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Abstract: Finding the highest possible cardinality, Aq(n, d; k), of the set of k-dimensional subspaces
in Fn

q , also known as codewords, is a fundamental problem in constant dimension codes (CDCs).
CDCs find applications in a number of domains, including distributed storage, cryptography, and
random linear network coding. The goal of recent research papers has been to establish Aq(n, d; k).
We further improved the echelon-Ferrers construction with an algorithm, and enhanced the inserting
construction by swapping specified columns of the generator matrix to obtain new lower bounds.

Keywords: constant dimension codes; linkage construction; greedy algorithm; echelon-Ferrers
construction
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1. Introduction

Assume that Fq is a finite field with q elements. The set of all k-dimensional subspaces
of a Fq-vector space V is denoted by Gq(k, n). In vector space Fn

q , the projective space over
the finite field Fq of order n, represented as Pq(n), often includes all of the subspaces. These
subspaces constitute a metric space when combined. Together, and the defining metric is
the subspace distance. It is described as

dS(U, W) = dim(U + W)− dim(U ∩ W)

= 2 · dim(U + W)− dim(U)− dim(W).

CDCs are a special class of subspace codes with important applications in network
coding, especially in random network coding. In recent years, network coding has garnered
significant attention as an innovative method for transmitting data over networks. It is
extensively used in distributed storage systems, peer-to-peer networks, social networks,
wireless communication networks, and other types of networks. In random network
coding, conventional error-correcting code techniques may not be adequate due to the
unpredictability of network topologies. The ability of CDCs to preserve vector space
properties makes them an effective tool for addressing this issue.

Since Köetter and Kschischang [1] first introduced subspace codes, there has been
extensive research on them [2,3,4,5,6,7,8]. Heinlein et al. [9] provide more details regarding
their theoretical foundation. Additionally, the most recent bounds on constant dimension
codes and subspace codes can be found there.

To create CDCs, rank metric codes (RMCs), specifically maximum rank distance (MRD)
codes, are employed. One technique for creating CDCs using rank metric codes is the
lifting construction [1], which forms a subspace by concatenating an identity matrix with
a matrix of RMCs. In the context of random linear network coding, lifted MRD codes
can produce asymptotically optimal CDCs and can be decoded effectively. Etzion and
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Silberstein [10] introduced a new family of Ferrers diagram RMCs to generalize the lifted
MRD code architecture, which they called the multilevel construction.

Today, there are primarily two approaches used to build CDCs in conjunction with par-
allel linkage construction. The first technique is called parallel multilevel construction [11].
Another approach is the block inserting construction, initially introduced in [12]. CDCs
built using matrix blocks are inserted into the parallel linkage construction through the
block inserting construction.

In [13], MinYao Niu proposed a new method for constructing constant dimension
codes. The parallel linkage construction can incorporate the constant dimension codes
derived from this method.

In [14], Xianmang He presented a construction for subspace codes of constant dimen-
sion that involves the insertion of a composite structure made up of an MRD code and its
sub-codes, providing some improved lower bounds over previous results.

Building CDCs is a useful application of lifting Ferrers diagram codes. Furthermore,
the discovery of linkage construction enables the creation of a large number of CDCs. In [15],
Fagang Li derived some new CDC lower bounds for small parameters by combining the
two construction techniques.

In [16], Troha introduced a construction called the linkage construction from Corollary
39 in [17]. This construction involves joining two CDCs of shorter length and results in the
establishment of a lower bound for the following CDCs.

Aq(n, d, k) ≥ Aq(m, d, k)qmax{n−m,k}(min{n−m,k}− 1
2 d+1)

+ Aq(n − m + k − d
2

, d, k),
(1)

where k ≤ m ≤ n − d
2 .

In this paper, we are inspired by [13,18]. The linkage construction and insertion
construction have been effectively improved. The paper is structured as follows: In
Section 1, we review some fundamental concepts of CDC. In Section 2, we introduce
effective methods for constructing CDCs, including parallel linkage construction, Ferrers
diagram construction, and sub-code construction. The main part of this article is in Section 3,
where we first propose an improved algorithm based on the greedy algorithm that yields a
better set of identification vectors. We then describe an insertion construction method by
swapping specific columns of the generator matrix. Using our approach, we derive several
new lower bounds.

