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Abstract: In the Internet age, the development of intelligent software has broken the limits of
multilingual communication. Recognizing that the data collected on rumor propagation are inherently
discrete, this study introduces a novel SIR discrete Internet rumor propagation model with the general
nonlinear propagation function in a multilingual environment. Then, the propagation threshold R0

is obtained by the next-generation matrix method. Besides, the criteria determining the spread or
demise of rumors are obtained by the stability theory of difference equations. Furthermore, combined
with optimal control theory, prevention and refutation mechanisms are proposed to curb rumors.
Finally, the validity and applicability of the model are demonstrated by numerical simulations and a
real bilingual rumor case study.
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1. Introduction

Rumor usually refers to statements without corresponding factual basis, which are
fabricated and spread by certain means [1]. With the arrival of the Internet era, social-
izing through the network has become a mainstream way. Social networks have made
the spread of rumors no longer limited by language, time and space. As a result, it has
brought greater harm to the productive life of society. For example, in the beginning of
2020, rumors emerged in some parts of India that certain foods or herbs could prevent
or cure COVID-19. Soon after, the rumor appeared on some social media platforms in
many countries, which hampered the fight against the epidemic. Therefore, it is of im-
portant and realistic significance to investigate the rumor propagation mechanism in a
multilingual environment.

Due to the similarity of a rumor spreading mechanism, most studies on rumors are
based on infectious disease models. In 1965, Daley and Kendal proposed a classical rumor
spreading model, i.e., the DK model, by applying compartment modeling ideas [2]; the
model lays the foundation for the dynamic analysis of rumor spreading. Subsequently,
Maki and Thomson [3] developed the MK model based on the DK model. The classic DK
model and MK model pioneered the study of rumor propagation dynamics. Since then,
many rumor models have been proposed, such as the SIR [4,5] model, the SEIR [6,7] model,
the ISCR [8,9] model, and the SIDRW [10] model. With the further research, many realistic
factors have been added to the rumor model, such as the educational mechanism [11], the
refutation mechanism [12], the trust mechanism [13] and correction mechanism [14]. Some
excellent results have also been achieved with regard to multilingual environments. For
example, in 2021, Yu et al. [15] investigated two new 2I2SR rumor propagation models
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on OSN. In 2023, Ye et al. [16] investigated a fractional-order reaction diffusion rumor
propagation model in a multilingual environment.

It is noted that data on rumor propagation are collected in discrete time units, but
current research about multilingual rumor propagation is limited to building continuous
models. Continuous modeling requires a large amount of data support, and acquire the data
may be confined, resulting in higher difficulty and cost of model construction. Meanwhile,
due to the simplification of the model and the deviation of the parameters, it is difficult for
the rumor continuous model to accurately predict the results of rumor propagation. In this
paper, we will make up for the shortcomings of the existing work with the use of differential
equations to build a discrete rumor propagation model in a multilingual environment, and
analyze its stability to obtain the propagation dynamics and propagation regularity.

Rumor propagation is a complex phenomenon typically involving multiple factors
such as social psychology, information dissemination channels, and individual cognitive
differences. These influencing factors often result in the propagation of rumors exhibiting
nonlinear characteristics. For instance, the effect of increased education levels may vary
across different social groups and regions, thereby manifesting nonlinear features. For this
purpose, some excellent nonlinear functions have been proposed. Concretely, saturation
incidence βSI

1+αI has been proposed to characterize psychological effects [9], where S and I
represent the number of susceptible individuals and infected individuals respectively, β
is the disease transmission coefficient and α is the parameter measures the psychological
or inhibitory effect. In addition, the nonlinear propagation function IS(1 + I) has been
raised to characterize the multi-body interaction [17]. General nonlinear models are more
applicable and have achieved good results. In 2021, Xia et al. [18] investigated the ILSR
rumor propagation model with general nonlinear propagation rate, and found that con-
sidering nonlinear spreading rate in the rumor spreading model can better adapt to the
realistic situation. Therefore, it is necessary to consider general nonlinear propagation rates
in rumor propagation models.

With the aim of controlling the propagation of rumors, many control methods have
been proposed, such as target immunization [19], artificial immunization [20], and efficient
immunization [21]. However, most of the controls are continuous methods, which may have
some shortcomings, mainly including waste of resources and inefficiency. Therefore, this
paper will design a discrete optimization control method, including prevention mechanism
and rumor refutation mechanism. Among them, the preventive mechanism is to convey the
civilized concept of “not believing in rumors and not spreading rumors” by holding various
open classes on online rumor refutation, so as to improve one’s own discernment ability and
reduce the spread of rumors. The rumor refutation mechanism is the governmental control
and establishment of the rumor debunking mechanism, which stops rumors from spreading.
By applying the optimal control theory, we obtain the optimal control intensity, and the
conclusions that we get will provide theoretical support for the strategy development of
government departments.

At present, there is very little work to establish a discrete model to analyze the spread of
rumors. As far as we know, only a discrete rumor propagation model has been established,
and no complete propagation dynamics analysis is carried out in [22]. Moreover, the
development of online social networks makes multilingual communication possible. The
current research on rumor propagation in multilingual environment only explores the
continuous model. In fact, discrete models are often better matched with the sampling
frequency of data sources such as social media because the data itself is discrete. Specifically,
the discrete features of data are more pronounced in multilingual environments. Therefore,
we consider a novel SIR discretel rumor propagation model in a multilingual environment,
which also considers general nonlinear propagation rates. The contributions of this paper
are as follows:

• Different from the continuous rumor models in the multilingual environment [14,18],
an SIR discrete rumor propagation model is developed;
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• Contrary to the linear propagation rate in [23,24], we introduce a rumor propagation
model with a general nonlinear propagation rate in a multilingual environment;

• The optimal control problem of discrete multilingual SIR rumor propagation model is
analyzed, the optimal control intensities for the prevention mechanism uΓk (n) and the
refutation mechanism vΓk (n) are provided.

The paper is organized as follows: Section 2 gives the model description and prereq-
uisite knowledge. Section 3 discusses the dynamics of the rumor-free equilibrium and
rumor-prevailing equilibrium of the SIR rumor propagation model. Section 4 analyzes the
optimal control problem. In Section 5, numerical simulations are performed. In Section 6,
numerical simulation examples are given to illustrate the validity of the results obtained.
Finally, conclusions are given in Section 7.

2. Model Instruction and Preliminaries

Some definitions and lemmas are given below for the convenience of subsequent
work.

2.1. Preliminaries

Definition 1 ([25]). A matrix A = (aij)n×n is called irreducible if there does not exist a permuta-
tion matrix P such that

PT AT =

(
A11 A12
0 A22

)
, (1)

where A11 and A22 are square matrices of order r and n − r respectively, with 1 ≤ r < n. If such a
permutation exists, the matrix A is said to be reducible.

