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Abstract: In the present work, we study a fractional elliptic Kirchhoff-type problem that has a singular
term. More precisely, we start by proving some properties related to the energy functional associated
with the studied problem. Then, we use the variational method combined with the min–max method
to prove that the energy functional reaches its global minimum. Finally, since the energy functional
has a singularity, we use the implicit function theorem to show that the point where the minimum is
reached is a weak solution for the main problem. To illustrate our main result, we give an example at
the end of this paper.
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1. Introduction

In this study, we prove some existing results related to the following fractional and
singular problem:

(Qµ)


M(Apw)Lp

K(w)(ξ) = h(ξ)
|w(ξ)|δ(ξ) + µ f (ξ, w(ξ)) in Ω,

w = 0, on RN\Ω,

where µ > 0, Ω is a bounded domain of RN , δ is a continuous function on Ω, and p :
RN ×RN → (1, ∞) is a continuous function, which satisfies

1 < p− ≤ p+ < ∞, (1)

p(ξ, η) = p(η, ξ), ∀ (ξ, η) ∈ Ω × Ω, (2)

and
p((ξ, η)− (y, y)) = p(ξ, η), ∀ (ξ, η, y) ∈ RN ×RN ×RN , (3)

where
p− = inf

Ω×Ω
p(ξ, η), and p+ = sup

Ω×Ω
p(ξ, η).

The operators Ap and Lp
K are defined, respectively, by

Ap(w) =
∫
RN×RN

|w(ξ)− w(η)|p(ξ,η)

p(ξ, η)
K(ξ, η) dξdη, (4)

and

Lp
Kw(ξ) = C

∫
RN

|w(ξ)− w(η)|p(ξ,η)−2(w(ξ)− w(η))K(ξ, η) dη, ∀ ξ ∈ RN , (5)
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for some normalized constant C. Finally, we assume that the function K is positive measur-
able on RN \ Ω ×RN \ Ω and satisfies the following properties:

(B1) K(ξ, η) = K(η, ξ) for any (ξ, η) ∈ RN ×RN .

(B2) There exist k0 > 0 and s ∈ (0, 1), such that for all (ξ, η) ∈ RN ×RN with ξ ̸= η, we have

K(ξ, η) ≥ k0|ξ − η|−(N+sp(ξ,η)).

(B3) φ K ∈ L1(RN ×RN), where φ(ξ, η) = min(|ξ − η|p(ξ,η), 1).

We note that in the particular case when K(ξ, η) = 1
|ξ−η|N+sq(ξ,η) , the operator Lp

K is reduced

to the fractional p(., .)-Laplacian operator (−∆p(.,.))
s, which is studied by many researchers

(we cite, for example, the works [1–4]). A logical consequence is that every application of
(−∆q(.,.))

s is also an application of Lp
K; so, we can find several applications of our problem in

many fields like fluids, mechanics and image processing (see, for example, the reference [5]).
As researchers delve deeper into understanding intricate systems and phenomena, the
general non-local integro-differential operator continues to be indispensable, driving ad-
vancements in both theoretical frameworks and practical applications.
Significant attention has been directed toward investigating challenges associated with
these operators. Specifically, in the literature, there are too many problems of Kirchhoff
type involving variable exponents that we refer interested readers to the papers [2,6–19]
and others cited therein.
For problems with singular terms arising from Lp

K, occurrences are quite rare and we are
possibly among the first to address them through this paper. Concerning other operators
like the p(.)-Laplacian operator, there are many published papers involving singular non-
linearities in addition; we cite, for example [9,18,20–23]. In particular, in [18], the authors
considered the following problem: −G

( ∫
Ω

1
q(ξ) |∇u|q(ξ)dξ

)
∆q(.)u(ξ) = h(ξ)u−γ(ξ) − λg(ξ, u(ξ)) in Ω,

u = 0, on ∂Ω,
(6)

where G ∈ C((0, ∞), (0, ∞)), g ∈ C1(Ω ×R), q and γ are continuous on Ω. Under suitable
assumptions and using some variational techniques combined with the min–max method,
the authors proved that problem (6) has a nontrivial solution.
Recently, Ben Ali et al. [24] considered the following fractional problem: G

(∫
Ω×Ω

|w(ξ)−w(η)|q(ξ,η)

q(ξ,η)|ξ−η|N+sq(ξ,η) dξdη

)
(−∆)s

q(.,.)w(ξ) = λh(ξ, w(ξ))− |w(ξ)|p(ξ)−2w(ξ) in Ω,

w = 0, on ∂Ω.
(7)

Under appropriate hypotheses and by combining Ekland’s variational principle with the
mountain pass theorem, the authors proved the existence of two nontrivial solutions for
problem (7).
Azroul et al. [25] considered the following problem:

(PK)


Lp

Ku(ξ) = f (ξ, u(ξ)) in Ω,

u = 0, on RN\Ω.