2. Preliminaries
2.1. Rank-Metric Codes

Over the field Fq, let Fm×ℓ
q be a m × ℓ matrices space. The rank-metric is defined as

follows for any two distinct matrices A, B ∈ Fm×ℓ
q :

dR(A, B) := rank(A − B).

A rank-metric code is a subset of Fm×ℓ
q with the rank-metric. We can refer to a

rank-metric code as linear rank-metric code if it is a linear subspace of Fm×ℓ
q . Clearly,

the rank-distance of a rank-metric code C is defined as

dR(C) := min{dR(A, B) : A, B ∈ C, A ̸= B}.

We know that the upper bound of its cardinality is qmax{m,ℓ}·(min{m,ℓ}−d+1). A rank-
metric code attaining this bound is called an MRD code (see [19,20]). A linear MRD code
with distanced d is denoted by Q(q, m, n, d), and its cardinality is denoted by a(q, m, n, d).
Additionally, if the rank of each codewords is at most r, we use the notation Q(q, m, n, d; r)
to represent it, and we refer to it as a rank-restricted RMC (RRMC). Its cardinality is usually
denoted by a(q, m, n, d; r).
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Lemma 1 ([19]). Let Q(q, m, n, d) (m ≥ n) is a linear MRD code with rank distance ≤ n. Its
rank distribution is given by

Ar
(
Q(q, m, n, d)

)
=

(
n
r

) r−d

∑
i=0

(−1)iq(
i
2)

(
r
i

)
q

(
qm(n−d+1)

qm(n+i−r)
− 1

)
, (2)

where d ≤ r ≤ n,Ar(Q(q, m, n, d)) representing the cardinality of codewords in Q(q, m, n, d)
with rank r.

2.2. Ferrers Diagram Maximum Rank Distance Codes

Let X be a k-dimensional subspace within a space Fn
q . Its structure can be described

by a generating matrix whose rows span the bases of X. This generator matrix can be
transformed into a unique row-reduced echelon matrix E(X) using Gaussian elimination.
Moreover, we define an identifying vector v(X), which is labeled with 1 at each pivot
position in E(X), and is located in the space Fn

2 . The space Gq(k, n) can be classified into
(n

k) distinct classes based on these identifying vectors, with each class having the same
identifying vector.

To transform the subspace X into the Ferrers diagram form F (X), a series of operations
is applied to E(X). First, any leading zeros in the rows to the left of the pivots are removed.
Second, the pivot column is removed, and the remaining entries are shifted to the right.
The Ferrers diagram of X, denoted FX , is the resulting processed matrix. FX and F (X) are
closely related, and FX can be obtained by replacing the entries of F (X) with dots.

For example, if the generator matrix of a 4-dimensional subspace X in the space F9
2 is

reduced to a row-reduced echelon form, the corresponding Ferrers diagram of X can be
easily constructed by applying the aforementioned procedures.

E(X) =


1 1 0 0 1 0 0 0 1
0 0 1 1 0 0 0 1 0
0 0 0 0 0 1 1 0 0
0 0 0 0 0 0 0 1 1

.

Subsequently, the identifying vector representing X is designated as v(X) = 101001010.
Furthermore, FX is recorded as the Ferrers table form of X, which is

1 0 1 0 0
1 0 0 0

1 0
1

.

And F (X) is recorded as the Ferrers diagrams form of X, which is

• • • • •
• • • •

• •
•

.

Definition 1 ([21]). Assume that v1 and v2 are two vectors of length n, vi[j] represents the j-th
component in the vector vi, (i = 1, 2, j = 1, 2, · · ·, n), The Hamming distance

dH(v1, v2) =
n

∑
i=1

N(v1[j] ̸= v2[j])

for v1, v2 ∈ Fn
q , when v1[j] ̸= v2[j], N(v1[j] ̸= v2[j]) = 1.

