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Abstract: Unbalanced data can have an impact on the machine learning (ML) algorithms that build
predictive models. This manuscript studies the influence of oversampling and undersampling
strategies on the learning of the Bayesian classification models that predict the risk of suffering
preeclampsia. Given the properties of our dataset, only the oversampling and undersampling
methods that operate with numerical and categorical attributes will be taken into consideration. In
particular, synthetic minority oversampling techniques for nominal and continuous data (SMOTE-
NC), SMOTE—Encoded Nominal and Continuous (SMOTE-ENC), random oversampling examples
(ROSE), random undersampling examples (UNDER), and random oversampling techniques (OVER)
are considered. According to the results, when balancing the class in the training dataset, the accuracy
percentages do not improve. However, in the test dataset, both positive and negative cases of
preeclampsia were accurately classified by the models, which were built on a balanced training
dataset. In contrast, models built on the imbalanced training dataset were not good at detecting
positive cases of preeclampsia. We can conclude that while imbalanced training datasets can be
addressed by using oversampling and undersampling techniques before building prediction models,
an improvement in model accuracy is not always guaranteed. Despite this, the sensitivity and
specificity percentages improve in binary classification problems in most cases, such as the one we
are dealing with in this manuscript.

Keywords: preeclampsia; bayesian network classifiers; class imbalance; oversampling; undersampling;
SMOTE-NC; ROSE; SMOTE-ENC

MSC: 68T37

1. Introduction

Nowadays, Electronic Medical Records (EMRs) are being used to collect clinical data
for training prediction models in a variety of medical fields [1]. Modern hospitals provide
a wide range of monitoring and data collection tools that make it inexpensive to gather and
store data for intra- and interhospital information systems [2]. It is well acknowledged,
nonetheless, that data preprocessing is required prior to training predictive models [3,4].

Regarding preeclampsia, it is important to mention that, according to the Ministry of
Health’s 2020 Report, hypertension resulting from severe preeclampsia [5] is the primary
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cause of maternal death in the Ecuadorian province of Guayas. Moreover, ten to fifteen
percent of all maternal fatalities globally are presently attributed to preeclampsia, a placenta-
related illness [6]. Thus, early identification and treatment of this illness can greatly enhance
maternal and perinatal outcomes [7]. As in other fields [8,9], we can make use of information
and communication technologies to improve the situation. Using machine learning (ML)
techniques might aid in the creation of early preeclampsia prediction models [3].

One important problem in machine learning to be mindful of while training classi-
fication models is class imbalance, which occurs when a class label occurs significantly
more frequently than another [10]. Clinical data frequently show this circumstance [11].
Traditional classification methods may perform badly on imbalanced datasets [12] because
they are meant to learn models on balanced datasets.

Our earlier research [3] had the purpose of building a Bayesian Network Classifier
(BNC) for preeclampsia diagnosis, which also allows us to understand the fundamental
factors that give rise to this condition. Regarding the data, information from the medical
records of patients who were treated from 2017 to 2023 at the “IESS Los Ceibos” hospital
in Guayaquil, Ecuador, was gathered retrospectively. The model trained with the TANcl
algorithm and the feature subset selection (FSS) task was the best among them, achieving
accuracy close to 90%. In addition, the medical interpretation of the causal influence
relationships in the classifying models was performed, which usually agreed with what
the medical literature has mentioned to date. Since the study addressed the use of an
unbalanced dataset, we leave as future work the consideration of some data augmentation
techniques such as the Synthetic Minority Oversampling Technique (SMOTE) to improve
the robustness and accuracy of the model. Consequently, we think it is appropriate to
examine, in the present manuscript, how undersampling and oversampling can improve
the performance of BNCs.

It has been widely mentioned in the literature that class balancing produces improve-
ments in the accuracy of classification models. For example, consider the studies presented
in [13–15]. Therefore, our motivation is to review whether that improvement can always
occur or, on the contrary, if this study can serve as an example demonstrating how accuracy
is not always improved when class balancing is considered.

