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Abstract: A robust biometric system is essential to mitigate various security threats. Electroen-
cephalography (EEG) brain signals present a promising alternative to other biometric traits due to
their sensitivity, non-duplicability, resistance to theft, and individual-specific dynamics. However,
existing EEG-based biometric systems employ deep neural networks, such as convolutional neural
networks (CNNs) and recurrent neural networks (RNNs), which face challenges such as high param-
eter complexity, limiting their practical application. Additionally, their ability to generalize across a
large number of subjects remains unclear. Moreover, they have been validated on datasets collected
in controlled environments, which do not accurately reflect real-world scenarios involving diverse
brain conditions. To overcome these challenges, we propose a lightweight neural network model,
GCT-EEGNet, which is based on the design ideas of a CNN model and incorporates an attention
mechanism to pay attention to the appropriate frequency bands for extracting discriminative features
relevant to the identity of a subject despite diverse brain conditions. First, a raw EEG signal is
decomposed into frequency bands and then passed to GCT-EEGNet for feature extraction, which
utilizes a gated channel transformation (GCT) layer to selectively emphasize informative features
from the relevant frequency bands. The extracted features were used for subject recognition through
a cosine similarity metric that measured the similarity between feature vectors of different EEG
trials to identify individuals. The proposed method was evaluated on a large dataset comprising
263 subjects. The experimental results demonstrated that the method achieved a correct recognition
rate (CRR) of 99.23% and an equal error rate (EER) of 0.0014, corroborating its robustness against
different brain conditions. The proposed model maintains low parameter complexity while keeping
the expressiveness of representations, even with unseen subjects.

Keywords: EEG brain signals; biometric recognition; convolutional neural network; deep learning
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1. Introduction

Identity recognition is crucial for verifying users and preventing imposters in various
biometric applications. Traditional methods such as cards, keys, and passwords are widely
used, but they are susceptible to loss or theft. Biometric traits such as fingerprints, iris
appearance, voice, and gait offer promising alternatives, though each has its limitations [1,2].
For instance, biometrics involving the eyes, fingers, or faces cannot be easily replaced
once compromised. To address these security concerns, EEG-based brain biometrics have
emerged as a viable solution [3]. The EEG has been extensively used in medicine to
assess brain health and in brain—computer interface systems, and is gaining acceptance
as a biometric method due to its user-friendliness, the availability of portable headsets,
and its non-invasive nature [4]. The EEG records electrical activity across the scalp using
electrodes, offering advantages such as cost-effectiveness, temporal precision, resistance to
theft, and the ability to verify live subjects. Each individual’s EEG is unique, exhibiting
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minimal intra-subject and significant inter-subject variability [5]. The primary challenge lies
in developing a reliable EEG-based recognition system that recognizes individuals despite
their brain activity variability. Numerous EEG-based biometric methods have evolved from
those based on hand-engineered features using conventional machine learning to more
advanced modern techniques such as convolutional neural networks (CNNs) [6-10] and
recurrent neural networks (RNNs) [11-14]. Traditional methods rely on hand-engineered
features, and they often preprocess EEG recordings to remove unwanted artifacts such as
power supply noise, eye blinking, or muscle activity [15]. After preprocessing, features are
extracted using methods such as auto-regressive (AR) models [16,17] and power spectral
density (PSD) [18-20]. They are often difficult to tune and time-consuming, and they
usually require expert knowledge. The designs of methods based on white-box models,
such as auto-regressive models, assume simple and linear relationships in the data, making
them less effective in capturing intricate patterns in EEG signals [4,21]. Therefore, simpler
models often miss essential details, whereas EEG signals vary between subjects and brain
states, and intricate patterns play a key role in discriminating subjects” identities. In
contrast, a deep learning model automatically learns intricate patterns from the data
hierarchically, making it better suited to capture discriminative features relevant to the
identity of subjects from their EEG signals. There are many research works based on deep
learning for EEG-based recognition [6-14]. However, they are not generalizable because
their designs are based on small datasets that were collected during specific tasks with
fewer than 60 participants. This limits their applicability to real-world scenarios. Further
research is needed to improve the generalizability and applicability of EEG-based biometric
systems by developing task-independent feature extraction methods and ensuring low time
and space complexity in the model design. This study proposes a solution to tackle these
issues through a compact and efficient deep learning model that automatically captures
discriminative information for individual identification, thereby enhancing the system’s
usability and applicability in real-world scenarios. The key contributions of this research
include the following:

e A lightweight deep neural network model based on the design ideas of CNN models
and an attention mechanism to selectively focus on salient frequency bands for ex-
tracting discriminative features relevant to the identity of a subject from an EEG trial
under various brain conditions.

e A robust EEG-based system for identification and authentication that is agnostic to
various brain conditions, i.e., resting states, emotions, alcoholism, etc., and one that
uses a short EEG trial of one second to reveal or authenticate the identity of a subject.

e A thorough evaluation for validating the proposed EEG-based system using a large
dataset of 263 subjects who underwent EEG trials that were captured in various
brain states.

The remainder of this study is organized as follows: Section 2 presents an overview
of the existing works and Section 3 describes the proposed method. Section 4 explains
the evaluation method and Section 5 describes the detailed experiments with discussions.
Finally, the findings are summed up and future research is discussed in Section 6.

2. Related Work

The use of EEG-based biometrics has been explored since the 1980s, leveraging distinct
electrical activity patterns for individual identification [22]. Over the years, research efforts
have increasingly focused on extracting discriminative information from EEG recordings.
Maiorana [23] highlighted the effectiveness of deep learning techniques, particularly con-
volutional neural networks (CNNs) and recurrent neural networks (RNNs), in extracting
unique features from various EEG representations and architectures. This section reviews
the current literature on deep learning methods for EEG biometrics, covering both identifi-
cation and verification approaches.

In the identification task, CNNs gained increasing attention due to their exceptional
feature learning and classification abilities. Das et al. [11] applied a CNN-LSTM model
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to identify 109 subjects from PhysioNet dataset, achieving 99.9 for eyes-closed (EC) and
98% for eyes-open (EO) tasks in trials of 12 s. Similarly, Jijomon and Vinod [12] developed
a CNN-LSTM model that was applied to a private dataset consisting of 20 subjects per-
forming auditory tasks (AEPs), reaching a 99.5% CRR with trials of 2 s. Wilaiprasitporn
et al. [14] also employed CNN-LSTM and CNN-GRU for 2D meshes on the DEAP dataset,
which involved 32 subjects performing emotion-related tasks, achieving a CRR of over 99%
with a 10 s trial length. Jin et al. [24] proposed the CTNN model, which was employed on a
private dataset of 20 subjects performing different brain tasks, achieving a CRR of 99.9%.

