Parrales-Bravo, F.; Caicedo-Quiroz, R.; Tolozano-Benitez, E.; Gómez-RodrÃguez, V.; Cevallos-Torres, L.; Charco-Aguirre, J.; Vasquez-Cevallos, L.
OUCH: Oversampling and Undersampling Cannot Help Improve Accuracy in Our Bayesian Classifiers That Predict Preeclampsia. Mathematics 2024, 12, 3351.
https://doi.org/10.3390/math12213351
AMA Style
Parrales-Bravo F, Caicedo-Quiroz R, Tolozano-Benitez E, Gómez-RodrÃguez V, Cevallos-Torres L, Charco-Aguirre J, Vasquez-Cevallos L.
OUCH: Oversampling and Undersampling Cannot Help Improve Accuracy in Our Bayesian Classifiers That Predict Preeclampsia. Mathematics. 2024; 12(21):3351.
https://doi.org/10.3390/math12213351
Chicago/Turabian Style
Parrales-Bravo, Franklin, Rosangela Caicedo-Quiroz, Elena Tolozano-Benitez, VÃctor Gómez-RodrÃguez, Lorenzo Cevallos-Torres, Jorge Charco-Aguirre, and Leonel Vasquez-Cevallos.
2024. "OUCH: Oversampling and Undersampling Cannot Help Improve Accuracy in Our Bayesian Classifiers That Predict Preeclampsia" Mathematics 12, no. 21: 3351.
https://doi.org/10.3390/math12213351
APA Style
Parrales-Bravo, F., Caicedo-Quiroz, R., Tolozano-Benitez, E., Gómez-RodrÃguez, V., Cevallos-Torres, L., Charco-Aguirre, J., & Vasquez-Cevallos, L.
(2024). OUCH: Oversampling and Undersampling Cannot Help Improve Accuracy in Our Bayesian Classifiers That Predict Preeclampsia. Mathematics, 12(21), 3351.
https://doi.org/10.3390/math12213351