Lemma 1 ([26]). A weighted digraph (G, A) is strongly connected if and only if and ongly if the
weight matrix A is irreducible. The Laplacian matrix L = [lij] of (G, A) is defined as

lij =
{

−aij for i ̸= j,
∑k ̸=i aij for i = j,

The following result gives a graph-theoretic description of the cofactors of the diagonal entries of L.
Suppose n ≥ 2 and denote ci be the cofactor of lii in L. Then ci = ∑T ∈Ti

ω(T ), i = 1, 2, · · · , n
where Ti is the set of all spanning trees T of (G, A) that are rooted at vertex i, and ω(T ) is the
weight of T . If (G, A) is strongly connected, then ci > 0 for 1 ≤ i ≤ n.

Suppose ci be as given in the Kirchhoff’s matrix tree theorem, and denote {Hi(y)}m
i=1 be any

family of functions with y = (y1, · · · , yn)T ∈ Rn, then

m

∑
i,j=1

ciaijHi(y) =
m

∑
i,j=1

ciaijHj(y)

Assumption 1. Let Fij(Si, Ij) represent the general nonlinear propagation function. Assume that
the function Fij(Si, Ij)(i, j = 1, 2, · · · , k) satisfies

(a) Fij(Si(n), Ij(n) = fi(Si(n))gj(Ij(n)),
(b) fi(S) is monotonically non-decreasing, and fi(0) = 0,
(c) I/gj(I) is monotone non-decreasing.
(d) fk(Sk(n))gj(Ij(n)) ≤ Sk(n)Ij(n)

2.2. Model Instruction

In this section, we consider a multilingual model that assumes that the total population
is divided into different groups based on different languages. We will assume in the SIR
rumor spreading model that rumors can be spread through i languages.

It is assumed that the population can be divided into m groups: Group mth (persons
spreading rumors through the mth language). Each group is divided into three categories:
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those who were never informed of the rumor (Spreaders), those who were informed of the
rumor and spread it (Ignorants), and those who already knew the truth or chose not to
spread the rumor due to media reports, official statements, or forgetting mechanisms (Re-
movers). Where Si(n), Ii(n), Ri(n) denote the density of Ignorants, Spreaders and Removers
in group i at time n,respectively. We assume that the coming probability is equal to the leav-
ing probability. Therefore, at each time n, it follows that ek = bS

k Sk(n) + bI
k Ik(n) + bR

k Rk(n).
At the same time, Sk(n) + Ik(n) + Rk(n) = 1. The parameter symbols are shown in Table 1.
Since some people speak multiple languages, different groups can also exchange informa-
tion. Define βkj as the rumor propagation coefficient between Sk and Ij, when 1 ≤ k, j ≤ m.
Suppose that the state transformation rule of the rumor is shown in Figure 1, where the
parameters are shown in Table 1. Based on the above analysis, we can build the following
SIR discrete rumor propagation model in a multilingual environment.

Sk(n + 1) = Sk(n) + ek − bS
k Sk(n)− ⟨k⟩

m
∑

j=1
βkjFkj

(
Sk(n), Ij(n)

)
,

Ik(n + 1) = Ik(n) + ⟨k⟩
m
∑

j=1
βkjFkj

(
Sk(n), Ij(n)

)
−
(
bI

k + γk
)

Ik(n),

Rk(n + 1) = Rk(n) + γk Ik(n)− bR
k Rk(n),

(2)

where the initial conditions is Sk(0) > 0, Ik(0) > 0, Rk(0) > 0 and Sk(0)+Ik(0)+ Rk(0) = 1.

Table 1. Meaning of required parameters in model (2).

Symbols Implications

ek the coming probability of the susceptibility (k = 1, 2, · · · , m).

bS
k the leaving probability of the Sk (k = 1, 2, · · · , m).

bI
k the leaving probability of the Ik (k = 1, 2, · · · , m).

bR
k the leaving probability of the Rk (k = 1, 2, · · · , m).

βkj the cross-transmitted probability from the susceptible Sk to the infected Ij
(k ̸= j, k, j = 1, 2, · · · , m).

γk the transfer probability from spreader Ik to stiflers Rk

due to forgetting mechanism (k = 1, 2, · · · , m).
⟨k⟩ the average degree of the homogeneous network.

Since all the parameters are the description of the probability of some specific behavior,
the values of each parameter are in the interval [0, 1].

Figure 1. Flow chart of the transmission dynamics of multi-language SIR rumor spreading.
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Remark 1. The positive invariant set Ω is defined as

Ω =

(S1(n), I1(n), S2(n), I2(n), · · · , Sm(n), Im(n)) ∈ R2m

∣∣∣∣∣∣∣
0 ≤ Sk(n) ≤

ek

bS
k

0 ≤ Sk(n) + Ik(n) ≤
ek
b∗k

, (3)

where k = 1, 2, · · · , m and b∗k = min{bS
k , bI

k + γk}. Denote the interior of Ω by Ω0.

3. Theoretical Analysis

In this section, the positivity of the solution to model (2), the stability of the rumor-free
equilibrium and the rumor-prevailing equilibrium will be shown.

3.1. The Positive and Boundedness of Solutions

Based on Assumption 1, the model (2) can also be rewritten:
Sk(n + 1) = Sk(n) + ek − bS

k Sk(n)− ⟨k⟩
m
∑

j=1
βkj fk(Sk(n))gj

(
Ij(n)

)
,

Ik(n + 1) = Ik(n) + ⟨k⟩
m
∑

j=1
βkj fk(Sk(n))gj

(
Ij(n)

)
−
(
bI

k + γk
)

Ik(n),

Rk(n + 1) = Rk(n) + γk Ik(n)− bR
k Rk(n),

(4)

where the initial conditions is Sk(0) > 0, Ik(0) > 0, Rk(0) > 0 and Sk(0) + Ik(0) + Rk(0) = 1.
Because the state R in model (4) only appears in the third equation, we can decouple

the R in the equations. Therefore, the dynamic equation of model (4) is equivalent to that
of model (5).