Lemma 2 ([10]). Let X, Y ∈ Pq(n), v(X), v(Y) is identifying vector of X, Y, then
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dS(X, Y) ≥ dH(v(X), v(Y)),

Definition 2 ([10]). Let F be a Ferrers diagram, where the rightmost column contains m points
and the topmost row contains ℓ points. A linear rank-metric code associated with a Ferrers diagram
F is called a Ferrers diagram rank metric code (FDRM) if it satisfies the following condition: For
any code word M in CF , if M is not in some term of F , then the value of that term must be zero.
Moreover, for any nonzero code word A, if its rank is no less than δ, the dimension of CF is dim.
Based on these conditions, we represent the FDRM code CF as the [F , dim, δ] FDRM code.

Lemma 3 ([10]). Let F be a Ferrers diagram, it has ℓ points in the first row, and m points
in the last column, and CF ⊆ Fm×ℓ

q is an FDRM code, and it meets the following conditions:
∀A ∈ CF \ {0},rank(A) ≥ δ. Then |CF | ≤ qmini{wi}, where wi represents the number of points
in the F that are neither in the first i row nor in the rightmost δ − 1 − i column, where i ranges
from 0 to δ − 1.

Lemma 4 ([10]). Let CF ⊆ Fk×(n−k)
q be an [F , dim, δ] FDRM code, then the lifted FDRM code

CF is an (n, qdim, 2δ, k)qCDC.

In order to construct an (n, M, 2δ, k)q CDC on Gq(k, n), we first screen out a subset C ⊆
Fn

2 , which has two key properties. Firstly, the weight is equal to k for any vector; secondly
is that these vectors have a minimum Hamming distance of 2δ. Then we treat these vectors
in C as identifying vectors, and for each identifying vector, we construct a corresponding
[F , dim, δ] FDRM code. According to Lemmas 2 and 3, these lifted FDRM codes are
combined to form an (n, M, 2δ, k)q CDC. The structural design on which this construction
method is based, which is commonly called multilevel construction (see [10,17]).

2.3. Linkage Construction

Given some matrices M ∈ Fk×m
q , the row space of M over Fq are expressed as the

rs(M).

Definition 3 ([16]). Let M ⊆ Fk×m
q be a set of matrices, if rank(Mj) = k, Mj ∈ M and

rs(Mj1) ̸= rs(Mj2) for any two different matrices Mj1 , Mj2 ∈ M, we denoted it as an SC-
representing set. Then the set {rs(M) : M ∈ M} is CDC, and we denoted it by C(M).

Lemma 5 ([22]). Let n1 ≥ k and n2 ≥ k, Q1 is an (k, n − k, d
2 )q MRD code, Q2 is a (k, n −

k, d
2 ; k − d

2 )q RRMC code. Then C1 ∪ C2 is an (n, N, d, k)q CDC, where

C1 := {rs(Ik|Q1)|Q1 ∈ Q1},

C2 := {rs(Q2|Ik)|Q2 ∈ Q2}.

Lemma 6 ([15]). Let n1 ≥ k, n2 ≥ k, n1 + n2 = n, U be an SC-representation set of (n1, N1, d, k)q

CDC with cardinality N1, and R be a (q, k, n2, d
2 ) linear rank metric code with cardinality NR. As-

sume that the identifying vectors vj ∈ VS with length n and weight k satisfy the following conditions.
(a) For each vj, the number of ones in the last n2 positions is more than or equal to d

2 .
(b) The Hamming distance of two different identifying vectors is more than or equal to d.

Let CFj ⊆ Fk×(n−k)
q be an [Fj, ρj, δ = d

2 ] FDRM code, with the corresponding identify-
ing vector vj, CFj are lifted FDRM code of CFj . Define C := A∪ B as the subspace code of
length n, where A := {rs(U|R)|U ∈ U , R ∈ R},

B := ∪jCFj .

Then C := A∪ B is an (n, N, d, k)q CDC with N = N1NR + ∑j |CFj |.
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2.4. Sub-Codes Construction

Lemma 7 ([23]). The sub-codes construction can be described as follows: Let n1, n2, a1, a2, b1, b2 be
positive integers such that n1 + n2 = n, a1 + a2 = k, and b1+ b2 ≥ d

2 . For i = 1, 2, assume Mr
i

is a
(

q, ai, ni, d
2

)
MRD code, where r = 1, 2, . . . , s, s = min

{
a(q,a1,n1−a1,b1)

a(q,a1,n1−a1, d
2 )

, a(q,a2,n2−a2,b2)

a(q,a2,n2−a2, d
2 )

}
.