Our contributions are listed as follows:

• The present study addresses the influence of oversampling and undersampling meth-
ods on Bayesian classifiers that predict preeclampsia.

• Contrary to what is widely mentioned in various works, our results demonstrate that
an improvement in model accuracy is not always guaranteed.

• Despite the previous point, a balanced performance has been obtained in the classifi-
cation of positive and negative cases of preeclampsia.

• This study can serve as an example of the following conclusion: while using over-
sampling and undersampling techniques to address imbalanced training datasets can
help to balance the detection of positive and negative cases in binary classification
problems like the one under review in this manuscript, an improvement in the models’
accuracy is not always guaranteed.

The paper’s remaining sections are arranged as follows: Previous studies that are
pertinent to this inquiry are presented in Section 2. A concise synopsis of the approach
employed to examine the performance of Bayesian models trained on augmented data with
ROSE, SMOTE-NC, SMOTE-ENC, OVER, and UNDER is given in Section 3. Section 4 goes
into depth on the findings and the analysis of the findings. Finally, concluding thoughts
are included in Section 5.

2. Related Work

Medical datasets are usually imbalanced [16]. The dataset used in our previous work is
no exception to that [3]. In this section we describe the use of class balancing techniques on
clinical datasets. In addition, we review our previous work, its findings, and characteristics
of the dataset, with an emphasis on the uneven distribution of its class labels. Then, we
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explore techniques that allow class balancing on our dataset, which has continuous and
nominal variables. Finally, we indicate those class balancing techniques that will be used in
the present study.

2.1. Class Balancing in Clinical Datasets

The use of class balancing techniques on clinical datasets has been carried out in
several studies. For example:

• In [16] undersampling and oversampling methods such as SMOTE have been used for
class balancing in two lung cancer datasets. According to their results, undersampling
techniques have the highest standard deviation (SD), and oversampling techniques
have the lowest SD. They conclude that oversampling is a stable method to balance
the class because their lowest SD achieved when training classification models on
balanced training sets.

• In [17], authors presented an empirical performance evaluation of classification models
for five imbalanced clinical datasets, Breast Cancer Disease, Coronary Heart Disease,
Indian Liver Patient, Pima Indians Diabetes Database, and Coronary Kidney Disease.
They evaluated the performance of classification models built on training sets that
considered the following techniques: Undersampling, Random oversampling, SMOTE,
ADASYN, SVM-SMOTE, SMOTEEN, and SMOTETOMEK. According to the results,
SMOTEEN performed better than the other six data balancing techniques for all five
clinical datasets.

• In [18], classification algorithms, combined with resampling strategies and dimen-
sionality reduction methods, were investigated to find a prediction model to correctly
identify between growth-hormone treated and non-treated animals. According to
their results, SMOTE helped to improve the performance of their classification models.

All in all, within the medical field, many works have benefited from the use of class
balancing techniques to improve the performance of their classifier models.

2.2. Class Imbalance Problem of Our Previous Work

In our earlier research [3], the Naïve Bayes, Semi Naïve Bayes (FSSJ), and Chow-Liu
Tree Augmented Naïve Bayes (TANcl) algorithms were used to create explanatory classi-
fication models to predict the risk of preeclampsia. A Non-Redundant Feature Selection
Technique (NoReFS) was considered to carry out the feature selection procedure. The best
model among them was the one that was trained using the TANcl and features selected by
NoReFS. According to the most accurate model, individuals who have a serious vaginal
infection are often older than 35. According to the best model, the following factors increase
the risk of preeclampsia: tobacco use, rural residency, severe vaginal infections, age over
35, family history of diabetes, and personal experience with hypertension.

