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Abstract: We introduce and investigate the properties of new families of univariate and bivariate
distributions based on the survival function of the Lindley distribution. The univariate distribution,
to reflect the nature of its construction, is called a power Lindley survival distribution. The basic
distributional properties of this model are described. Maximum likelihood estimates of the parameters
of the distribution are studied and the corresponding information matrix is identified. A bivariate
power Lindley survival distribution is introduced using the technique of conditional specification.
The corresponding joint density and marginal and conditional densities are derived. The product
moments of the distribution are obtained, together with bounds on the range of correlations that can
be exhibited by the model. Estimation of the parameters of the model is implemented by maximizing
the corresponding pseudo-likelihood function. The asymptotic variance–covariance matrix of these
estimates is investigated. A simulation study is performed to illustrate the performance of these
parameter estimates. Finally some examples of model fitting using real-world data sets are described.

Keywords: survival distribution; Lindley survival distribution; maximum likelihood; conditional
specification
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1. Introduction

The Lindley (L) distribution, which was first introduced by Lindley [1], has been found
to be useful in many research areas. In particular, it has been applied in survival analysis
in many scientific arenas, including engineering, health, economics, etc. Ghitany et al. [2]
studied the statistical properties of this distribution and showed that it was preferred to
the exponential distribution in several applications. Several generalizations of the L model
have been proposed by a variety of authors who have studied the properties of the ex-
tended models and have investigated their suitability in various application areas. Ghitany
et al. [3] proposed a class of weighted L distributions. Ramos and Louzada [4] introduced
a generalized weighted L model. Ristic and Balakrishnan [5] investigated the gamma–
Lindley model. MirMostafaee et al. [6] studied the beta L distribution. Bakouch et al. [7]
introduced an extended L distribution. Ghitany et al. [3] developed a two-parameter
weighted L distribution. Nadarajah et al. [8] described a generalized L (GL) distribution.
Ghitany et al. [9] introduced the power L distribution, Ashour and Eltehiwy [10] proposed
the exponentiated power L distribution, Asgharzadeh et al. [11] introduced a Weibull
Lindley distribution, Khokhar et al. [12] studied the Zografos Balakrishnan Power Lindley
Distribution, Algarni [13] introduced a new generalized Lindley distribution, and Chhetri
et al. [14] in the Cubic Rank Transmuted Lindley Distribution, among others.
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This is a representative listing of variations on the Lindley theme, but it is not intended
to be a complete list. The density function of the L distribution is of the form

fL(x) =
θ2

θ + 1
(1 + x)e−θx, x > 0, (1)

where the parameter θ is positive. If a random variable X has density (1) we write X ∼ L(θ).
The corresponding distribution function is

FL(x) = 1 − θ + 1 + θx
θ + 1

e−θx, x > 0, (2)

The survival function (SL(x)) and hazard or failure rate function (rL(x)) of this distribution
are, respectively,

SL(x) =
θ + 1 + θx

θ + 1
e−θx and rL(x) =

θ2(x + 1)
θ + 1 + θx

.

Lindley noted that rL(0) = θ2

θ+1 and that rL(x) is an increasing function of x and of θ.

Moreover, θ2

θ+1 < r(x) < θ. Since the failure function increases in X, the distribution is
IFR and the validity of the following chain of implication is well established. IFR ⇒
IFRA ⇒ NBU ⇒ NBUE where IFR, IFRA, NBU, NBUE denote an increasing failure rate,
an increasing failure rate average, new being better than used, and new being better than
used in expectation, respectively (see Barlow and Proschan, [15]).

The first objective of this research project is to provide a flexible extension of the
univariate L distribution that can adapt to a range of asymmetry and kurtosis features of
data. The flexible model is based on the power of the survival function of the classical L
model. The second objective is to extend discussion to the bivariate case, because there
are few bivariate extensions of even the basic L model. The distributional properties of
the proposed bivariate power L model are investigated and a method is proposed for
estimation of its parameters.

The paper evolves as follows: In Section 2, we deliver the power Lindley survival
model. In Section 3, we perform inference in the power Lindley model. In Section 4,
we deliver the bivariate power Lindley survival model. In Section 5, estimation of the
parameters is accomplished using pseudo-likelihood. In Section 6, a simulation study is
carried out. In Section 7 two applications are made to real data sets.

2. The Power Lindley Survival Model

In this paper, we will introduce a new extension of the L model called the power L
survival (PLS) distribution. The distribution function of this model is of the form

FPLS(x) = 1 −
(

θ + 1 + θx
θ + 1

)α

e−αθx, x > 0, (3)

in which both θ and α are positive parameters. The corresponding density function is

fPLS(x) =
αθ2

(θ + 1)α
(1 + x)(θ + 1 + θx)α−1e−αθx, x > 0. (4)

If a random variable X has this density, we will write X ∼ PLS(θ, α). Figure 1 shows the
form of the PLS density for various values of the parameters, varying the value of the
parameter θ for the cases (a) α = 0.5 and (b) α = 2.0.
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Figure 1. Graphs of the PLS density for θ =0.5 (line of points and dashes), 1.25, 1.75 (broken line),
2.5 (continuous line) with (a) α = 0.5 and (b) α = 2.0.

Observe that PLS(θ, 1) = L(θ), and that the PLS distribution is more flexible than the
L distribution and, as a consequence of observations of Lindley [1], the PLS distribution
can be expected to outperform the exponential model in certain applications. The PLS
distribution is thus a flexible alternative to the exponential and L models because of the
introduction of the shape parameter α.

The survival function and the hazard function of the PLS distribution are, respectively,

SPLS(x) =
(

θ + 1 + θx
θ + 1

)α

e−αθx = Sα
L(x) and rPLS(x) =

αθ2(x + 1)
θ + 1 + θx

= αrL(x).

The fact that the survival function of the PLS distribution is the α power of the Lindley
survival function is the reason for the name selected for the PLS distribution. Note that, as a
consequence of the relationship beteen the L and PLS survival functions, the corresponding
hazard rates are proportional.

One may verify that

• rPLS(x) is an increasing function in x and of θ, for each α.

• rPLS(0) = αθ2

θ+1 and limx→∞ rPLS(x) = αθ, so that αθ2

θ+1 < rPLS(x) < αθ.
• For α > 1, rPLS(x) > rL(x) and for α < 1, rPLS(x) < rL(x).
• Since the PLS distribution has an increasing failure rate, the following chain of impli-

cations hold for it: IFR ⇒ IFRA ⇒ NBU ⇒ NBUE

A situation in which a PLS distribution will be encountered is one in which we are
dealing with the lifetime of a system consisting of n independent L distributed (i.e., L(θ))
components connected in series. The system lifetime is, therefore, a random variable with a
PLS(θ, n) distribution. Allowing the parameter n in this model to be a positive real number
instead of an integer, we are led to the full PLS model.

