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Abstract: In this paper, we introduce new constructions of one-coincidence frequency-hopping
sequence (OC-FHS) sets over integer rings. These OC-FHSs are designed to minimize interference in
frequency-hopping multiple access (FHMA) systems, which are widely used in various communica-
tion applications. By leveraging the properties of primitive elements in integer ring Zpn , we develop
OC-FHS sets with lengths mpn−1 for m dividing (p − 1), along with constructions with composite
lengths based on linear functions. The proposed OC-FHS sets include parameters not previously
addressed in the literature and encompass some known cases as special cases.
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1. Introduction

The primary challenge in frequency-hopping multiple access (FHMA) systems lies in
enabling multiple users to share the same frequency band without experiencing interfer-
ence [1]. In such systems, interference occurs when signals from different users overlap,
especially when they transmit on the same frequency at the same time. This type of in-
terference, known as multiple-access interference or “hits”, can severely degrade system
performance, leading to communication breakdowns, data loss, or transmission errors.
Addressing this issue requires the use of frequency-hopping sequences (FHSs) that are
carefully structured to exhibit low correlation properties, which reduces the probability of
users transmitting on the same frequency simultaneously. The design of FHS is pivotal in
minimizing collisions or overlaps, ensuring that each user hops between frequencies in a
manner that avoids interference. This structured frequency allocation over time optimizes
the use of the available spectrum, making the system more efficient and reliable. By re-
ducing the likelihood of collisions, FHS significantly improves the overall communication
quality and system performance, even in environments with high user density. FHMA
systems, supported by well-designed FHS, are integral to a variety of modern applications.
For instance, in Bluetooth communication, frequency-hopping helps to reduce interference
from nearby devices using the same frequency band. In military communications and
secure transmissions, FHSs are employed to prevent interception and jamming, ensuring
the confidentiality and integrity of transmitted information [2–5]. Additionally, radar
systems utilize frequency-hopping to avoid detection and countermeasures, enhancing
the reliability of signals in complex environments. By providing robust communication
solutions across these diverse fields, FHSs continue to be a cornerstone in the development
of FHMA systems.

To address the need for low-correlation FHS sets, numerous algebraic and combina-
torial methods have been developed [6–18]. These constructions aim to produce optimal
FHS sets that adhere to established theoretical bounds, such as the Lempel–Greenberger
bound [19] and the Peng–Fan bound [20]. These bounds provide criteria for evaluating the
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performance and efficiency of FHS sets in minimizing interference. Among the various
types of FHS sets, the one-coincidence FHS (OC-FHS) set is of particular interest. An OC-
FHS set is characterized by sequences where the maximum Hamming autocorrelation is 0,
indicating that there is no self-interference within a sequence, and the maximum Hamming
cross-correlation is 1, meaning that the sequences are designed to have minimal overlap
with each other [21,22]. These properties make OC-FHS sets highly effective in reducing
interference in FHMA systems, ensuring that the communication between different users
remains as clear and uninterrupted as possible. Consequently, the study and development
of OC-FHS sets have been the focus of extensive research, resulting in a wide range of
methods and constructions aimed at achieving these desirable properties.

There have been some significant advances in design of OC-FHS sets. The sequences
constructed in [23] can be interpreted as an OC-FHS set with a prime power length.
In [21,22], Shaar and Davies developed the basic concept of OC-FHS sets for use in FHMA
systems. Then, several OC-FHS sets over the finite field or the integer ring have been
presented. Cao, Ge, and Miao provided a combinatorial framework to understand OC-FHS
sets, together with some new OC-FHS sets [24]. Lee, Jung, and Chung presented an OC-
FHS set of length p2 − p on Zp2 [25]. Recently, Niu and Xing presented a new OC-FHS set
based on the integer ring in the process of developing an extension method for general
FHS sets [26].