For any M ∈ Mr1
i and M′ ∈ Mr2

i (where 1 ≤ r1, r2 ≤ s, and M ̸= M′), we know that when
r1 = r2, rank(M − M′) ≥ d

2 , and when r1 ̸= r2, rank(M − M′) ≥ bi. Then D =
⋃s

r=1 Dr is an
(n, |D|, d, k)q CDC, where Dr consists of subspaces of the form:(

Ia1 |M1 O1
O2 Ia2 |M2

)
,

M1 ∈ Mr
1, M2 ∈ Mr

2. Iai is the identity matrix of size ai × ai, and O1, O2 are zero matrices of
size a1 × n2 and a2 × n1.

Lemma 8 ([14]). Suppose n1, n2, a1, a2 are positive integers such that n1 + n2 = n, a1 + a2 = k
and ni ≥ k, d

2 ≤ ai ≤ ni − d
2 , for i = 1, 2, Mr

1 and Mr
2 be as defined above. Let M3 be an

(a1, n2 − a2, d
2 )q MRD code. Then C3 =

⋃s
r=1 Cr is an (n, d, k)q CDC with

Cr =

{
rs
(

Ia1 M1 O1 M3
O2 O3 Ia2 M2

)}
,

where M1 ∈ Mr
1, M2 ∈ Mr

2 for 1 ≤ r ≤ s, and M3 ∈ M3, O1, O2, O3 are zero matrices with
O1 = Oa1×a2 , O2 = Oa2×a1 , O3 = Oa2×(m1−a1)

.

3. Main Results

In this section, we first propose Algorithm 1, which incorporates the construction
method from Lemma 6. With the help of this algorithm, we obtain improved new lower
bounds for linkage construction and echelon-Ferrers constructions. Then, inspired by [13],
we refine the insertion construction by swapping specific columns of the generator matrix,
and as a result, we derive several new lower bounds.

Algorithm 1: Modified greedy algorithm
Input: n1, n2, d, k
Output: target identifying vector set VS

1 Construct an alternative element set : Vn contains all vectors with length
n = n1 + n2, and the number of ones in the last n2 positions is more than or equal
to d

2 ;
2 Calculate the dimension of the vector in Vn, and store the maximum value in max;
3 while Vn ! = Null do
4 Randomly select a vector with a dimension value equal to max or max − 1,

if conditions (a) and (b) are met, add it to the VS;
5 Repeat step 4 until there’s no more such vector;
6 max = max − 2;
7 end
8 Calculate the cardinality of Echelon-Ferrers construction based to set VS.
9 Repeat steps 4–9, select the set VS with the largest cardinality.

3.1. Algorithm

Regarding recent improvements in the echelon-Ferrers construction, we refer to [18].
As for improvements in linkage construction, determining the optimal parameters for a
new set of identifying vectors is a challenging problem. In this part, we use an improved
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algorithm based on a greedy approach to obtain a better set of identifying vectors, denoted
by VS.

We made a minor enhancement to the greedy algorithm, focusing on selecting the
identifying vectors with the maximum and second maximum dimensions as the best
candidates. That is, we randomly added the identifying vectors from max and max − 1 to
the set VS until the set Vn was empty. Finally, after repeated experiments, we selected the
final result.

Corollary 1. A2(14, 4; 4) ≥ 1259181405 and Aq(14, 4; 4) ≥ q30 + q26 + q25 + 3q24 + 2q23 +
3q22 + q21 + q20 + 2q18 + 2q16 + 3q15 + 5q14 + 6q12 + 7q11 + 9q10 + 7q9 + 8q8 + 5q7 + 3q6 +
q4 + q3 + q2 + 1 for q ≥ 2.