The PLS distribution has finite moments of all orders. The expressions for its moments
involve the incomplete gamma function denoted by FG(x : α, β) and defined by

FG(x; α, β) =
∫ x

0

uα−1e−(u/β)

Γ(α)βα
du.

Thus, we have
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µ = E(X) =
∫ ∞

0
[1 − FPLS(x)]dx =

eα(θ+1)Γ(α)[1 − FG(θ + 1; α + 1, α)]

ααθ(θ + 1)α
. (5)

For r = 2, 3, ... the r’th moment is expressible as

E(Xr) = αeα(θ+1)

(θ+1)α ∑r
j=0 ∑

r−j
k=0 (

r
j)(

r−j
k )

θk+1−rΓ(α+j)[1−FG(θ+1;α+j,α)]
αα+j +

αeα(θ+1)

(θ+1)α ∑r+1
j=0 ∑

r+1−j
k=0 (r+1

j )(r−j+1
k )

θk−rΓ(α+j)[1−FG(θ+1;α+j,α)]
αα+j (6)

From these formulas, expressions can be obtained for the variance, skewness and
kutosis of the distribution.

A small-scale simulation study has been conducted to evaluate the range of possible
values for the coefficients of asymmetry and kurtosis for α ∈ (0.05, 1500]. Calculations were
performed using the function integrate in R software [16]. The values of θ considered
were between 0.05 and 300. The results indicated that the range of values for the coefficients
of asymmetry and kurtosis for the model were given by

√
β1 ∈ [0.4710, 2.8813] and

β2 ∈ [2.0236, 11.4217]. These intervals include the corresponding ranges for the Lindley
model which were, respectively, (

√
2, 2) and (6, 9). This confirms the observation that has

already been made that the PLS model is more flexible than the L model.
An expression is available for the moment-generating function of the PLS distribution;

thus,

MX(t) =
e

αθ−t
θ (θ+1)Γ(α)

αα−1(θ + 1)α

[
FG

(
θ + 1; α + 1,

αθ − t
θ

)
− FG

(
θ + 1; α,

αθ − t
θ

)]
(7)

for t < αθ.

Quantile Function

The p’th quantile (0 < p < 1) of the PLS distribution can be expressed as

Zp = F−1
L (1 − (1 − p)

1
α ),

where F−1
L (·) is the Lindley quantile function. We can thus use the same technique as

that used by Jodrá [17] to generate variables with L distributions to instead generate PLS
variables. An alternative expression for the PLS quantiles involving a special function is
available in the form

Zp = −1 − 1
θ
− 1

θ
W−1(−(θ + 1)e−(θ+1)(1 − p)1/α),

where W−1(·) is the Lambert function with branch −1.
Thus, to generate a random variable, X, with a PLS(θ, α) distribution, we can generate

U, a uni f orm(0, 1) variable, and set

X = −1 − 1
θ
− 1

θ
W−1(−(θ + 1)e−(θ+1)(1 − U)1/α).

3. Inference

For a random sample of size n from the PLS(θ, α) distribution, the log-likelihood
function of the parameter vector (θ, α), omitting the constant term, is given by

ℓ(θ, α) = n ln
(

αθ2

(θ + 1)α

)
+ (α − 1)

n

∑
i=1

ln(θ + 1 + θxi)− αθ
n

∑
i=1

xi (8)

The score functions, defined as the derivatives of the log-likelihood function with respect
to the parameters, are
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U(α) =
n
α
− n ln(θ + 1) +

n

∑
i=1

ln(θ + 1 + θxi)− θ
n

∑
i=1

xi (9)

U(θ) =
2n
θ

− nα

θ + 1
+ (α − 1)

n

∑
i=1

xi + 1
θ + 1 + θxi

− α
n

∑
i=1

xi (10)

Equating these expressions to zero, we have the likelihood equations whose solutions
provide us with the maximum likelihood estimates of θ and α.

The observed information matrix, which is minus the matrix of the second derivatives
of the log-likelihood with respect to the parameters, has elements of the form

jθθ =
2n
θ2 − nα

(θ + 1)2 + (α − 1)
n

∑
i=1

(xi + 1)2

(θ + 1 + θxi)2 , (11)

jθα =
n

θ + 1
−

n

∑
i=1

xi + 1
θ + 1 + θxi

+
n

∑
i=1

xi (12)

jαα =
n
α2 . (13)

The elements of the expected information matrix (or Fisher information), defined as
the expected values of the elements of the observed information matrix, are given by

iθθ =
2
θ2 − α

(θ + 1)2 +
α(α − 1)eαθ

θ2(θ + 1)α

∞

∑
j=0

(
α − 3

j

)
Γ(j + 4)[1 − FG(1; j + 4, αθ)]

αj+4 (14)

iαθ = µ +
1

θ + 1
− αeαθ

θ(θ + 1)α

∞

∑
j=0

(
α − 2

j

)
Γ(j + 3)[1 − FG(1; j + 3, αθ)]

αj+3 (15)

iαα =
1
α2 . (16)

A bivariate normal approximation for the joint distribution of the maximum likelihood
estimates, θ̂ and α̂, can then be used to construct confidence intervals for θ and α.

4. A Bivariate Model

For the construction of a bivariate PLS (BPLS) model, we will make use of the approach
discussed by Arnold at al. [18] based on conditional distributions.

According to Arnold et al. [18], a two-dimensional random vector (X1, X2) has a
distribution that is conditionally specified, if the conditional distribution of X1 given that
X2 = x2 for each x2 is a member of a specified parametric family of distributions and also
that the conditional distribution of X2 given that X1 = x1 for each x1 is a member of a
possibly different specified parametric family of distributions.

Suppose now that the joint BPLS distribution function FBPLS(x1, x2) of the random
vector (X1, X2) is such that the conditional distributions of X1 given X2 = x2 and the condi-
tional distributions of X2 given X1 = x1 are all members of the PLS family of distributions
which are absolutely continuous with respect to the Lebesgue measure. We denote this by
writing

X1|X2 = x2 ∼ PLS1(θ1, ω(x2)) (17)

and
X2|X1 = x1 ∼ PLS2(θ2, τ(x1)), (18)

where ω and τ are positive dependence functions which are to be determined.

