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Abstract: This paper presents a novel approach to modeling the repertoire of the immune system and
its adaptation in response to the evolutionary dynamics of pathogens associated with their genetic
variability. It is based on application of a dynamic programming-based framework to model the
antigen-driven immune repertoire synthesis. The processes of formation of new receptor specificity of
lymphocytes (the growth of their affinity during maturation) are described by an ordinary differential
equation (ODE) with a piecewise-constant right-hand side. Optimal control synthesis is based on
the solution of the Hamilton–Jacobi–Bellman equation implementing the dynamic programming
approach for controlling Gaussian random processes generated by a stochastic differential equation
(SDE) with the noise in the form of the Wiener process. The proposed description of the clonal
repertoire of the immune system allows us to introduce an integral characteristic of the immune
repertoire completeness or the integrative fitness of the whole immune system. The quantitative
index for characterizing the immune system fitness is analytically derived using the Feynman–Kac–
Kolmogorov equation.

Keywords: antigen evolution; immune system repertoire; complementary receptor synthesis;
dynamic programming; Hamilton–Jacobi–Bellman equation; Feynman–Kac–Kolmogorov equation
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1. Introduction

The main function of the human and animal immune system is to control and main-
tain antigenic homeostasis of the internal environment of the body. The realization of this
function is associated with the activity of innate immune cells reacting to conservative
antigenic structures of pathogens, and the reactions of cells of the adaptive immune system
reacting with specific antigens of viruses and bacteria. Adaptive immune cells, B- and T-
lymphocytes, have receptors on their surface that recognize a fragment of antigens in native
form and in the form of complexes with receptors encoded by Major Histocompatibility
Complex (MHC) genes (the main histocompatibility complex), respectively [1]. The effec-
tiveness of the adaptive immune system is determined by the presence and number of
clones of B- and T-lymphocytes expressing receptors that recognize antigens, i.e., B-cell
receptors (BCR) and T-cell receptors (TCR), respectively. The formation of the clonal reper-
toire and its adaptive dynamics are realized via a sequence of division and differentiation
stages in primary and secondary lymphoid organs. Most of the existing mathematical
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models describing the immune response development consider the reaction of a single lym-
phocyte clone with the most complementary receptor to the antigen (monoclonal dynamics)
in accordance with the clonal selection principle.

The sets of antigens expressed by pathogen populations interacting at any given
time with the human immune system are random samples from some general antigen
population represented by 1407 pathogens capable of infecting humans [2]. Each clone of
the lymphocytes expresses receptors specific to a specific antigen, while the clonal repertoire
can also be considered as a limited sample of more than 1020 receptors of the general clonal
population [3]. The totality of all clones makes up the repertoire of the immune system.
The human immune system consists of about 1012 lymphocytes, forming up to 108 clones,
differing in the specificity of the antigen-recognizing receptors expressed by them. It is
known that the distribution of clone numbers Ci, i = 1, . . . , 108, follows a power law
p(C) ∝ C−α, α ≥ αmin [4].

A variety of antigen-recognizing receptor structures of lymphocytes are formed dur-
ing the development of lymphocytes, creating the basis for the selection of the functional
repertoire of mature lymphocytes. The formation of a variety of antigenic receptors oc-
curs as a result of a somatic recombination of innate gene segments encoding variable
receptor regions (see for details [1]). A random rearrangement of the genes of developing
lymphocytes leads to the generation of antigenic receptors of various specificities, passing
further through the filters of positive and negative selection. The binding strength of
the antigen-binding site of the receptor and the antigen epitope is called affinity and is
expressed by the value of the dissociation constant in molar units. The main repertoire
of antibodies has characteristic constants Kd = 10−6 ÷ 10−9M and can improve by two
orders of magnitude during antigen-induced maturation under the action of mutation,
recombination, and selection processes in primary and secondary lymphoid organs.

Consider the sets (categories) of antigens involved in the formation of the receptor
repertoire. At the initial selection stage taking place in the primary lymphoid organs,
the sets of the spectrum of auto-antigens differ significantly from the foreign antigens
shaping immune reactions in the secondary lymphoid organs. Let the number of elements
of such sets be countable and equal to i = 1, 2, . . . , n. Each antigen can be characterized
(i.e., subject to coordinatization according to Weyl [5]) by some quantitative variable ri,
which may relate to the stereochemical structure of the antigen, coding genes, the probabil-
ity of existence in the set under consideration, or the growth/fitness index of the antigen (let
us call it a phenotype). Every pathogen (i, i = 1, 2, . . . , n) expresses a number of antigens ri
which are recognized by the antigen-specific antibodies and receptors Rj, j = 1, 2, . . . , m
expressed on the immune cells. As noted before, the match (functional efficacy) between
the immune receptor and a particular antigen is biochemically characterized by its affinity,
i.e., the ratio of rate constants of association and dissociation. The perfect match corre-
sponds to a Key and Lock view of the antigen-receptor interaction.