Under certain conditions, the authors showed that the problem (PK) has a unique weak
solution, and this is proven by the means of the Minty–Browder Theorem.

In this work, we continue to investigate a fractional problem of Kirchhoff type. We
note that Kirchhoff-type problems often refer to problems in mathematical physics related
to Kirchhoff’s laws or equations. These problems typically arise in contexts like electrical
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circuits, heat conduction, or wave propagation. These types of problems are introduced by
Kirchhoff [14], and more precisely, the author studied the following equation:

δ
∂2ψ

∂u2 −
(

t0

s
+

∆
2h

∫ h

0
|∂ψ

∂u
|2 du

)
∂2ψ

∂v2 ,

where h represents the length of a cross and s represents the area of a cross-section; the
initial axial extension is denoted by ∆ and ψ denotes the lateral displacement at x and
y. The novelty in our study is that the Kirchhoff function M is in a more general class of
functions. The presence of the singular term also implies that the functional energy is not
regular, so the direct variational method cannot be applied. We note that the presence of the
non-local operator Lp

K generalizes other operators in the literature. To prove the existence
of solutions, we present several results and notations in Section 2, after which we present
and prove the main result of this paper in Section 3. We finish our work by presenting an
illustrative example.

2. Preliminaries

In this section, we introduce the functional framework within which we will examine
our principal result. To accomplish this, we present the essential characteristics of variable
exponent spaces. Interested readers can find further properties in [25–28] and the associ-
ated literature.
Next, we denoted by C+(Ω) the sets of all continuous functions q such that inf

ξ∈Ω
q(ξ) > 1,

and for a fixed function w ∈ C+(Ω), we define

w− = inf
ξ∈Ω

w(ξ) and w+ = sup
ξ∈Ω

w(ξ).

Let q ∈ C+(Ω). We define the space Lq(.)(Ω) as the set of all measurable functions w such
that

∫
Ω |w(ξ)|q(ξ)dξ < ∞, and we equip it with the following norm:

|w|q(.) = inf
{

µ > 0 :
∫

Ω
|w(ξ)

µ
|q(ξ)dξ ≤ 1

}
.

We recall that Lq(.)(Ω) is a Banach space, moreover, it is separable and reflexive if and
only if

1 < q− ≤ q+ < ∞.

Also, the Hölder inequality holds in this space.
Put

ρq(.)(w) =
∫

Ω
|w(ξ)|q(ξ)dξ.

Proposition 1. For all w ∈ Lq(.)(Ω), we have the following:

(1) Both |w|q(.) and ρq(.)(w) are less than one, or both greater than one, or both equal to one.

(2) min(|w|q
−

q(.), |w|q
+

q(.)) ≤ ρq(.)(w) ≤ max(|w|q
−

q(.), |w|q
+

q(.)).

Also, we have the following interesting proposition.

Proposition 2. Let m be a measurable function in L∞(RN), and let q be a measurable function,
such that for any ξ ∈ RN , we have

1 ≤ q(ξ)m(ξ) ≤ ∞.
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If 0 ̸= w ∈ Lq(.)(RN), then, we obtain

min(|w|q
−

m(.)q(.), |w|q
+

m(.)q(.)) ≤ ||w|m(.)|q(.) ≤ max(|w|q
−

m(.)q(.), |w|q
+

m(.)q(.)).

Now, for a function p satisfying Equations (1)–(3), we define the Sobolev space
Ws,p(.),p(.,.)(Ω) by

Ws,p(.),p(.,.)(Ω) =

{
w ∈ Lp(.)(Ω),

∫
Ω×Ω

|w(ξ)− w(η)|p(ξ,η)

sp(ξ,η)|ξ − η|N+sp(ξ,η)
dξdη < ∞, s > 0

}
,

and we endow it with the following norm:

||w||Ws,p(.),p(.,.)(Ω) = |w|p(.) + [w]s,p(.,.),

where p(ξ) = p(ξ, ξ), and

[w]s,p(.,.) = inf

{
s > 0 :

∫
Ω×Ω

|w(ξ)− w(η)|p(ξ,η)

sp(ξ,η)|ξ − η|N+sp(ξ,η)
dξdη ≤ 1

}
.

