulated and subsequently integrated into the guidance law. Subsequently,
the desired yaw angle θd,i and velocity vd,i for the followers are calculated, which are then used
as inputs to their respective steering angle and velocity controllers. To ensure high robustness
against unknown disturbances, a second-order filter is employed to estimate the error, and an
RBFNN is used to approximate the unknown nonlinear function. For this purpose, an adaptive
law is designed. Additionally, a nominal function is considered in the system, and another
adaptive law is introduced to handle it. Finally, the final desired steering angle and velocity are
computed to guide the followers effectively.



Mathematics 2024, 12, 3259 5 of 21

Figure 2. Proposed formation controller design.

Figure 3. Formation control of the geometric relationship between leader and i-th follower.

3.1. Guidance Law Design

The guidance law is specifically formulated to enhance the flexibility and adaptability
of the system. In this paper, the desired shape of the formation is predefined, while the
initial positions of the formation members are randomized. For illustration, consider the
scenario involving a leader and one of its followers (denoted as i). The current position of
follower i is represented as pi, while pi,d signifies its desired position. The desired position
vector pi,d = [xi,d, yi,d]

T = [xi, yi]
T + [∆x, ∆y]T.

Referring to Figure 3, the objective is to effectively control the i-th member, ensuring
that pi converges to the target position. To achieve this, an error term is defined with the
objective of driving it to convergence as follows:[

xe,i
ye,i

]
=

[
cos θi,0,p − sin θi,0,p
sin θi,0,p cos θi,0,p

]T(
pi − pi,d

)
, (2)

where θi,0,p = atan 2
(
y′i + ∆y′, x′i + ∆x′

)
∈ [−π, π], ye,i denotes the minimum distance

between the current position pi of vehicle i and the trajectory path of its desired position
pi, d, and xe,i denotes the distance along the trajectory line between the actual position pi
of the vehicle i and the moving line of the desired position pi,d.

Minimizing the error requires precise calculation. The derivative of ye,i is obtained
as follows:

ẏe,i = vi sin
(
θi − θp,i

)
. (3)
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The barrier Lyapunov function is used in the design of the control law to constrain
the error and ensure the controlled member remains stable during motion. Additionally,
distinct Lyapunov candidates are designed for ye,i and xe,i to minimize interference between
the different error terms. A Lyapunov function for ye,i is presented as follows:

V1 =
b2

y,i

π
tan

(
πye,i

2

2b2
y,i

)
, (4)

where by,i is the upper boundary of ye,i.
By taking the derivative of Equation (4), one can prove the stability of V1 as follows:

V̇1 =
ye,i ˙ye,i

cos2
(

πye,i
2

2b2
y,i

) +
2by,i ḃy,i

π
tan

(
πye,i

2

2b2
y,i

)
−
(

ḃy,i

by,i

)
ye,i

2

cos2
(

πye,i
2

2b2
y,i

) . (5)

Using the vector field guidance principle, the desired yaw angle can be formulated
θd,i as follows:

θd,i =θp,i + arcsin

(
−

kyb2
y,i

2viπye,i
sin

(
πy2

e,i

b2
y,i

)
+

ḃy,i

viby,i
ye,i

)
, (6)

where ky > 0 is the guidance law parameter, representing the strength of the vector field.
According to Equations (3) and (6), Equation (5) can be rewritten as Equation (7).

V̇1 =
ye,i ẏe,i

cos2
(

πye,i
2

2b2
y,i

) +
2by,i ḃy,i

π
tan

(
πye,i

2

2b2
y,i

)
−
(

ḃy,ic

by,i

)
ye,i

2

cos2
(

πye,i
2

2b2
y,i

)
≤ ye,i ẏe,i

cos2
(

πye,i
2

2b2
y,i

) −
(

ḃy,ic

by,i

)
ye,i

2

cos2
(

πye,i
2

2b2
y,i

) +
2kbb2

y,i

π
tan

(
πye,i

2

2b2
y,i

)

≤
ye,ivi sin

(
θi − θp,i

)
cos2

(
πye,i

2

2b2
y,i

) −
(

ḃy,ic

by,i

)
ye,i

2

cos2
(

πye,i
2

2b2
y,i

) +
2kbb2

y,i

π
tan

(
πye,i

2

2b2
y,i

)