The modeling of immune cell repertoire evolution remains an underexplored area.
To describe the antibody diversity, maximum entropy models of sequence repertoire were
proposed in [6]. The models predicted that the repertoire decomposes in several clusters
and the sequence distribution obeys Zipf’s law. Importantly, the results suggested that the
diversity of antibodies was dependent on both the genome-encoded sequences and the
antigen-driven adaptation. Later on, a mathematical model of neutrally evolving pathogen
and adaptation of the B-cell repertoire was described by a discrete random walk equation
while the clonal immune responses were described by a discrete model of cell proliferation
and death depending on the extent of cross-reactivity [7]. Assuming that the immune
system follows an optimal strategy based on maximizing the antigenic space coverage
at a minimal short-term metabolic cost, the model predicted a power-law distribution
of the clonal sizes and specified conditions, in which the de novo synthesis of immune
clone is more efficient in controlling mutating pathogen rather than relying on highly
specific memory cells. The repertoire dynamics of T-cells in humans has been recently
examined in [8]. To this end, a mathematical model of stochastic clonal dynamics by a
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geometric Brownian motion was formulated. The model was used to assimilate longitudinal
repertoire sequencing data with characteristic time-scale of T-cell repertoire dynamics. For a
comprehensive and critical review of mathematical models formulated to examine the
population dynamics of immune repertoire, we refer to [9]. It is noted that the evolution of
individual clones is described by Markovian dynamics with the expansion and death rates
being dependent on some function which parameterizes the effects of specific antigens’
abundance and the competition between clones. An approach to model the dynamics
of T cell clonotypes in response to virus infections for influenza and coronaviruses was
proposed in [10]. The dynamics of T-cells’ clones is affected by a number of events (such
as division, death, etc.) represented as a stochastic Markov process. A special focus is
on cross-reactivity and competition between T-cells’ clones under homeostatic conditions
and in response to the above-mentioned virus infections. Integrated analysis of immune
repertoires is a fundamental issue in the analysis of amino acid sequencing-produced large
datasets of T-cell receptors, Major Histocompatibilty Complexes, antigens, and antibodies.
Unifying quantitative metrics of repertoire diversity and amino acid patterning have been
proposed in [11]. Two powerful concepts from information theory, namely Shannon entropy
and mutual information, are used to characterize the diversity in a population under study.
The mean-field model is proposed in [12] to describe the homeostatic dynamics of naive T-
cell clones under the impact of birth–death–thymic immigration processes. It was predicted
that the clonal repertoire diversity is less dependent on heterogeneity in immigration rates
but turns out to be affected by small variations in proliferation rates.

The general view of the corresponding models of the joint evolution of the viral
population and B-lymphocytes can be represented by some generalized equations (see [13])
for the density distributions of antigens in the space of antigenic determinants r, V(t, r),
and B-lymphocytes in the space antigen receptors R, B(t, R). In this study, we consider
a fundamentally different approach to modeling the evolution of the clonal repertoire of
the immune system. It is based on the ensemble dynamics of random trajectories of the
evolutionary process represented by the Feynman-Kac–Kolmogorov equations and the
Hamilton–Jacobi–Bellman dynamic programming methods [14], developed earlier in [15]
and applied recently in a different context [16].

The models developed in this study focus on qualitative and numerical investigation
into the joint dynamics patterns of pathogens and antigen-specific lymphocyte receptors in
a certain metric space of the stereochemical structure (so-called ‘shape-space’) of expressed
antigens (epitopes) and lymphocyte receptors in terms of the power of corresponding sets:
r∗i (t) i = 1, 2, . . . , n, and R∗

j (t), j = 1, 2, . . . m, t ∈ [0, T], i.e., the numbers of actual epitopes
and repertoire diversity. The processes of mutation and recombination can lead to a shift in
the characteristics of the structure within certain spheres B∆(r∗i ) and B∆(R∗

j ), respectively.
For subsequent analysis, we will simplify the description of the position of epitopes and
complementary receptors in the shape space by projections on one-dimensional axes for
antigens and receptors, respectively.

In Section 2, we formulate the stochastic model of antigen-driven complementary
lymphocyte receptor formation using the dynamic programming approach. In Section 3,
the notions of fitness for antigen and immune system are defined. In Section 4, the immune-
mediated control of replicating pathogens is examined. We conclude the analysis in
Section 5.

2. Model of Antigen-Driven Lymphocyte Receptor Synthesis
2.1. Basic Model of Random Antigen Dynamics

We represent antigens in the form of Gaussian random processes ri(t), i = 1, 2, . . . , n,
t ∈ [0, T] with the mathematical expectation ρi and the correlation function, which is given
by the formula

Kri = E[(ri(t)− ρi)(ri(t + γ))− ρi)] = σ2
i e−ki |γ|, (1)
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where ki ≥ 0 is the decay parameter [17]. Each such process is generated by a stochastic
differential equation of the following form [18]:

dri(t) = −ki(ri(t)− ρi)dt + σi
√

2kidwi
t, i = 1, 2, . . . , n. (2)

Here, wi
t are independent Wiener random processes, and ki(ri(t)− ρi) is the value of

the drift of a random process from the reference value. The parameters ki, ρi, σi represent
characteristics of randomly changing properties of antigens, realized in time as trajectories
of Gaussian signals with noise in the form of a Wiener process. At the same time, ρi
characterizes the reference/stable value of the antigenic trait, σi—the intensity of the
process of random variability (mutations and recombination), ki—the characteristic rate
of recovery (backward mutations) to the reference value, which can be associated with
the effect of selection due to a higher fitness of the reference antigen type. In Figure 1,
an example of random evolutionary dynamics for ten different antigens is presented.