In such a case, we can recognize that, for fixed choices of θ1 and θ2, we have condi-
tionals in given one-parameter exponential families and we can identify the corresponding
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joint density using a result from Arnold and Strauss [19]. We can make the following
argument. If fX1(x1) and fX2(x2) are marginal densities for a joint PLS density fBPLS(x1, x2)
with conditional densities given by (17) and (18), then it follows that

fBPLS(x1, x2) = τ(x1) fX1(x1) fL(x2; θ2){1 − FL(x2; θ2)}τ(x1)−1

= ω(x2) fX2(x2) fL(x1; θ1){1 − FL(x1; θ1)}ω(x2)−1, (19)

since both expressions are representations of the joint density. For this equality to hold, it
must be the case that (see Arnold et al. [20] or Arnold and Strauss [21])

ω(x2) = α1 − α12 ln[1 − FL(x2; θ2)] (20)

and
τ(x1) = α2 − α12 ln[1 − FL(x1; θ1)], (21)

with α1, α2, positive real constants and α12 ≥ 0.
Then, using the theorems that appear in the work of Arnold and Strauss [22] and

Arnold et al. ([18], chapter 4), we obtain

fBPLS(x1, x2) = k(α)
2

∏
j=1

[
θ2

j (θj + 1 + θjxj)
αj−1(1 + xj)

(θj + 1)αj

]
e
−

2

∑
j=1

αjθjxj

× e
−α12

 2

∏
j=1

{
ln

(
θj + 1 + θjxj

θj + 1

)
− θjxj)

}
(22)

where the parameter vector α = (θ1, θ2, α1, α2, α12)
′ and k(α) is a normalizing constant.

The corresponding conditional densities are

fX1|X2
(x1|x2) =

θ2
1ω(x2)(θ1 + 1 + θ1x1)

ω(x2)−1(1 + x1)

(θ1 + 1)ω(x2)
e−θ1ω(x2)x1 (23)

where

ω(x2) = α1 − α12 ln
(

θ2 + 1 + θ2x2

θ2 + 1

)
+ α12θ2x2

and

fX2|X1
(x2|x1) =

θ2
2τ(x1)(θ2 + 1 + θ2x2)

τ(x1)−1(1 + x2)

(θ2 + 1)τ(x1)
e−θ2τ(x1)x2 (24)

where

τ(x1) = α2 − α12 ln
(

θ1 + 1 + θ1x1

θ1 + 1

)
+ α12θ1x1

The marginal densities are given by

fX1(x1) = k(α)
θ2

1(θ1 + 1 + θ1x1)
α1−1(1 + x1)e−α1θ1x1

(θ1 + 1)α1 [α2 − α12(ln(θ1 + 1 + θ1x1)− ln(θ1 + 1)) + α12θ1x1]
(25)

and

fX2(x2) = k(α)
θ2

2(θ2 + 1 + θ2x2)
α2−1(1 + x2)e−α2θ2x2

(θ2 + 1)α2 [α1 − α12(ln(θ2 + 1 + θ2x2)− ln(θ2 + 1)) + α12θ2x2]
(26)

The case of independence corresponds to setting α12 = 0.
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The conditional distributions corresponding to the conditional densities in (23) and (24)
are of the forms

FX1|X2
(x1|x2) = 1 −

(
θ1 + 1 + θ1x1

θ1 + 1

)ω(x2)

e−θ1ω(x2)x1 (27)

and

FX2|X1
(x2|x1) = 1 −

(
θ2 + 1 + θ2x2

θ2 + 1

)τ(x1)

e−θ2τ(x1)x2 . (28)

Contour graphs of the BPLS density are displayed in Figure 2 for two representative
parameter vectors. In both cases, it is concluded that the distribution is unimodal.
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Figure 2. Contours for the BPLS model (a) BPLS (0.15, 0.25, 2.5, 2.0, 1.50) and (b) BPLS (0.25, 0.75,
1.75, 1.25, 0.75).

Expressions for the (non-linear) regression functions can be written involving the
Lambert function. Thus,

E(X1|X2 = x2) = − θ1 + 1
θ1

− 1
θ1

∫ 1

0
W−1

(
θ1 + 1
eθ1+1 (y − 1)

)
yω(x2)−1dy (29)

and

E(X2|X1 = x1) = − θ2 + 1
θ2

− 1
θ2

∫ 1

0
W−1

(
θ2 + 1
eθ2+1 (y − 1)

)
yτ(x1)−1dy (30)

The variances (σ2
1 and σ2

2 ), the covariance (σ12) and the correlation (ρ12) can be written
in terms of the Lambert function and the exponential integral function (defined below).

σ2
j =

(θj + 1)2

α12θ2
j

e
α1α2
α12

[
−Ei(0) +

2
θj + 1

h1(y) +
1

(θj + 1)2 h2(y)

]
e

2α1α2
α12

α2
12θ2

j

[
(θj + 1)(−Ei(0)) + h1(y)

]2
where

−Ei(x) =
∫ ∞

x

e−z

z
dz, h1(y) =

∫ ∞

0

W−1

(
θj+1

eθj+1

(
e(α12y−α1α2)/(αjα12) − 1

))
e−y

y
dy
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and

h2(y) =
∫ ∞

0

W2
−1

(
θj+1

eθj+1

(
e(α12y−α1α2)/(αjα12) − 1

))
e−y

y
dy.

σ12 = 1
θ1θ2

∫ 1
0

∫ 1
0 g(y1, y2)

[
2

∏
j=1

(θj + 1) +
2

∏
j=1

W−1

(
θj + 1

eθj+1 (yj − 1)
)] 2

∏
j=1

y
αj−1
j dyj +

1
θ1θ2

∫ 1
0

∫ 1
0 g(y1, y2)

 2

∑
j=1

2

∏
j′=1, j′ ̸=j

(θj + 1)W−1

(
θj′ + 1

eθj′+1 (yj′ − 1)
) 2

∏
j=1

y
αj−1
j dyj (31)

and ρ12 = σ12
σ1σ2

, where

g(y1, y2) = y−α12 ln(y2)
1 − 1

(α1 − α12 ln(y2))(α2 − α12 ln(y1))
.

The values of the correlation coefficient were calculated for a variety of parametric
configurations and are displayed in Tables 1 and 2. The range of correlations encountered
was [−0.8667, 0.9814], which is broader than the range of correlations in many well-known
bivariate survival models.

Table 1. Correlation coefficients for the BPLS model.