In terms of the data gathered, the hospital “IESS Los Ceibos” provided 1467 EMRs.
Sixty-four fundamental numerical and category features were gathered. These included de-
mographics, age, cultural traits, and medical history, either personal or familial. “Disease1”
was the attribute that needed to be classified (or predicted). Its two category values were
positive and negative; positive represents patients who have the condition, while negative
represents the opposite circumstance. The distribution of positive and negative values was
found using the medical records, as Table 1 illustrates. The baseline accuracy is around 76%
when all records are labeled as negative cases.

Table 1. Distribution of positive–negative cases of preeclampsia.

Case Number of Records

Positive 351
Negative 1116
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Table 1 indicates that 76% of patients do not exhibit preeclampsia, indicating an
imbalance in our data. Therefore, in our prior work [3], we employed the F1-score measure
rather than accuracy to compare the model performances on a class imbalance dataset,
saving the usage of undersampling and oversampling strategies for further research. As
a result, the effects produced when balancing our training dataset that contains both
numerical and categorical variables will be analyzed in this work.

2.3. Class Balancing Techniques That Handles Nominal and Continuous Variables

Both oversampling and undersampling are common methods used for balancing the
class. Oversampling is frequently utilized when there is an unequal distribution of data,
with one class being considerably underrepresented (as in our dataset). However, until
the majority class becomes as popular as the minority class, undersampling is frequently
utilized to exclude records that include it. Oversampling could be a more workable method
if the dataset’s distribution is imbalanced, per [19]. Important data might be lost as a result
of undersampling, which might not be able to balance the class distribution [20].

The Synthetic Minority Oversampling Technique (SMOTE) [21] is a widely used
oversampling method. In it, the closest minority class neighbors in the sample are used to
randomly generate new instances of the minority class; the nearest neighbors are identified
by calculating the Euclidean distance between data points in the feature space. SMOTE is a
popular technique that outperforms basic random oversampling (OVER). It cannot be used,
nevertheless, when the datasets have both nominal and continuous characteristics. In [21],
SMOTE-NC (SMOTE-Nominal Continuous) was also proposed as a solution to this issue.
Through the preservation of the original labels of categorical features in the resampled data,
it handles nominal and continuous characteristics differently.

Another oversampling-based technique called Random Oversampling Examples
(ROSE) has been proposed in [22]. By producing synthetic data points that, with regard
to a probability distribution centered on the chosen sample, are as close as feasible to the
genuine ones, it adds fresh examples of the minority class. ROSE employs the imbalance
ratio (IR) to quantify the unequal distribution of data across classes. When the IR value is
equal to 1, the dataset is in appropriate balance. Greater IR values correspond to a greater
variation in class sizes. ROSE employs an estimated conditional kernel density of the two
classes [23] to generate synthetic data points. ROSE is made to handle both continuous and
categorical variables, just like SMOTE-NC.

Recently, in [24], a novel minority oversampling technique called SMOTE-ENC
(SMOTE—Encoded Nominal and Continuous) is proposed. In it, nominal features are
encoded as numeric values, and the difference between two numerical values representing
those features indicates the degree of change in affiliation with the minority class. SMOTE-
ENC can handle datasets that only contain nominal features, which is not possible in the
SMOTE-NC method. Moreover, according to their authors, this method overcomes the
problem of SMOTE-NC, which fails to interpret the difference in association between each
label and the minority class target in the case of multi-label nominal features.

All in all, we will examine the performance of the Bayesian classification models
that are trained on augmented training data when considering the following methods:
Random Undersampling (UNDER), Random Oversampling (OVER), ROSE, SMOTE-NC,
and SMOTE-ENC. This is because we have a class imbalanced dataset combining categorical
and numerical variables.

3. Methodology

This section describes the steps used to assess how well the BNCs, which were built on
a balanced training dataset when using OVER, UNDER, ROSE, SMOTE-NC, and SMOTE-
ENC, performed in predicting the risk of preeclampsia. The process we followed to achieve
our objective is depicted in Figure 1. Details for each of the stages outlined therein are
provided below.
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Figure 1. Workflow of the methodology applied to evaluate the performance of BNCs that predict
the risk of preeclampsia.