We denote by
B =

{
w : RN −→ R measurable : w|Ω ∈ Lp(ξ)(Ω)

}
.

Next, we define the space

WK,p(.,.)(Ω) =

{
w ∈ B : with

∫
Ω×Ω

|w(ξ)− w(η)|p(ξ,η)

sp(ξ,η)
K(ξ, η) dξdη < ∞, for some s > 0

}
,

equipped with the norm

||w||WK,p(.,.)(Ω) = ||w||p(.) + [w]K,p(.,.),

where

[w]K,p = inf

{
s > 0 :

∫
Ω×Ω

|w(ξ)− w(η)|p(ξ,η)

sp(ξ,η)
K(ξ, η) dξdη ≤ 1

}
.

Hereafter, we will work on the following space:

E := WK,p(.,.)
0 (Ω) =

{
w ∈ WK,p(.,.)(Ω), w(ξ) = 0 a.e. in RN \ Ω

}
,

with the equivalent norm
||.|| = [.]K,p.

We recall from [25] that this space contains C∞
0 (Ω); moreover, the following proposi-

tions hold.

Proposition 3. The space (E, ||.||) is a uniformly convex Banach space. Moreover, it is reflexive
and separable.

For w ∈ E, we define the functional

σK,p(w) =
∫

Ω×Ω
|w(ξ)− w(η)|p(ξ,y)K(ξ, η) dξdη.

Proposition 4 ([25]). For any w ∈ E, we have

min
(
||w||p− , ||w||p+

)
≤ σK,p(w) ≤ max

(
||w||p− , ||w||p+

)
.
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Proposition 5 ([25]). Let w, wn ∈ E, n ∈ N, and then, we have

lim
n→∞

||wn − w|| = 0 ⇐⇒ lim
n→∞

σK,p(wn − w) = 0.

Finally, we recall again from [25] that if for any ξ ∈ Ω, we have

1 < α(ξ) < p∗s (ξ) :=
Np(ξ, ξ)

N − sp(ξ, ξ)
,

and if K satisfies conditions (B1)–(B3), then we have a continuous and compact embedding
from E into Lα(.)(Ω); in particular, there is Cα > 0, satisfying

|w|α(.) ≤ Cα||w||.

Definition 1. By a solution of problem (Qµ), we mean a function w ∈ E for which for any φ ∈ E,
we have

M(AP(w))
∫

Ω×Ω
|w(ξ)− w(η)|p(ξ,η)−2(w(ξ)− w(η))(φ(ξ)− φ(η))K(ξ, η) dξdη

=
∫

Ω
h(ξ)|w(ξ)|−δ(ξ)φ(ξ) dξ + µ

∫
Ω

f (ξ, w(ξ))φ(ξ)dξ.

To prove the existence of solutions for problem (Qµ), we associate it with the following
singular functional Iµ : E → R, which is defined by

Iµ(w) = M̂(Ap(w))−
∫

Ω

h(ξ)
1 − δ(ξ)

|w(ξ)|1−δ(ξ)dξ − µ
∫

Ω
F(ξ, w(ξ))dξ,

where

F(ξ, t) =
∫ t

0
f (ξ, s)ds, and M̂(t) =

∫ t

0
M(s)ds.

It is worth noting that Iµ is well defined but it is non-differentiable. So, we use the min–max
method to prove our existing result.

3. Main Result and Its Proof

In this section, we give and demonstrate the main result of this paper. To this aim, we
assume the following hypotheses:

(N0) The function M is continuous and positive in R; moreover, there exist a > 1 and ν > 1,
such that

1
a

tν−1 ≤ M(t) ≤ atν−1, ∀ t ≥ 0.

(N1) For all (ξ, η) ∈ Ω × Ω, we have

νp(ξ, ξ) < p∗s (ξ), sp(ξ, η) < N, and νp(ξ, ξ) <
N
s

.

(N2) A function h is positive almost everywhere in Ω, such that

h ∈ L
θ(.)