θ1 = 0.50 and θ2 = 0.75 θ1 = 0.75 and θ2 = 1.50 θ1 = 1.30 and θ2 = 1.70

α2 α1 α12 = 0.25 α12 = 1.0 α12 = 1.75 α12 = 0.25 α12 = 1.0 α12 = 1.75 α12 = 0.25 α12 = 1.0 α12 = 1.75

0.25 −0.0453 −0.0279 −0.0215 −0.1542 −0.0958 −0.0743 −0.3329 −0.2079 −0.1622
0.1 0.75 −0.0429 −0.0263 −0.0190 −0.1633 −0.1008 −0.0737 −0.3871 −0.2401 −0.1773

1.25 −0.0389 −0.0233 −0.0157 −0.1722 −0.1036 −0.0709 −0.5090 −0.3039 −0.2112
0.25 −0.0457 −0.0275 −0.0200 −0.1564 −0.0950 −0.0701 −0.3423 −0.2099 −0.1562

0.25 0.75 −0.0375 −0.0207 −0.0124 −0.1433 −0.0803 −0.0494 −0.3443 −0.1952 −0.1225
1.25 −0.0290 −0.0135 −0.0050 −0.1283 −0.0611 −0.0245 −0.3791 −0.1825 −0.0775
0.25 −0.0419 −0.0243 −0.0163 −0.1442 −0.0848 −0.0577 −0.3246 −0.1930 −0.1331

0.50 0.75 −0.0261 −0.0104 −0.0017 −0.1003 −0.0417 −0.0091 −0.2471 −0.1056 −0.0264
1.25 −0.0118 0.0025 0.0113 −0.0526 0.0086 0.0469 −0.1577 0.0211 0.1349
0.25 −0.0374 −0.0206 −0.0124 −0.1293 −0.0727 −0.0448 −0.2998 −0.1705 −0.1068

0.75 0.75 −0.0153 −0.0007 0.0081 −0.0593 −0.0047 0.0285 −0.1505 −0.0151 0.0685
1.25 0.0039 0.0171 0.0259 0.0161 0.0727 0.1114 0.0467 0.2164 0.3369
0.25 −0.0248 −0.0100 −0.0016 −0.0871 −0.0366 −0.0077 −0.2246 −0.0962 −0.0227

1.5 0.75 0.0125 0.0251 0.0338 0.0473 0.0952 0.1290 0.1302 0.2625 0.3587
1.25 0.0437 0.0550 0.0637 0.1924 0.2426 0.2822 0.6350 0.8083 0.9552

Table 2. Correlation coefficients for the BPLS model.

θ1 = 3.50 and θ2 = 5.75 θ1 = 2.75 and θ2 = 6.50 θ1 = 5.0 and θ2 = 2.75

α2 α1 α12 = 2.0 α12 = 2.75 α12 = 3.50 α12 = 2.0 α12 = 2.75 α12 = 3.50 α12 = 2.0 α12 = 2.75 α12 = 3.50

2.25 0.2874 0.3062 0.3220 0.3485 0.3700 0.3878 0.3646 0.3887 0.4088
1.0 3.0 0.3265 0.3423 0.3557 0.3948 0.4125 0.4274 0.4063 0.4263 0.4433

3.75 0.3547 0.3684 0.3802 0.4274 0.4426 0.4555 0.4367 0.4540 0.4689
4.5 0.3763 0.3885 0.3991 0.4520 0.4653 0.4767 0.4603 0.4757 0.4890
2.25 0.3796 0.3919 0.4027 0.4291 0.4427 0.4546 0.4946 0.5104 0.5241

2.0 3.0 0.4175 0.4278 0.4369 0.4714 0.4827 0.4926 0.5334 0.5465 0.5580
3.75 0.4453 0.4542 0.4621 0.5021 0.5118 0.5204 0.5627 0.5739 0.5839
4.5 0.4670 0.4748 0.4819 0.5258 0.5344 0.5420 0.5860 0.5959 0.6048
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Table 2. Cont.

θ1 = 3.50 and θ2 = 5.75 θ1 = 2.75 and θ2 = 6.50 θ1 = 5.0 and θ2 = 2.75

α2 α1 α12 = 2.0 α12 = 2.75 α12 = 3.50 α12 = 2.0 α12 = 2.75 α12 = 3.50 α12 = 2.0 α12 = 2.75 α12 = 3.50

2.25 0.4480 0.4566 0.4643 0.4939 0.5033 0.5117 0.5878 0.5987 0.6083
3.5 3.0 0.4865 0.4936 0.5000 0.5361 0.5438 0.5507 0.6263 0.6352 0.6432

3.75 0.5151 0.5211 0.5267 0.5671 0.5737 0.5796 0.6559 0.6635 0.6704
4.5 0.5376 0.5429 0.5478 0.5914 0.5971 0.6024 0.6798 0.6864 0.6925
2.25 0.4988 0.5051 0.5108 0.5438 0.5506 0.5569 0.6540 0.6618 0.6689

5.5 3.0 0.5384 0.5435 0.5483 0.5868 0.5924 0.5975 0.6934 0.6998 0.7057
3.75 0.5680 0.5724 0.5764 0.6188 0.6235 0.6278 0.7241 0.7295 0.7345
4.5 0.5915 0.5953 0.5989 0.6440 0.6481 0.6519 0.7492 0.7539 0.7583

The transformation Y1 = − ln(1 − FL(X1)) and Y2 = − ln(1 − FL(X2)) yields the
bivariate exponential conditionals model discussed in detail by Arnold et al. [18].

fY1Y2(y1, y2) = k(α1, α2, α12) exp(−α1y1 − α2y2 − α12y1y2) (32)

Note that the exponential conditionals distribution exhibits only a very limited range of
negative correlations.

Consistent asymptotically normal moment-based estimates of α1, α2 and α12 as func-
tions of the yis are available.

α̃1 =
γ̃

y1(γ̃ + I(γ̃ − 1))
, α̃2 =

γ̃

y2(γ̃ + I(γ̃ − 1))
and α̃12 =

γ̃(γ̃ − 1)
y1y2(γ̃ + I(γ̃ − 1))

,

where γ̃ = I
1+ρY1Y2 I with ρY1Y2 = cor(y1, y2) and I = cv(y1)cv(y2), where cor is the

usual Pearson correlation between Y1 and Y2 and cv(y) =
√

S2
y/y. If we, in addition,

have available consistent estimates of θ1 and θ2, we can make use of these exponential
conditionals estimates in conjunction with an estimated inverse transformation to develop
estimates for the parameters of the BPLS distribution.