Figure 1. Random dynamics of antigenic evolution representing ten unrelated pathogens ri(t),
t ∈ [0, 20], i = 1, 2, . . . , 10.

2.2. Model of Antigen-Driven Lymphocyte Receptor Formation

Here, we introduce a description of the development of clones of lymphocytes with
receptors complementary to the corresponding antigens, Ri(t). To this end, consider the set
of functions r(t) .

= [r1(t), r2(t), . . . , rn(t)]T , R(t) .
= [R1(t), R2(t), . . . , Rn(t)]T and controls

ui(t), i = 1, 2, . . . , n describing the lymphocyte clone generation and selection processes.
The proposed differential equations are proposed to take the following form:

d
dt

Ri(t) = ui(t), Ri(0) = R0
i , |ui(t)| ≤ Mi, i = 1, 2, . . . , n, Mi = const > 0. (3)

Let us assume that the clonal repertoire of the immune system is successfully formed
if there is such a set of functions Ri(t) and controls ui(t), i = 1, 2, . . . , n, for which the
mathematical expectation of some norm of the mismatch function W(r, R, t) between the
receptors Ri(t) and antigens ri(t) at some time, T, reaches a minimum value, e.g., the
expectation of the squared L2 norm:

W(r, R, t)t=T = E[∥r(T)− R(T)∥2
2]. (4)
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2.3. Control Function for Synthesis of a Single Receptor

Consider the problem of finding control functions ui(t) and Ri(t), i = 1, 2, . . . , n,
0 ≤ t ≤ T for the formation of an immune repertoire that implements the fulfillment of the
condition (4). In order to minimize the mathematical expectation of the functional (4), we
follow a dynamic programming approach using the Hamilton–Jacobi–Bellman equation
(HJB). Let us first consider the case of one random Gaussian signal r(t)

dr(t) = (−k(r(t)− ρ) + R(t))dt + σ
√

2kdwt, (5)

and the single function R(t) for receptor formation. By W(r, R, τ), τ = T − t the minimum
value of the functional (4) is denoted, which can be achieved in the process of successful
formation of a receptor recognizing the antigen in the problem (3) and (4) at time τ = T.
The function W(r, R, τ), τ = T − t, is the solution of the following Cauchy problem for the
HJB equation:

∂W
∂τ

= −k(r − ρ)
∂W
∂r

+ min
|u|≤M

∂W
∂R

u + σ2k
∂2W
∂r2 , (6)

with the initial (terminal) condition

W(r, R, 0) = (r − R)2. (7)

The synthesis of control u(t) for the immune response is determined by the following
equalities:

u(r, R, τ) =


−M, WR(r, R, τ) > 0
+M, WR(r, R, τ) < 0
not defined, WR(r, R, τ) = 0.

Here, the subscripts of the W function mean the corresponding partial derivatives. Let
WR > 0. In this case, the solution of the HJB problem (6) and (7) denoted by W+(r, R, τ) is

W+(r, R, τ) = (Z(r, τ)− (R − Mτ))2 + σ2(1 − e−2kτ),

Z(r, τ) = e−kτ(r − ρ) + ρ.
(8)

Due to the condition WR > 0, the solution represented by (8) is valid only in the domain

D+ = {r, R, τ : R ≥ Z(r, τ) + Mτ}. (9)

Proceeding similarly in the case when WR < 0, we obtain the solution W−(r, R, τ):

W−(r, R, τ) = (Z(r, τ)− (R + Mτ))2 + σ2(1 − e−2kτ),

Z(r, τ) = e−kτ(r − ρ) + ρ, in domain
(10)

D− = {r, R, τ : R ≤ Z(r, τ)− Mτ}. (11)

Consider the objective function defined as follows:

W(r, R, τ) =


W+(r, R, τ), (r, R, τ) ∈ D+

W−(r, R, τ), (r, R, τ) ∈ D−

W0(r, R, τ), (r, R, τ) ∈ D0.

(12)

Here,
W0(r, R, τ) = Z2(r, τ) + σ2(1 − e−2kτ),

Z(r, τ; ρ) = e−kτ(r − ρ) + ρ, in domain
(13)

D0 = {r, R, τ : Z(r, τ)− Mτ < R < Z(r, τ) + Mτ}. (14)



Mathematics 2024, 12, 3291 6 of 20

Function W(r, R, τ) is the solution of the HJB Equation (6). This function is continuous
with respect to the set of variables r, R, τ, has continuous first and second derivatives with
respect to the variable r, and continuous derivatives with respect to the variables R and τ,
and also satisfies conditions (12) in the domain D+ and D−. Hence, the synthesis of the
control function for the formation of the clone with the receptor R can be defined by the
following expressions, which depend on subsets determined adaptively by r, R, τ:

u(r, R, τ; ρ) =


−M, R ≥ Z(r, τ) + Mτ, D+

+M, R ≤ Z(r, τ)− Mτ, D−

0, Z(r, τ)− Mτ < R < Z(r, τ) + Mτ, D0.