In this paper, we present some new classes of OC-FHS sets constructed over integer
rings. By using the primitive element of the integer ring Zpn , we construct an OC-FHS
set of length mpn−1 for m | (p − 1) . We also present two constructions of OC-FHS sets
with composite lengths constructed based on linear functions over integer rings. The new
OC-FHS sets have parameters that are not covered in the literature and include some
previously known parameters as special cases, as shown in Table 1. The organization
of this paper is as follows. In Section 2, we present some preliminary knowledge on
OC-FHS sets. In Section 3, we introduce three new constructions of OC-FHS sets based
on integer rings. Section 4 provides examples of these new OC-FHS sets and compares
our constructions with previously known methods. Finally, we conclude the paper in
Section 5 with a discussion of the implications of our results and potential directions for
future research.

Table 1. Some known classes of OC-FHS sets and OC-FHS sets from Constructions I, II, and III.

References Parameter of FHS Sets
(N,M,1;L)

Constraints

[21,22]
(p − 1, p, 1; p) p is a prime

(p, p, 1; p − 1) p is a prime

[23] (pn − 1, pn, 1; pn) p is a prime

[24]
(N, N, 1; k − 1)

k is size of the difference unit set
modulo N(

pn−1
e , pn, 1; e

)
p is a prime

[25]
(

p2 − p, p2, 1; p
)

p is a prime

[26]
(

pn − pn−1, pn, 1; p
)

p is a prime

This paper

(
mpn−1, pn, 1; Kp

)
p is a prime, mK = p − 1(

pn−1, pn, 1; p2 − p
)

p is a prime(
N′, N, 1; p2

1 − p1
) N = p1 p2 · · · pk, N′ = p2 · · · pk,

p1, p2, · · · , pk: odd primes

2. Preliminaries

In mathematical terms, the effectiveness of a frequency-hopping sequence can be
analyzed using Hamming correlation. This concept refers to the similarity between two se-
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quences, where a high correlation indicates significant overlap between the sequences, and
a low correlation means they are distinct. The Hamming auto-correlation measures the
similarity of a sequence with a cyclically shifted version of itself. Ideally, in frequency-
hopping systems, the auto-correlation should be zero for all shifts, meaning that there are
no repetitions of frequencies within the sequence. The Hamming cross-correlation, on the
other hand, measures the overlap between two different sequences. In FHMA systems,
sequences with low cross-correlation are desirable because they reduce the likelihood of
interference between users. The bounds established by Lempel–Greenberger and Peng–Fan
provide theoretical limits on the minimum Hamming correlation that can be achieved for a
given sequence length and alphabet size. These bounds guide the design of FHS sets that
are optimal in terms of minimizing interference in FHMA systems.

An FHS X = {X(t)}N−1
t=0 of length N is defined over an alphabet F = { f0, . . . , fM−1},

in which each letter corresponds to a distinct available frequency. If we have two FHSs X
and Y, the Hamming correlation is defined as the number of the coincidence of frequencies
in X and the cyclic shift of Y, that is, the Hamming correlation HX,Y(τ) for 0 ≤ τ ≤ N − 1
is calculated as

HX,Y(τ) =
N−1

∑
t=0

h[X(t), X(t + τ mod N)] (1)

where h[x, y] = 1 if x = y and h[x, y] = 0 if x ̸= y. If X(t) = Y(t) for all t, then it is called
the Hamming auto-correlation. Otherwise, it is called the Hamming cross-correlation.
Lempel and Greenberger established a bound on the maximum Hamming auto-correlation
of an FHS with respect to the length and the alphabet size [19].

Theorem 1 (Lempel–Greenberger bound [19]). An FHS of length N defined over an alphabet
of size M with maximum auto-correlation λa satisfies

λa ≥
⌈
(N − r)(N + r − M)

(N − 1)M

⌉
(2)

where r is the remainder of N divided by M

Let X = {X0, . . . , XL−1} be a set of FHSs of length N defined over an alphabet of
size M. The maximum Hamming auto-correlation value Ha(X) of X is defined as the
maximum among all the Hamming auto-correlation values of FHSs in X, except for τ = 0
cases. HX,Y(τ) for a nonzero τ is called an out-of-phase Hamming auto-correlation value.
In a similar way, the maximum Hamming cross-correlation value Hc(X) of X is defined as
the maximum among all the Hamming cross-correlation values between two distinct FHSs
in X.