≤
ye,i

(
−

kdb2
y,i

2πye,i
sin(

πy2
e,i

b2
y,i

) +
ḃy,i
by,i

ye,i

)
cos2

(
πye,i

2

2by,i

) −
(

ḃy,ic

by,i

)
ye,i

2

cos2
(

πye,i
2

2b2
y,i

) +
2kbb2

y,i

π
tan

(
πye,i

2

2b2
y,i

)

≤ −(kd − 2kb)
b2

y,i

π
tan

(
πye,i

2

2b2
y,i

)
,

(7)

where kb = sup
∣∣∣∣ ḃy,i

by,i

∣∣∣∣.
By choosing kd > 2kb, the following inequality holds:

V̇1 ≤ −c1V1, (8)

where c1 = kd − 2kb.
From Figure 3, the derivative of xe,i can be obtained as follows:

ẋe,i = v0 − vi cos βi. (9)
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A Lyapunov function for xe,i is presented as follows:

V2 =
b2

x,i

π
tan

(
πxe,i

2

2b2
x,i

)
, (10)

where bx,i is the upper boundary of xe,i. Additionally, in accordance with the guidance law,
the desired velocity is formulated as follows:

vd,i =
1

cos βi

(
kvb2

x,i

2πxe,i
sin

(
πx2

e,i

b2
x,i

)
− ḃx,i

bx,i
xe,i + vj

)
, (11)

where βi = θi − θpi.
Upon differentiating Equation (10), the resulting expression for V̇2 is given

by Equation (12).

V̇2 =
xe,i ẋe,i

cos2
(

πxe,i
2

2b2
x,i

) +
2bx,i ḃx,i

π
tan

(
πxe,i

2

2b2
x,i

)
−
(

ḃx,ic

bx,i

)
xe,i

2

cos2
(

πxe,i
2

2b2
x,i

)
≤ xe,i ẋe,i

cos2
(

πx2
e,i

2b2
x,i

) −
(

ḃx,i

bx,i

)
x2

e,i

cos2
(

πx2
e,i

2b2
x,i

) +
2kcb2

x,i

π
tan

(
πx2

e,i

2b2
x,i

)

≤
xe,i
(
vj − vi cos βi

)
cos2

(
πx2

e,i
2b2

x,i

) −
(

ḃx,i

bx,i

)
xe,i

2

cos2
(

πx2
e,i

2b2
x,i

) +
2kcb2

x,i

π
tan

(
πx2

e,i

2b2
x,i

)

≤ −(kv − 2kc)
b2

x,i

π
tan

(
πx2

e,i

2b2
x,i

)
,

(12)

where kc = sup
∣∣∣∣ ḃx,i

bx,i

∣∣∣∣.
By selecting kv > 2kc, the following can be additionally derived:

V̇2 ≤ −c2V2, (13)

where c2 = kv − 2kc.

3.2. Steering Angle Controller Design

With the guidance law providing the desired yaw angle and velocity, it is essential
to design controllers for these parameters. These controllers are developed indepen-
dently, offering several practical advantages, including modularity, specialization,
simplicity, robustness, and scalability. For the i-th formation member, the angle error is
defined as follows:

eθ,i = θi − θd,i. (14)

Note that the computations of the derivatives of θd,i are extremely intricate. Therefore,
a second-order filter is introduced to mitigate this complexity as follows:{

Φ̇10 = Φ20

Φ̇20 = −2ζ0ωn0Φ20 − ω2
n(Φ10 − θd,i)

, (15)

where the damping rate ζ0 and frequency ωn0 are predetermined constants, θd,i represents
the input, Φ10 is the output and an estimation of θd,i, and Φ20 can be interpreted as the
derivative of θd,i, denoted as θ̂d,i. The estimated error of this second-order filter is defined
as follows:

˜̇θd,i=θ̇d,i − ˆ̇θd,i. (16)
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Consider a Lyapunov candidate

V0 =
1
2

e2
θ,i (17)

and refer to Equations (1) and (16). The derivative of V0 can be expressed as follows:

V̇0 = eθ,i ėθ,i

= eθ,i
(
θ̇i − θ̇d,i

)
= eθ,i

(
σ−1

i vi tan(δi) + fθ,i + dθ,i − ˆ̇θd,i − ˜̇θd,i

)
.