Sk(n + 1) = Sk(n) + ek − bS
k Sk(n)− ⟨k⟩

m
∑

j=1
βkj fk(Sk(n))gj

(
Ij(n)

)
,

Ik(n + 1) = Ik(n) + ⟨k⟩
m
∑

j=1
βkj fk(Sk(n))gj

(
Ij(n)

)
−
(
bI

k + γk
)

Ik(n),
(5)

Theorem 1. Suppose 1 −
m
∑

j=1
βkj ≥ 0. Let (Sk(n), Ik(n)) be the solution to model (4) with initial

condition Sk(0) > 0, Ik(0) > 0, Rk(0) > 0 and Sk(0) + Ik(0) + Rk(0) = 1, then we have

(1) the solution is positive, namely Sk(n) > 0, Ik(n) > 0 for any n > 0,
(2) 

limn→+∞supSk(n) ≤
ek

bS
k

,

limn→+∞ sup(Sk(n) + Ik(n)) ≤
ek
b∗k

,

namely, the solutions are bounded, where k = 1, 2, · · · , m, d∗k = max{bS
k , bI

k + γk} and
b∗k = min{bS

k , bI
k + γk}.

Proof of Theorem 1. First of all, according to the first equation of the model (4) and the
initial condition Sk(0) > 0, Ik(0) > 0, Rk(0) > 0, we can obtain that

Ik(1) = Ik(0)−
(
bI

k + γk
)

Ik(0) + ⟨k⟩
m
∑

j=1
βkj fk(Sk(0))gj

(
Ij(0)

)
.

That is

Ik(1) = Ik(0)−
(

bI
k + γk

)
Ik(0) + ⟨k⟩

m

∑
j=1

βkj fk(Sk(0))gj
(

Ij(0)
)
,

> Ik(0)
[
1 −

(
bI

k + γk

)]
.
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If 0 ≤ bI
k + γk ≤ 1, then Ik(1) > Ik(0)

[
1 −

(
bI

k + γk
)]

≥ 0. By induction, when
0 ≤ bI

k + γk ≤ 1 and Ik(0) > 0, for all n ≥ 0, Ik(n) > 0, namely Ik(n) > 0.
Secondly, according to the first equation of the model (4), we can obtain that

Sk(n + 1) = Sk(n) + ek − bS
k Sk(n)− ⟨k⟩

m

∑
j=1

βkj fk(Sk(n))gj
(

Ij(n)
)
.

According to (d) of Assumption 1, we can obtain that

Sk(n + 1) = Sk(n) + ek − bS
k Sk(n)− ⟨k⟩

m

∑
j=1

βkj fk(Sk(n))gj
(

Ij(n)
)

≥ ek + (1 − bS
k )Sk(n)− ⟨k⟩

m

∑
j=1

βkjSk(n)Ij(n),

Then, we can get

Sk(n + 1) ≥ ek + (1 − bS
k )Sk(n)− ⟨k⟩

m

∑
j=1

βkjSk(n) · 1

= ek + (1 − bS
k −

m

∑
j=1

βkj)Sk(n).

According to the assumption 1 −
m
∑

j=1
βkj ≥ 0 and ek − bS

k Sk(n) > 0, we have

Sk(n + 1) > 0 if Sk(n) > 0.
At the same time, we know the initial condition Sk(0) > 0, then for each time n, we

can deduce

Sk(n + 1) ≥ ek + (1 − bS
k −

m
∑

j=1
βkj)Sk(n) > 0.

namely, Sk(n) > 0.
Finally, from the third equation of model (4), we can get

Rk(n) = (1 − bR
k )

nRk(0) + (1 − bR
k )

n−1[γk Ik(0)] + (1 − bR
k )

n−2[γk Ik(1)]

+ · · ·+ γk Ik(n − 1) > 0.

with nonnegative initial value for n ≥ 0. According to Theorem 1.1 of reference [26], the
positivity of our solution is proved.

Nextly, we prove the second conclusion. Let Vk(n) = Sk(n) + Ik(n). Then, we have

Vk(n + 1)− Vk(n) = ek − bS
k Sk(n)−

(
bI

k + γk

)
Ik(n) ≤ ek − b∗k Vk(n).

So,
lim

n→+∞
sup(Sk(n) + Ik(n)) ≤

ek
b∗k

,

Similarly, from the first equation of the model (5), we further have

lim
n→+∞

supSk(n) ≤
ek

bS
k

.
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3.2. Rumor-Free Equilibrium

In this section, our goal is to explore the dynamical behavior of rumor-free equilibrium.
First, it is not difficult to find that model (5) has a rumor-free equilibrium

E0 = (S0
1, 0, S0

2, 0, · · · , S0
m, 0),

where S0
k =

ek

bS
k

, k = 1, 2, · · · , m.

For the convenience of the narrative, define a function T: Rm → Rm×m,

T(S1(n), S2(n), · · · , Sm(n)) = (
⟨k⟩βkj fk(Sk(n))g

′
j(0)

bI
k + γk

)m×m.

Then, by the method of next-generation matrix, we obtain the propagation threshold
R0 that

R0 = ρ(T0),

where ρ is the spectral radius, T0 = (
⟨k⟩βkj fk(S0

k)g
′
j(0)

bI
k + γk

)m×m.

Theorem 2. Let B = (βkj)m×m and Assumption 1 holds.

(1) If R0 ≤ 1, then the rumor-free equilibrium E0 is globally asymptotically stable on Ω.
(2) If R0 > 1, then the rumor-free equilibrium E0 is unstable.

Proof of Theorem 2. Since B is irreducible, it follows that T0 is irreducible. Based on the
Perron-frobenius theorem, there exists a positive principal eigenvector λ = {(λ1, λ2, · · · , λm)}
such that λk > 0 for k = 1, 2, · · · , m and λρ(T0) = λT0. Consider the following
Lyapunov function:

Mn =
m
∑

k=1

λk

bI
k + γk

[
Sk(n)− S0

k −
∫ Sk(n)

S0
k

fk
(
S0

k
)

fk(ξ)
dξ + Ik(n)

]
.

It can be obtained that

∫ Sk(n+1)

Sk(n)

fk(S0
k)

fk(ξ)
dξ ≥

(Sk(n + 1)− Sk(n)) fk(S0
k)

fk(Sk(n + 1))
, Sk(n) > 0, Sk(n + 1) > 0, for k = 1, 2, · · · , m.