We denote X by an (N, M, λs; L) FHS set. If N is the length of each FHS, M is the
alphabet size, λs is the maximum between Ha(X) and Hc(X), and L is the number of FHSs in
X. In particular, if Ha(X) = 0 and Hc(X) = 1, then it is called a (N, M, 1; L) one-coincidence
FHS (OC-FHS) set. Note that Ha(X) = 0 implies the non-repeating property of each FHS,
that is, each symbol appears at most once in each FHS.

Peng and Fan established an important bound on the Hamming correlation values of
an FHS set in the following theorem [20].

Theorem 2 (Peng–Fan bound [20]). An(N, M, λs; L) FHS set X satisfies

λs ≥
⌈
(NL − M)N
(NL − 1)M

⌉
(3)

and

λs ≥
⌈

2INL − (I + 1)IM
(NL − 1)L

⌉
(4)

where I = ⌊NL/M⌋, and consequently satisfies.
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Note that an OC-FHS set satisfies (3) with equality.

3. Three Constructions for New OC-FHS Sets

Integer rings, denoted Zn, are a mathematical structure where the set of integers
is considered under modulo-n arithmetic. This structure plays an important role in the
design of FHS sets because it allows for sequences that exhibit desirable properties such as
non-repetition and low correlation. In this section, we utilize the properties of primitive
elements of integer rings, which are numbers that generate all the nonzero elements in
the multiplicative sense. These elements provide the characteristics of the OC-FHS sets
from our constructions, ensuring that the resulting sequences are both non-repeating and
minimally correlated with one another. On the other hand, the use of linear functions of
composite lengths further enhances the flexibility of constructions, allowing for a wide
range of sequence parameters that can be applied to various environments. The first and
the second constructions in this section are based on the structure of the integer ring Zpn ,
while the third construction is based on the product of the integer rings of prime sizes.

3.1. OC-FHS Sets of Length mpn−1

For an odd prime p and a positive integer n, there exists a primitive root α of Zpn , that
is, the multiplicative group Z∗

pn = Zpn ∖ pZpn satisfies

Z∗
pn =

{
αl : 0 ≤ l ≤ (p − 1)pn−1 − 1

}
. (5)

It is also known that if α is a primitive root of Zp2 , then it is also a primitive root of Zpn for
n ≥ 2 in almost all cases [27].

Construction I. Assume that α is a primitive root of Zpn and m is a positive divisor of p − 1, that
is,p − 1 = mK for some positive integer. For 0 ≤ i ≤ K − 1 and r ∈ {0, 1, . . . , p − 1}, define an

FHS Xi,r = {Xi,r(t)}
mpn−1−1
t=0 over Zpn as

Xi,r(t) = αKt+i + r. (6)

Then, construct an FHS set as

A = {Xi,r : 0 ≤ i ≤ K − 1andr ∈ {0, 1, . . . , p − 1}}. (7)

Theorem 3. The set A in Construction I is an
(
mpn−1, pn, 1; Kp

)
OC-FHS set.

Proof. The length, the alphabet size, and the set size of A are clear from the definition, and
so they are enough to prove the auto- and cross-correlation properties.

(i) Autocorrelation: the Hamming auto-correlation Hi,r(τ) of Xi,r can be calculated as

Hi,r(τ) =
mpn−1−1

∑
t=0

h
[
αKt+i + r, αK(t+τ)+i + r

]
=

mpn−1−1
∑

t=0
h
[
αKt+i(1 − αKτ

)
, 0
]
.

(8)

When τ = 0,

Hi,r(τ) =
mpn−1−1

∑
t=0

h[0, 0] = mpn−1. (9)

When τ ̸= 0, it is clear that h
[
αKt+i(1 − αKτ

)
, 0
]
= 0 for all τ because αKt+i is a unit in

Zpn , and 1 − αKτ ̸= 0. That is, the out-of-phase auto-correlation value is always 0.
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(ii) Cross-correlation: the Hamming cross-correlation H(i,r),(j,s)(τ) between Xi,r and Xj,s
can be expressed as

H(i,r),(j,s)(τ) =
mpn−1−1

∑
t=0

h
[
αKt+i + r, αK(t+τ)+j + s

]
=

mpn−1−1
∑

t=0
h
[
αKt(αi − αKτ+j), s − r

]
.