3.1. Preprocessed Dataset

This stage finds out if there are duplicate columns in the dataset. We remove duplicate
columns. Furthermore, columns that are the same in every EMR are eliminated. We took
into account both methods in accordance with the recommendations made in [1,2].

Moreover, we will apply the Correlation-based feature selection (CFS) technique to
reduce the number of features in our dataset. CFS calculates the correlation between each
pair of features and then selects the subset of features that have the highest correlation
with the target variable and the lowest correlation with each other [25]. All in all, CFS is a
powerful technique that can help identify the most relevant variables, even improving the
performance of classification models as in [1,2,26,27].

3.2. Dataset Splitting: Training and Testing Datasets

Our collected preeclampsia dataset is split 70:30 between training and test datasets,
following the methodology outlined in our earlier work [3]. The training dataset in that
study included the first 70% of the data, with the remaining 30% designated for the test
dataset. To evenly distribute the data between both datasets, we first shuffle the records
into a random order before splitting them. Furthermore, to ensure that the dataset is split
while preserving class proportions, we apply a stratified split.

3.3. Oversampling and Undersampling Techniques

Since we want to balance the classes before the model training starts, we only apply
oversampling and undersampling to the training dataset. This way, we do not affect the
evaluation of the performance of models on the test dataset.

As aforementioned, because our dataset includes both numerical and categorical
variables, we will take into account the following techniques: ROSE, SMOTE-NC, Random
Oversampling (OVER), Random Undersampling (UNDER), and ROSE. We will use the R
statistical program (version 4.3.2) and the functions and packages listed in Table 2 to do
this. We used the default settings for all functions.

Table 2. Packages used to deal with class imbalance in R.

Technique Package Version Function

UNDER caret 6.0–94 downSample
OVER caret 6.0–94 upSample
ROSE ROSE 0.0–4 ROSE

SMOTE-NC RSBID 0.0.2.0000 SMOTE_NC

Regarding the SMOTE-ENC method, we will use it from the code available in [28].
With Python code, we will generate the balanced training dataset under this technique, and
then we will load it into the R code.
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3.4. Training Models

As in our earlier work [3], the Chow-Liu approach of “Tree Augmented Naïve Bayes”
(TANcl), adapted from [29], “Naïve Bayes” (NB), and a Semi Naïve Bayes with a forward
approach to constructive induction called “Forward Sequential Selection and Joining”
(FSSJ), as defined [30], will be the Bayesian classification algorithms selected to perform the
model training.

We will incorporate in this work the use of the “Hill-climbing Super-Parent Tree
Augmented Naïve Bayes” (TANhcsp) because it allows an efficient interactive exploration
of the space of augmented Bayesian classifiers, generally choosing a different set of aug-
menting arcs to add that the considered by the TANcl method, producing more accurate
results [31]. We will also consider other techniques implemented in the bnclassify package
(version 0.4.5.9999) for the R statistical software (version 4.3.2). These are the following:
“Averaged One-Dependence Estimators” (AODE) [32,33], “Model Averaged Naïve Bayes”
(MANB) [34], “Attribute-Weighted Naïve Bayes” (AWNB) [35], and the “Hill-climbing
k-dependence Bayesian classifier” (kDB) [36]. Finally, a novel technique called “Correlation-
Based Feature Weighting Filter for Naïve Bayes” (CBFW) method [37] will be considered,
whose implementation in Python is found in [38].

3.5. Evaluating Models

The preeclampsia BNC models are assessed to see which one performs better after
training with each of the strategies mentioned in the preceding stage. We will take the
accuracy measure into consideration to evaluate model performance because the dataset
produced by the oversampling and undersampling strategies is balanced.

A 10-fold stratified cross-validation is taken into consideration on the training dataset
to provide an honest estimation of the accuracy of the trained models. It learns the models
from the training subsamples by repeating the learning procedures used to obtain the
structure and parameters of the BNC.