Different CNN-based models have also been used for verification tasks, such as
spatial-temporal convolutions [7], depth-wise separable convolutions [25], and Siamese
networks [9]. Chen et al. [7] used a CNN with global spatial and local temporal kernels
on multiple datasets with different brain tasks, achieving an EER of 2.94. Debie et al. [25]
applied a depth-wise separable convolution technique to a CNN on two public datasets
with fewer than 54 subjects, performing different kinds of tasks, achieving a false acceptance
rate (FAR) and false rejection rate (FRR) of less than 2%. In [13], a CNN-LSTM model was
applied to the PhysioNet dataset, achieving an EER of 0.41. Seha and Hatzinakos [10] used
3D tensors with a CNN encoder, and the features were classified using an SVM on a private
dataset of 13 subjects performing AEPs, achieving EERs between 3 and 7.5%.

Some previous methods treated identification and verification tasks as classification
problems, making them impractical in real-world applications. In contrast, other stud-
ies [26-28] treated these tasks as matching problems using CNNs and focusing on specific
protocols such as eyes-open (EO) and eyes-closed (EC) tasks or time-locked brain protocols
(e.g., event-related potentials, ERPs). Alsumari et al. [27] and Bidgoly et al. [26] used the
PhysioNet dataset, achieving correct recognition rates (CRRs) of 99.05% and 98.04%, with
error rates of 0.187 and 1.96, respectively. In [28], ERPs were extracted from two datasets
with 40 and 41 subjects, achieving CRRs of 95.63% and 99.92% and equal error rates (EERSs)
of 1.37% and 0.14%, respectively.

Although EEG-based biometric systems have made great progress over the years,
research in this area still faces significant challenges. First, some methods [7,11,14,19,24]
stack layers to CNNs or apply an RNN on top of a CNN in an end-to-end model, leading
to parameter explosion as the number of subjects increases. To lower the number of
parameters, the recognition problem should be treated as a matching problem. Additionally,
most research works rely on private datasets or datasets with fewer than 100 subjects,
making them less generalizable. These systems often need repeated stimuli in controlled
environments, requiring subjects’ cooperation to create the same brain state each time,
which is not always possible because brain states are dynamic and not constantly at rest.
In addition, external factors such as fatigue, mood, and alcohol use are not considered in
many studies such that most research focuses on datasets such as PhysioNet, DEAP, and
private datasets, which are limited to specific tasks such as motor imagery (MI), visual
evoked potentials (VEPs), and auditory evoked potentials (AEPs).

Further, although some studies such as [11,14] achieved high accuracies, they used
long trial lengths of 10 and 12 s, respectively. Jijomon and Vinod [12] also achieved high
identification with only two electrodes, but their study involved a small number of subjects,
limiting its applicability to real-world scenarios. End-to-end models come with a high
cost in terms of time and space, as they need to be retrained every time a new subject
registers. With a large number of individuals, the number of parameters can grow rapidly.
While some techniques, such as depth-wise separable convolutions [24], help reduce spatial
complexity, the overall computational demands and the need to retrain models for new
subjects further limit their scalability. All these problems make the models less efficient for
real-time applications.

Despite advancements in EEG-based biometric systems, ensuring effective perfor-
mance in the presence of varying mental and physical activities remains a challenge, as
EEG signals are influenced by factors such as movement, artifacts, fatigue, and emotions.
These issues necessitate the development of a model that focuses on learning intricate
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intrinsic and discriminative features from EEG trials across diverse brain states, including
often neglected psychological factors such as fatigue. To address these issues, inspired by
the design of EEGNet [29] and the limitations of the existing deep models for EEG-based
recognition, we designed a model that incorporates depth-wise separable convolutions and
attention mechanisms to focus on the most important EEG features, improving accuracy
while reducing complexity.

3. The Proposed Method

We address the recognition problem using EEG brain signals as a biometric modality.
First, we define and formulate the problem. The challenging part of the solution to this
problem is the extraction of discriminative features from EEG signals. We present the
details of a lightweight deep neural network model for feature extraction from EEG trials.

3.1. Problem Specification and Formulation

In biometric recognition, there are two primary tasks. Given an EEG trial (a query
trial) of a subject, the aim is to reveal (identification problem) or authenticate (verification
problem) the identity [ of the subject. In the identification task, the system determines the
identity of an unknown subject by matching the query EEG trial x against the trials of
all subjects in the gallery set; this task is formulated as a one-to-many matching problem.
Identification can be with a closed set, where the trials of the query subject are known to be
in the gallery set, or an open set, where the query subject may not be in the gallery set; this
trial design is more challenging. In the verification task, the system verifies the claimed
identity of a subject by comparing the query EEG trial x with the EEG trials of the same
subject in the gallery set; this task is formulated as a one-to-one matching problem.

We represent an EEG trial or epoch as a matrix of size C x T, i.e, x € RE*T where C is
the number of channels used to capture the brain’s electrical activity over different locations
on the scalp, and T is the number of timestamps recorded within a fixed time interval. Let
X =1{Xjy, Xp, ..., Xn} be the collection of EEG trials acquired from N subjects, such that
X; = {xé, xé, e xil} is the set of trials from the ith subject; for simplicity, we write this as
Xi=1{x1, x2,..., xp;}. In addition, let L = {1, 2, ..., N} be the set of subject labels/IDs, and
I € L be the ID or label of the /th subject. Let V ={V;, V, ..., VN}, where V; = {vﬁ, vé,. .. viz}
is the set of feature vectors extracted from the EEG trials x1, xp, . . ., x;; corresponding to the
ith subject; for simplicity, we write this as V; = {v1, v2, . . ., vy;}. The crucial part of the design
of the recognition system is the extraction of discriminative features v; from EEG trials x;.
Inspired by the outstanding performance of deep learning models in automatic feature
learning in various applications and, specifically, EEG-based applications [6,7], we design
a lightweight deep model f for feature extraction in such a way that f(x;0) = v, where x
is the input EEG trial, v is the feature vector extracted by f, and 0 represents the learnable
parameters of f. The complexity of the model depends on the learnable parameters 6; f
must be designed so that this complexity is low to avoid overfitting.