(10)

When s = r,

H(i,r),(j,s)(τ) =
mpn−1−1

∑
t=0

h
[
αKt

(
αi − αKτ+j

)
, 0
]
. (11)

Note that 0 ≤ i ̸= j ≤ K − 1, and so αi − αKτ+j ̸= 0 in Zpn . Thus,

H(i,r),(j,s)(τ) =
mpn−1−1

∑
t=0

0 = 0. (12)

When s ̸= r, it is clear that s − r is a unit in Zpn . Then, H(i,r),(j,s)(τ) is equal to the
number of t with 0 ≤ t ≤ mpn−1 − 1 satisfying

α−Kt =
αi − αKτ+j

s − r
. (13)

If αi − αKτ+j is a unit in Zpn , then H(i,r),(j,s)(τ) ≤ 1 since
(
αi − αKτ+j)/(s − r) = αl

for some l with 0 ≤ l ≤ (p − 1)pm−1 − 1. Otherwise, H(i,r),(j,s)(τ) = 0. Therefore,
H(i,r),(j,s)(τ) ≤ 1 for all (i, r), (j, s), and 0 ≤ τ ≤ mpn−1 − 1.

By summarizing the results of (i) and (ii), we get the assertion. □

3.2. OC-FHS Sets of Prime-Power Lengths

For an odd prime p and a positive integer n, the following construction gives a non-
repeating sequence set of length pn−1 over Zpn .

Construction II. Let the FHS Ya,b =
{

Ya,b(t)
}pn−1−1

t=0 be defined over Zpn as

Ya,b(t) = apt + b mod pn.

where 1 ≤ a ≤ p − 1 and 0 ≤ b ≤ p − 1. Then, construct an FHS set as

B =
{

Ya,b : 1 ≤ a ≤ p − 1and0 ≤ b ≤ p − 1
}

. (14)

Theorem 4. The set B in Construction II is an optimal
(

pn−1, pn, 1; p2 − p
)

OC-FHS set.

Proof. The length, the alphabet size, and the set size of B is clear from the definition.
The Hamming correlation H(a,b),(a′ ,b′)(τ) between two sequences Ya,b and Ya′ ,b′ in B can be
written as

H(a,b),(a′ ,b′)(τ) =
pn−1−1

∑
t=0

h[atp + b, a′(t + τ)p + b′]

=
pn−1−1

∑
t=0

h[(a − a′)tp, a′τp + (b′ − b)]

(15)

where every argument is computed modulo pn.
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(i) a = a′: When b = b′, H(a,b),(a′ ,b′)(τ) becomes an auto-correlation, and

H(a,b),(a,b)(τ) =
pn−1−1

∑
t=0

h[0, aτp)] =
{

pn−1, if τ = 0
0, if τ ̸= 0.

(16)

When b ̸= b′, we have

H(a,b),(a,b′)(τ) =
pn−1−1

∑
t=0

h
[
−aτp, b′ − b

)]
= 0 (17)

where the second equality comes from the fact that –aτp is not a unit in Zpn , while
b′ − b is a unit.

(ii) a ̸= a′: When b = b′, the Hamming correlation is given by

H(a,b),(a′ ,b)(τ) =
pn−1−1

∑
t=0

h[(a − a′)tp, a′τp]

=
∣∣∣{t ∈ Zpn−1 : (a − a′)t ≡ a′τ mod pn−1

}∣∣∣ (18)

because a − a′ is a unit in Zpn−1 . When b ̸= b′, H(a,b),(a′ ,b′)(τ) is always zero, since, in
(15), (a − a′)tp is not unit in Zpn while a′τp + (b′ − b) is a unit.