Proof. Let n1 = 8, n2 = 6, and CFj be lifted FDRM code corresponding to the identifying
vector in Table A1, by Lemma 6, so we have Aq(14, 4; 4) ≥ Aq(8, 4; 4)q18 + q18 + 2q16 +
3q15 + 5q14 + 6q12 + 7q11 + 9q10 + 7q9 + 8q8 + 5q7 + 3q6 + q4 + q3 + q2 + 1, it is known that
A2(8, 4; 4) ≥ 4801 and Aq(8, 4; 4) ≥ q12 + q2(q2 + 1)2(q2 + q + 1) + 1 for q ≥ 2. The result
is obviously valid.

The best known lower bound is given in [24], i.e., A2(14, 4; 4) ≥ 1259181253 for q = 2.
Our result is above it.

Corollary 2. A2(18, 4; 4) ≥ 5158164361445 and Aq(18, 4; 4) ≥ Aq(12, 4; 4)q18 + q22 + 2q20 +
3q19 + 5q18 + 6q16 + 7q15 + 10q14 + 6q13 + 12q12 + 9q11 + 8q10 + q9 + 5q8 + 2q7 + 3q6 + 2q4 +
q2 + 1 for q ≥ 2.

Proof. Let n1 = 12, n2 = 6, and CFj be lifted FDRM code corresponding to identifying
vector in Table A2, by Lemma 6 and A2(12, 4; 4) ≥ 19676797. The result is obviously
valid.

The best known lower bound is given in [24], i.e., A2(18, 4; 4) ≥ 5158164354661 for
q = 2. Our result is above it.

3.2. Construction

Niu et al. presented an improved inserting construction by exchanging some specified
columns of the generator matrix of the CDC in [13]. Based on this, we have enhanced the
column-swapping procedure.

Proposition 1. Let vi ∈ Vd be a vector with length n1 − a1 + a2 and weight a2, where n1 − a1 =
a2 = d − 1, and the number of ones in the last a2 positions of vi is at least d

2 , the Hamming distance
between distinct vectors in Vd is at least d. Then, the set Vd contains at least d − 1 distinct vectors.

Next, we explain Proposition 1 using Algorithm 2.

Algorithm 2: get Vd

Input: d
Output: target vector set Vd

1 Construct an alternative element set : V contains all vectors with length
n = 2(d − 1) and weight d − 1, and the number of ones in the last d − 1 positions
is at least d

2 ;
2 Select a vector, and if its Hamming distance from other vectors in Vd is at least d,

add it to Vd;
3 Repeat step 2 until V is empty.

We present a portion of the results here. When d = 4, 6 and 8, as shown in Table 1.
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Table 1. Identifying vector set Vd.

d Vd

4 v1 = 100011 v2 = 001110
v3 = 010101

6 v1 = 0101011001 v2 = 0001110110
v3 = 1010010011 v4 = 0110001110
v5 = 1000101101

8 v1 = 01101001001011 v2 = 10100100101101
v3 = 01000111011100 v4 = 00110011100110
v5 = 11010000010111 v6 = 10001010111010
v7 = 00011101110001

Theorem 1. Using the notation from Lemma 6, n1 = n2 = k, k ≥ d, M3 is an (a1, n2 −
a2, d

2 ; a1 − d + 1)q RRMC code. Let Cr
i be obtained by swapping columns (M1

O3
) and (O1

Ia2
) of Cr,

and v(Cr
i ) =

 a1︷ ︸︸ ︷
1 · · · 1

n1−a1+a2︷︸︸︷
vi

n2−a2︷ ︸︸ ︷
0 · · · 0

, vi ∈ Vd. Then C3 :=
⋃d−1

i=1
⋃s

r=1 Cr
i is an (n, |C3|, d, k)q

CDC with |C3| =
⋃d−1

i=1
⋃s

r=1 |Cr
i |.

Proof. From a1 + a2 = k, it is easy to see that the codewords of C3 form a k-dimensional
subspace of Fn

q . The minimum subspace distance of C3 is at least d, as proven from two
aspects:

Let the sets W3 and W ′
3 be the distinct codewords of and Cr

i1
and Cr

i2
.