For the design of an identification or verification system, we divide the available
data of each subject into query and gallery sets, Vl.q and Vig , respectively. Let v; and vg be
the feature vectors extracted from a query and a gallery trial, respectively, i.e.,, v; € V!
and v € Vig . We compute the matching score s;, € [01] of v; and vg using the metric
d (vq, vg) and let t be a predefined threshold. In case of an open-set identification problem,

let s? =max {0, sqq |Sqq = t, Vg € Vig } be the maximum matching score of the query
vector v, from each of the gallery vectors v, € Vig of the ith subject. The predicted label

of the query trail x, is I;, where [; = 1 <ml{li N {sf

the subject does not exist. In case of verification, let s? = max {O, 84,8 |sq,g >t vg € Vig }

i= 1,2,...,N}. If each s? is zero,

be the maximum matching score of the query vector v, from each of the gallery vectors
vg € Vig of the query subject. The attempt is genuine if s? # 0; otherwise, it is an impostor.
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We examine metrics such as Euclidean, Manhattan, and cosine similarity to compute the
similarity between two trials.

3.2. Deep-Learning-Based Feature Extractor

This section presents the details of a lightweight and task-independent deep model,
GCT-EEGNet. Its architecture is inspired by EEGNet’s success and excellent generaliz-
ability in various BCI paradigms [29]. It is designed as a feature extractor f to extract
discriminative features relevant to the identity of a subject from their EEG trial x. Figure 1
provides an overview of the model architecture, and Table 1 gives its complete specification.
First, an EEG trial x is preprocessed using the mapping 11, which normalizes the trial
and then decomposes it into frequency sub-bands (rhythms) using the discrete wavelet
transform (DWT). Then, mapping 1, assigns weights to each rhythm according to its con-
tribution to learning discriminative features; it is implemented as an attention block that
helps to pay attention to the significant rhythms. It follows the mappings 3 and 4, which
learn low-level spectral-spatio—temporal features using temporal convolution (TConv),
depth-wise channel convolution (DCConv), and average pooling. Finally, the mapping 5
learns high-level spectral-spatio—temporal features using separable temporal convolution
(STCov) and global average pooling (GAP) blocks. The output of GAP is the feature vec-
tor (v) used for identification and verification. Mathematically, f is a composition of the
following five mappings:

f(x;0) = 509 0p3 0Pz 0y (x) 1

where 6 = { 0, 03, 04, 05} and 6,, 03, 04, 05 are learnable parameters of ¥, P, P4, and
Y5, respectively. The details of each mapping are given in the following paragraphs. The
GCT-EEGNet is trained as an end-to-end classification model; for this purpose, an FC layer
with the softmax function is added after GAP during the training time. After training, the
classification layer is removed, and the model is used as a standalone feature extractor.

Y

Preprocessing

W, W, | Y i

| i

GCT p o' | Depthwise CConv. |

Attention ] TC;;‘/' ! Ll-' BN, 1 ;}:z{;ge — Dropout ‘

Block i GELU & :
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‘ | l Vs ‘
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Figure 1. The architecture of the attention-based EEGNet model (GCT-EEGNet), where B is the
number of frequency bands, T is the time points, C is the number of channels of the EEG signal, «, B,
7, 0, and ¢ are the alpha, beta, gamma, theta, and delta frequency bands, respectively. The TConv,
CConv, BN, and GAP represent temporal and channel convolutions, batch normalization, and global
average pooling layers, respectively, and v is the learned feature vector and ! is the subject label.
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Table 1. The specifications of the architecture of GCT-EEGNet, where C and D are hyperparameters,
C is the number of channels, and D is a depth multiplier that specifies the number of spatial filters for

each feature channel of the input feature map.

Transforrflahon Block Layers #Kernel/Size Output Options Learnable
Mapping Parameters
Input - 32 x 128 0
P Preprocessing - 5 x 32 x 128 0
P GCT - 5x 32 x 128 15
” Conv2D 64/1 x 64 64 x 32 x 128 Padding = same 20,480
3 BatchNorm - 64 x 32 x 128 8= 512
Depthwise Conv2D Dx64/C x1 64 x 1 x 128 2048
BatchNorm - 64 x 1 x 128 D=1 512
Py GELU - 64 x 1 x 128 C __32 0
Average Pooling2D 1x4 64 x 1 x 32 - 0
Dropout 0.5 64 x1x32 0
Separable Conv. 128/1 x 16 128 x 1 x 32 9216
BatchNorm - 128 x 1 x 32 128
” GELU - 128 x 1 x 32 0
> Average Pooling 2D 1x8 128 x 1 x 4 0
Dropout 0.5 128 x 1 x 4 0
GAP Layer - 128 0
FC + Softmax - 236 30,444
Total Parameters 62,764

3.2.1. Data Preprocessing

An EEG trial x is preprocessed with the mapping ¢, which is composed of the
following two functions:

P1(x) = F o X(x) (2)

where the function X normalizes the input EEG trial x, and then the function 7 decomposes
it into rthythms. The function X is defined using Z-score normalization [13] as follows:
V=24 Fe o~ 1,2, C=12..T 3)
Oc
where ¢, t, yc, and o, refer to the channel identifier, the signal value at a specific time point,
and the mean and standard deviation of the cth channel, respectively. Note that the function
is applied on each channel individually to address differences in the feature unit and scale
while improving the convergence speed. Instead of utilizing the entire frequency spectrum,
which is rarely employed in biometrics, specific frequency bands or rhythms known to be
more discriminative are used [30]. The study in [15] indicated that EEG bands below 50 Hz
have higher energy for biometric identification. Consequently, the function J* decomposes
each EEG trial into frequency bands—delta (1-4 Hz), theta (4-8 Hz), alpha (8-16 Hz),
beta (16-32 Hz), and gamma (32-50 Hz)—to assess their significance in the recognition
process. Following a previous study [31], the function F is based on the DWT due to the
nonstationary rapid fluctuations in EEG [32]. The DWT with the fourth-order Daubechies
mother wavelet (db4) is used to decompose an EEG segment into the A5 (low-frequency)
and D1-D5 (high-frequency) bands, where A5 is the delta (§) band, while D2 to D5 are
the theta (), alpha (x), beta (), and low gamma (y) bands, respectively. The choice of the
DWT, specifically the db4 wavelet, is well suited for EEG analysis because its morphology
is similar to that of EEG data [33,34]. Finally, the mapping ¢ transforms the input EEG
trial x € R*T into a tensor a1 eRE*C*T of B bands, C channels, and T time samples, as
depicted in Figure 1.
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3.2.2. GCT Attention Block

For subject recognition, not all brain rhythms and channels are equally important.
Therefore, identifying the most significant ones without extensive experiments is crucial. To
addpress this issue, we employ an attention mechanism using the GCT block with mapping
5, which is a composition of the following mappings:

lpz(a(l);ez) =Xp0X30X0X) (a(l);iy) 4)

where 6, = {7, A, w} are learnable parameters of X7 and A3, respectively. The GCT [35] is
a simple and effective attention module that simulates channel interactions without extra
parameters. It helps prioritize and emphasize key rhythms and channels for the recognition
task. It consists of the following three main components: global context embedding, channel
normalization, and gating mechanism, as depicted in Figure 2.