By summarizing the results of (i) and (ii), we can conclude that the Hamming auto-
correlation values are zero for all nonzero τ, and the Hamming cross-correlation values are
always less than or equal to 1. □

3.3. OC-FHS Sets of a Composite Length

In a similar way to Construction II, it is possible to construct an FHS set whose
length is a product of distinct primes. For distinct odd primes, p1 < p2 < . . . < pk, let
N = p1 p2 · · · pk and N′ = p2 · · · pk.

Construction III. Let the FHS Zc,d =
{

Zc,d(t)
}N′−1

t=0 be defined over ZN as

Zc,d(t) = cp1t + d mod N. (19)

where 1 ≤ c ≤ p1 − 1 and 0 ≤ d ≤ p1 − 1. Then, construct an FHS set as

C =
{

Zc,d : 1 ≤ c ≤ p1 − 1and0 ≤ d ≤ p1 − 1
}

. (20)

Theorem 5. The set C in Construction I is an optimal
(

N′, N, 1; p2
1 − p1

)
OC-FHS set.

Proof. The length, the alphabet size, and the set size of C are clear from the definition.
The Hamming correlation H(c,d),(c′ ,d′)(τ) between two sequences Zc,d and Zc′ ,d′ in C can be
expressed as

H(c,d),(c′ ,d′)(τ) =
N′−1

∑
t=0

h[ctp1 + d, c′(t + τ)p1 + d′]

=
pn−1−1

∑
t=0

h[(c − c′)tp1, c′τp1 + (d′ − d)]
(21)

where every argument is computed modulo N.

(i) c = c′: When d = d′, H(c,d),(c′ ,d′)(τ) becomes an auto-correlation, and

H(c,d),(c,d)(τ) =
N′−1

∑
t=0

h[0, cτp1)]

=

{
N′, if τ = 0
0, if τ ̸= 0.

(22)
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When d ̸= d′, we have

H(c,d),(c,d′)(τ) =
N′−1

∑
t=0

h
[
−cτp1, d′ − d

)]
. (23)

Note that –cτp1 is a multiple of p1 while d′ − d cannot be a multiple of p1. Thus, the
correlation value is always zero.

(ii) c ̸= c′: When d = d′, the Hamming correlation is given by

H(c,d),(c′ ,d)(τ) =
N′−1

∑
t=0

h[(c − c′)tp1, c′τp1]

= |{t ∈ ZN′ : (c − c′)t ≡ c′τ mod N′}|
= 1

(24)

because 1 ≤ |c − c′| ≤ p1 − 1 < p2, and so c − c′ has an inverse modulo N′. When
d ̸= d′, H(c,d),(c′ ,d′)(τ) is always zero, for in (21), d′ − d is not divided by p1.

By summarizing the results of (i) and (ii), we can conclude that the out-of-phase Hamming
auto-correlation values are always 0, and the Hamming cross-correlation values are upper-
bounded by 1. □

4. Examples and Discussion

An OC-FHS set is clearly optimal with respect to the Peng–Fan bound in Theorem 1,
since its maximum Hamming auto- and cross-correlation values are upper-bounded by
0 and 1, respectively. In this section, we present some examples of the OC-FHS sets
presented in Section 3 and compare the parameters with the previously known ones in
the literature.

4.1. Examples of Construction

In this subsection, we provide examples of the three constructions in Section 3. Detailed
versions of the constructed sequences are included in Appendices A–C.

Example 1 (Construction I). Let p = 5,n = 2, and m = 2 in Construction I. By using a primitive
root 2 modulo 25, we can construct

A = {Xi,r : 0 ≤ i ≤ 1 and 0 ≤ i ≤ 4}

where Xi,r(t) = 22t+i + r mod 25 for 0 ≤ t ≤ 19 (Refer to Appendix A for the actual generated
FHS set). The set is an (10, 25, 1; 10) OC-FHS set.

Example 2 (Construction II). Let p = 5 and n = 2 in Construction II. We can construct

B =
{

Ya,b : 1 ≤ a ≤ 4 and 0 ≤ b ≤ 4
}

where Ya,b(t) = 5at + b mod 25 for 0 ≤ t ≤ 4 (Refer to Appendix B for the actual generated
FHS set). The set is a (5, 25, 1; 20) OC-FHS set.