A Bivariate Lindley Conditionals Model

If we wish to identify a bivariate Lindley survival model with Lindley conditionals
(BLCs), it is tempting to merely set α1 = α2 = 1 in the BPLS model. This will indeed
result in a valid bivariate survival model, but it will still have power Lindley conditional
distributions. To identify the model with Lindley conditionals, we must return to definition
of the Lindley distribution and recognize that it corresponds to a one-parameter exponential
family of distributions with parameter θ. Applying the result obtained by Arnold and
Strauss [22], we can identify the BLC model as one with conditionals

X1|X2 = x2 ∼ L(θ1 + θ12x2), X2|X1 = x1 ∼ L(θ2 + θ12x1)

and joint density given by

f (x1, x2; θ) ∝ (1 + x1)(1 + x2)exp{−θ1x1 − θ2x2 − θ12x1x2}, x1, x2 > 0. (33)

The marginal and conditional densities for this model are given as follows:

f (x1) = k(θ)
(x1 + 1)(1 + θ2 + θ12x1)

(θ2 + θ12x1)2 exp(−θ1x1), x1 > 0,

f (x2) = k(θ)
(x2 + 1)(1 + θ1 + θ12x2)

(θ1 + θ12x2)2 exp(−θ2x2), x2 > 0.
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f (x1|x2) =
(x1 + 1)(θ1 + θ12x2)

2

(1 + θ1 + θ12x2)
exp(−(θ1 + θ12x2)x1), x1 > 0,

f (x2|x1) =
(x2 + 1)(θ2 + θ12x1)

2

(1 + θ2 + θ12x1)
exp(−(θ2 + θ12x1)x2), x2 > 0.

Note that the BLC density can be written in the form

f (x1, x2; θ) ∝ p(x1, x2)exp{−θ1x1 − θ2x2 − θ12x1x2}, x1, x2 > 0. (34)

Thus, it can recognized as a weighted bivariate exponential conditionals density with
weight function p(x1, x2). If we wish to decide whether a given data set will be best fitted
by a BPLS or by a BLC model, we cannot simply test the hypothesis H0 : α1 = α2 = 1. The
models are not nested and the decision regarding which will best fit the data will likely
involve comparing the maximized pseudo-likelihoods of the two models.

5. Estimation

In order to estimate the parameters of a BPLS model based on a sample from that dis-
tribution, we will employ the method of pseudo-likelihood which utilizes the conditional
likelihoods. The reason for this is that the nature of the normalizing constant in the BPLS
density makes use of the usual maximum likelihood (ML) approach somewhat difficult.
The pseudo-likelihood approach involve maximization of the logarithm of the product
of the conditional densities, which avoids the necessity of dealing with the normalizing
constant, k(α). In this case, although k(α) is troublesome, ML estimation could be accom-
plished by a computer-intensive search involving repeated evaluation of the expression
for the normalizing constant which, though available, involves the exponential integral
function. Thus,

k(α) =
ce−1/c

−Ei(1/c)
,

where
c =

α12

α1α2
.

In this situation, pseudo-likelihood is an attractive alternative.

Pseudo-Likelihood Estimation for the BPLS Distribution

An early reference for the technique known as pseudo-likelihood estimation is Be-
sag [23]. In the bivariate case, the method involves replacing the log-likelihood function by
the product of the two conditional likelihood functions and seeking parameter values that
will maximize this conditional objective function. A convenient reference for discussion of
pseudo-likelihood estimates and their properties is Arnold and Strauss [22]. Such estimates
are typically consistent and asymptotically normal, though somewhat less efficient than
the more elusive ML estimates.

The pseudo likelihood corresponding to a single observation (X1, X2) from a BPLS
distribution is defined to be

Lp(β) = fX1|X2
(x1|x2) fX2|X1

(x2|x1). (35)

The pseudo-likelihood function corresponding to sample of size n from the BPLS distribu-
tion is then given by

L(n)
p (β) =

n

∏
i=1

fX1|X2
(xi1|xi2) fX2|X1

(xi2|xi1).
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The pseudo-likelihood estimate of the parameter vector β is that value of β which

maximizes L(n)
p (β). Equivalently, it is the value that maximizes the log-pseudo-likelihood,

denoted by ℓ
(n)
p (β). For a sample from the BPLS distribution, we have

ℓp(β) = 2n log(θ1θ2) + ∑n
i=1(ln(b2(xi1)) + ln(b1(xi2))) + ∑n

i=1 ln((1 + xi1)(1 + xi2))

+∑n
i=1((b1(xi2)− 1) ln(θ1 + 1 + θ1xi1) + (b2(xi1)− 1) ln(θ2 + 1 + θ2xi2)) (36)

−∑n
i=1(b1(xi2) ln(θ1 + 1) + b2(xi1) ln(θ2 + 1))− ∑n

i=1(θ2xi2b2(xi1) + θ1xi1b1(xi2)).

where b1(x2) = ω(x2) and b2(x1) = τ(x1).
The pseudo-score functions are defined to be the partial derivatives of the log-pseudo-

likelihood with respect to each of the parameters in the model, denoted by Up(β) =

(Up(θ1), Up(θ2), Up(α1), Up(α2), Up(α12))
′.

In the case of the BPLS model, the elements of the pseudo-score vector are given as
follows:

Up(θj) = 2n
θj
− ∑n

i=1
xij+1

θj+1+θjxij
+ ∑n

i=1
xijbj(xij′ )(1−(θj+1)2−θj(θj+1)xij)

(θj+1)(θj+1+θjxij)
−

α12
θj+1 ∑n

i=1 xij
1−(θj+1)2−θj(θj+1)xij

θj+1+θjxij

[
1

bj′ (xij)
+ ln

(
θj′+1+θj′ xij′

θj′+1

)
− θj′xij′

]
for j = 1, 2 and j′ = 1, 2 with j′ ̸= j,

Up(αj) =
n

∑
i=1

[
1

bj(xij′)
+ ln

(
θj + 1 + θjxij

θj + 1

)
− θjxij

]
for j = 1, 2 and j′ = 1, 2 with j′ ̸= j and

Up(α12) = −∑n
i=1

[
1

b2(xi1)
+ ln

(
θ2+1+θ2xi2

θ2+1

)
− θ2xi2

][
ln
(

θ1+1+θ1xi1
θ1+1

)
− θ1xi1

]
−∑n

i=1

[
1

b1(xi2)
+ ln

(
θ1+1+θ1xi1

θ1+1

)
− θ1xi1

][
ln
(

θ2+1+θ2xi2
θ2+1

)
− θ2xi2

]
.

The estimating equations consist of the elements of the pseudo-score vector set equal
to zero. The solution to these equations is the vector of maximum pseudo-likelihood (MPL)
estimates. The solutions are typically obtained by iterative numerical means, such as
Newton–Raphson or quasi-Newton.

The asymptotic distribution MPL estimates for the BPLS model can be identified using
the results of Arnold and Strauss [21].

Thus, the pseudo-likelihood estimators β̂ of β are consistent and asymptotically
normally distributed with an asymptotic covariance matrix given by

Σp = J−1(β)K(β)J−1(β)

(see Arnold and Strauss, 1991 [19]), where for l, m = 1, 2

Klm(β) = E
[{

∂ℓp(β)

∂βl

}{
∂ℓp(β)

∂βm

}′]
and Jlm(β) = −E

[
∂2ℓp(β)

∂βl∂βm

]
.