θ(.)+δ(.)−1 (Ω),

for some 1 < θ(ξ) < p∗s (ξ).

(H1) There exist B, α ∈ C+(Ω) and ψ ∈ LB(ξ)(Ω) , such that, for all (ξ, η) ∈ Ω×R, we have

f (ξ, η) ≤ cψ(ξ)|η|α(ξ)−2η, for some c > 0,
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and
α(ξ) < p(ξ, ξ) < ηp(ξ, ξ) <

N
s
< B(ξ).

(H2) There exists Ω′ ⊂⊂ Ω , |Ω′| > 0, for which we have

f (ξ, η) ≥ 0, ∀ξ ∈ Ω′, and all η ∈ R.

Now, we state the main result of this work.

Theorem 1. Assume that hypotheses (N0)–(N2) and (H1)–(H2) hold. If the kernel K satisfies
hypotheses (B1)–(B3), then, for each µ > 0, the problem Qµ admits a nontrivial solution.

To prove Theorem 1, we will prove several Lemmas. The first one concerns the
coercivity of the associated functional energy. In particular, we prove the following Lemma:

Lemma 1. If the hypotheses (N0)–(N2) and (H1) hold, then Iµ becomes coercive in E.

Proof. Let w ∈ E with ∥w∥ > 1. Then, by hypothesis (N0), Equation (1) and Proposition 4,
we obtain

M̂(Ap(w)) = M̂
( ∫

RN×RN

|w(ξ)− w(η)|p(ξ,η)

p(ξ, η)
K(ξ, η) dξdη

)
= M̂

( ∫
Ω×Ω

|w(ξ)− w(η)|p(ξ,η)

p(ξ, η)
K(ξ, η) dξdη

)
≥ 1

aν

( ∫
Ω×Ω

|w(ξ)− w(η)|p(ξ,η)K(ξ, η) dξdη

)ν

≥ 1
p+aν

σν
K,p(w)

≥ 1
p+aν

||w||νp− . (8)

Now, from hypothesis (N2) and the Hölder inequality, we conclude that∫
Ω

h(ξ)
1 − δ(ξ)

(w(ξ))1−δ(ξ)dξ ≤ 1
1 − δ+

∫
Ω

h(ξ)(w(ξ))1−δ(ξ)dξ

≤ 1
1 − δ+

|h| θ(.)
θ(.)+δ(.)−1

||w|1−δ(.)| θ(.)
1−δ(.)

. (9)

So, by combining Proposition 1 and the compact embedding with the fact that 1 < θ(ξ) < q∗s ,
we conclude the existence of c1 > 0 such that∫

Ω

h(ξ)
1 − δ(ξ)

(w(ξ))1−δ(ξ)dξ ≤ 1
1 − δ+

|h| θ(.)
θ(.)+δ(.)−1

max(|w|1−δ+

θ(.) , |w|1−δ−

θ(.) )

≤ c1

1 − δ+
|h| θ(.)

θ(.)+δ(.)−1
||w||1−δ− . (10)

Next, from (H1), the Hölder inequality and the compact embedding, we obtain∫
Ω

F(ξ, w(ξ))dξ ≤ c
∫

Ω
ψ(ξ)|w(ξ)|α(ξ)dξ

≤ c|ψ|B(.)||w|α(.)|B′(.)

≤ c|ψ|B(.) max(|w|α+
B′ (.)α(.)

, |w|α−
B′ (.)α(.)

).
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Using (H1), we have

p∗s (ξ)− α(ξ)B′(ξ) =
NB(ξ)[p(ξ, ξ)− α(ξ)] + p(ξ, ξ)[B(ξ)α(ξ)s − N]

(B(ξ)− 1)(N − sp(ξ, ξ))
> 0, (11)

where
1

B(ξ)
+

1
B′(ξ)

= 1.

In accordance with the compact embedding, we obtain the existence of c2 > 0, satisfying∫
Ω

F(ξ, w(ξ))dξ ≤ c2|ψ|B(.)||w||α+ . (12)

Finally, by combining Equations (8) and (10) with Equation (12), we obtain

Iµ(w) ≥ 1
p+aη

||w||νp− − c1

1 − δ+
|h| θ(.)

θ(.)+δ(.)−1
||w||1−δ− − c2|ψ|B(.)||w||α+ . (13)

Since 1 − δ− < α+ < νp−, we can see that Iµ(w) → ∞ as ||w|| → ∞. This ends the
proof.