Global Context Embedding Channel Gating Adaptation

Bx1xl1 Bx1xl1

l,-norm x B ,: ] CN
X X

Normalization

Bx1x1 Bx1x1 Bx1x1

n (Q))
Iz

Bx1x1

tanh

Figure 2. Gate channel transformation (GCT) module, where B is the number of frequency bands, T
is the time points, C is the number of channels of the EEG signal, «, f, 7, 6, and J are the alpha, beta,
gamma, theta, and delta frequency bands, respectively. 17 denotes the trainable embedding weights,
W represents the global context information, A and w represent the gating weights and biases, and «
is the output of tanh function. Different colors in the output al) indicate the varying significance
assigned to each band.

Initially, global contextual information is captured by mapping X using the Ir-norm
from the EEG trail a)) € REXCXT a5 follows:

X (11(1); 17) =W =[w,wy, ... ,wb]t, We RBx1x1 (5)

C T i 2
w, =, | L L (a) | +e, =128 ©)

i=1j=1

where W = [wl,wz, ,wb}t represents the globally collected contextual information
along each frequency band dimension b € B, ¢ serves as a small constant to avoid the
derivation problem at zero, # denotes the trainable embedding weights for controlling
and emphasizing each frequency band’s significance, and C and T refer to the number
of channels and time points, respectively. Then, channel normalization (CN) is applied
using mapping & by normalizing each component w;, of W, as shown in the following
Equation (7):

~

X (W) =W = (1, ds,...,0)", WeRE¥1X1 7)
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where

VB . wy

Wy = (8)
(Zgﬂ wy) +e

and the scaler v/B is used to adjust the scale of W = (tby, @y, . .., @} ). This adjustment helps
prevent @, from becoming too small when the number of frequency bands is large. Channel
normalization encourages channel interactions, whereas the />-norm operates across chan-
nels. It permits larger responses for some frequency band coefficients and suppresses others
with smaller feedback. Finally, using the normalized vector W and the frequency bands
a), gating adaptation takes place using mappings X3 and X}, as shown in the following:

X3 (W; A, w) =« = tanh (AW + w), k€ REX1x1 )

a? = x, (a<1), K) — W 2V g x; g RBXCXT (10)

where A and w represent the gating weights and biases that control the activation of features,
while a1, a(2) denote input and output features for the gating mechanism module, respec-
tively. The gating mechanism boosts competition and cooperation between frequency bands
during the training process. To enhance feature extraction and classification performance,
we employed convolutional layers to extract both temporal and spatial features.

3.2.3. Temporal Convolution Block

This block is designed to capture time-dependent features within an EEG trial, enabling
the model to learn important temporal relationships that are crucial for distinguishing
between different subjects. It operates along the time axis via a standard 2D convolutional
layer ¢y, transforming the tensor 2(2)eRB*C*T into the tensor a®) e R\ *C*T through the
mapping 3 as defined below:

¥3 (a(z); 63) =BNo ¢ (a(z); 63) (11)

where k; is the number of kernels used for temporal convolution with a size of 1 x 64 to
detect the temporal features for each frequency band. In our experiments, we set k; to 64.
To enhance neural network performance and achieve faster training convergence, each
convolutional layer is followed by a subsequent batch normalization (BN) layer [36].

3.2.4. Depth-Wise Channel Convolution Block

To reduce the model’s computational complexity while extracting spatial features, a
depth-wise channel convolution layer ¢; is applied. Similar to the approaches used in
Xception [37] and MobileNet [38], this layer applies a single filter per input channel, effec-
tively isolating channel-specific features without the overhead of traditional convolution

operations. Using @5, the mapping ¢, transforms a(®) into a(*) e RF2X1% 7 a5 follows:

gu(a®; 04) = PuogoBNo g2 (al; 04) (12)

where k» is the number of kernels, each of size C x 1, and C is the number of channels.
These kernels are applied along the spatial (channel) axis, enabling the network to learn
D spatial kernels, with each kernel being dedicated to a distinct feature map. The result
is an output feature map of an extended dimension D X k. This approach provides the
following two key advantages: first, it serves as a spatial cross-channel feature learner,
enhancing the global feature extraction, especially in multi-channel EEG data. Second, it
reduces the number of learnable parameters, as this layer is not connected to all outputs
from the preceding layer. Then, it is followed by BN. Unlike the original EEGNet activa-
tion function g, which utilizes exponential linear units (ELUs), we employ the Gaussian
error linear unit (GELU) [39], which was motivated by its success in vision transformers
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(ViTs) [40]. It is applied in the second and third convolutional layers, combining the benefits
of dropout [41] and randomly removing neurons during the training process. To further re-
duce dimensionality, an average pooling layer P, with a window of size 1 x 4 is employed
after the GELU layers. All convolution layers are applied with a stride of one.

3.2.5. Separable Temporal Convolution Block

Finally, the separable convolution layer ¢3 integrates depth-wise and pointwise con-
volutions to decompose the convolution process further, thereby enabling the model to
process spatial and temporal features independently. This approach not only improves
the model’s ability to capture complex patterns in EEG data but also enhances its compu-
tational efficiency, leading to more robust and accurate classification output. Specifically,
this layer employs a 1 x 16 kernel to aggregate individual feature maps. Then, a pointwise
convolution with 128 kernels, each of size 1 x 1, is employed to combine these feature maps
optimally. This setup effectively exploits temporal and spatial features for individual recog-

T
nition. Employing @3, the transformation map 5 that converts the tensor a(¥)e RF2*1> 7

into 1®)e R&2X1* 55 is defined as follows:
s (a(4); 95) =PgoP,0g0BNo g3 (a<4); 95) (13)

where BN, g, and P, denote the batch normalization, GELU, and average pooling with a
window of size 1 x 8, respectively. Instead of incorporating a fully connected layer, which

would increase the model complexity, a GAP layer Py is utilized, where Py a(5)> = 0.

This serves later as a feature extraction layer. This GAP layer reduces feature dimensionality
and model parameters for efficient feature extraction. The resulting feature vector v is then
fed into a softmax classifier with N units, corresponding to the total number of subjects
that the model is trained on.

3.2.6. Training of GCT-EEGNet

The network was trained as an end-to-end model using a categorical cross-entropy
loss for 100 epochs with a batch size of 500. The AdamW optimizer [42] with its default
parameters was used for training. The training stopped if validation loss did not improve
for three consecutive epochs, and an early stopping technique [43] was employed to
prevent overfitting.