Note that gj(I) ≤ g′j(0)I for all I > 0. Then, one has
Mn+1 − Mn

=
m

∑
k=1

λk

bI
k + γk

[
Sk(n + 1)− Sk(n)−

∫ Sk(n+1)

Sk(n)

fk
(
S0

k
)

fk(ξ)
dξ + Ik(n + 1)− Ik(n)

]
,

≤
m

∑
k=1

λk

bI
k + γk

[(
1 −

fk
(
S0

k
)

fk(Sk(n + 1))

)
(ek − bS

k Sk(n)− ⟨k⟩
m

∑
j=1

βkj fk(Sk(n))gj
(

Ij(n)
)
)

+⟨k⟩
m

∑
j=1

βkj fk(Sk(n))gj
(

Ij(n)
)
− (bI

k + γk)Ik(n)

]
,

≤
m

∑
k=1

λkbS
k

fk(Sk(n + 1))
(
bI

k + γk
)( fk(Sk(n + 1))− fk

(
S0

k

))(
S0

k − Sk(n)
)

+
m

∑
k=1

λk

bI
k + γk

[
⟨k⟩∑m

j=1 βkj fk
(
S0

k
)

fk(Sk(n))gj
(

Ij(n)
)

fk(Sk(n + 1))
− Ik(n)(bI

k + γk)

]
,
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≤
m

∑
k=1

λkbS
k

fk(Sk(n + 1))
(
bI

k + γk
)( fk(Sk(n + 1))− fk

(
S0

k

))(
S0

k − Sk(n)
)

+
m

∑
k=1

λk

bI
k + γk

[
⟨k⟩

m

∑
j=1

βkj fk

(
S0

k

)
gj
(

Ij(n)
)
− Ik(n)(bI

k + γk)

]
,

≤
m

∑
k=1

λkbS
k

fk(Sk(n + 1))
(
bI

k + γk
)( fk(Sk(n + 1))− fk

(
S0

k

))(
S0

k − Sk(n + 1)
)

+
m

∑
k=1

λk

(
⟨k⟩∑m

j=1 βkj fk
(
S0

k
)

g′j(0)Ij(n)

bI
k + γk

− Ik(n)

)
,

=
m

∑
k=1

λkbS
k

fk(Sk(n + 1))
(
bI

k + γk
)( fk(Sk(n + 1))− fk

(
S0

k

))(
S0

k − Sk(n + 1)
)

+ (λ1, λ2, · · · , λm)(T0 In − In),

=
m

∑
k=1

λkbS
k

fk(Sk(n + 1))
(
bI

k + γk
)( fk(Sk(n + 1))− fk

(
S0

k

))(
S0

k − Sk(n + 1)
)

+ (ρ(T0)− 1)(λ1, λ2 · · · , λm)In,
where In = (I1(n), I2(n), . . . Im(n))

T . Thus is Mn+1 − Mn ≤ 0. It follows that {Mn}n∈N is
a decreasing sequence when R0 ≤ 1. Thus, there is a constant M such that lim

n→∞
Mn = M̃

and there are lim
n→∞

(Mn+1 − Mn) = 0. In addition, we have

(1) When R0 < 1

lim
n→∞

(Mn+1 − Mn) = 0 ⇐⇒ lim
n→∞

Sk(n) = S0
k ⇐⇒ lim

n→∞
Ik(n) = 0,

for k = 1, 2, · · · , m.
(2) When R0 = 1

lim
n→∞

(Mn+1 − Mn) = 0 ⇐⇒ lim
n→∞

Sk(n) = S0
k ,

for k = 1, 2, · · · , m.

We refer to lim
n→∞

Ik(n) = 0 for k = 1, 2, · · · , m. Otherwise, it must have the subsequence

{np} and Ĩ = ( Ĩ1, Ĩ2, · · · , Ĩm)T ≥ 0 which makes lim
n→∞

In = Ĩ ̸= 0. Choose the subsequence

{np} of the first equation in model (5).

Sk(nq+1)− Sk(nq) = ek − bS
k Sk(nq)− ⟨k⟩

m
∑

j=1
βkj fk

(
SkSk(nq)(nq)

)
gj
(

Ij(nq)
)
,

k = 1, 2, . . . , m.
Let nq tend to positive infinity in the previous equation

0 = 0 − ⟨k⟩
m
∑

j=1
βkj fk

(
S0

k
)

gj

(
Ĩj

)
for k = 1, 2, · · · , m.

Since B = (βkj)m×m is non-negative and irreducible, one obtains gj( Ĩj) = 0, it is a
contradiction to say that Ĩj = 0 when j = 1, 2, · · · , m. So lim

n→∞
Ik(n) = 0 for k = 1, 2, · · · , m.

In summary, which is contradictory when E0 is globally asymptotically stable when R ≤ 1
is present.

When R0 > 1 and I ̸= 0, there are (λ1, λ2, . . . λm)T0 − (λ1, λ2, . . . λm)En = [ρ(T0)− 1] ·
(λ1, λ2, . . . λm) > 0, where En is the identity matrix of order n. Due to the continuity, we can
obtain that Mn+1 − Mn > 0 in a neighborhood E0 of Ω0, which shows that E0 is unstable.
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3.3. The Rumor-Prevailing Equilibrium

In this section, we explore the dynamical behavior of the rumor-prevailing equilibrium.
It is easy to find that there is a rumor-prevailing equilibrium E∗ for model (4),

E∗ = (S∗
1 , I∗1 , S∗

2 , I∗2 , · · · , S∗
m, I∗m),

satisfing 
ek = bS

k S∗
k + ⟨k⟩

m
∑

j=1
βkj fk

(
S∗

k
)

gj

(
I∗j
)

,

⟨k⟩
m
∑

j=1
βkj fk

(
S∗

k
)

gj

(
I∗j
)
=
(
bI

k + γk
)

I∗k .

Theorem 3. Suppose B = (βkj)m×m is irreducible and Assumption 1 holds. And if R0 > 1, and

gj(Ij)(1 ≤ j ≤ m) satisfies

(
gj(Ij(n))

gj(I∗j )
−

Ij(n)
I∗j

)(
1 −

gj(I∗j )

gj(Ij(n))

)
≤ 0 for any I > 0, then E∗

is globally asymptotically stable in Ω0.

Proof of Theorem 3. Defining Lyapunov function:

Pn =
m

∑
k=1

vk

[
Sk(n)− S∗

k −
∫ Sk(n)

S∗
k

fk
(
S∗

k
)

fk(t)
dt + Ik(n)− I∗k ln

Ik(n + 1)
Ik(n)

+ ⟨k⟩
m

∑
j=1

βkj fk(S∗
k )gj

(
I∗j
)(

Ψ
(

Ik(n + 1)
I∗k

)
− Ψ

(
Ik(n)

I∗k

))]

where Ψ(x) = x − 1 − ln x.
We have

Pn+1 − Pn

=
m

∑
k=1

vk

[
Sk(n + 1)− Sk(n) + Ik(n + 1)− Ik(n)− I∗k ln

Ik(n + 1)
Ik(n)

−
∫ Sk(n)

S∗
k

fk
(
S∗

k
)

fk(t)
dt + ⟨k⟩

m

∑
j=1

βkj fk(S∗
k )gj

(
I∗j
)(

Ψ
(

Ik(n + 1)
I∗k

)
− Ψ

(
Ik(n)

I∗k

))]
,

≤
m

∑
k=1

vk

[(
1 −

fk
(
S∗

k
)

fk(Sk(n + 1))

)
(Sk(n + 1)− Sk(n)) +

(
1 −

I∗k
Ik(n + 1)

)
(Ik(n + 1)

−Ik(n)) + ⟨k⟩
m

∑
j=1

βkj fk(S∗
k )gj

(
I∗j
)(

Ψ
(

Ik(n + 1)
I∗k

)
− Ψ

(
Ik(n)

I∗k

))]
.