(15)

The above three domains differing with respect to the mode of control synthesis of
antigen-related receptor specificity are shown in Figure 2.

Figure 2. The domains of different modes of control function governing R according to Hamilton–
Jacobi–Bellman equations.

2.4. Control Function Accounting for the Gaussian Variability of Antigen Dynamics

The random process variable r(t) at every time t follows a Gaussian law because the
empirical values of the parameters ρ, σ and k of the underlying governing Equation (5)
represent random realizations of some Gaussian distributions. Therefore, it is necessary
to perform an averaging of the mismatch function (W(r, R, τ)) over all realization of the
Gaussian distribution r(t):

W(R, τ) =
∫ +∞

−∞
W(r, R, τ)Pσ(r − ρ)dr, (16)

Pσ(r − ρ) =
1

2
√

πσ
e−

(r−ρ)2

2σ2 .
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Following analysis similar to the previous subsection, one can show that, for the
following expressions, the averaged function can be derived:

W(R, τ) =


(ρ − (R − Mτ))2 + σ2, R > ρ + Mτ

(ρ − (R + Mτ))2 + σ2, R < ρ − Mτ

(ρ − R)2 + σ2, ρ − Mτ ≤ R ≤ ρ + Mτ.

(17)

For the above defined averaged functional W(R, τ), the HJB Equation (6) takes the
form of a hyperbolic partial differential equation (PDE):

∂W(R, τ)

∂τ
= min

|u|≤M
{∂W

∂R
(R, τ)u}, (18)

with the initial (terminal) condition

W(R, 0) = σ2 + (R − ρ)2, (19)

in the domains D+
= { ∂W

∂R ≥ 0} = {R, τ : R ≥ ρ + Mτ}, and D−
= { ∂W

∂R ≤ 0} = {R, τ :
R ≤ ρ − Mτ}.

In domain D0
= {R, τ : ρ − Mτ < R < ρ + Mτ}, the initial value problem for HJB

equation reduces to
∂W(R, τ)

∂τ
= 0, W(R, 0) = σ2 + (R − ρ)2. (20)

Hence, W(R, τ) = σ2 + (R − ρ)2 in D0, if the τ-axis belongs to this domain.
Synthesis of control function for the immune repertoire formation in relation to R, τ

and ρ can be derived by specifying the derivatives of the functions in (17) by variable R. It
takes the following form:

U(R, τ) =


−M, R ≥ ρ + Mτ, D+

+M, R ≤ ρ − Mτ, D−

0, ρ − Mτ < R < ρ + Mτ, D0.

(21)

Consider the evolution of the function R(t) under the action of controls (21) with the
initial condition R(t = 0) = R0 (note that this time value t corresponds to the initial value
τ = T in backward time):

d
dt

R(t) = U(R, τ; ρ). (22)

If R > ρ + Mτ, then U(R, τ; ρ) = −M, and the solution of the problem (22) is
R(τ) = −Mτ + R0. By virtue of the last condition, R = −Mt + R0 > ρ + Mτ. There-
fore, the condition R0 > ρ + MT needs to be satisfied.

Following a similar consideration when R < ρ − Mτ, and U(R, τ; ρ) = +M, we
obtain that the condition to be satisfied is R0 < ρ − MT. Overall, depending on the initial
condition R0, the function R(τ) is determined as follows:

R(t) =


−Mt + R0, R0 ≥ ρ + MT
+Mt + R0, R0 ≤ ρ − MT
R0, ρ − MT < R0 < ρ + MT,

(23)
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whereas the cost functional W(R(t), T) at time T takes the following values:

W(R(t), T) =


(ρ − (R0 − MT))2 + σ2, R0 ≥ ρ + MT
(ρ − (R0 + MT))2 + σ2, R0 ≤ ρ − MT
(ρ − R0)2 + σ2, ρ − MT < R0 < ρ + MT.

(24)

3. Fitness Characterization of the Adapting Immune System
3.1. Complementarity to Antigen

The difference δW = W(0, T) − W(R(t), T) represents the amount by which the
affinity of the (clonal) receptor to the antigen increases, and accordingly, the fitness of the
antigen decreases. It can be quantified according to the following formulas:

δW =


(R0 − MT)(2ρ − (R0 − MT)), R0 ≥ ρ + MT
(R0 + MT)(2ρ − (R0 + MT)), R0 ≤ ρ − MT
R0(2ρ − R0), ρ − MT < R0 < ρ + MT.

(25)

In general, the antigen-receptor mismatch function W(r, R, τ), with r = (r1, r2, . . . , rn),
R = (R1, R2, . . . , Rn), τ = T − t, can be represented as a sum of functions

W(r, R, τ) =
n

∑
i=1

Wi(ri, Ri, τ), (26)

where the functions Wi(ri, Ri, τ) are the solutions of the backward in time Cauchy problem
for the HJB equation:

∂Wi
∂τ

= −ki(ri − ρi)
∂Wi
∂ri

+ min
|ui |≤Mi

∂Wi
∂Ri

ui + σ2
i ki

∂2Wi

∂r2
i

, (27)

with the initial (terminal) condition

Wi(ri, Ri, 0) = (ri − Ri)
2, τ = T − t. (28)

One way to define the immune system fitness FtIS(t) (when the antigen replication is
not considered) is the use of the function representing the squared mismatch between r
and R:

FtIS ≡ δW =
n

∑
i=1

δWi =
n

∑
i=1

(Wi(0, T)− Wi(Ri(t), T)). (29)

Note that the synthesis of the adaptive repertoire in the immune system in the areas of
D+

i = {ρi, τ : Ri ≥ ρi + Miτ}, D−
i = {ρi, τ : Ri ≤ ρi − Miτ}, D0

i = {ρi, τ : ρi − Miτ < Ri <
ρi + Miτ}, is described in a similar way to the previously presented.