For model evaluation, a stratified 10-fold cross-validation was applied based on the
subjects. In each fold, the subjects were divided into the following two groups: 90% were
used for training, and the remaining 10% were used for testing. This format ensured that
each fold used distinct subjects for testing [44]. After training, the model was utilized as
a feature extractor, and the identification and authentication performances were assessed
using 10% of the subjects reserved for testing. All results are reported as the average
performance across folds.

4. Evaluation Protocol

This section first describes the datasets used to evaluate the proposed method. Then,
it provides an overview of the performance metrics used for evaluation. For evaluation,
10-fold cross-validation was used, as described in Section 3.2.6.

4.1. Datasets

To validate the generalization of the proposed model across diverse brain activations,
three publicly available EEG benchmark datasets were combined to create a larger dataset
with a large number of subjects—263 in total—encompassing diverse human states. The
EEG signals in each dataset were downsampled to 128 Hz, and the same channels were
selected from all datasets.

The DEAP [45] was developed to analyze human affective states. It was recorded from
32 individuals using a BioSemi headset with 32 EEG channels placed on the skull based on
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a 10-20 system and a 512 Hz sampling rate. The subjects watched 40 one-minute music
videos that corresponded to different emotional states, i.e., valence, arousal, dominance,
and liking. For a fair comparison, we used the preprocessed version.

Physionet motor/imagination [46] is a well-known and widely used EEG dataset
with 64 channels; 160 Hz EEG recordings were captured from 109 healthy subjects. The
international 10-10 system for the placement of electrodes was utilized. Each participant’s
EEG was recorded over 14 tests. One baseline run lasted one minute in both “eyes-open”
(EO) and “eyes-closed” (EC) conditions, and the last four minutes contained four mo-
tor/imagination (MI) activities.

The EEG UCI dataset was produced for alcoholism-related genetic studies and involves
recordings from 122 patients, including 45 controls and 77 alcoholics, with each completing
120 one-second trials. It was collected using a 10-20 system with 64 electrodes at 256 Hz;
subjects viewed black-and-white photos [47] for 300 ms, with a separation of 1.6 s. Subjects
were asked to determine if the two photos were identical.

The combined dataset (CD) integrated data from all subjects across the DEAP, UCI,
and PhysioNet datasets. Due to differences in EEG data collection equipment, 32 channels
of each EEG trial were selected according to the 10-20 electrode placement system (see
Figure 3). The EEG records were then segmented into non-overlapping one-second epochs
(EEG trials), resulting in EEG trials of 32 x 128, where 32 was the number of channels,
and 128 was the number of time samples. This dataset included EEG trials from a total
of 263 subjects, with each having different brain activations. Subjects were numbered
sequentially for training purposes, starting with those from DEAP, followed by PhysioNet
and then UCIL.

Figure 3. Channel positions of all 64 electrodes (channels) using a 10-20 system where the highlighted
channels were used in experiments [24].

4.2. Performance Metrics

Commonly used metrics for identification and verification tasks were employed to
evaluate the efficacy of GCT-EEGNet. The study considered the correct recognition rate
(CRR) and cumulative match characteristic (CMC) curve for identification and the equal
error rate (EER) and detection error trade-off (DET) curve for verification. A lower EER
signifies a better performance in authentication scenarios.

5. Experimental Results and Discussion

This section presents the details of the experiments conducted to validate the perfor-
mance of the method and discusses the results obtained. All experiments were performed
on a computer with 128 GB of RAM and an NVIDIA Quadro RTX 6000 GPU. The model
was implemented using Python v3.7,Pytorch Lightning v1.7, and torch v1.13.1.



Mathematics 2024, 12, 3286

11 of 21

5.1. Ablation Study

In this section, we discuss ablation experiments that were performed to assess the
impact of each model component using 10-fold cross-validation. Initially, for each fold, we
trained the model using all 32 channels and used 90% of the subjects for training; e.g., in
the DEAP dataset, 28 subjects were used for training, and the remaining 10% were used
for testing. We utilized the same hyperparameters in GCT-EEGNet that are common in
EEGNet [29], the baseline network, which was trained for 100 epochs per fold. The impacts
of various factors and hyperparameters on the performance of the model are shown in
Table 2. The model configuration that gave the highest average validation accuracy over
10-fold cross-validation on the datasets was considered for further improvement.

5.1.1. Input Configuration and Optimizers

We compared the results obtained with the 3D input shape [5 x 32 x 128] with
those obtained with the original 2D shape [32 x 128] while keeping all hyperparameters
fixed in GCT-EEGNet as in the baseline EEGNet network. Besides the network’s archi-
tectural design, the training method affects the model’s performance [48]. The vision
transformer [49,50] introduced a new collection of modules and new training methods (e.g.,
the AdamW optimizer). As shown in Table 2, the 3D input shape using the same optimizer
achieved better performance for non-preprocessed datasets using the Adam optimizer,
particularly the UCI dataset, with a difference of almost 13%. In addition, we observed that
the AdamW optimizer yielded better outcomes for three datasets, with a slight decrease in
validation accuracy of 0.05% for DEAP.

5.1.2. Number of Kernels and Activation Functions

Table 2 also shows the impact of altering the number of kernels from (8, 16) to (32,
64) and (64, 128) for the first and second convolution layers, respectively, in GCT-EEGNet
while keeping the ELU activation function fixed. It is evident that using 64 and 128 kernels
produced the best results. A larger number of kernels in the first layer resulted in better
accuracy than a smaller number of kernels, with a slight improvement in the DEAP dataset,
since it was preprocessed, and there was a significant improvement in the other two
datasets in comparison with the small number of kernels (8, 16). In addition, the most
often used activation functions were assessed, and the results indicated that the GELU
activation function achieved the best results, with a modest improvement over ReLU and
ELU; the SiLU activation function showed a slight improvement for some datasets, but its
long training time is a major drawback.

Table 2. Ablation study of the performance of GCT-EEGNet; the performance is reported as the mean
validation performance + standard deviation using 10-fold cross-validation; ELU is the exponential
linear unit, Avg is the average pooling layer, ReLlU is the rectified linear unit, GELU is the Gaussian
error linear units, SiLU is the sigmoid linear unit, GAP is global average pooling, SE is squeeze and
excitation, GCT is gated channel transformation, and RMSProp is root mean squared propagation.