Typically MPL estimates are less efficient than ML estimates (see Tibaldi et al., [24]),
but the relative ease of computation offsets the loss of efficiency.

As a consistent estimator of the asymptotic covariance matrix of the MPL estimates,
we can use the sandwich estimator proposed by Cheng and Riu [25]. This estimator can be
obtained as follows.
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Let Upi(β) =
∂ℓpi(β)

∂β
, be the vector of pseudo-scores for the ith observation, and then

define

Ĵn(β) = − 1
n ∑n

i=1
∂Upi(β)

∂β′ |
β̃

, which is the sum over all of the observations of the matrix

of second derivatives of
ℓp(β) evaluated at the pseudo-estimator β̃.
Define
K̂n(β) = 1

n ∑n
i=1 Upi(β)Upi(β)′|

β̃
, then a consistent estimator of the asymptotic

covariance matrix is given as follows:

Σ̂(β̃) =
1
n

Ĵ−1
n (β̃)K̂n(β̃) Ĵ−1′

n (β̃).

Setting wij =
θj+1+θjxij

θj+1 , qij = xij
1−(θj+1)2−θj(θj+1)xij
(θj+1)(θj+1+θjxij)

and zij =
(1+2θj)x2

ij+2(θj+1)xij

(θj+1)2(θj+1+θjxij)2 , the

elements of the matrix of second derivatives of the log-pseudo-likelihood function with
respect to the parameters

H(β) = {hβ j β j′
} of the BPLS distribution are given as follows:

hθjθj = − 2n
θ2

j
+ α12 ∑n

i=1
bj′ (xij)zij−α12q2

ij

b2
j′ (xij)

+ ∑n
i=1

(1+xij)
2

(θj+1+θjxij)2 − ∑n
i=1 bj(xij′)zij

+α12 ∑n
i=1 zij

[
ln(wij′)− θj′xij′

]

hθjθj′
= −α12

n

∑
i=1

xij′qij′qij − α12

n

∑
i=1

xijqijqij′ ,

hαjθj =
n

∑
i=1

xijqij, hαj′ θj = −α12

n

∑
i=1

xijqij

b2
j′(xij)

,

hα12θj = −
n

∑
i=1

xijqij

[
2(ln(wij′)− θj′xij′) +

bj′(xij) + α12(ln(wij)− θjxij)

b2
j′(xij)

]
,

hαjαj = −
n

∑
i=1

1
b2

j (xij′)
, hαj′αj = 0, hα12αj =

n

∑
i=1

ln(wij′)− θj′xij′

b2
j (xij′)

and

hα12α12 = −
n

∑
i=1

2

∑
j=1

[
ln(wij)− θjxij

bj′(xij)

]2

.

We then have
Ĵn(β) = − 1

n
H(β)|

β̃
,

from which we may obtain the estimated covariance matrix of Cheng and Riu [25] for the
BPLS model.

6. Numerical Results
6.1. Univariate Simulation

A simulation study was carried out to investigate the behavior of the ML estimate
of the parameters θ and α in the PLS distribution. A set of 5000 samples from the PLS
distribution were simulated for each combination of parameter values θ = 0.5, 2.5, 7.5 and
α = 0.5, 2.5, 4.5 with sample sizes n = 30, 50, 150 and 300 respectively. For fixed values of



Mathematics 2024, 12, 3334 13 of 19

the parameters θ and α, and utilizing a sample of n U(0, 1) variables, we generate X’s of
the following form

X = −1 − 1
θ0

− 1
θ0

W−1(−(θ0 + 1)e−(θ0+1)(1 − U)1/α0),

which have the PLS(θ0, α0) distribution. For this random sample we construct the corre-
sponding log-likelihood function ℓ(θ0, α0; X) which is used to obtain the ML estimates of
the parameters using the optim function in R. This procedure was repeated m = 5000 times
and using the estimates obtained, we computed values of the bias (|Bias|) and root of the
mean square error (

√
MSE) of the estimates in the forms

|Bias(θj)| =
1
m

∣∣∣∣∣∣
m

∑
k=1

 θ̂
(k)
j − θj

θj

∣∣∣∣∣∣; RMSE(θj) =

√
1
m

m

∑
k=1

(
θ̂
(k)
j − θj

)2
,

respectively, where θ̂
(k)
j is the estimator of θj for the jth sample and m the iterations number.

The average relative bias and average root mean squared error of the ML estimates of
the parameters are presented in Tables 3 and 4.

As is to be expected, since the estimates are consistent, the relative bias and the root
mean squared errors of the estimates decrease in almost all cases as the sample size increases.
The results in the Tables confirm the expected good performance of ML estimation for
this model.

Table 3. Simulations for θ̂ for the PLS model with 5000 iterations for θ = 0.5, 2.5, 7.5 and α = 0.5, 2.5,
4.5 with sample sizes n = 30, 50, 100 and 300, respectively.

n = 30 n = 50 n = 100 n = 300

θ α |Bias|
√

MSE |Bias|
√

MSE |Bias|
√

MSE |Bias|
√

MSE

0.5 0.0634 0.3384 0.0632 0.3019 0.0594 0.3463 0.0246 0.1677
0.5 2.5 0.0207 0.1659 0.0116 0.1124 0.0209 0.1359 0.0005 0.0349

4.5 0.0076 0.0768 0.0040 0.0618 0.0018 0.0404 0.0014 0.0290

0.5 0.2408 0.7052 0.1018 0.4233 0.0413 0.3438 0.0114 0.1619
2.5 2.5 0.0266 0.7298 0.0110 0.6882 0.0052 0.3668 0.0045 0.4449

4.5 0.0072 0.3723 0.0071 0.3507 0.0006 0.2592 0.0002 0.1827

0.5 0.0245 0.1888 0.0161 0.1902 0.0052 0.1445 0.0003 0.0407
7.5 2.5 0.0230 0.2440 0.0118 0.2012 0.0106 0.2336 0.0021 0.1091

4.5 0.0254 0.4401 0.0093 0.3756 0.0013 0.2473 0.0061 0.2347

Table 4. Simulations for α̂ for the PLS model with 5000 iterations for θ = 0.5, 2.5, 7.5 and α = 0.5, 2.5,
4.5 with sample sizes n = 30, 50, 150, and 300, respectively.

n = 30 n = 50 n = 100 n = 300

θ α |Bias|
√

MSE |Bias|
√

MSE |Bias|
√

MSE |Bias|
√

MSE

0.5 0.1646 0.4287 0.1086 0.3726 0.0651 0.2775 0.0333 0.1945
0.5 2.5 0.0222 0.3653 0.0292 0.3712 0.0237 0.3727 0.0170 0.2220