Additionally, the test dataset is used to compare the goodness of those models when
using them to classify unseen data (data not used to train the models). Additional metrics
such as sensitivity, specificity, precision, recall, F1-score, and AUC-ROC will be taken
into consideration in this step. These metrics are particularly important in the context of
imbalanced datasets, like the one in our study, where the goal is not only to improve overall
accuracy but to ensure that the model effectively identifies minority class cases—in this
case, patients with preeclampsia.

4. Results and Analysis
4.1. Feature Selection

Table 3 presents the clinical features that were selected using the CFS technique, which
were the same as those selected in the prior study [3].

Table 3. Selected features when applying the NoReFS approach.

Feature Description Labels

“Hypertensionpersonalhistory” Hypertension personal history yes/no
“Parity” The number of times the fetus has reached a viable gestational age 1/2/3/4/5/6/7 or more
“Gravidity” The number of times the woman has been pregnant 1/2/3/4/5/6/7 or more
“Fetalstatus” Previous fetal status at birth born alive/stillborn/NA
“Tobaccouse” Tobacco use yes/no
“Diabetesfamilyhistory” Existence of relatives with diabetes yes/no
“Nupucells1” Patient vaginal infection mild/moderate/severe
“Maternalage-categorized” Maternal age by ranges State0: <35/ State1: ≥35
“Education_Level” Education level primary/secondary/tertiary
“Specificplacearealivedincountyof” Area where the patient resides urban/rural
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4.2. Oversampling and Undersampling on the Training Data

Class imbalance approaches were used on the training dataset (1027 EMRs), which
makes up 70% of the original dataset (1467 EMRs), as previously reported. The distribution
of positive and negative instances of preeclampsia acquired using various approaches
is displayed in Table 4. The distribution of the training dataset without the use of any
oversampling or undersampling techniques is referred to as the “Baseline” in this table and
throughout the remainder of the paper.

Table 4. Training dataset characteristics.

Technique EMRs Positive Cases Negative Cases

Baseline 1027 24.15% 75.85%
UNDER 498 50% 50%
OVER 1564 50% 50%
ROSE 1027 49.18% 50.82%

SMOTE-NC 1564 50% 50%
SMOTE-ENC 1564 50% 50%

According to [39], ROSE can produce out-of-range values, including negative area
sizes, that are not feasible in the actual world. However, we do not observe any unrealistic
values provided by any of the approaches, notably in numerical labels, when we examine
our training dataset augmented with ROSE.

4.3. Honest Estimation of the Accuracy of Models

Table 5 displays the distribution of accuracy values achieved by the BNC models while
employing 10-fold cross-validation. We built BNC models when applying Baseline, OVER,
UNDER, ROSE, SMOTE-NC, and SMOTE-ENC on the training dataset. Furthermore,
Figure 2 presents a box plot that allows the user to visually evaluate the distribution of
accuracy values presented in Table 5.
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Figure 2. Box plot on the accuracy values of BNC models when using a 10-fold cross-validation.
White circles indicate outliers. Identical colors indicate that the same algorithm was used to train the
BNC, although they used different techniques for balancing the training set.
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Table 5. Descriptive statistics of accuracy values of Bayesian models when using a 10-fold cross-
validation.

Technique Model Mean Std.Dev. Max. Min. Range

NB 86.42% 4.21% 93.60% 81.83% 11.77%
TANcl 85.57% 4.67% 95.00% 77.66% 17.33%

TANhcsp 86.42% 4.21% 93.60% 81.83% 11.77%
FSSJ 88.92% 4.90% 97.95% 83.00% 14.95%

Baseline kDB 86.02% 4.73% 93.60% 79.00% 14.60%
AODE 85.15% 4.41% 91.00% 77.66% 13.33%
AWNB 86.44% 4.53% 93.60% 81.83% 11.77%
MANB 86.85% 2.55% 90.16% 83.00% 7.16%
CBFW 86.44% 4.53% 93.60% 81.83% 11.77%