Example 3 (Construction III). Let p1 = 5 and p2 = 7 in Construction III. We can construct

C =
{

Zc,d : 1 ≤ c ≤ 4 and 0 ≤ d ≤ 4
}

where Zc,d(t) = 5at + b mod 35 for 0 ≤ t ≤ 6 (Refer to Appendix C for the actual generated
FHS set). The set is a (7, 35, 1; 20) OC-FHS set.
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4.2. Comparison to Known OC-FHS Sets

The parameter of A in Construction I, as shown in Table 1, includes some parameters
of the previously known OC-FHS sets as special cases. In the case m = p − 1, A becomes
an

(
pn − pn−1, pn, 1; p

)
OC-FHS set, which is given in Lemma 6 of [24]. Moreover, the

parameter in [23] corresponds to the case m = p − 1 and n = 2 in Construction I. In terms
of the ratio between length and alphabet size, the parameters of Constructions II and III
are similar to that in [22]. In Construction II, the length divides the alphabet size, whereas
in the construction in [22], the length does not divide the alphabet size, which marks a
difference between them. Furthermore, the parameters of Construction III also differ in
terms of the alphabet size.

4.3. Parameters of New OC-FHS Sets

Depending on the specific type of the FHMA system, the relationship between the
length of the FHSs and the alphabet size can vary significantly. In practical applications
such as systems with limited power resources, real-time communication constraints, or
environments with low interference, a shorter FHS can offer distinct advantages. For exam-
ple, shorter sequences enhance power efficiency by reducing the number of hops, minimize
synchronization complexity, and allow faster data transmission where low latency is essen-
tial. Additionally, in bandwidth-constrained environments, shorter sequences optimize
spectrum utilization without compromising performance, making them highly effective
in scenarios requiring a balance between efficiency, speed, and system complexity. When
the frequency-hopping sequence is short, users may end up utilizing limited frequency
bands. However, this issue can be mitigated by exchanging the hopping sequences between
users in subsequent hopping periods. By rotating or swapping sequences among users,
the system ensures more balanced frequency usage over time, reducing the chances of
prolonged interference or congestion on certain frequencies. Note that new FHS sets from
our constructions have larger alphabet size than the length of the FHSs. To the best of our
knowledge, the only known construction for the case where the length can be significantly
smaller than the alphabet size is presented in [24], as shown in Table 1.

4.4. Balance Property of New OC-FHS Sets

When the alphabet size in an FHS is larger than the length of the sequence, frequencies
tend to be used in an unbalanced way. Therefore, when designing an FHS set, it is essential
to ensure that all the available frequencies are used in a balanced manner. From this per-
spective, we aim to check whether the frequencies in the OC-FHS sets from Constructions
I, II, and III satisfy the balance criterion. This analysis may help ensure that the system
makes efficient use of the available frequencies.

The number of appearances of a symbol a in an FHS set X = {X0, . . . , XL−1} of FHSs
Xi = {Xi(t)}N−1

t=0 of length N defined over an alphabet F of size M can be defined as

NX(a) =
L−1

∑
i=0

|{0 ≤ t ≤ N − 1 : Xi(t) = a}|

for a ∈ F. If NX(a) is constant for all a ∈ F, we call X a balanced FHS set. The balance
properties of the OC-FHS sets A, B, and C can be checked as follows:

• A (Construction I): For all a ∈ Zpn , we have

NA(a) = p − 1

• B (Construction II): For all b ∈ Zpn , we have

NB(b) = p − 1.
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• C (Construction III): For all c ∈ ZN , we have

NC(c) = p1 − 1.

Therefore, every OC-FHS set from our constructions satisfies the balance property,
which is related to the balanced use of available frequencies in practical situations.