E Datasets

xperiment Choi

P olees DEAP PhysioNet EEG UCI Combined
Raw 2D input without DWT decomposition (32 x 128)

Optimizers, Adam 99.87 + 0.08 7451 £2.75 49.10 + 7.29 69.80 & 3.02
kernels 8, 16 AdamW 99.92 + 0.06 73.72 £ 2.14 50.50 4+ 5.26 69.81 £+ 3.05
Raw 3D input with DWT decomposition (5 x 32 x 128)

Optimizers, Adam 99.88 + 0.05 76.90 £+ 1.63 62.57 +2.74 74.56 + 1.35
kernels 8, 16 AdamW 99.87 &+ 0.11 77.57 £ 0.87 64.22 + 3.80 74.69 £+ 141
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Table 2. Cont.
Datasets

Experiment Choices
DEAP PhysioNet EEG UCI Combined
Number of 32, 64 99.99 + 0.02 99.13 +0.15 95.58 + 0.64 98.69 + 0.19
kernels 64,128 100 + 0.01 99.75 + 0.05 97.41 + 0.94 99.54 + 0.08
Activati ReLU [51] 97.75 £+ 0.77 99.67 + 0.07 97.75 +0.77 99.39 + 0.09
f““’?“"“ SiLU [52] 97.84 + 0.54 99.77 + 0.07 97.84 + 0.54 99.53 + 0.04
unctions GeLU [39] 100 + 0.01 99.79 + 0.06 97.90 + 0.52 99.50 + 0.03
Pooling Layer Max 100 + 0.01 99.68 + 0.08 97.50 + 0.61 99.38 + 0.09
GAP layer GAP 100 + 0.00 99.80 + 0.06 98.51 + 0.40 99.58 + 0.08
Attention Laver SE 100 + 0.00 99.68 + 0.06 98.73 =+ 0.36 99.54 + 0.10
y GCT 100 + 0.00 99.84 + 0.05 98.87 + 0.33 99.66 + 0.04
0.5 - - - 99.66 + 0.04
Dropout 0.25 - - - 99.63 + 0.06
Without dropout - - - 99.24 + 0.19

5.1.3. Pooling Layer

To reduce the feature map dimensionality, pooling layers were employed. We com-
pared the following two most popular types of pooling in this experiment: average and
maximum pooling. Because the average pooling layer was used from the beginning of the
first test, all previous results included the average pooling layer. Table 2 shows that the
average pooling achieved good accuracy compared with max pooling.

5.1.4. GAP and Attention Layer

Instead of simply flattening or adding an FC layer, we used a GAP layer. The GAP
layer averaged spatial information to strengthen the input against spatial translations. The
results in Table 2 show that the validation accuracy improved with a notable reduction in
the learnable parameters. In addition, we evaluated two attention approaches to capture
the channel importance. The GCT layer was shown to be better than the squeeze and
excitation (SE) block, with a small difference.

5.1.5. The Effect of Employing GELU with Dropout

As the GELU activation function incorporated a dropout functionality, we needed to
guarantee that this layer had a positive effect on the presence of GELU or that the validation
accuracy would be reduced. As a result, we found that the dropout was beneficial for
this application, as removing this layer would result in a modest decline in outcomes
(see Table 2). Note that all previous experiments included dropout with a 50% rate. This
experiment applied only to the combined dataset.

5.2. The Identification and Verification Results

The ablation study helped to find the best configuration of GCT-EEGNet. Using its
best configuration, we extracted the feature vector of each EEG trial as the output of the GAP
layer. Then, we matched pairs of EEG trials by determining the similarity between their
feature vectors. We explored several similarity metrics for matching, including Euclidean,
Manhattan, and cosine similarity. The choice of a similarity metric can significantly impact
the results, and we aimed to identify the most effective one. Our findings revealed that
the cosine similarity measure (red line) consistently outperformed the others in both the
identification and verification scenarios (see Figures 4 and 5). Figure 4 shows the CMC
curves for the identification scenario, illustrating the top ten ranks for the combined
dataset. The best results were achieved using the cosine similarity measure with a CRR
of 99.23%. For the verification scenario, we considered genuine pairs (within a class) and
impostor (between classes) pairs, with 1080 and 28,080, respectively. The DET curves
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depicted in Figure 5 show that the cosine distance measure resulted in the lowest EER
of 0.0014%. The EER represents the threshold at which the false acceptance rate (FAR)
equals the false rejection rate (FRR). The results indicate that the cosine distance is the best
similarity measure, and this outcome was also confirmed by the authors of [26] using the
PhysioNet dataset.
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Figure 4. Performance in identification: CMC curves for the combined dataset.
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Figure 5. Performance in verification: DET curves for the combined dataset.

5.3. Robustness to Diverse Brain States

To replicate real-world scenarios and demonstrate the robustness of GCT-EEGNet
across diverse brain states, we extracted epochs (EEG trials) from EEG signals, regardless
of the onsets or offsets of cognitive tasks, and performed two experiments. This approach
ensured the generalization of GCT-EEGNet across diverse cognitive states, as shown in
Table 3. In the first experiment, the model was trained on cognitive states different from
those employed during the testing stage. The results indicated that the model achieved
a good CRR and EER on the DEAP dataset, where nearly equal samples were sampled
from each cognitive state. Additionally, the results from the PhysioNet and UCI datasets
highlighted the impact of the difference in training and testing sample sizes on the model
performance. For example, in the PhysioNet dataset, the performance decreased by nearly
9% from 97.83% to 88.72% when the model trained on a small number of samples (13,195)
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for EO and EC conditions and tested on a much larger sample size of 161,647 for PHY
and IMA. Conversely, when trained on the larger PHY and IMA sample, the model’s
performance improved, yielding a CRR of 97.83% and an EER of 0.0047. The performance
was particularly good for the UCI dataset when trained on the alcoholic state, which was
likely due to the larger sample size of 6989 for 77 subjects compared with the 4015 samples
from 45 subjects in the non-alcoholic training phase. These findings emphasize the critical
influence of the training data size on model performance.

Table 3. Test results of experiments with the CRR and EER (average =+ standard deviation), where
HH is high valence, high arousal; HL is high valence, low arousal; LH is low valence, high arousal; LL
is low valence, low arousal; EO is eyes open; EC is eyes closed; PHY is motor physical activity; and
MI or IMA is motor imagination activity.