NB 60.16% 17.45% 86.00% 27.66% 58.33%
TANcl 60.01% 18.39% 94.33% 36.00% 58.33%

TANhcsp 61.83% 17.45% 86.00% 27.66% 58.33%
FSSJ 57.59% 18.90% 86.00% 27.66% 58.33%

UNDER kDB 54.03% 15.98% 77.66% 27.66% 50.00%
AODE 61.83% 16.54% 86.00% 27.66% 58.33%
AWNB 58.57% 11.02% 69.33% 36.00% 33.33%
MANB 56.53% 13.67% 77.66% 38.27% 39.39%
CBFW 58.42% 16.11% 77.66% 27.66% 50.00%

NB 72.95% 8.76% 86.00% 58.36% 27.63%
TANcl 78.04% 5.79% 86.67% 67.75% 18.91%

TANhcsp 76.91% 6.12% 84.68% 67.75% 16.92%
FSSJ 76.67% 5.17% 83.97% 67.75% 16.21%

OVER kDB 76.37% 6.86% 83.97% 62.35% 21.62%
AODE 82.08% 8.93% 97.11% 65.05% 32.05%
AWNB 72.69% 9.34% 86.00% 61.00% 25.00%
MANB 67.78% 7.49% 80.44% 56.94% 23.49%
CBFW 67.78% 7.49% 80.44% 56.94% 23.49%

NB 73.78% 8.74% 90.16% 59.00% 31.16%
TANcl 71.97% 14.04% 91.55% 52.66% 38.88%

TANhcsp 76.38% 8.97% 91.55% 63.00% 26.55%
FSSJ 67.96% 8.57% 83.00% 56.83% 26.16%

ROSE kDB 72.96% 10.43% 90.16% 59.00% 31.16%
AODE 74.85% 10.04% 95.00% 56.83% 38.16%
AWNB 61.80% 1.03% 63.00% 61.00% 2.00%
MANB 66.80% 8.15% 77.66% 51.00% 26.66%
CBFW 74.85% 10.04% 95.00% 56.83% 38.16%

NB 80.48% 6.11% 88.77% 70.45% 18.31%
TANcl 79.97% 6.29% 89.37% 70.45% 18.91%

TANhcsp 81.02% 5.32% 88.77% 74.15% 14.61%
FSSJ 80.70% 7.62% 92.08% 68-89% 23.18%

SMOTE-NC kDB 81.81% 5.68% 89.37% 72.11% 17.26%
AODE 79.93% 6.39% 86.67% 67.75% 18.91%
AWNB 80.22% 6.57% 91.55% 70.45% 21.09%
MANB 76.41% 8.48% 94.33% 66.55% 27.77%
CBFW 79.69% 7.47% 91.55% 70,45% 21.09%

NB 78.59% 6.91% 89.37% 67.75% 21.62%
TANcl 81.05% 8.47% 94.78% 67.75% 27.02%

TANhcsp 79.97% 6.96% 91.55% 71.52% 20.02%
FSSJ 83.73% 8.15% 97.48% 68.89% 28.59%

SMOTE-ENC kDB 79.41% 6.42% 91.55% 71.52% 20.02%
AODE 83.50% 7.01% 94.33% 68.89% 25.43%
AWNB 77.52% 6.79% 84.68% 66.26% 18.42%
MANB 68.83% 6.40% 79.42% 58.36% 21.05%
CBFW 79.94% 4.61% 86.67% 70.45% 16.21%
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It is evident from Table 5 and Figure 2 that the model trained using FSSJ on the initial
imbalanced training dataset (Baseline FSSJ) achieved the best mean accuracy percentage,
which was 88.92%. However, they do not differ much from the mean accuracy percentages
obtained by other baseline models, with mean accuracies around 86%. Furthermore, the
standard deviation obtained by the Baseline FSSJ model (4.90%) is slightly higher than that
obtained by the other models trained with the baseline dataset. Among them, the model
that achieves good performance with the lowest standard deviation is the Baseline MANB
model, with a mean accuracy of 86.85% and a standard deviation of 2.55%. Examining the
maximum values, we see that the BNC models built on the baseline training dataset have
obtained maximum accuracy between 90% and 98%. All in all, models trained under the
original (Baseline) training dataset obtain an accuracy close to 85%, with range values close to
10%, which indicates a small dispersion in the accuracies obtained from the cross-validation.