(18)

RBFNN is a type of artificial neural network that is commonly used for function
approximation and pattern recognition tasks. The network architecture consists of
three layers: an input layer, a hidden layer utilizing radial basis functions, and an
output layer. In this control system, the RBFNN helps to handle unknown nonlinearities
by compensating for steering angle errors. The steering angle error eθ,i is fed into
the RBFNN, which processes it using radial basis functions. The RBFNN generates a
compensation signal by combining the responses from different nodes. The network
adjusts its weights in real time using an adaptive law, allowing it to better approximate
the nonlinearities in the system as conditions change. Finally, the RBFNN output,
along with other control factors, is used to update the steering angle. This ensures the
vehicle stays on its desired path, even when facing disturbances or changing conditions.
The adaptive nature of the RBFNN makes the system more robust and responsive.
Consequently, this process can be expressed as follows:

V̇0 = eθ,i

(
σ−1

i vi tan(δi) + Wθ,i φθ,i + εθ,i + dθ,i − ˆ̇θd,i − ˜̇θd,i

)
= eθ,i

(
σ−1

i vi tan(δi) + Wθ,i φθ,i − ˆ̇θd,i + d̃θ,i

)
,

(19)

where d̃θ,i = εθ,i + dθ,i − ˜̇θd,i represents total disturbances. It is evident that d̃θ,i is bounded,
adhering to d̃θ,i ≤ d̄θ,i. Furthermore, W̃θ,i = Wθ,i − Ŵθ,i and Wθ,i ≤ W̄θ,i.

To deal with the unknown nonlinear functions, the adaptive law is designed as follows:

˙̂Wθ,i = k1,θ,i
(

φθ,ieθ,i − k2,θ,iŴθ,i
)

(20)

with positive parameters k1,θ,i and k2,θ,i.
To deal with nominal disturbance, another adaptive law is designed as follows:

˙̂dθ,i = k3,θ,i

(
eθ,i − k4,θ,i d̂θ,i

)
(21)

with positive parameters k3,θ,i and k4,θ,i.
For the adaptive tracking controller, the intended steering angle of the front wheels

can be formulated as follows:

δd,i = arctan
(

v−1
i σi(−k5,θ,ieθ,i − d̂θ,i − Ŵθ,i φθ,i +

ˆ̇θd,i)
)

. (22)

Consider a Lyapunov candidate given by the following:

V3 =
1
2

e2
θ,i +

1
2

k−1
3,θ,i d̂

2
θ,i +

1
2

k−1
1,θ,iW̃

2
θ,i, (23)

where d̃ = d̄ − d̂. After some straightforward manipulation, the time derivative of V3 can
be expressed as Equation (24) as follows:
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V̇3 =eθ,i ėθ,i + d̂θ,i
˙̂dθ,i + W̃θ,i

˙̃Wθ,i

=eθ,i

(
σ−1

i vi tan(δi) + Wθ,i φθ,i − ˆ̇θd,i + d̃θ,i

)
+ d̂θ,i

(
eθ,i − k4,θ,i d̂θ,i

)
− W̃θ,i

˙̂Wθ,i

=eθ,i

(
−k5,θ,ieθ,i − d̂θ,i − Ŵθ,i φθ,i + Wθ,i φθ,i + d̃θ,i

)
+ d̂θ,i

(
eθ,i − k4,θ,i d̂θ,i

)
− W̃θ,i

(
φθ,ieθ,i − k2,θ,iŴθ,i

)
≤− k5,θ,ie2

θ,i − k4,θ,i d̂2
θ,i + eθ,i d̄θ,i + k2,θ,iW̃θ,iŴθ,i

≤− k5,θ,ie2
θ,i − k4,θ,i d̂2

θ,i + eθ,i d̄θ,i + k2,θ,i
∥∥W̃θ,i

∥∥∥∥Ŵθ,i
∥∥

≤− k5,θ,ie2
θ,i − k4,θ,i d̂2

θ,i + eθ,i d̄θ,i + k2,θ,i
∥∥W̃θ,i

∥∥(W̄θ,i −
∥∥W̃θ,i

∥∥),

(24)

where ∥Wθ,i∥ ≤ W̄θ,i.
Utilizing Lemma 2, the following inequalities can be described as follows:

∥∥W̃θ,i
∥∥(W̄θ,i −

∥∥W̃θ,i
∥∥) ≤ −1

2

∥∥W̃θ,i
∥∥2

+
1
2

W̄2
θ,i (25)

and
eθ,i d̄θ,i ≤

1
2
∥eθ,i∥2 +

1
2

d̄2
θ,i. (26)

Then, by combining the inequalities Equations (25) and (26), Equation (24) can be
reformulated as follows:

V̇3 ≤− k5,θ,ie2
θ,i − k4,θ,i d̂2

θ,i −
1
2

k2,θ,i
∥∥W̃θ,i

∥∥2
+

1
2
∥eθ,i∥2 +

1
2

d̄2
θ,i + k2,θ,i

1
2

∥∥W̄θ,i
∥∥2

≤− (k5,θ,i −
1
2
)e2

θ,i − k4,θ,i d̂2
θ,i −

1
2

k2,θ,i
∥∥W̃θ,i

∥∥2
+

1
2

d̄2
θ,i + k2,θ,i

1
2

∥∥W̄θ,i
∥∥2.

(27)

From Equation (27), it can be concluded that V̇3 ≤ −σ3V3 + ζ1, where σ3 = min{k5,θ,i −
1
2 , k4,θ,i, k2,θ,i} > 0 and ζ1 = 1

2 d̄2
θ,i + k2,θ,i

1
2

∥∥W̄θ,i
∥∥2

> 0.

3.3. Velocity Controller Design

For formation members, the velocity error is defined as follows:

ev,i = vi − vd,i. (28)

Note that the computations of the derivatives of vd,i are extremely intricate. Therefore,
a second-order filter is introduced to mitigate this issue as follows:{

Φ̇30 = Φ40

Φ̇40 = −2ζ0ωn0Φ40 − ω2
n(Φ10 − vd,i),

(29)

where damp rate ζ0 and frequency ωn0 are designed constants, vd,i is the input, Φ30 is the
output and the estimation of vd,i, and Φ40 can be taken as the derivative of vd,i which is
denoted as v̂d,i. The estimation error for this second-order filter is characterized as follows:

˜̇vd,i=v̇d,i − ˆ̇vd,i. (30)

By taking the derivative of the velocity error,

ėv,i = v̇i − v̇d,i

= Fi + fv,i(vi) + dv,i − ˆ̇vd,i − ˜̇vd,i.
(31)
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Again, the unknown nonlinear functions can be approximated by employing an
RBFNN as follows:

ėv,i = Fi + Wv,i φv,i + εv,i + dv,i − ˆ̇vd,i − ˜̇vd,i

= Fi + Wv,i φv,i + dv,i − ˆ̇vd,i + d̃v,i
(32)

where d̃v,i = εv,i + dv,i − ˜̇vd,i is the total disturbance. Apparently, d̃v,i is bounded, satisfying
d̃v,i ≤ d̄v,i. W̃v,i = Wv,i − Ŵv,i and Wv,i ≤ W̄v,i.

To deal with the unknown nonlinear functions, the adaptive law is designed as follows:

˙̂Wv,i = k1,v,i
(

φv,iev,i − k2,v,iŴv,i
)

(33)

with positive parameters k1,v,i and k2,v,i.
To deal with nominal disturbance, another adaptive law is designed as

˙̂dv,i = k3,v,i

(
ev,i − k4,v,i d̂v,i

)
(34)

with positive parameters k3,v,i and k4,v,i. The adaptive tracking controller for the desired
velocity can be formulated as follows:

Fd,i = −k5,v,iev,i − d̂v,i − Ŵv,i φv,i + ˆ̇vd,i. (35)

Consider a Lyapunov candidate

V4 =
1
2

e2
v,i +

1
2

k−1
3,v,i d̂

2
v,i +

1
2

k−1
1,v,iW̃

2
v,i. (36)

Then, by combining Equations (31), (33) and (34), the differential of V4 can be described
as Equation (37) as follows:

V̇4 =ev,i ėv,i + d̂v,i
˙̂dv,i + W̃v,i

˙̃Wv,i

=ev,i
(

Fi + Wv,i φv,i − ˆ̇vd,i + d̃v,i
)
+ d̂v,i

(
ev,i − k4,v,i d̂v,i

)
− W̃v,i

˙̂Wv,i

=ev,i

(
−k5,v,iev,i − d̂v,i − Ŵv,i φv,i + Wv,i φv,i + d̃v,i

)
+ d̂v,i

(
ev,i − k4,v,i d̂v,i

)
− W̃v,i

(
φv,iev,i − k2,v,iŴv,i

)
≤− k5,v,ie2

v,i − k4,v,i d̂2
v,i + ev,i d̄v,i + k2,v,iW̃v,iŴv,i

≤− k5,v,ie2
v,i − k4,v,i d̂2

v,i + ev,i d̄v,i + k2,v,i
∥∥W̃v,i

∥∥∥∥Ŵv,i
∥∥

≤− k5,v,ie2
v,i − k4,v,i d̂2

v,i + ev,i d̄v,i + k2,v,i
∥∥W̃v,i

∥∥(W̄v,i −
∥∥W̃v,i

∥∥),

(37)

where ∥Wv,i∥ ≤ W̄v,i.
Utilizing Lemma 2, the following inequalities can be derived.

∥∥W̃v,i
∥∥(W̄v,i −

∥∥W̃v,i
∥∥) ≤ −1

2

∥∥W̃v,i
∥∥2

+
1
2

W̄2
v,i (38)

and
ev,i d̄v,i ≤

1
2
∥ev,i∥2 +

1
2

d̄2
v,i. (39)

Combining inequalities (38) and (39), Equation (37) can be presented as follows:

V̇4 ≤− k5,v,ie2
v,i − k4,v,i d̂2

v,i −
1
2

k2,v,i
∥∥W̃v,i

∥∥2
+

1
2
∥ev,i∥2 +

1
2

d̄2
v,i + k2,v,i

1
2

∥∥W̄v,i
∥∥2

≤− (k5,v,i −
1
2
)e2

v,i − k4,v,i d̂2
v,i −

1
2

k2,v,i
∥∥W̃v,i

∥∥2
+

1
2

d̄2
v,i + k2,v,i

1
2

∥∥W̄v,i
∥∥2.

(40)
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Thus, it can be concluded that V̇4 ≤ −σ4V4 + ζ2 with

σ4 = min{k5,v,i −
1
2

, k4,v,i,
1
2

k2,v,i} > 0 (41)

and

ζ2 =
1
2

d̄2
v,i + k2,v,i

1
2

∥∥W̄v,i
∥∥2

> 0. (42)

3.4. Stability Analysis

Consider the Lyapunov candidate represented as follows:

V =V1 + V2 + V3 + V4

=
b2

x,i

π
tan

(
πxe,i

2

2b2
x,i

)
+

b2
y,i

π
tan

(
πye,i

2

2b2
y,i

)

+
1
2

e2
θ,i +

1
2

k−1
3,θ,i d̂

2
θ,i +

1
2

k−1
1,θ,iW̃

2
θ,i +

1
2

e2
v,i +

1
2

k−1
3,v,i d̂

2
v,i +

1
2

k−1
1,v,iW̃

2
v,i.

(43)

It concludes that V̇ ≤ −σV + ζ, where

σ = min
{

kd − 2kb, kv − 2kc, k5,θ,i −
1
2

, k4,θ,i, k2,θ,i, k5,v,i −
1
2

, k4,v,i, k2,v,i

}
> 0 (44)

and

ζ =
1
2

d̄2
v,i + k2,v,i

1
2

∥∥W̄v,i
∥∥2

+
1
2

d̄2
θ,i + k2,θ,i

1
2

∥∥W̄θ,i
∥∥2

> 0. (45)