3.2. Pathogen Load Control Based

Here, we develop a basic mathematical model for pathogen load (v(t)) dynamics with
its antigenic trait parameter r(t) under control of the adaptive immune response R(t). We
consider the following SDE describing the dynamics of antigenic parameter r(t), which
determines the antigenicity of pathogen v(t):

dr(t) = −k(r(t)− ρ + R(t))dt + σ
√

2kdwt, (30)

Suppose that the antigenic properties of the pathogen set by the variable r(t) are
directly related to its fitness, i.e., affect the dynamics of the pathogen abundance v(t)
according to the Gompertz equation:

dv(t) = r(t)v(t)(Sv − log(v(t)))dt, Sv = const > 0. (31)
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Assuming f (t) = log(v(t)), we obtain:

d f (t) = r(t)(S − f (t))dt, S = const. (32)

Consider a system of SDEs (31) and (32). The function F( f , r, τ; R(τ)), τ = T − t,
representing the mathematical expectation of the size (log-transformed) of the pathogen
population f at time t = T is a solution to the Cauchy problem for the Feynman–Kac–
Kolmogorov (FKK) equation:

∂F
∂τ

= r(S − f )
∂F
∂ f

+ [−k(r − ρ) + R(τ)]
∂F
∂r

+ σ2k
∂2F
∂r2 , (33)

subject to the terminal condition

F( f , r, 0; R(T)) = f ; F(S, r, τ; R(τ)) = S > 0; τ = T − t. (34)

The solution to problems (33) and (34) can be presented in an explicit form as follows:

F( f , r, τ; R(τ)) = S − (S − f ) exp (z1(r, τ) + z2(τ)),

z1(r, τ) = −ρτ +
r − ρ

k
(e−kτ − 1) +

∫ τ

0
R(τ)(1 − e−kτ)/kdτ,

z2(τ) =
σ2

k

∫ τ

0
(e−kτ − 1)2dτ.

(35)

This solution corresponds to a single process realization of the control function
u(r, R, τ) provided by formula (15).

To take into account the Gaussian variability of the antigenic variable r(t) at any given
time t, we specify the solution to problem (33) and (34) using an averaged control function
U(R, τ) similar to expressions (21). To this end, it is necessary to calculate the mathematical
expectation of the function F( f , r, τ; R(τ)), which represents the stochastic dynamics of the
pathogen growth characteristic, for all Gaussian distributions of the value r:

F( f , τ; R(τ)) =
∫ +∞

−∞
F( f , r, τ; R(τ))Pσ(r − ρ)dr, (36)

Pσ(r − ρ) =
1

2
√

kπσ
e−

(r−ρ)2

2σ2 .

Making some transformations, we obtain the following representation

F( f , τ; R(τ)) = S − (S − f ) exp (z3(τ) + z4(τ)), (37)

where

z3(τ) = −ρτ +
σ2

2k
(e−kτ − 1)2 +

σ2

k

∫ τ

0
(e−kτ − 1)2dτ,

z4(τ) =
∫ τ

0
R(τ)(1 − e−kτ)/kdτ.

(38)

Now we can define the fitness of the immune system with respect to its ability to
control the single antigen load. Considering the value F( f , τ; 0), let us denote the function
F( f , τ; R(τ)) with R(τ) = 0. It follows from expressions (37) and (38) that

S − F( f , τ; 0)
S − F( f , τ; R(τ))

= e−z4(τ). (39)

Note that the function z4(τ) > 0. Consider F( f , τ; R(τ)) = F( f , τ; 0)− δF, δF > 0.
The value δF = (S − F( f , τ; 0))(e−z4(τ) − 1) represents the decrease in the abundance of
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the pathogen as a result of successful adaptation of the immune system repertoire. It
can be considered as a measure of the fitness of the immune system with respect to a
single pathogen.