Lemma 2. If the hypothesis (H2) is satisfied, then we obtain a non-negative function 0 ̸= u in E,
for which, for a sufficiently small t > 0, we have Iµ(tu) < 0.

Proof. We begin by fixing a function u in C∞
0 (Ω) with supp(u) ⊂ Ω′ ⊂⊂ Ω. We assume

further that u = 1 in some subset Ω1 ⊂ supp(u) and 0 ≤ u ≤ 1 in Ω.
Now, let t ∈ (0, 1). Then, from hypothesis (N0) and Proposition 4, we obtain

M̂(Ap(tu)) ≤ a
ν

Aν
p(tu)

≤ a
ν

( ∫
Ω×Ω

tp(ξ,η) |u(ξ)− u(η)|p(ξ,η)

p(ξ, η)
K(ξ, η) dξdη

)ν

≤ a
νp−

tνp−σν
K,p(u)

≤ a
νp−

tνp− ||u||νp− . (14)

So, using Equation (14) and the fact that F is a non-negative function, we obtain

Iµ(tu) ≤ a
νp−

tνp− ||u||νp− −
∫

Ω

h(η)
1 − δ(η)

|tu|1−δ(η)dη

≤ a
νp−

tνp− ||u||νp− − t1−δ− 1
1 − δ−

∫
Ω

h(η)|u|1−δ(η)dη

≤ t1−δ−
(

tνp−+δ−−1 a
νp−

||u||νp− − 1
1 − δ−

∫
Ω

h(η)|u|1−δ(η)dη

)
.

Since a
νp− ||u||

νp− > 0 and νp− + δ− − 1 > 0, we have

Iµ(tu) < 0 for t < min(1, S),

where

S =

( 1
1−δ−

∫
Ω h(ξ)|u|1−δ(ξ)dξ

a
νp− ||u||νp−

) 1
νp−+δ−−1

.
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In the sequel, we put
mµ = inf

w∈E
Iµ(w). (15)

Lemma 3. Assume that assertions (N1)–(N2) and (H1)–(H2) hold. If, in addition, K satisfies
hypotheses (B1)–(B3), then there exists w∗ ∈ E, satisfying

Iµ(w∗) = mµ < 0.

Proof. Let {wn} be a sequence in E that satisfies

Iµ(wn) → mµ. (16)

We claim that {wn} is bounded in E. Indeed, if this is not true, then we have

||wn|| → ∞ as n → ∞.

The coercivity of the functional Iµ implies that

Iµ(wn) → ∞ as ||wn|| → ∞,

which contradicts with Equation (16).
Now, the reflexivity of the space E implies that we can find a sub-sequence (still

denoted by {wn}) and a function w∗ in E, such that
wn ⇀ w∗ weakly in E,
wn → w∗ strongly in Lα(.)(Ω), 1 ≤ α(ξ) < p∗s (ξ),
wn → w∗ a.e in Ω.

(17)

Next, our purpose is to prove that

Iµ(w) = M̂(Ap(w))−
∫

Ω

h(ξ)
1 − δ(ξ)

|w(ξ)|1−δ(ξ)dξ − µ
∫

Ω
F(ξ, w(ξ))dξ

is weakly lower semi-continuous on E.
By the continuity of the function M̂, the fact that wn → u∗ a.e in Ω, and using Fatou’s

lemma, we deduce that

M̂(Ap(w∗)) ≤ lim
n→∞

in f M̂(Ap(wn)). (18)

Now, it is shown in [29] (Theorem 2.3) that if h ∈ Lζ(.)(Ω) with

0 <
ζ(1 − δ)

1 − ζ
< p∗s , (19)

then, we have

lim
n→∞

∫
Ω

h(η)|wn(η)|1−δ(η)dη =
∫

Ω
h(η)|w∗(η)|1−δ(η)dη. (20)

A simple calculation shows that ζ = θ(.)
θ(.)+δ(.)−1 satisfies Equation (19). So, Equation (20) holds.

Next, we will demonstrate that

lim
n→∞

∫
Ω

F(η, wn(η))dη =
∫

Ω
F(η, w∗(η))dη. (21)
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For this purpose, let ε > 0; then, from hypothesis (H1), we can find cε > 0, such that

|F(η, wn(η))| ≤
cε

α−
|ψ(η)||wn|α(η).