Since 
ek = bS

k S∗
k + ⟨k⟩

m
∑

j=1
βkj fk

(
S∗

k
)

gj

(
I∗j
)

,

⟨k⟩
m
∑

j=1
βkj fk

(
S∗

k
)

gj

(
I∗j
)
=
(
bI

k + γk
)

I∗k .

It can be further acquired that,
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Pn+1 − Pn

≤
m

∑
k=1

vk

{(
1 −

fk
(
S∗

k
)

fk(Sk(n + 1))

)[
bS

k (S
∗
k − Sk(n + 1)) + ⟨k⟩

m

∑
j=1

βkj fk(S∗
k )gj

(
I∗j
)

− ⟨k⟩
m

∑
j=1

βkj fk(Sk(n + 1))gj
(

Ij(n)
)]

+

(
1 −

I∗k
Ik(n + 1)

)
×[

⟨k⟩
m

∑
j=1

βkj fk(Sk(n + 1))gj
(

Ij(n)
)
−
(

bI
k + γk

)
Ik(n + 1)

]

+⟨k⟩
m

∑
j=1

βkj fk(S∗
k )gj

(
I∗j
)(

Ψ
(

Ik(n + 1)
I∗k

)
− Ψ

(
Ik(n)

I∗k

))}
,

=
m

∑
k=1

vk

{ bS
k

fk(Sk(n + 1))
(S∗

k − Sk(n + 1))[ fk(Sk(n + 1))− fk(S∗
k )]

+ ⟨k⟩
m

∑
j=1

βkj fk(S∗
k )gj

(
I∗j
)[

2 −
fk
(
S∗

k
)

fk(Sk(n + 1))
+

gj
(

Ij(n)
)

gj

(
I∗j
)

−
fk(Sk(n + 1))gj

(
Ij(n)

)
I∗k

fk
(
S∗

k
)

gj

(
I∗j
)

Ik(n + 1)
− Ik(n)

I∗k
+ ln

I∗k
Ik(n + 1)

+ ln
Ik(n)

I∗k

]}
,

=
m

∑
k=1

vk

{
bS

k
fk(Sk(n + 1))

(S∗
k − Sk(n + 1))[ fk(Sk(n + 1))− fk(S∗

k )]

+ ⟨k⟩
m

∑
j=1

βkj fk(S∗
k )gj

(
I∗j
)−Ψ

(
fk
(
S∗

k
)

fk(Sk(n + 1))

)
− Ψ

 fk(Sk(n + 1))gj
(

Ij(n)
)

I∗k
fk
(
S∗

k
)

gj

(
I∗j
)

Ik(n + 1)


+ ln

gj

(
I∗j
)

gj
(

Ij(n)
) + gj

(
Ij(n)

)
gj

(
I∗j
) − Ik(n)

I∗k
+ ln

Ik(n)
I∗k

,

=
m

∑
k=1

vk

{
bS

k
fk(Sk(n + 1))

(S∗
k − Sk(n + 1))[ fk(Sk(n + 1))− fk(S∗

k )]

+ ⟨k⟩
m

∑
j=1

βkj fk(S∗
k )gj

(
I∗j
)−Ψ

(
fk
(
S∗

k
)

fk(Sk(n + 1))

)
− Ψ

 fk(Sk(n + 1))gj
(

Ij(n)
)

I∗k
fk
(
S∗

k
)

gj

(
I∗j
)

Ik(n + 1)


+ ln

gj

(
I∗j
)

gj
(

Ij(n)
)+
 gj

(
Ij(n)

)
gj

(
I∗j
) −

Ij(n)
I∗j

1 −
gj

(
I∗j
)

gj
(

Ij(n)
)
+ 1 −

Ij(n)gj

(
I∗j
)

I∗j gj
(

Ij(n)
)

+
Ij(n)

I∗j
− Ik(n)

I∗k
+ ln

Ik(n)
I∗k

]}
,

=
m

∑
k=1

vk

{
bS

k
fk(Sk(n + 1))

(S∗
k − Sk(n + 1))[ fk(Sk(n + 1))− fk(S∗

k )]

+ ⟨k⟩
m

∑
j=1

βkj fk(S∗
k )gj

(
I∗j
)−Ψ

(
fk
(
S∗

k
)

fk(Sk(n + 1))

)
− Ψ

 fk(Sk(n + 1))gj
(

Ij(n)
)

I∗k
fk
(
S∗

k
)

gj

(
I∗j
)

Ik(n + 1)


−Ψ

 Ij(n)gj

(
I∗j
)

I∗j gj
(

Ij(n)
)
+

 gj
(

Ij(n)
)

gj

(
I∗j
) −

Ij(n)
I∗j

1 −
gj

(
I∗j
)

gj
(

Ij(n)
)
+

Ij(n)
I∗j

− Ik(n)
I∗k

+ ln
I∗j Ik(n)

Ij(n)I∗k

]}
,
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Set

V1 =
m

∑
k=1

m

∑
j=1

⟨k⟩vkβkj fk(S∗
k )gj(l∗j )

( Ij(n)
I∗j

− Ik(n)
I∗k

)
,

V2 =
m

∑
k=1

m

∑
j=1

⟨k⟩vkβkj fk(S∗
k )gj(I∗j ) ln

I∗j Ik(n)

Ij(n)I∗k
,

we can get Pn+1 − Pn ≤ V1 + V2. Next it will be shown that for all I1(n), I2(n), · · · ,

Im(n) > 0, V1 = 0, it follows that
m
∑

j=1
βkjvj =

m
∑

j=1
βkjvk, from Bv = 0.

Because
βkj = βkj fk(S∗

k )gj(I∗j ),

ones has

⟨k⟩
m

∑
j=1

β jk f j(S∗
j )gk(I∗k )vj = ⟨k⟩

m

∑
j=1

βkj fk(S∗
k )gj(I∗j )vk,

that’s why the introduction of the

⟨k⟩
m

∑
k,j=1

vkβkj fk(S∗
k )gj(I∗j )

Ij(n)
I∗j

=
m

∑
k=1

Ik(n)
I∗k

⟨k⟩
m

∑
j=1

β jk f j(S∗
j )gk(I∗k )vj,

=
m

∑
k=1

Ik(n)
I∗k

⟨k⟩
m

∑
j=1

βkj fk(S∗
k )gj(I∗j )vk,

=⟨k⟩
m

∑
k,j=1

vkβkj fk(S∗
k )gj(I∗j )

Ik(n)
I∗k

.