5. Conclusions

In this paper, we have introduced new constructions of OC-FHS sets over integer
rings, which are designed to minimize interference in FHMA systems. By leveraging the
properties of primitive elements and linear functions in integer rings, we have developed
three classes of OC-FHS sets. Moreover, the new OC-FHS sets satisfies the balance property.
These new constructions encompass parameters not previously addressed in the literature
and include some known cases as special instances. Future research could explore fur-
ther generalizations of these constructions, including the investigation of other algebraic
structures or the application of these sequences in different communication scenarios.
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Appendix A. Full Sequence Set of Example 1

Table A1. A (10, 25, 1; 10) OC-FHS Set from Construction I.

(i,r) Xi,r

(0,0) {1, 4, 16, 14, 6, 24, 21, 9, 11, 19}

(0,1) {2, 5, 17, 15, 7, 0, 22, 10, 12, 20}

(0,2) {3, 6, 18, 16, 8, 1, 23, 11, 13, 21}

(0,3) {4, 7, 19, 17, 9, 2, 24, 12, 14, 22}

(0,4) {5, 8, 20, 18, 10, 3, 0, 13, 15, 23}

(1,0) {2, 8, 7, 3, 12, 23, 17, 18, 22, 13}

(1,1) {3, 9, 8, 4, 13, 24, 18, 19, 23, 14}

(1,2) {4, 10, 9, 5, 14, 0, 19, 20, 24, 15}

(1,3) {5, 11, 10, 6, 15, 1, 20, 21, 0, 16}

(1,4) {6, 12, 11, 7, 16, 2, 21, 22, 1, 17}

Appendix B. Full Sequence Set of Example 2

Table A2. A (5, 25, 1; 20) OC-FHS Set from Construction II.

(a,b) Ya,b

1,0) {0, 5, 10, 15, 20}

(1,1) {1, 6, 11, 16, 21}

(1,2) {2, 7, 12, 17, 22}
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Table A2. Cont.

(a,b) Ya,b

(1,3) {3, 8, 13, 18, 23}

(1,4) {4, 9, 14, 19, 24}

(2,0) {0, 10, 20, 5, 15}

(2,1) {1, 11, 21, 6, 16}

(2,2) {2, 12, 22, 7, 17}

(2,3) {3, 13, 23, 8, 18}

(2,4) {4, 14, 24, 9, 19}

(3,0) {0, 15, 5, 20, 10}

(3,1) {1, 16, 6, 21, 11}

(3,2) {2, 17, 7, 22, 12}

(3,3) {3, 18, 8, 23, 13}

(3,4) {4, 19, 9, 24, 14}

(4,0) {0, 20, 15, 10, 5}

(4,1) {1, 21, 16, 11, 6}

(4,2) {2, 22, 17, 12, 7}

(4,3) {3, 23, 18, 13, 8}

(4,4) {4, 24, 19, 14, 9}

Appendix C. Full Sequence Set of Example 3

Table A3. A (7, 35, 1; 20) OC-FHS Set from Construction III.

(c,d) Zc,d

(1,0) {0, 5, 10, 15, 20, 25, 30}

(1,1) {1, 6, 11, 16, 21, 26, 31}

(1,2) {2, 7, 12, 17, 22, 27, 32}

(1,3) {3, 8, 13, 18, 23, 28, 33}

(1,4) {4, 9, 14, 19, 24, 29, 34}

(2,0) {0, 10, 20, 30, 5, 15, 25}

(2,1) {1, 11, 21, 31, 6, 16, 26}

(2,2) {2, 12, 22, 32, 7, 17, 27}

(2,3) {3, 13, 23, 33, 8, 18, 28}

(2,4) {4, 14, 24, 34, 9, 19, 29}

(3,0) {0, 15, 30, 10, 25, 5, 20}

(3,1) {1, 16, 31, 11, 26, 6, 21}

(3,2) {2, 17, 32, 12, 27, 7, 22}

(3,3) {3, 18, 33, 13, 28, 8, 23}

(3,4) {4, 19, 34, 14, 29, 9, 24}

(4,0) {0, 20, 5, 25, 10, 30, 15}

(4,1) {1, 21, 6, 26, 11, 31, 16}

(4,2) {2, 22, 7, 27, 12, 32, 17}

(4,3) {3, 23, 8, 28, 13, 33, 18}

(4,4) {4, 24, 9, 29, 14, 34, 19}
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