Regarding models built on training datasets that handled class balancing, the model
trained with FSSJ when applying SMOTE-ENC (SMOTE-ENC FSSJ) to perform class bal-
ancing yielded the best mean accuracy percentage of 83.73%, followed closely by AODE
with a mean accuracy of 83.50%. Moreover, its mean accuracy percentage is slightly close
to that achieved by the model trained using FSSJ on the initial imbalanced training dataset
(Baseline FSSJ), which was 88.92%. However, Table 5 indicates that these mean accuracy
percentages obtained with Baseline FSSJ are less dispersed than those produced with
SMOTE-ENC FSSJ. In fact, the achieved range value (14.95%) is lower than the value
obtained with SMOTE-ENC FSSJ (28.59%). The TANcl , FSSJ, AODE, and CBFW models
trained under the training dataset augmented with SMOTE-ENC obtained slightly better
mean accuracy than those trained using the training dataset augmented with SMOTE-NC.
The opposite case occurs when training the NB, TANhcsp, kDB, AWNB, and MANB models
with the training dataset augmented with SMOTE-NC. In other words, in some cases,
SMOTE-ENC helps models achieve better results, while in other cases, SMOTE-NC does so.

Regarding models built when undersampling the training dataset (UNDER), we see
that the accuracies obtained by cross validation are quite dispersed, sometimes obtaining a
performance of 86.33% and other times below 28%, having mean accuracies close to 60%.
Moreover, the lowest outcomes–a mean accuracy percentage range of 54.03%–came from
balancing the class with UNDER kDB. The low performance of models built from a training
dataset balanced with UNDER can be explained because, as mentioned above (Section 2),
the dataset balanced by UNDER may have lost important information, which could lead
to misclassification of instances that would have followed the patterns learned from the
removed information.

Overall, the findings indicate that, with a mean accuracy percentage of 88.92%, the
model trained with FSSJ on the baseline training dataset (Baseline FSSJ) has the best average
accuracy of the results. Moreover, the SMOTE-ENC FSSJ model was the best among those
built under balanced training data, achieving an average accuracy of 83.50%. Thus far, we
may infer that while we can employ any oversampling or undersampling strategy to deal
with imbalanced training datasets, we cannot always guarantee an improvement in the
models’ accuracy as in the present work.

4.4. Performance of Models on the Testing Dataset

Table 6 displays the outcomes of the models’ performance on the testing dataset. It
illustrates that the Bayesian model trained using FSSJ and MANB on the original training
dataset (Baseline) yielded the best accuracy results (88.64%).
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Table 6. Performances of BNC models on the testing dataset.

Technique Model Accuracy Sensitivity Specificity Precision Recall F1-Score AUC

NB 86.69% 39.16% 98.32% 60.00% 39.16% 47.39% 0.419884
TANcl 81.84% 35.00% 96.05% 45.29% 35.00% 39.48% 0.429377
TANhcsp 86.69% 39.16% 98.32% 60.00% 39.16% 47.39% 0.419884
FSSJ 88.64% 35.00% 99.71% 70.00% 35.00% 46.66% 0.498206

Baseline kDB 86.69% 39.16% 98.32% 60.00% 39.16% 47.39% 0.419884
AODE 84.75% 35.00% 99.87% 52.85% 35.00% 42.11% 0.433069
AWNB 85.72% 18.33% 99.92% 50.00% 18.33% 26.82% 0.428850
MANB 88.64% 35.00% 99.71% 70.00% 35.00% 46.66% 0.434651
CBFW 86.69% 39.16% 98.32% 60.00% 39.16% 47.39% 0.419884