Thus, V1 = 0 for all I1(n), I2(n), · · · , Im(n) > 0, similar to the proof of Theorem
4.2 of the midpoint [27], V2 = 0 can be deduced for all I1(n), I2(n), · · · , Im(n) > 0. So,
Pn+1 − Pn ≤ 0. This shows that {Pn}n∈N is a decreasing sequence, so there is a constant P̃
such that limn→+∞ Pn = P̃. So we have limn→+∞(Pn+1 − Pn) = 0, which means

lim
n→+∞

(S∗
k − Sk(n + 1))( fk(Sk(n + 1))− fk(S∗

k )) = 0,

lim
n→+∞

(
Ψ
(

fk(S∗
k )

fk(Sk(n + 1))

)
+ Ψ

( fk(Sk(n + 1))gj(Ij(n))I∗k
fk(S∗

k )gj(I∗j )Ik(n + 1)

)
+ Ψ

( Ij(n)gj(I∗j )

I∗j gj(Ij(n))

))
= 0,

lim
n→+∞

(
gj(Ij(n))

gj(I∗j )
−

Ij(n)
I∗j

)(
1 −

gj(I∗j )

gj(Ij(n))

)
= 0.

Hence, it can be concluded that

lim
n→+∞

Sk(n) = S∗
k and lim

n→+∞
Ij(n) = I∗j , for j = 1, 2, · · · , m.

Based on the decreasing trend of Pn and the LaSalle’s invariance principle, it can be
concluded that the rumor-prevailing equilibrium E∗ is globally asymptotically stable in Ω
when R0 > 1.

4. Optimal Control

How to take control when rumors are prevailing is a very important issue, for this
reason, this paper considers two control strategies, including prevention mechanism and
rumor refutation mechanism. Specially, the prevention mechanism refers to the dissemina-
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tion of the civilized concept of “don’t believe in rumors, don’t spread rumors” by holding
various online public lecture on rumor refutation, so as to improve their ability to distin-
guish. The rumor-refuting mechanism is government control and the establishment of a
rumor-refuting mechanism to stop the spread of rumors.

We assume that there are m languages of the domain studied Γ, where denotes Γk
the density of speakers of the kth language. The Γk population was divided into three
compartments, SΓk (n), IΓk (n), and RΓk (n).

4.1. Presentation of the Model

The multilingual discrete time SIR model associated with Γk can be derived from (4)
as follows:

SΓk (n + 1) = SΓk (n) + ek − bS
k SΓk (n)− ⟨k⟩

m
∑

j=1
βkj fk

(
SΓk (n)

)
gj

(
IΓj(n)

)
,

IΓk (n + 1) = IΓk (n) + ⟨k⟩
m
∑

j=1
βkj fk

(
SΓk (n)

)
gj

(
IΓj(n)

)
−
(
bI

k + γk
)

IΓk (n),

RΓk (n + 1) = RΓk (n) + γk IΓk (n)− bR
k RΓk (n).

In the model, we introduce two control variables uΓk (n) and vΓk (n) to characterize the
prevention mechanism and the rumor refutation mechanism. Then, for a given group Γk,
the model can be further shown as the following equation:

SΓk (n + 1) = SΓk (n) + ek − bS
k SΓk (n)− ⟨k⟩

m
∑

j=1
βkj fk

(
SΓk (n)

)
gj

(
IΓj(n)

)
− uΓk (n)SΓk (n),

IΓk (n + 1) = IΓk (n) + ⟨k⟩
m
∑

j=1
βkj fk

(
SΓk (n)

)
gj

(
IΓj(n)

)
−
(
bI

k + γk
)

IΓk (n)− vΓk (n)IΓk (n),

RΓk (n + 1) = RΓk (n) + γk IΓk (n)− bR
k RΓk (n) + uΓk (n)SΓk (n) + vΓk (n)IΓk (n).

(6)

For this control problem, our goal is to reduce the density of the ignorants SΓk (n)
and the spreaders IΓk (n) with the lowest cost, and try to increase the density of removers
individuals in Γk. Suppose that the control variables uΓk (n) and vΓk (n) are bounded. Define
the maximum value of uΓk (n) and vΓk (n) is uΓk (max) and vΓk (max), the minimum value
of uΓk (n) and vΓk (n) is uΓk (min) and vΓk (min), and satisfies 0 < uΓk (min) < uΓk (max) < 1
and 0 < vΓk (min) < vΓk (max) < 1, where k = 1, 2, . . . , m.

4.2. Optimal Control Strategy

Based on the above description, we can get the objective function of model (6) is

Jk

(
uΓk , vΓk

)
=
(

αS
k SΓk (N) + αI

k IΓk (N)− αR
k RΓk (N)

)
+

m

∑
k=1

N−1

∑
n=1

[
αS

k SΓk (n) + αI
k IΓk (n)− αR

k RΓk (n) +
Ak
2

(
uΓk (n)

)2
+

Bk
2

(
vΓk (n)

)2
]

,
(7)

where Ak > 0, Bk > 0, αS
k > 0, αI

k > 0, αR
k > 0 are the weight coefficient. In other words, we

are looking for an optimal control uΓ∗
k and vΓ∗

k such that,

Jk

(
uΓ∗

k , vΓ∗
k

)
= min

{
Jk
(
uΓk , vΓk

)∣∣uΓk ∈ Uk, vΓk ∈ Vk
}

,

where Uk and Vk is defined by the control set Uk =
{

uΓk
∣∣∣uΓk (min) ≤ uΓk ≤ uΓk (max) , n = 0, 1, · · · , N − 1

}
,

Vk =
{

vΓk
∣∣∣vΓk (min) ≤ vΓk ≤ uΓk (max) , n = 0, 1, · · · , N − 1

}
,

(8)

where 0 < uΓk (min) < uΓk (max) < 1 and 0 < vΓk (min) < vΓk (max) < 1.
Therefore, we define the Hamiltonian function as:
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H(Γk) =
m

∑
k=1

αS
k SΓk (N) +

m

∑
k=1

αI
k IΓk (N)− αR

k RΓk (N) +
An

2
(uΓk (n))2 +

Bn

2
(vΓk (n))2

+ ζk
1(n + 1)× [SΓk (n) + ek − bS

k SΓk (n)−
m

∑
j=1

βkj fk(SΓk (n))gj(IΓj(n))− uΓk (n)SΓk (n)]

+ ζk
2(n + 1)× [IΓk (n) +

m

∑
j=1

βkj fk(SΓk (n))gj(IΓj(n))− (bI
k + γk)IΓk (n)− vΓk (n)IΓk (n)]

+ ζk
3(n + 1)[RΓk (n) + γk IΓk (n)− bR

k RΓk (n) + uΓk (n)SΓk (n) + vΓk (n)IΓk (n)]

Theorem 4 (sufficient condition). For the optimal control problem given by (7) and equation of
state (6), there exists an optimal control uΓ∗

k ∈ Uk such that

Jk

(
uΓ∗

k , vΓ∗
k

)
= min

{
Jk
(
uΓk , vΓk

)∣∣uΓk ∈ Uk, vΓk ∈ Vk
}

.