From Equation (11), we have B
′
(ξ)α(ξ) < p∗s . So, from the fact that wn ⇀ w∗ in E, and

from the compact embedding, we deduce the existence of a sub-sequence still denoted by

{wn} that converges strongly in LB
′
(.)α(.)(Ω). Thus, wn→w∗ a.e in Ω. Moreover, we have

|wn(ξ)| ≤ g(ξ), for some g ∈ Lα(ξ)B
′
(ξ).

Therefore, we obtain
|F(ξ, wn(ξ))| ≤

cε

α−
|ψ(ξ)||g(ξ)|α(ξ).

Hence, using the Hölder’s inequality, one has∫
Ω
|F(ξ, wn(ξ))|dξ ≤ cε

α−
|ψ|B(.)|g|

α(.)
S′ (.)

.

So, if we combine Proposition 2 with the Lebesgue-dominated convergence, we obtain the
result of Equation (21).

Finally, Equations (18), (20) and (21) yield to the weakly lower semi-continuity of the
functional Iδ. So, we deduce

Iδ(w∗) ≤ lim
n→∞

in f Iδ(wn) = mδ.

On the other hand, from (3), we have

Iδ(w∗) ≥ mδ.

We conclude that
Iδ(w∗) = mδ.

Proof of Theorem 1. From Lemma 3, we deduce that the function w∗ is a global minimum
for the functional Iδ. So, for all ϕ ∈ E and all t > 0, we have

Iδ(w∗ + tϕ)− Iδ(w∗) ≥ 0.

By dividing the last inequality by t and by letting t tend to zero, we obtain

M(Ap(w∗))
∫

Ω×Ω
|w∗(ξ)− w∗(η)|p(ξ,η)−2(w∗(ξ)− w∗(η))(ϕ(ξ)− ϕ(η))K(ξ, η) dξdη

−
∫

Ω
h(ξ)|w∗|−δ(ξ)ϕ(ξ)dξ − µ

∫
Ω

f (ξ, w∗(ξ))ϕ(ξ)dξ ≥ 0.

As ϕ is arbitrary in E, we have the flexibility to substitute ϕ with −ϕ in the last inequal-
ity with the equality still preserved. Then, w∗ is a weak solution to the problem (Qδ).
Furthermore, condition Iδ(w∗) < 0 indicates that w∗ is nontrivial.

4. An Example

This section provides an example that improves the main result of this paper.
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Example 1. Let Ω be a bounded domain in RN (N ≥ 2). We consider the following problem:

(Qδ)


(Ap(w))ν−1(−∆p(.,.))

s(w) = h(ξ)
|w(ξ)|δ(ξ) + µa(ξ)|w(ξ)|α(ξ)−2w(ξ) in Ω,

w = 0, on RN\Ω.

It is easy to state that the problem (Qδ) corresponds to the case when M(t) = tν−1, which clearly
satisfies hypothesis (N1). On the other hand, the operator (−∆p(.,.)) corresponds to the case when

K(ξ, η) =
1

|ξ − η|N+sq(ξ,η)
.

It is not difficult to prove that the last kernel satisfies conditions (B1)–(B3). Also, problem (Qδ)
corresponds to the case

f (t, ξ) = a(ξ)|ξ|α(ξ)−2ξ,

with a ∈ LB(.)(Ω). So, clearly, f satisfies condition (H2) and the first part of condition (H1).
Assume further that α satisfies the second part of condition (N1). Finally, if ν and p satisfy condition
(N1) and Equations (1)–(3), and, if the function h satisfies hypothesis (N2), then Theorem 1 can be
applied, ensuring that the problem (Qδ) admits a non-trivial solution.

5. Conclusions

In this paper, we studied a singular elliptic problem of Kirchhoff type. We transformed
the study from that of the existence of a weak solution to the question of the existence of
extremum points of the associated functional energy. Therefore, we have proven some
properties of this functional and that it reached its global minimum at a point in an
appropriate function space. To prove that this point is a weak solution for the studied
problem, we have used the implicit function theorem; this is due to the singular term. We
note that in some special cases of the kernel Lp

K and the Kirchhoff function M, we obtained
the same results as those in the literature. We hope to generalize this study to problems
involving the p(x, y)-Laplacian operator.
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