Experiment # 1

Dataset Training States Testing States CRR EER
LL, HH LH, HL 99.99 + 0.04 0.0215 4+ 0.0183
LL, HL LH, HH 99.98 + 0.05 0.0272 £ 0.0253
DEAP LL,LH HL, HH 99.96 + 0.06 0.0283 £ 0.0106
HH, HL LL,LH 99.93 + 0.09 0.1079 £ 0.0216
HH, LH LL, HL 99.98 + 0.05 0.0860 £ 0.0597
LH, HL LL, HH 100.00 £ 0.00 0.0523 £ 0.0061
PhvsioNet EO, EC PHY, IMA 88.72 £ 1.12 0.0514 £+ 0.0105
Y PHY, IMA EO, EC 97.83 £+ 1.66 0.0047 £ 0.0023
EEG UCI Alcoholic Non-Alcoholic 84.25 + 0.83 0.0087 £ 0.0015
Non-Alcoholic Alcoholic 77.47 £ 0.56 0.0041 £ 0.0008

Experiment # 2

Datasets CRR EER
DEAP 100.00 £ 0.00 0.0004 £ 0.0008
PhysioNet 98.90 + 0.48 0.0043 £+ 0.0014
EEG UCI 99.25 +0.91 0.0009 £ 0.0016
Combined 99.23 £+ 0.50 0.0014 £ 0.0008

In addition, binding a system to a specific mental state during registration is often
impractical in real-world biometric applications. To address this variation, the model
was trained with diverse states, enabling it to adapt to subject variability. In the second
experiment, data from various brain states were merged for both training and testing. This
approach demonstrated that the proposed model achieved better identification results
(more than 98% for all datasets) and verification results of less than 0.004. This indicated
that the model generalized well over diverse cognitive states, even with new subjects that
were never introduced during the training procedure. This adaptability to intra-person EEG
variability makes the model a promising candidate for real-world biometric applications.

5.4. The Effects of Different Frequency Bands

This section examines how various frequency bands, including the delta, theta, alpha,
beta, and gamma bands, impacted the brainprints derived from EEG-generated sponta-
neous brain activity. The GCT attention block within the model played a crucial role in
determining the most contributive frequency bands for recognition. Attention weights
were computed per frequency band generated in the testing samples and then averaged to
account for subject variability, as the different subjects generated distinct attention patterns.
Figure 6a shows that the beta (14-32 Hz) and gamma (32-50 Hz) bands dominated the com-
bined dataset. These findings suggest that lower frequencies correspond to common brain
activities, while higher frequencies are associated with individual distinctiveness. To reveal
the significance of frequency bands, we applied the deepSHAP technique [53]. Figure 6b
presents a global interpretation of the model’s decisions, highlighting the prominence of
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the gamma band across all 32 channels, which aligns with the results observed in the GCT
layer. This suggests that the attention layer of our model could provide valuable insights
into identifying the frequency band with the greatest contribution.
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Figure 6. The effect of frequency bands on the combined dataset. (a) The GCT attention mechanism
weights. (b) The respective mean SHAP values.

5.5. The Effect of Channel Reduction

In this experiment, we analyzed the effect of reducing the number of EEG channels
on the model performance. To improve the system’s user-friendliness, it was necessary to
minimize the number of electrodes while maintaining satisfactory performance. Figure 7a—
e displays five sets of EEG channels defined by Wilaiprasitporn et al. [14], with each
covering the following distinct regions of the scalp: frontal (F), central and parietal (CP),
temporal (T), occipital and parietal (OP), and frontal and parietal (FP). The results depicted
in Figure 8a illustrate the performance of these channel subsets using all frequency bands
on the combined dataset. The blue color represents the performance of five distinct channel
sets, while the red color indicates the performance difference between these subsets and
the full 32-channel configurations. The model performance was degraded as the number
of electrodes decreased. Moreover, the channels from the CP region exhibited the best
performance, exceeding 90%. Figure 8b shows the results when only the gamma band was
used; though there was a slight decrease in the performance, the gamma band played key
role in identification, as identified in the previous section.

(d)

Figure 7. Five different channel configurations, each highlighting different regions of the scalp:
(a) frontal (F), (b) central and parietal (CP), (c) temporal (T), (d) occipital and parietal (OP), (e) frontal
and parietal (FP).
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Figure 8. Performance of the proposed method among five different sets of channels. (a) All frequency
bands, (b) gamma band, where CRR (5) denotes the performance of the five distinct channel sets,
while CRR (5)-CRR (32) indicate the performance differences among the five channel subsets and the
32 channels.

5.6. Comparison with the State of the Art

To demonstrate the effectiveness of the proposed method, we compared its perfor-
mance with that of state-of-the-art EEG-based deep learning biometric techniques on public
domain datasets, including DEAP, PhysioNet, UCI, and a combined dataset. It is to be
noted that many state-of-the-art methods also used DEAP and PhysioNet for evaluation;
the comparison of these datasets is given in Table 4.

Table 4. Comparison with state-of-the-art EEG-based biometric systems according to the number of
subjects (# Sub.), trial length (TL), number of channels (# Chan.), network (NW), Euclidean distance
(L2), and Manhattan distance (L1).

Dataset # Sub Method # Ch TL (sec.) CRR (%) EER (%)  Parameters
Sun et al. [13]—2019 PhysioNet 109 CNN, LSTM 16 1 99.58 0.41 505,281,566
Wilaiprasitporn CNN, LSTM 324,032
etal. [14]—2019 DEAP 32 CNN, GRU 5 10 >99 } 496,384
Jin et al. [24]—2020 MTED 20 CTNN 7 1 99 0.1 4600
Bidgoly et al. . .
[26] 2022 PhysioNet 109 CNN, Cosine 3 1 98.04 1.96 NA
Alsumari .
et al. [27]—2023 PhysioNet 109 CNN, L1 2 5 99.05 0.187 74,071
Fallahi ERP CORE 40 Siamese NW 30 95.63 1.37
! 0.10 NA
et al. [28]—2023 Brain Invaders 41 L2 32 99.92 0.14
DEAP 32 100.00 0.0004 35,900
hysi . . .
Proposed approach PhysioNet 109 GCT. EE.GNET’ 3 1 98.90 0.0043 45,000
ucI 122 Cosine 99.25 0.0009 62,100
Combined 263 99.23 0.0014 62,800