4.5 0.0322 0.3272 0.0305 0.3103 0.0124 0.4404 0.0100 0.2139

0.5 0.2217 0.5397 0.0873 0.3250 0.0298 0.1284 0.0079 0.0594
2.5 2.5 0.3146 0.8976 0.2523 0.8676 0.0868 0.4347 0.0513 0.5333

4.5 0.1305 0.5626 0.0935 0.6519 0.0323 0.5542 0.0194 0.3495

0.5 0.0200 0.1006 0.0109 0.0774 0.0037 0.0524 0.0014 0.0291
7.5 2.5 0.0889 0.4399 0.0494 0.3323 0.0267 0.2325 0.0083 0.1319

4.5 0.1174 0.5963 0.0799 0.4741 0.0346 0.3322 0.0210 0.2233
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6.2. Simulation Study for the BPLS Distribution

A simulation study, similar to that discussed in the previous subsection, was car-
ried out for the BPLS distribution, but in this case employing MPL estimates of the
model parameters, β = (θ1, θ2, α1, α2, α12), That is to say, realizations of the bivariate
exponential conditionals distribution (discussed in detail by Arnold et al. [18], in partic-
ular; see equation 32), were simulated, and using the following inverse transformation
Y1 = − ln(1 − FL(X1; θ1)) and Y2 = − ln(1 − FL(X2; θ2)), we obtained a sample from the
BPLS(θ1, θ2, α1, α2, α12). The corresponding pseudo-likelihood function was then maxi-
mized numerically using the optim function provided in the R-project.

The relative bias and root mean squared errors of the estimates were investigated in a
small study involving 1000 simulated random samples of each of the sizes n = 30, 60, 90 and
200 for three different parametric scenarios: scenario 1 with β = (0.50, 0.75, 1.25, 2.75, 1.0), sce-
nario 2 with β = (1.50, 0.25, 0.75, 1.50, 0.50), and scenario 3 with β = (0.25, 0.50, 2.50, 2.0, 1.50).
The results of this simulation study are presented in Table 5.

Table 5. Simulations for the BPLS(β) model with 1000 iterations and with sample sizes n = 30, 60, 90
and 200, respectively.

Scenario 1

n |Bias|
√

MSE |Bias|
√

MSE |Bias|
√

MSE |Bias|
√

MSE |Bias|
√

MSE

30 0.1236 0.6551 0.3269 1.0653 1.0899 2.1701 0.6024 2.6989 1.6199 2.5336
60 0.0862 0.5256 0.251 0.8143 0.8629 1.8099 0.5326 2.3808 1.2446 2.1412
90 0.0622 0.4936 0.1920 0.6754 0.6280 1.4775 0.4337 2.0347 0.9237 1.8002

200 0.0498 0.3112 0.1328 0.5381 0.3910 1.1129 0.3562 1.7097 0.5017 1.3194

Scenario 2

n |Bias|
√

MSE |Bias|
√

MSE |Bias|
√

MSE |Bias|
√

MSE |Bias|
√

MSE

30 1.0233 0.7638 0.1750 0.4802 1.0195 1.6341 0.4081 1.7194 2.1485 2.2890
60 0.9859 0.5943 0.1240 0.3482 0.9494 1.3375 0.2200 1.3114 2.0599 1.8930
90 0.9111 0.4675 0.1092 0.2816 0.9412 1.1967 0.0978 1.1076 2.0110 1.6285

200 0.8156 0.4537 0.0769 0.1576 0.8658 0.9036 0.0213 0.8472 1.8631 1.2091

Scenario 3

n |Bias|
√

MSE |Bias|
√

MSE |Bias|
√

MSE |Bias|
√

MSE |Bias|
√

MSE

30 0.2784 0.5608 0.1469 0.6254 0.4837 2.0776 0.7651 2.2199 0.7959 2.1892
60 0.2730 0.5033 0.1065 0.5472 0.1677 1.7553 0.6526 1.8444 0.3805 1.7982
90 0.2350 0.4009 0.0843 0.4638 0.1510 1.6180 0.6017 1.6769 0.3212 1.5325

200 0.2342 0.2880 0.0536 0.3308 0.0525 1.2179 0.3898 1.2856 0.1142 1.0140

The results in the table confirm that the absolute value of the bias and the root mean
squared error of the MPL estimators of the model parameters decrease as the sample sizes
increase, and that the estimators are approximately unbiased. The performance of the MPL
estimators for moderate sample sizes is deemed to be satisfactory, and the performance for
larger sample sizes is more than satisfactory, as is to be expected because of the consistent
asymptotic normality of such estimates, as discussed in Section 5.

7. Applications of the Models
7.1. Application 1

To illustrate the utility of the PLS model, we analyze a real data set dealing with the
active repair times (X) for an airborne communication transceiver. The data are taken from
Jorgensen [26].

Descriptive statistics for the data set are presented in Table 6. The quantities
√

b1 and
b2 indicate the sample asymmetry and kurtosis coefficients, respectively.
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Table 6. Descriptive statistics for the active repair times (X).

n mean variance
√

b1 b2

40 4.0125 26.6801 2.6158 10.0226

Table 6 reveals a positively skewed distribution for the variable (X) denoting active
repair times. Moreover, the asymmetry and kurtosis coefficients for X are quite far from
what would be expected with the L distribution.

To model the active repair times, we use the L, GL and PLS models. To compare
the quality of the fit of each of the models, we use the AIC (Akaike, [27])) criterion,
namely AIC= −2ℓ̂(·) + 2p, where p denotes the number of parameters in the model. We
also consider the BIC (Schwarz, [28])) criterion, namely BIC= −2ℓ̂(·) + ln(n)p, and the
modified AIC criterion, typically called the consistent AIC (CAIC, see Bozdogan, [29])),
namely CAIC=−2ℓ̂(·) + (1 + ln(n))p, where again, p is the number of parameters for the
model being considered. The best model is considered to be the one with the smallest AIC
(or BIC, or CAIC).

Maximum likelihood estimators and estimated standard errors (in parenthesis) for
the L, GL and PLS models were computed by maximizing likelihood using the function
optim in R. The results are presented in Table 7, together with the values of the AIC, BIC
and CAIC criteria for each of the models. To obtain initial values for θ and α, the LindleyR
and fitdisrplus libraries of R-project were used, with which an estimate for the θ parameter
of the L distribution could be obtained. With this value, we use Equation (9), the score of
the α parameter of the PL equal to zero (score equation for α of the PLS), and from this
equation we obtain an initial value for the α parameter. From the table, we determine that
model PLS exhibits the best fit to the data set, according to the AIC, BIC or CAIC criteria.
The graphs in Figure 3a–c reveal that the PLS model’s fit is quite good.