Based on the above analysis, a global fitness of the immune system with respect to its
ability to control multiple sets of varying pathogens can be derived. In the case of multiple
pathogens, F(r, R, τ), where r = (r1, r2, . . . , rn), R = (R1, R2, . . . , Rn), τ = T − t, is a sum of
single pathogen-related functions

F(r, R, τ) =
n

∑
i=1

Fi(ri, τ; Ri). (40)

In turn, the functions Fi(ri, τ; Ri) are the solutions to the backward in time Cauchy
problem for the FKK equation:

∂Fi
∂τ

= ri(Si − fi)
∂Fi
∂ fi

+ [−ki(ri − ρi) + Ri(τ)]
∂Fi
∂ri

+ σ2
i ki

∂2Fi

∂r2
i

, (41)

subject to the terminal condition

Fi( fi, ri, 0; R(T)) = fi. (42)

4. Numerical Simulations of Immune System–Pathogen Co-Adaptation
4.1. Repertoire Synthesis for a Single Pathogen

Here, we examine the quantitative dynamics of pathogen load under the control of
the adapting immune system. In the Gompertz equation studied above, the fitness of
the pathogen was assumed to be directly proportional to r(t). Obviously, the synthesis
of lymphocyte clone with the receptor R complementary to the specific antigen r should
result in the reduction in the pathogen fitness and the net growth rate of the pathogen.
To parameterize this effect, we assume that the pathogen growth rate depends on the
difference between r − R according to the following function:

µ(r, R) = 1 − (1 − γ) exp
(
−1

2

(
|r − R|

σ∆

)m)
, γ ∈ (0, 1), σ∆ > 0, m > 0, (43)

so that the dynamics of the pathogen load v(t) is described by equation:

d
dt

v(t) = β
r(t)

ρ
µ(r(t), R(t))v(t)(Sv − log(v(t))), (44)

where the antigen-specific function r(t) is governed by the SDE equation:

dr(t) = −k(r(t)− ρ)dt + σ
√

2kdwt. (45)

The immune system adaptation, i.e., the complementary clone R(t) formation, is
described by the ODE with a piecewise-constant right-hand side:

d
dt

R(t) = U(R, t; ρ, M, T), t ∈ [0, T], (46)

where the synthesis of control function U(R, t; ρ, M, T) is defined in (21). The above param-
eterization µ(r, R) of the fitness dependence on the complementarity of the lymphocyte
receptor suggests that the replication rate decreases from β

r(t)
ρ (no adaptation) to γ · β

r(t)
ρ

(fully adapted). Importantly, the three parameters of the fitness function, i.e., γ, σ∆ and m,
can be interpreted as the pathogen growth inhibition (no inhibition when γ = 1 and full inhi-
bition for γ = 0), the cross-reactivity/specificity and the sensitivity threshold, respectively.
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To obtain the numerical realizations of the model (44)–(46), we used the SRIW1 solver
for SDEs, which is an adaptive strong order 1.5 and weak order 2.0 in the Itô sense, from
the DifferentialEquations.jl package in Julia language. The event detection for switching
between the values of the piecewise-constant function U(R, t; ρ, M, T), i.e., the localization
of the domains D+, D− and D0, was implemented via callback functions.

Representative evolution of the mutating pathogen (six individual realizations), the dy-
namics of synthesis of the complementary receptors, and the pathogen fitness reduced by
adapting immune system are shown in Figure 3.

An increase in the cross-reactivity/specificity of the synthesized clonal receptors asso-
ciated with two-fold larger value of σ∆ results in a slightly delayed growth of the pathogen
according to the Gompertz equation. This is demonstrated in Figure 4. However, a two-fold
decrease in the sensitivity threshold parameter m in the pathogen fitness function to the
synthesized clonal receptors does not have a strong impact on the pathogen growth and the
replication rate dynamics. This follows from comparing the trajectories in Figures 3 and 5.

Figure 3. Immune-controlled dynamics of mutating pathogen. Upper left: realizations of the
antigenic evolution. Upper right: synthesis of antigen-complementary clonal receptors. Lower left:
dynamics of pathogen load. Lower right: dynamics of pathogen fitness. Basic set of parameters
values of the hybrid model (44)–(46): ρ = 5, σ = 0.3, k = 1, M = 0.15, T = 30, β = 0.5, Sv = 6.9,
γ = 0.5, σ∆ = 2, m = 2, ri(0) ∼ N (ρ, σ), Ri(0) ∈ {2, 5, 7, 9, 11, 13}, vi(0) = 1.

A strong impact on the pathogen dynamics results from five-fold increase in the
pathogen growth inhibition associated with a five times decrease in the respective parameter
γ. The respective control of the pathogen dynamics is shown in Figure 6. One can see
that the fitness values are reduced much faster, and the pathogen loads are on average
smaller. Notice that the effect depends on the initial growth rates randomly sampled from
a Gaussian distribution, and it becomes stronger for the smaller values.
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Figure 4. Effect of increased cross-reactivity/specificity parameter on immune-controlled dynamics
of mutating pathogen. Upper left: realizations of the antigenic evolution. Upper right: synthesis
of antigen-complementary clonal receptors. Lower left: dynamics of pathogen load. Lower right:
dynamics of pathogen fitness. Basic set of parameters values of the hybrid model (44)–(46) are the
same as in Figure 3 except for the two-fold larger parameter σ∆ = 4.

The rate of the synthesis of complementary receptor in the immune system is repre-
sented by parameter M in the respective control synthesis Equation (46). We examined
the effect of a two-fold increase in M. The overall result was an earlier completion of the
control process and hence, the start-time for efficient reduction in the pathogen fitness was
shorter. This is demonstrated in Figure 7 as compared to Figure 3.