Most of the state-of-the-art techniques were trained and evaluated on a single dataset
involving a small number of tasks, limiting their performance evaluation to specific scenar-
ios and often involving smaller groups of subjects. For instance, Sun et al. [13] evaluated
their CNN-LSTM model on the PhysioNet dataset (109 subjects, 16 channels), achieving
a high CRR of 99.58%. However, their model incorporated LSTM layers, increasing its
complexity to over 505 million parameters, which raised the risk of overfitting, especially
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when trained on a dataset with only 109 subjects. The large number of parameters also
makes the model computationally expensive and difficult to deploy in real-world systems,
unlike the proposed method, which uses only 62,800 parameters while maintaining com-
petitive performance. Similarly, Bidgoly et al. [26] utilized PhysioNet with three channels,
achieving a CRR of 98.04% by stacking CNN layers. However, this method uses only
three channels, thus it lacks the spatial information of EEG trials, leading to a relatively
higher EER of 1.96%. In addition, Alsumari et al. [27] employed the PhysioNet dataset
with only two channels, achieving a CRR of 99.05% but at the cost of higher error rates
(EER of 0.187%). Their model’s simplicity raises concerns about its robustness against
diverse brain conditions. In contrast, the proposed model captures richer spatial-temporal
information while maintaining low complexity and achieving a much lower EER of 0.0043%
on the same dataset. Wilaiprasitporn et al. [14] employed the DEAP dataset (32 subjects,
5 EEG channels) with CNN-LSTM and CNN-GRU networks, yielding a CRR of more
than 99%, but these models were tested on a relatively small number of subjects and brain
conditions. This limitation of dataset size could affect the generalization of the model
to larger populations. Similarly, the proposed model was applied to the DEAP dataset,
gaining 100% with a small number of parameters of 35,900. Jin et al. [24] used the MTED
dataset (20 subjects, 7 channels), which resulted in a CRR of 99% and an EER of 0.1%.
Although these metrics are impressive, the small dataset size (20 subjects) raises concerns
about the model’s applicability to broader real-world conditions. In contrast, the proposed
method demonstrated a much wider generalization by achieving an EER of 0.0014% on
a dataset of 263 subjects in diverse brain states. Fallahi et al. [28] used the ERP CORE
and Brain Invaders datasets with 40 and 41 subjects, respectively, achieving a CRR of
99.92%. However, their method relies on a Siamese network, which, while effective for
specific tasks, introduces a relatively higher EER of 1.37%. Moreover, these datasets focus
on specific cognitive tasks, limiting their applicability across broader EEG conditions. In
contrast, the proposed method was designed to perform well across multiple brain states
and cognitive conditions, as evidenced by its consistently low EER on the DEAP, Phys-
ioNet, UCI, and combined datasets. The method was tested on a large combined dataset
created from DEAP, PhysioNet, and UCI with a larger number of subjects, which helped
to validate its broader generalization. Despite using a low-complexity architecture with
fewer parameters, the method achieved competitive results. Specifically, it attained a CRR
of 99.23% and an EER of 0.0014% across diverse brain states and short temporal intervals of
one second. This indicated that the proposed model can handle the variability in real-world
EEG-based biometric input more effectively than more complex models that are tuned for
specific tasks or datasets. In conclusion, although the datasets vary in their characteristics,
the proposed method offers a balanced solution with good accuracy, lower complexity,
and greater flexibility across different EEG datasets. This highlights its practicality for
real-world EEG-based biometric systems, particularly in scenarios that require adaptability
across diverse brain conditions and subjects.

5.7. Visualization of the Features Learned by the Model from EEG Segments

To verify the effectiveness of the model, we employed the t-distributed stochastic neigh-
bor embedding (t-SNE) [54] method to visualize the learned features in lower-dimensional
2D space from the GAP layer. This technique helped us evaluate whether the model had
effectively learned features that distinguished individuals. Figure 9 shows the results for
the combined dataset, with each color representing a different subject. The visualization
shows the GAP layer’s remarkable ability to classify the testing subjects into distinct groups.
Although most subjects were well separated, there were a few outliers (i.e., S039, S034,
and 5099), which appeared to be incorrectly grouped with other subjects. Overall, this
visualization indicated that our approach effectively extracted distinctive features from
EEG data for each individual, achieving this with just two layers.
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Figure 9. The t-SNE visualization for high-dimensional features of the GAP layer.

5.8. Discussion

This study presents an EEG-based biometric system based on GCT-EEGNET with
a large number of individuals (263) and diverse mental states. While several models
in [11-14] achieved high performance by integrating CNN and RNN layers to exploit
both spatial and temporal features, their robustness and generalization to a large number
of subjects are questionable due to increased complexity. To address this problem, our
approach utilized depth-wise separable convolution layers within a CNN architecture. This
design efficiently captured both spatial and temporal features while significantly reducing
parameter complexity to just 62,764 parameters. This reduction enhanced the model’s
efficiency and generalization, even with a larger number of subjects. An ablation study on
the model hyperparameter choices was discussed in Section 5.1.

Additionally, the method automatically selected optimal frequency bands through
the analysis of the GCT layer attention scores, reducing the need for costly experiments
(see Section 5.4). The results showed that the gamma and beta bands were the most
significant frequency bands, which was consistent with the prior findings in [24,27,55,56].
This indicated that distinctive human features prevail in higher-frequency bands. Channel
reduction simplified the system’s equipment and applicability. We observed a decline in the
model’s performance when employing fewer channels compared with utilizing 32 channels.
This decline may be attributed to the correlation between channels of an EEG segment.
Figure 9 confirms the model’s ability to discriminate against unseen subjects. Overall, the
system has potential benefits for individuals with disabilities and security concerns.

The proposed EEG-based biometric system shows promising results for recognizing
individuals with diverse brain states. However, several limitations need to be addressed
for real-world adoption. Reducing the number of EEG channels decreases its performance,
complicating practical use and requiring simpler setups. In addition, the limited availability
of large, multi-session datasets spanning long time intervals consisting of a large number
of subjects may affect the system’s ability to generalize across different brain conditions.
While the model performs well under diverse mental states, EEG signals exhibit high
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variability across sessions, even for the same individual. This variability could affect the
system’s long-term reliability in real-world applications, where EEG data may be collected
over weeks or months. Addressing these issues will be key for real-world adoption, with
future work focusing on improving robustness and acceptance by considering channel
reduction, handling cross-session variability, and reducing computational requirements for
broader applicability.

6. Conclusions

This study introduced an efficient, lightweight GCT-EEGNet model for EEG-based
biometric recognition by leveraging attention mechanisms and advanced convolutional
layers. Our model captures both temporal and spatial features from EEG signals, utilizing
diverse cognitive states. The results demonstrated the model’s effectiveness, achieving
a high CRR of 99.23 and a low EER of 0.0014 with a short one-second temporal window
while utilizing 32 electrodes on the combined dataset. The system required only a short
one-second temporal window for identification and verification. The integrated GCT layer
emphasized the significance of higher-frequency bands, particularly the beta and gamma
bands, for individual distinction. A depth-wise separable convolution layer was employed
to avoid excessive growth in the number of trainable parameters as the number of subjects
increased. Furthermore, comparisons with state-of-the-art methods showed GCT-EEGNet’s
ability to balance high performance with minimal computational complexity, making it
a strong candidate for scalable EEG-based biometric recognition. Future research could
explore alternative attention mechanisms for automated channel selection and further
investigate the system performance on multi-session datasets to enhance the system’s
real-world applicability and long-term usability.
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