Table 7. Parameter estimates and estimated standard errors for L, GL and PLS distributions.

Parameter L GL PLS

θ 0.4241(0.0306) 0.3588(0.0588) 67.9071(5.4333)
α – 0.7459(0.1676) 0.0036(0.0006)

AIC 199.582 199.821 195.161
BIC 201.271 203.199 198.545

CAIC 202.271 205.199 200.545

Figure 3a–c show, respectively, the empirical cdf for the active repair times (solid line),
the qq-plot for the PLS model, and the qq-plot with envelopes for the PLS model. In (a),
the dotted line corresponds to the cdf for the PLS model, calculated with the estimates of
the parameters of the PLS model.
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Figure 3. Graphs for the PLS model (a) cdf (b) qq-plot and (c) envelope.



Mathematics 2024, 12, 3334 16 of 19

Additionally, the Kolmogorov–Smirnov test statistic (KS) for the fit to the PLS model
yields the value KS = 0.150, with a corresponding p-value = 0.759, giving support to the
hypothesis that the active repair time variable has a PLS distribution.

Figure 4a,b shows the qq-plot for the L and GL distributions, calculated with the
estimates of the parameters in each model; it can be observed that both models do not fit
well with the data set studied.

0 5 10 15 20 25

0
2

4
6

8
1

0

Sample quantiles

T
h

e
o

re
ti
c
a

l 
q

u
a

n
ti
le

s

(a)

0 5 10 15 20 25

0
2

4
6

8
1

0
1

2
1

4

 

Sample quantiles

T
h

e
o

re
ti
c
a

l 
q

u
a

n
ti
le

s

(b)

Figure 4. q-q plot for (a) L model and (b) GL Model.

Finally, we consider testing the hypothesis of no difference between the PLS and the L
distributions for the data set under study, which corresponds to testing the hypotheses

H0 : α = 1 versus H1 : α ̸= 1,

using the statistic

Λ =
ℓL(θ̂)

ℓPLS(θ̂)
.

For the available data, we find
−2 log(Λ) = 6.416

which is greater than the 5% chi square critical value, χ2
1,95% = 3.8414. Hence, the PLS

model seems to be a useful alternative to be used for modeling active repair time data.

7.2. Application 2

In this example, a bivariate data set will be considered. The suitability of the BPLS
model will be assessed by comparing its comportment with that of three competing bivari-
ate models. The data set contains 51 data points corresponding to the 51 largest cities in the
United States. For each city measurements are provided for the average precipitation per
day in millimeters (X1) and the average daily maximum temperature in Celcius degrees
(X2). The data are available from the US National Center for Climatalogical Data (NCDC)
at https://www.ncdc.noaa.gov (accessed on 25 August 2022).

To analyse this data set, we consider three models: The Morgenstern type bivariate
Lindley (BLM) distribution (see Vaidyanathan et al. [30]); the bivariate exponential of
Gumbel (BEG) distribution (see Gumbel [31]); and the BPLS distribution. To compare the
fits of the models, we use the AIC, BIC and CAIC criteria ML estimators and estimated
standard errors (in parenthesis), as three of the bivariate models were computed using the
function optim in R. For estimation of the parameters, we first fitted the marginal densities
for each coordinate and combined these parametric estimates using the method explained
in Section 4 to obtain the values used as initial values in the iterative process of estimation
using the full bivariate data set.

https://www.ncdc.noaa.gov
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For the BPLS model, estimates were obtained by maximizing the pseudo-likelihood.
Parameter estimates for model parameters are presented in Table 8, together with the

AIC and BIC criteria. Contours for the BLM, BEG and the BPLS models are presented in
Figure 5, which clearly indicates a better fit for the BPLS model.

Table 8. Parameter estimates and estimated standard errors for BLM, BEG and BPLS distributions.

Parameter BLM BEG BPLS

θ1 0.0266(0.0026) 0.0082(0.0003)
θ2 0.1880(0.0196) 0.0752(0.0010)
α1 0.0120(0.0017) 5.0075(1.5483)
α2 0.0807(0.0150) 3.0053(1.2481)
α12 0.9756(0.4637) 0.9936(0.4999) 4.8559(2.6724)
AIC 854.5633 887.3073 843.1525
BIC 860.3583 893.1028 852.8116

CAIC 863.3583 896.1028 857.8116

For the BPLS model, we may consider

H0 : (α1, α2, α3) = (1, 1, 0) versus H1 : (α1, α2, α3) ̸= (1, 1, 0)

Note that, under H0, we have a bivariate L distribution model with independent marginals
for (X1, X2).

An appropriate test involves use of a Wald-type statistic whose distribution follows
from the asymptotic normality of the pseudo-maximum likelihood estimator β̂. This
statistic can be defined as

Wn = (Cβ̂ − b)′(Ĝ(β̂))−1(Cβ̂ − b),

where Ĝ(β̂) is a submatrix of Σ̂(β̃) corresponding to the vector (α1, α2, α3), C = (03×2 I3)
and b = (1, 1, 0), which, under the null hypothesis, follows the chi square distribution with
three degrees of freedom.

With the given data, we obtain Wn = 110.9424 with a pvalue << 0.05, indicating that
the BPLS model is significantly better at the 5% level.

To evaluate the goodness-of-fit of the BPLS model to the given data set, we use the
multivariate Kolmogorov–Smirnov test of goodness-of-fit proposed by Justel et al. [32]).
For the case of a bivariate distribution, the bivariate Kolmogorov–Smirnov (BKS) statistic is
of the form

dn = sup
(x1,x2)∈R2

|Fn(x1, x2)− F(x1, x2)|,

where Fn is the empirical distribution function of the sample and F is some specified
distribution function. When F, is not known, the bivariate Kolmogorov–Smirnov statistic is
defined by

dn(F) = max{D1, D2},

where
D1 = sup

(x1,x2)∈R2
|Gn(y1, y2)− y1 × y2|

using the transformation y1 = FX1(x1) and y2 = FX1|X2
(x1|x2) and

D2 = sup
(x1,x2)∈R2

|Gn(y2, y1)− y2 × y1|

using the transformation y2 = FX2(x2) and y1 = FX2|X1
(x2|x1), where Gn is the empirical

distribution function of the sample.
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In our case involving the BPLS model, we find

dn(BPHL) = max{0.1322, 0.1787} = 0.1787,

which is less than the 5% critical value provided in Table 1 of Justel et al. [32] (the critical
value is not provided for n = 51, but by referring to the given values for n = 50 and n = 60
we can justify our claim). We may conclude that the fit of the data to the BPLS model
is acceptable.
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Figure 5. Contours for (a) BLM distribution, (b) BEG distribution and (c) BPLS distribution.
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