W3 = rs(G3), G3 =

(
Ia1 P S M3
02 Q T M2

)
,

W
′
3 = rs

(
G

′
3

)
, G

′
3 =

(
Ia1 P′ S′ M3

′

02 Q′ T′ M2
′

)
,

where M1, M
′
1 ∈ Mr

1, M2, M
′
2 ∈ Mr

2, M3, M
′
3 ∈ M3.

I. If i1 = i2, that is, the positions of the swapped columns are the same, this is
equivalent to proving that Cr

i are CDCs for 1 ≤ i ≤ d − 1.

dS

(
W3, W

′
3

)
= 2rank


Ia1 P S M3
O2 Q T M2

Ia1 P
′

S
′

M
′
3

O2 Q
′

T
′

M
′
2

− 2k,

= 2rank


Ia1 M1 O1 M3
O2 O3 Ia2 M2

Ia1 M
′
1 O1 M

′
3

O2 O3 Ia2 M
′
2

− 2k,

= 2rank


Ia1 M1 O1 M3

Oa1 M
′
1 − M1 O1 M

′
3 − M3

O2 O3 Ia2 M2

O2 O3 Oa2 M
′
2 − M2

− 2k.

There are the following three cases.
(1) if M3 ̸= M

′
3 then rank(G5

G′
5
) ≥ a1 + a2 + rank

(
M

′
3 − M3

)
≥ k + d

2 .

(2) if M3 = M
′
3, r = r

′
, M1, M

′
1 ∈ Mr

1, M2, M
′
2 ∈ Mr

2, that is M1 ̸= M
′
1 or M2 ̸= M

′
2,

then rank
(

G5

G
′
5

)
= a1 + a2 + rank

(
M

′
1 − M1

)
+ rank

(
M

′
2 − M2

)
≥ k + d

2 .
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(3) if M3 = M
′
3, r ̸= r

′
, M1 ∈ Mr

1, M
′
1 ∈ Mr′

1 , M2 ∈ Mr
2, M′

2 ∈ Mr′
2 , M1 ̸= M′

1, M2 ̸=

M′
2. then rank

(
G5

G
′
5

)
= a1 + a2 + rank

(
M

′
1 − M1

)
+ rank

(
M

′
2 − M2

)
= a1 + a2 + b1 +

b2 ≥ k + d
2 .

II. If i1 ̸= i2, that is the positions of the swapped columns are different, this is equiva-
lent to proving that the subspace distance between Cr

i1
and Cr

i2
is at least d for i1 ̸= i2.

It easy to see that dH(G3, G′
3) = dH

(
vi1 , vi2

)
≥ d. By Lemma 2, dS(v(Cr

i1
), v(Cr

i2
)) ≥ d.

Hence, C3 is an (n, |C3|, d, k)q CDC with |C3| =
⋃d−1

i=1
⋃s

r=1 |Cr
i |.

Example 1. Let n1 = n2 = k = 12, d = 6, a1 = 7, a2 = 5, b1 = 1, b2 = 2. By Theorem 1, we
take M1 ∈ Mr

1 and M2 ∈ Mr
2, where Mr

1 is an (q, 7, 5, 3) MRD code , Mr
2 is an (q, 5, 7, 3) MRD

code, 1 ≤ r ≤ s, s = min
{

a(q,a1,n1−a1,b1)

a(q,a1,n1−a1, d
2 )

, a(q,a2,n2−a2,b2)

a(q,a2,n2−a2, d
2 )

}
, and M3 is a (q, 7, 7, 3; 2) RRMC

code. The following are the generator matrices of Cr
i for 1 ≤ i ≤ 5. Then C4 =

⋃5
r=1

⋃s
i=1 Cr

i is an
(n, |C4|, d, k)q CDC.

Theorem 2. With the same notations as Theorem 1. Let C1 and C2 be as in Lemma 5, and C3 as in
Theorem 1. Then C := C1 ∪ C2 ∪ C3 is an (n, |C|, d, k)q CDC with |C| = |C1|+ |C2|+ |C3|.