Choosing parameters such that kd > 2kb, kv > 2kc, k5,θ,i > 1
2 , and k5,v,i > 1

2 , and

integrating Equation (43), it can derive the inequality V ≤
(

V(0)− ζ
σ

)
e−σt + ζ

σ . There, it can

be concluded that V is bounded. Moreover,
b2

x,i
π tan

(
πxe,i

2

2b2
x,i

)
≤ V ≤

(
V(0)− ζ

σ

)
e−σt + ζ

σ and

b2
y,i
π tan

(
πye,i

2

2b2
y,i

)
≤ V ≤

(
V(0)− ζ

σ

)
e−σt + ζ

σ imply that the following constraints hold:

xe,i
2 ≤

2b2
x,i

π
tan−1

(
π

b2
x,i

((
V(0)− ζ

σ

)
e−σt +

ζ

σ

))
< b2

x,i (46)

and

ye,i
2 ≤

2b2
y,i

π
tan−1

(
π

b2
y,i

((
V(0)− ζ

σ

)
e−σt +

ζ

σ

))
< b2

y,i. (47)

Hence, it can be concluded that xe,i and ye,i are constrained such that |xe,i| < |bx,i| and
|ye,i| <

∣∣by,i
∣∣. Ultimately, these terms can be reduced to a narrow vicinity around zero.

4. Simulation Results

In this section, the simulation results are presented to demonstrate formation control
under various disturbances. To highlight the performance of the proposed approach
clearly, the controller is compared with the conventional controller, which does not employ
the PPC method in the simulation results. Main parameters of the controller are listed
in Table 1. Vehicle 1 serves as the leader, and Vehicles 2 to 6 act as the followers in the
simulation. The leader’s desired trajectory, denoted as (x1(t), y1(t)), follows the equations
x1(t) = 2 sin( t

10 ) + 2 cos( t
5 ) and y1(t) = 2t. The vehicles are arranged in a hexagonal

formation, with each side measuring 10 m in length. Initially, Vehicles 2 to 6 are positioned
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at (2,−9.9), (−6.5,−15), (−6.5, 15), (−15.5, 0.1), and (−6.5, 5.1), respectively. The velocity

of the leader is set as v(t) =
√( 2

10 cos
( t

10
)
− 2

5 sin
( t

5
))2

+ 22. The heading angle of the
object is set as ψ(t) = atan2

(
2, 2

10 cos
( t

10
)
− 2

5 sin
( t

5
))

.
When modeling dynamic systems subject to random perturbations χ(t), the stochastic

differential equation as follows is utilized:

χ̇(t) = −2χ(t) + u(t)− 0.5, (48)

where u(t) follows a standard normal distributed random process. This equation character-
izes the evolution of external disturbances over time (refer to Figure 4).

Figure 4. An example of external disturbance χ(t).

Table 1. Main parameters of the controller.

Parameter Value Parameter Value

ky 0.1 k4,θ,i 0.01
kv 0.1 k5,θ,i 2

k1,θ,i 0.5 k3,v,i 1
k2,θ,i 8 k4,v,i 1
k1,v,i 5 k5,v,i 0.2
k2,v,i 18 ζ0 0.8
k3,θ,i 10 ωn0 20

Figure 5 shows the vehicle formation trajectories under different controllers, compar-
ing results with and without the proposed PPC method. From the shape of the trajectories,
it is evident that both controllers effectively maintained the formation during movement
and ensured a smooth motion trajectory. This demonstrates the efficacy of the designed
guidance laws, neural networks, and adaptive laws. The simulation results presented in
Figures 6 and 7 provide a comprehensive analysis of the effectiveness of the formation con-
trol algorithm in minimizing trajectory tracking errors for the followers. Furthermore, these
results clearly demonstrate that controllers utilizing the PPC method are more effective at
reducing tracking errors than those without the PPC method.

Initially, the position errors along the x and y axes for the followers are approximately
1 m, which can be attributed to random initial conditions. However, as the simulation
progresses, the formation control algorithm effectively guides the followers towards their
target positions, leading to a rapid convergence of position errors. Within a short period, the
errors decreased significantly, demonstrating the high precision and effectiveness achieved
by the control strategy. It is clear that the error curves for controllers without the PPC
method converge more slowly and exhibit higher maximum error values compared to
those with the PPC method.
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(a)

(b)

Figure 5. Trajectory of formation with different cases: (a) Without PPC method and (b) with PPC method.