All pathogens differ in the rate of their antigenic evolution. In the presented model,
it is associated with parameter σ. Its increase from the basic set value 0.3 to 1 results in
a larger variation of the pathogen antigenicity, as shown in Figure 8. It shows that faster
mutating antigens represent ‘moving targets’ in the antigenic space that are more difficult
for the immune system to control. Indeed, one can see that the amplitude of fluctuations
of the individual realizations of pathogen dynamics increase substantially, as well as the
overall growth of the pathogen. An increase in the degree of pathogen inhibition in the
situation of highly variable intensity of random antigen fluctuations results in a broader
variation of the replication rate dynamics by increasing the lower values of the replication
rates (see Figure 9). Consequently, some of the pathogen load dynamics are characterized
by a much slower growth kinetics.
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Figure 5. Effect of reduced sensitivity threshold parameter on immune-controlled dynamics of
mutating pathogen. Upper left: realizations of the antigenic evolution. Upper right: synthesis of
antigen-complementary clonal receptors. Lower left: dynamics of pathogen load. Lower right:
dynamics of pathogen fitness. Basic set of parameters values of the hybrid model (44)–(46) are the
same as in Figure 3 except for the two-fold lower parameter m = 1.

Figure 6. Effect of increased pathogen growth inhibition degree parameter on immune-controlled
dynamics of mutating pathogen. Upper left: realizations of the antigenic evolution. Upper right:
synthesis of antigen-complementary clonal receptors. Lower left: dynamics of pathogen load. Lower
right: dynamics of pathogen fitness. Basic set of parameters values of the hybrid model (44)–(46) are
the same as in Figure 3 except for the five-fold lower parameter γ = 0.1.
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Figure 7. Effect of faster rate of complementary receptor synthesis on the immune-controlled
dynamics of mutating pathogen. Upper left: realizations of the antigenic evolution. Upper right:
synthesis of antigen-complementary clonal receptors. Lower left: dynamics of pathogen load. Lower
right: dynamics of pathogen fitness. Basic set of parameters values of the hybrid model (44)–(46) are
the same as in Figure 3 except for the two-fold larger parameter M = 0.3.

Figure 8. Effect of intensity of random variability of pathogen antigenicity on the immune-controlled
dynamics of mutating pathogen. Upper left: realizations of the antigenic evolution. Upper right:
synthesis of antigen-complementary clonal receptors. Lower left: dynamics of pathogen load. Lower
right: dynamics of pathogen fitness. Basic set of parameters values of the hybrid model (44)–(46) are
the same as in Figure 3 except for the larger parameter σ = 1.
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Figure 9. Joint effect of higher inhibition parameter and intensity of random variability on the
immune-controlled dynamics of mutating pathogen. Upper left: realizations of the antigenic evo-
lution. Upper right: synthesis of antigen-complementary clonal receptors. Lower left: dynamics
of pathogen load. Lower right: dynamics of pathogen fitness. Basic set of parameter values of the
hybrid model (44)–(46) are the same as in Figure 3 except for the parameters σ = 1 and γ = 0.1.

It is known that under certain conditions the antibodies and their producing B-cells
with complementary antigen-recognizing receptors can lead to an enhancement rather than
inhibition of associated infections [19–21]. The developed model allowed us to examine
such modes of antigen-immune system interaction. To this end, we simulated the impact of
a broad initial distribution of complementary receptors on pathogen dynamics. The results
are presented in Figure 10. One can see that a substantial diversity in pathogen fitness
takes place.

4.2. Repertoire Synthesis for Multiple Pathogens

The immune system faces a continuous forcing from multiple antigens. The ability
to control them can be considered as an overall fitness of the immune system. Analytical
derivation of the immune system fitness evolution via the synthesis of complementary
lymphocyte receptor clones was examined in the previous section for a simple model with
the antigen fitness related to the antigenicity value r(t) only. However, the adaptation of
the immune system changes the fitness of the pathogens, and we used the Gompertz model
with parameterization of the growth rate as a function of the mismatch |r(t)− R(t)| to
computationally explore the effect of variation in antigen-recognizing clonal receptor pa-
rameters for one pathogen in the above subsection. Here, we trace simultaneous dynamics
of multiple pathogens and the response of the immune system in terms of the synthesis
of a spectrum of complementary receptors. To this end, the following set of equations
was considered: (2), (41), (44) and (46). Figure 11 presents the characteristic features of the
system dynamics. One can see that an increasing fitness of the immune system results in
the inhibition of the dynamics of pathogen load (solid lines) and the relative abundance of
specific pathogen load (% of the maximal) (Figure 11).
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Figure 10. Ensemble of 100 trajectories with various R(0) for a single pathogen. Upper left:
realizations of the antigenic evolution. Upper right: synthesis of antigen-complementary clonal
receptors. Lower left: dynamics of pathogen load. Lower right: dynamics of pathogen fitness. Basic
set of parameters values of the hybrid model (44)–(46): ρ = 5, σ = 1.0, k = 1, M = 0.2, T = 30,
β = 0.5, Sv = 6.9, γ = 0.1, σ∆ = 4, m = 2, ri(0) ∼ N (ρ, σ), Ri(0) ∼ U (ρ − 2ρ, ρ + 2ρ), vi(0) = 1.