Proof. Let W1 ∈ C1, W2 ∈ C2, W3 ∈ C3, and W1 = rs(G1), G1 = rs(Ik|Q1),
W2 = rs(G2), G2 = rs(Q2|Ik),

W3 = rs(G3), G3 = rs
(

Ia1 P S M3
O2 Q T M2

)
,

where Q1 ∈ Q1, Q2 ∈ Q2, M1 ∈ Mr
1, M2 ∈ Mr

2, and M3 ∈ M3.
The proof is composed of two parts:
I. The subspace distance between CDCs C1 and C3 is at least d.

It is easy to see that the identifying vector corresponding to W1 is v(G1) = (

k︷ ︸︸ ︷
1 · · · 1

n−k︷ ︸︸ ︷
0 · · · 0).

by Vd and n1 = n2 = k, it follows that v(G3) has at least d
2 ones in the last k position, and at

most k − d
2 ones in the first k position. Then dH(v(G1), v(G3)) ≥ k − (k − d

2 ) +
d
2 = d.

Therefore, by Lemma 2, we have dS(C1, C3) ≥ dH(v(G1), v(G3)) ≥ d.
II. The subspace distance between CDCs C2 and C3 is at least d.

dim(W2 + W3) = rank

 B Ik
Ia1 P S M3
O2 Q T M2

= rank

 Ik B
S M3 Ia1 P
T M2 02 Q

.
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rank
(

S M3
T M2

)
≤ rank(S|M3) + rank(T|M2)

≤ rank(S) + rank(M3) + a2

≤ d
2
− 1 + rank(M3) + a2

≤ d
2
− 1 + a1 − d + 1 + a2 = k − d

2
,

where rank(S) ≤ d
2 − 1 because there is at most d

2 − 1 non-zero columns in S. Then,

dim(W ′
2 ∩ W ′

3) ≤ k − d
2 . Let W ′

2 = rs(Ik|B), W ′
3 = rs

(
S M3 Ia1 P
T M2 O2 T

)
, we have

dS(W2, W3) = 2 dim(W2 + W3)− 2k

= 2 dim(W ′
2 + W ′

3)− 2k

= 2k − 2 dim(W ′
2 ∩ W ′

3).

Hence, we can obtain dS(W2, W3) = 2k − 2 dim(W ′
2 ∩ W ′

3) ≥ d.
Combining all the aforementioned discussions, we arrive at the conclusion that C :=

C1 ∪ C2 ∪ C3 is an (n, |C|, d, k)q CDC with |C| = |C1|+ |C2|+ |C3|.

Corollary 3. By Theorem 2, we have
Aq(n, d, k) ≥ |C1|+ |C2|+ |C3| = a(q, k, n − k, d

2 ) + a(q, k, n − k, d
2 ; k − d

2 ) + (d − 1) · s ·
a(q, a1, n2 − a2, d

2 ) · a(q, a2, n2 − a2, d
2 ) · a(q, a2, n2 − a2, d

2 ; a1 − d + 1).

Corollary 4. For d = 6 and d1 = 1, d2 = 2, we have

Aq(14, 6, 7) ≥ q35 + (1 + ∑4
r=3 Ar(Q(q, 7, 7, 3)) + 5q12).

Aq(16, 6, 8) ≥ q48 + (1 + ∑5
r=3 Ar(Q(q, 8, 8, 3)) + 5q15).

Aq(18, 6, 9) ≥ q63 + (1 + ∑6
r=3 Ar(Q(q, 9, 9, 3)) + 5q25).

Example 2. By Corollary 4, we have

A2(14, 6, 7) ≥ 34532258504,

A5(16, 6, 8) ≥ 3552716061446350546877864809763610,

A9(18, 6, 9) ≥ 1310020512493866349004817889700802603385869505242199741941650,
which improve the lower bounds in [13].

4. Conclusions

This paper presents two improved construction methods for CDCs. First, we pro-
pose an enhanced algorithm that combines linkage structures and echelon-Ferrers designs,
improving the lower bounds of A2(14, 4; 4) and A2(18, 4; 4). Secondly, we enhance the
inserting construction through column transformations of the generator matrix and ob-
tain new lower bounds for A2(14, 6; 7), A5(16, 6; 8), and A9(18, 6; 9). We hope that these
construction methods and the algorithms for computing identifying vectors will provide
inspiration for the construction of other CDCs.
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Appendix A

Table A1. Construction for Aq(14, 4, 4).