Proof of Theorem 4. The specific proof steps are similar to Theorem 1 in reference [28],
here, we no longer repeat.

Theorem 5 (necessary condition). Given two optimal controls uΓ∗
k vΓ∗

k and solution SΓ∗
k ,IΓ∗

k , and
RΓ∗

k , there exists ζ j,k that the accompanying variables satisfy the following equations:
(k = 1, · · · , N; j = 1, 2, 3.)

ζk
1(n) =− [αS

k + ζk
1(n + 1)(1 − bS

k −
m

∑
j=1

βkjgj(IΓj(n)) f
′
k(S

Γk (n))− uΓk (n))

+ ζk
2(n + 1)(

m

∑
j=1

βkjgj(IΓj(n)) f
′
k(S

Γk (n))) + ζk
3(n + 1)(µk + uΓk (n))],

ζk
2(n) =− [αI

k + ζk
1(n + 1)× (−

m

∑
j=1

βkj fk(SΓk (n))g
′
j(IΓj(n))) + ζk

2(n + 1)×

(1 +
m

∑
j=1

βkj fk(SΓk (n))g
′
j(IΓj(n))− bI

k − γk − vΓk (n)) + ζk
3(n + 1)(γk + vΓk (n))],

ζk
3(n) =− [−αR

k + ζk
3(n + 1)(1 − bR

k )],

where ζk
1(N) = αS

k , ζk
2(N) = αI

k, ζk
3(N) = −αR

k are transversal conditions, in addition, there are uΓ∗
k (n) = min(max(uΓk (min), (ζ

k
1(n+1)−ζk

3(n+1))SΓ∗k (n)
Ak

, uΓk (max))),

vΓ∗
k (n) = min(max(vΓk (min), (ζ

k
2(n+1)−ζk

3(n+1))IΓ∗k (n)
Bk

, vΓk (max))),

n = 0, 1, · · · , N − 1.

Proof of Theorem 5. Let SΓk = SΓ∗
k , IΓk = IΓ∗

k , RΓk = RΓ∗
k and uΓk = uΓ∗

k , based on the
Pontryagin maximum principle [29], we get the adjoint equation:
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ζk
1(n) = − ∂H

∂SΓk (n)
= −[αS

k + ζk
1(n + 1)(1 − bS

k −
m

∑
j=1

βkjgj(IΓj(n)) f
′
k(S

Γk (n))− uΓk (n))

+ ζk
2(n + 1)(

m

∑
j=1

βkjgj(IΓj(n)) f
′
k(S

Γk (n))) + ζk
3(n + 1)(µk + uΓk (n))],

ζk
2(n) = − ∂H

∂IΓk (n)
= −[αI

k + ζk
1(n + 1)× (−

m

∑
j=1

βkj fk(SΓk (n))g
′
j(IΓj(n)))

+ ζk
2(n + 1)(1 +

m

∑
j=1

βkj fk(SΓk (n))g
′
j(IΓj(n))− bI

k − γk − vΓk (n))

+ ζk
3(n + 1)(γk + vΓk (n))],

ζk
3(n) = − ∂H

∂RΓk (n)
= −[−αR

k + ζk
3(n + 1)(1 − bR

k )],

with ζk
1(N) = αS

k , ζk
2(N) = αI

k, ζk
3(N) = −αR

k , k = 1, 2, · · · , m are transversal conditions.
To obtain the optimal control conditions, we take the change relative to the control uΓk , vΓk

and set it to zero
∂H

∂uΓk (n)
= AkuΓk (n)− ζk

1(n + 1)SΓk (n) + ζk
3(n + 1)SΓk (n) = 0,

∂H
∂vΓk (n)

= BkvΓk (n)− ζk
2(n + 1)IΓk (n) + ζk

3(n + 1)IΓk (n) = 0,

And then we have  uΓk (n) = (ζk
1(n+1)−ζk

3(n+1))SΓk (n)
Ak

,

vΓk (n) = (ζk
2(n+1)−ζk

3(n+1))IΓk (n)
Bk

.

Then, we combine the Equation (7) to obtain the optimal solution as follows uΓ∗
k (n) = min(max(uΓk (min), (ζ

k
1(n+1)−ζk

3(n+1))SΓk (n)
Ak

, uΓk (max)))

vΓ∗
k (n) = min(max(vΓk (min), (ζ

k
2(n+1)−ζk

3(n+1))IΓk (n)
Bk

, vΓk (max)))

where k = 0, 1, · · · , N − 1.

5. Numerical Simulations

In this section, we will perform numerical simulations for model (4) with several
classical nonlinear spreading rates, such as the bilinear diffusion function βSI, the satu-
rated diffusion function βSI

1+αI [30], and the nonmonotonic diffusion function βSI
1+αI2 [31],

to demonstrate the reliability of the theoretical results. The initial value of model (4) is
chosen as Si(t) = 0.7, Ii(t) = 0.2, Ri(t) = 0.1. Without losing generality, we choose the
bilinear diffusion function Fkj

(
Sk(n), Ij(n)

)
= fk(S)gk(I) = SI, the saturated diffusion

function Fkj
(
Sk(n), Ij(n)

)
= fk(S)gk(I) = S S

1+I and the nonmonotonic diffusion function
Fkj
(
Sk(n), Ij(n)

)
= fk(S)gk(I) = S S

1+I2 satisfying the model (4) to conduct some numerical
simulations in bi-lingual environments.

For the first case, we choose ⟨k⟩ = 1, ek = 0.24, bS
k = 0.15, bI

k = 0.3, bR
k = 0.5,

β11 = 0.15, β12 = 0.1, β21 = 0.15, β22 = 0.15, γk = 0.15 in the model (4) with the
bilinear diffusion function, the saturated diffusion function and the nonmonotonic diffusion
function, respectively. With the parameter configuration in this case, it follows that R0 ≤ 1.
The numerical simulations of the bilinear diffusion function, saturated diffusion function,
and nonmonotonic diffusion function respectively correspond to Figures 2–4.
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Figure 2. The change trend diagram of S(t), I(t) and R(t) with the bilinear diffusion function when
R0 ≤ 1.
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Figure 3. The change trend diagram of S(t), I(t) and R(t) with the saturated diffusion function when
R0 ≤ 1.
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Figure 4. The change trend diagram of S(t), I(t) and R(t) with the nonmonotonic diffusion function
when R0 ≤ 1.