Figure 11. Immune system repertoire synthesis for multiple pathogens. Upper left: realizations of the
antigenic evolution of distinct pathogens. Upper right: synthesis of antigen-complementary clonal
receptors. Lower left: dynamics of pathogen load (solid lines) and fraction of specific pathogen load
(% of the maximal). Lower right: dynamics of pathogen fitness. Basic set of parameters values of the
hybrid model (2), (44), (46), (41): ρi ∈ {3, 5, 7, 9, 11}, σi ∼ U (0.5, 1), ki ∼ U (0.5, 1.5), M = 0.3, T = 30,
βi = 0.5, Sv = 6.9, γ = 0.1, σ∆ = 4, m = 2, ri(0) ∼ N (ρi, σi), Ri(0) ∈ {3, 5, 7, 9, 11}, vi(0) = 1.
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Finally, we examined the joint effect of the pathogen growth inhibition degree γ and
the cross-reactivity/sensitivity parameter σ∆ on the degree of the pathogen load reduction
due to optimal synthesis of complementary receptors. The results of tracing the mean
cumulative number of pathogens as a function of γ and σ∆, i.e., the value of

⟨AUCT(v)⟩γ,σ∆ =
1
N

N

∑
i=1

(∫ T

0
vi(t)dt

)
, N = 1000, T = 30,

are presented in the heatmap-type Figure 12, expressed as a percentage of reduction from
the uncontrolled case

⟨AUCT(v)⟩γ=1,σ∆=0.

Figure 12. Quantification of the fitness of the immune system for multiple pathogens. R(0) ∼
U (ρ − 2ρ, ρ + 2ρ), other parameters are the same as in Figure 11.

5. Conclusions

This paper presents a new approach to modeling the repertoire of the immune system
and its adaptation in response to the evolutionary dynamics of pathogens associated with
their genetic variability. The processes of the formation of new receptor specificity of
lymphocytes (the growth of their affinity during maturation) are described by an ODE with
piecewise-constant right-hand side. Optimal control synthesis is based on the solution of
the Hamilton–Jacobi–Bellman equation implementing the dynamic programming approach
for controlling the Gaussian random processes generated by SDE with the noise in the
form of the Wiener process. The solution of the Cauchy problem exists and is analytically
derived in our study. Whether it is a unique one is a special issue. It goes beyond the aim
of our work and requires a systematic thorough analysis following the qualitative theory of
PDEs [22].
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The proposed description of the clonal repertoire of the immune system allows us to
introduce an integral characteristic of the completeness of the repertoire or the integrative
fitness of the whole system, i.e.,

FtIS = 1 −
⟨AUCT(v)⟩γ,σ∆

⟨AUCT(v)⟩γ=1,σ∆=0
.

Note that a quantitative index for characterizing the immune system fitness for a
simple consideration of the pathogen fitness was analytically derived using the Feynman–
Kac–Kolmogorov equation in Section 2.

We used a simple description of the pathogen dynamics in the form of the Gompertz
equation; however, the immune system functions to eliminate the foreign antigens from the
host organisms. A direct extension of the modeling approach presented in this study would
be incorporation of the equations (see [13]) describing the activation and clonal expansion
of the immune response B(t, R) and immune-mediated elimination of the pathogen V(t, r)
(rather than a mere reduction in its intrinsic growth rate):

∂

∂t
V(t, r) = ∇ · (DrV∇V(t, r))︸ ︷︷ ︸

Antigenic variation

+ bV(r)V(t, r)(KV − J(V))︸ ︷︷ ︸
In f ection growth

− dVV(t, r)︸ ︷︷ ︸
Natural death

− dICV(t, r)
∫

ΩR

I(r − R)B(t, R)dR︸ ︷︷ ︸
Immune−mediated elimination

+ σVξV(t, r),︸ ︷︷ ︸
Random f orcing

(47)

∂

∂t
B(t, R) = S(t, R)︸ ︷︷ ︸

Primary receptor selection

+ ∇ · (DRB∇B(t, R))︸ ︷︷ ︸
Receptor somatic hypermutation

+ bB(R)ϕ(V(t, •))B(t, R)(KB − J(B))︸ ︷︷ ︸
Bell−shaped clonal growth

− dBB(t, R)︸ ︷︷ ︸
Natural death

− dABC(t, R)
∫

Ωr
ψ(V(t, r))A(r − R)dr︸ ︷︷ ︸

Activartion−induced apoptosis

+ σBξB(t, R)︸ ︷︷ ︸
Random f orcing

−∇R · (χBC(t, R)∇r−RV(t, r))︸ ︷︷ ︸
A f f inity maturation

.

(48)

Further research will be related to the application of the above novel class of math-
ematical models and the analyses techniques developed earlier in a different context
(see [16]) for host immune system–pathogen co-evolution to study: (1) the evolutionary
dynamics of immune processes in healthy hosts and during infectious diseases under the
influence of antigenic forcing, taking into account the frequency and temporal character-
istics of the appearance of pathogens; (2) the regulation of the immune system repertoire
required for optimal implementation of the protection function; (3) implementation of
selection/maturation processes of antigenic lymphocyte receptors for a proper parame-
terization of appropriate control synthesis; and (4) the treatment of inverse problems for
determining the parameters of models of adaptive dynamics of the clonal repertoire on
evolving fitness landscapes.
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