Identifying Vector Dimension Identifying Vector Dimension

1 11000000110000 18 31 00000110011000 11
2 00110000110000 16 32 00010100100001 10
3 10100000101000 16 33 00001001100100 10
4 00001100110000 14 34 00101000001001 9
5 01100000011000 15 35 10000010100001 9
6 01100000100100 15 36 00100010001010 8
7 01010000101000 15 37 00011000000110 9
8 10010000100100 14 38 10001000000101 8
9 10100000010100 14 39 01000100010001 9

10 10010000011000 14 40 00110000000011 8
11 11000000001100 14 41 10000100001001 8
12 00110000001100 12 42 01010000000101 9
13 10001000100010 12 43 00010001100010 9
14 00000011110000 12 44 00010100001010 9
15 01010000010010 12 45 00100010010001 8
16 00001010101000 12 46 00000011001100 8
17 01001000010100 12 47 00100001100001 8
18 00010100010100 11 48 01000100000110 8
19 00100100100010 11 49 10000010000110 7
20 00011000010001 10 50 01000010001001 7
21 01001000100001 11 51 00010001001001 6
22 00000101101000 11 52 00100001000110 6
23 01000010100010 10 53 00001100000011 6
24 00001100001100 10 54 00100100000101 7
25 00001001011000 10 55 10000001010001 7
26 00101000010010 11 56 10000001001010 7
27 00000110100100 11 57 00000000111001 3
28 01001000001010 10 58 00000011000011 4
29 11000000000011 10 59 00000000110110 2
30 10000100010010 10 60 00000000001111 0
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Table A2. Construction for Aq(18, 4, 4).

Identifying Vector Dimension Identifying Vector Dimension

1 110000000000110000 22 43 010000010000100001 12
2 101000000000101000 20 44 010000100000001010 12
3 001100000000110000 20 45 010100000000000101 13
4 010100000000101000 19 46 001001000000010001 13
5 100100000000100100 18 47 000000110000001100 12
6 110000000000001100 18 48 001010000000001001 13
7 100100000000011000 18 49 000100100000010001 12
8 101000000000010100 18 50 001001000000001010 13
9 011000000000011000 19 51 000000001010101000 12
10 011000000000100100 19 52 000000000011110000 12
11 000011000000110000 18 53 100000010000000110 10
12 100010000000100010 16 54 001000000100100010 11
13 000110000000010100 16 55 000011000000000011 10
14 001100000000001100 16 56 000000000110011000 11
15 000010100000101000 16 57 001000100000000110 11
16 010100000000010010 16 58 100000001000001010 10
17 000000110000110000 16 59 100000010000010001 11
18 000110000000100001 15 60 000000101000010010 11
19 000001100000011000 15 61 000000000101101000 11
20 100001000000010010 14 62 000000001001011000 10
21 110000000000000011 14 63 000000001100001100 10
22 000110000000001010 14 64 000100010000001001 10
23 010001000000010100 15 65 100000100000001001 11
24 010001000000100010 15 66 000000100100010100 11
25 100001000000100001 14 67 000000010100010010 10
26 000001010000101000 15 68 000000000110100100 11
27 010010000000010001 14 69 000000001001100100 10
28 000010010000011000 14 70 001000010000000101 9
29 000100100000100010 14 71 000000001010010001 8
30 000011000000001100 14 72 000001001000000101 8
31 001010000000010010 15 73 000000010010001010 8
32 000010010000100100 14 74 000000110000000011 8
33 000001100000100100 15 75 000000000011001100 8
34 000000001100110000 14 76 000000001010000110 7
35 000101000000000110 12 77 000000001100000011 6
36 001000100000100001 13 78 000000100010000101 6
37 000000011000100010 12 79 000000000101010001 7
38 010001000000001001 12 80 000000000101000110 6
39 100010000000000101 12 81 000000000000111100 4
40 001100000000000011 12 82 000000000011000011 4
41 010010000000000110 13 83 000000000000110011 2
42 000000011000010100 12 84 000000000000001111 0
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