Through observing Figures 2–4, we find that in all three cases, regardless of the specific
from of the nonlinear diffusion function, rumors will prevail in the network when R0 ≤ 1.
It verifies that the result of Theorem 2 is correct.

For the second case, we choose ⟨k⟩ = 1, ek = 0.16, bS
k = 0.05, bI

k = 0.05, bR
k = 0.5,

β11 = 0.4, β12 = 0.3, β21 = 0.4, β22 = 0.5, γk = 0.3 in the model (4) with the bilinear diffusion
function, the saturated diffusion function and the nonmonotonic diffusion function, respectively.
With the parameter configuration in this case, it follows that R0 > 1. The numerical simulations
of the bilinear diffusion function, saturated diffusion function, and nonmonotonic diffusion
function respectively correspond to Figures 5–7.
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Figure 5. The change trend diagram of S(t), I(t) and R(t) with the bilinear diffusion function when
R0 > 1.
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Figure 6. The change trend diagram of S(t), I(t) and R(t) with the saturated diffusion function 0.7cm
when R0 > 1.
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Figure 7. The change trend diagram of S(t), I(t) and R(t) with the nonmonotonic diffusion function
when R0 > 1.

By observing Figures 5–7, we find that in all three cases, regardless of the specific from
of the nonlinear diffusion function, rumors will prevail in the network when R0 > 1. The
validity of the result of Theorem 2 is shown.

Remark 2. From Figures 5–7, we can sell that the propagation rate of the bilinear diffusion function
is the fastest and reaches the peak first. After reaching equilibrium, the recovery density of the
bilinear diffusion function is also the largest. The saturated diffusion function has the smallest
recovery density and the smallest propagation density among the three functions.

Remark 3. As we all know, the purpose of scholars analyzing the dynamic behavior of rumor
spreading is to guide and control the spread of rumors. As can be seen from Figures 5–7, the number
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of spreaders I(t) will peak somewhere, indicating that at this time we can take measures to effectively
prevent the spread of rumors.

We now give numerical simulations related to the above optimal control problem. For
example, to show the significance of our work, we choose m = 40, i.e., we consider forty
groups, and we try to control Ω with control variables uΓ∗

k and vΓ∗
k . Let ⟨k⟩ = 1, ek = 0.16,

bS
k = 0.05, bI

k = 0.05, bR
k = 0.5, β11 = 0.4, β12 = 0.3, β21 = 0.4, β22 = 0.5, γk = 0.3 in the

model (4) with the bilinear diffusion function. We obtain the change trend diagram of the
states with bilinear diffusion function before control in Figure 8. Figure 9 is the change
trend diagram of each state with bilinear diffusion function after control.
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Figure 8. Uncontrolled S(t), I(t), and R(t) trend plots with bilinear diffusion functions.
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Figure 9. S(t), I(t), and R(t) trend plots with bilinear diffusion function and control.

It can be seen from Figures 8 and 9 that the spreader I(t) is controlled, which better
illustrates that the theoretically proposed strategy is effective and proves the applicability
of the model.

6. Numerical Simulation of the Case

In this section, we give a real bilingual rumor case for numerical simulation and verify
the applicability of the proposed model.

The main content of the rumor is that in the early morning of 26 August 2018, a
multi-person brawl broke out in the city of Chemnitz, Germany. At the same time, there
is a lot of false information on the network. For example, there are rumors that the
perpetrator attacked the victim because he wanted to protect women from sexual assault
that the perpetrator did not want. The incident involved people of multiple nationalities,
so the rumors related to the incident were spread in many languages, mainly in English
and German.

We collected rumor spreading data within 217 h after the event from the literature [32],
and used 217 h of data as a test set. In order to fit the real data as accurately as possible, we
use Matlab R2017a to simulate model (4) to evaluate the parameter values. On this basis,
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the parameter values shown in Figures 10 and 11 are obtained. We use red and yellow to
represent the true density curves of English and German rumor spreaders, respectively.
Figure 10 shows the density evolution curve of English rumor spreaders represented by
blue. It is found that the peaks are basically the same and the fitting effect is good. Blue
is used to represent the density evolution curve of German rumor spreaders, as shown
in Figure 11. We found that in this case, especially in the second half, the fitting effect is
not good, but it also shows that the rumor is in a popular state. The reason may be due
to the influence of random factors, which also inspires us to establish a random model to
further explore this issue in the future. It is worth noting that since the incident occurred in
Germany, rumors usually occur in the spread of Germany.

The first case is modeling the data in English. Let ⟨k⟩ = 6, ek = 0.4, bS
k = 0.001,

bI
k = 0.8, bR

k = 0.22, β11 = 0.2, β12 = 0.1, β21 = 0.1, β22 = 0.2, γk = 0.3 in the model (4)
with the bilinear diffusion function.
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Figure 10. S(t), I(t), and R(t) trend plots with bilinear diffusion function and control.

The second case is modeling the data in German. Let ⟨k⟩ = 5, ek = 0.6, bS
k = 0.001,

bI
k = 0.2, bR

k = 0.2, β11 = 0.2, β12 = 0.2, β21 = 0.02, β22 = 0.12, γk = 0.3 in the model (4)
with the bilinear diffusion fuction.
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Figure 11. S(t), I(t), and R(t) trend plots with bilinear diffusion function and control.

Remark 4. Note that the previous multilingual rumor propagation models used single-language
cases for case simulation [16,24,33], which lacks representativeness and cannot reflect the general-
ization ability of the model. It is worth affirming that our case is multilingual, and the data and
the model are consistent in discrete forms, which enhances the reliability of the data and better
demonstrates the usefulness of the model.

7. Conclusions

In this paper, a discrete multilingual SIR Rumor propagation model with general non-
linear propagation rate is established. The results show that when R0 ≤ 1, the rumor-free
equilibrium point is globally asymptotically stable. When R0 > 1, the rumor-prevailing
equilibrium is globally asymptotically stable. Secondly, the optimal control problem of dis-
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crete multilingual SIR rumor propagation model is analyzed, the optimal control intensities
for the prevention mechanism uΓk (n) and the refutation mechanism vΓk (n) are provided.
Finally, through some numerical simulations, we verified the rationality of the theory and
the practicality of the proposed model.
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