The figures also showcase the error constraints, which define the acceptable range of
position errors during operation (0.25 m). As shown in Figures 6 and 7, the control errors
with the PPC method are confined within the preset constraints throughout the entire
simulation process, whereas the errors without the PPC method exceed the constraints
before converging and ultimately settle at a noticeably higher level compared to those with
the PPC method.

(a)

Figure 6. Cont.
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(b)

Figure 6. Trajectory tracking error of x-axis with different methods: (a) without PPC method
and (b) with PPC method.

(a)

(b)

Figure 7. Trajectory tracking error of y-axis with different methods: (a) Without PPC and (b) with PPC.

As depicted in Figure 8, the leader’s angular change exhibits a smooth transition. In
the initial startup phase (approximately the first 2 s), the five followers swiftly adjust their
angles within a range of 58 to 140 degrees. Subsequently, they converge to a narrower
variation range of 90 to 100 degrees. Based on the overlap of the curve colors, the conver-
gence speed of the error for controllers with the PPC method is slightly higher than that of
controllers without the PPC method.

The velocity progression of the formation members is illustrated in Figure 9. Within the
initial three seconds, all followers rapidly converge their speeds to a range of 1.8–2.5 m/s
and subsequently maintain a speed almost consistent with that of Vehicle 1. It is noteworthy
that the speed of controllers with the PPC method converges well around 12 s, whereas the
speed outputs of controllers without the PPC method only converge well after 15 s. This
further demonstrates that controllers incorporating the PPC method are more stable.
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(a)

(b)

Figure 8. Steering angle error of formation with different methods: (a) Without PPC and (b) with PPC.

Figures 10–14 depict the control inputs applied to the followers under various distur-
bances. The inputs rapidly converge, demonstrating the stability of the approach.

To provide a more detailed depiction of the results, the Mean Squared Error and
maximum error of the position will be shown to more clearly reflect its performance. For
the i-th follower, the mean squared position error ui is calculated as ui =

1
N ∑N

t=1(ei(t))2,

where ei(t) =
√

x2
e,i(t) + y2

e,i(t) represents the position error at time step t, and N is the total
number of samples. The maximal position error for the i-th follower mi can be calculated
as mi = maxN

t=1{ei(t)}.

(a)

Figure 9. Cont.
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(b)

Figure 9. Vehicle velocity with different methods: (a) Without PPC and (b) with PPC.

The results, as shown in Table 2, clearly demonstrate the superior performance of
the proposed controller compared to the conventional one (without PPC), which aligns
with expectations.

(a)

(b)

Figure 10. Control inputs of Vehicle 2 with different methods: (a) Without PPC (b) with PPC.
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(a)

(b)

Figure 11. Control inputs of Vehicle 3 with different methods: (a) Without PPC and (b) with PPC.

(a)

Figure 12. Cont.
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(b)

Figure 12. Control inputs of Vehicle 4 with different methods: (a) Without PPC and (b) with PPC.

(a)

(b)

Figure 13. Control inputs of Vehicle 5 with different methods: (a) Without PPC and (b) with PPC.
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(a)

(b)

Figure 14. Control inputs of Vehicle 6 with different methods: (a) Without PPC and (b) with PPC.

Table 2. The mean square (u) and maximal (m) position errors of vehicles in meters.

Vehicle u (Without PPC) u (With PPC) m (Without PPC) m (With PPC)

2 0.1870 0.0570 1.2975 1.0334
3 0.0242 0.0114 0.4422 0.5004
4 0.0073 0.0051 0.6607 0.6452
5 0.0111 0.0060 0.6646 0.6470
6 0.1360 0.0604 0.9094 0.8705

5. Conclusions

This paper introduces an adaptive leader–follower formation controller with pre-
scribed performance. The guidance law computes the desired velocity and steering angle
based on the leader’s trajectory and a predefined formation pattern. To address chal-
lenges posed by unknown functions and external disturbances, a second-order filter and an
RBFNN, alongside an adaptive law, are employed. Notably, the entire controller adheres to
a backstepping method, incorporating distinct velocity and corner controllers to enhance
system robustness. Furthermore, the inclusion of a barrier in the Lyapunov function con-
tributes to achieving the prescribed performance. Simulation results illustrate that the
proposed controller consistently attains superior performance within the specified limits,
even in the presence of various disturbances.
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