NB 77.96% 64.16% 82.15% 47.14% 64.16% 54.35% 0.573787
TANcl 64.36% 72.50% 61.89% 38.30% 72.50% 50.12% 0.559547
TANhcsp 67.28% 60.00% 69.49% 37.27% 60.00% 45.98% 0.516403
FSSJ 63.39% 72.50% 60.63% 37.77% 72.50% 49.67% 0.496888

UNDER kDB 71.16% 64.16% 73.29% 40.95% 64.16% 49.99% 0.577479
AODE 68.25% 68.33% 68.22% 39.78% 68.33% 50.29% 0.433597
AWNB 76.01% 51.66% 83.41% 42.25% 51.66% 46.49% 0.446782
MANB 88.64% 35.16% 91.42% 68.33% 39.16% 49.79% 0.425158
CBFW 68.25% 68.33% 68.22% 39.78% 68.33% 50.29% 0.433597

NB 72.13% 64.16% 74.55% 41.70% 64.16% 50.55% 0.588028
TANcl 73.10% 60.00% 77.08% 41.57% 60.00% 49.11% 0.540032
TANhcsp 76.01% 76.66% 75.82% 47.20% 76.66% 58.43% 0.585918
FSSJ 68.25% 68.33% 68.22% 39.78% 68.33% 50.29% 0.517879

OVER kDB 74.07% 76.66% 73.29% 45.55% 76.66% 57.15% 0.581699
AODE 72.13% 68.33% 73.29% 42.55% 68.33% 52.45% 0.576425
AWNB 73.10% 76.66% 72.02% 44.78% 76.66% 56.53% 0.600686
MANB 88.64% 35.16% 91.42% 70.00% 35.00% 46.66% 0.547943
CBFW 73.10% 60.00% 77.08% 41.57% 60.00% 49.11% 0.540032

NB 55.63% 56.83% 51.66% 29.23% 51.66% 37.33% 0.443090
TANcl 52.71% 55.83% 51.77% 29.29% 51.77% 38.43% 0.481065
TANhcsp 51.74% 51.66% 51.77% 27.85% 51.66% 36.19% 0.512711
FSSJ 57.57% 43.33% 61.89% 27.39% 43.33% 33.56% 0.488976

ROSE kDB 56.60% 55.83% 56.83% 30.75% 55.83% 39.66% 0.491613
AODE 51.74% 55.83% 50.50% 28.96% 55.83% 38.14% 0.437816
AWNB 56.60% 51.66% 58.10% 29.60% 51.66% 37.64% 0.442035
MANB 31.35% 85.00% 15.06% 29.35% 85.00% 43.63% 0.426213
CBFW 63.25% 59.16% 64.49% 33.88% 59.16% 43.09% 0.565243

NB 70.19% 47.50% 77.08% 35.71% 47.50% 40.77% 0.558597
TANcl 69.22% 47.50% 75.82% 35.00% 47.50% 40.30% 0.550158
TANhcsp 68.25% 51.66% 73.29% 35.64% 51.66% 42.18% 0.531170
FSSJ 59.51% 64.16% 58.10% 34.07% 64.16% 44.51% 0.569936

SMOTE-NC kDB 69.75% 55.83% 73.29% 37.50% 55.83% 44.86% 0.559651
AODE 69.75% 55.83% 73.29% 37.50% 55.83% 44.86% 0.534862
AWNB 56.60% 60.00% 55.56% 31.81% 60.00% 41.58% 0.561761
MANB 50.77% 64.16% 40.37% 34.65% 85.00% 49.23% 0.541719
CBFW 63.39% 72.50% 60.63% 37.77% 72.50% 49.67% 0.496888

NB 79.45% 84.59% 74.32% 77.64% 84.59% 80.97% 0.674054
TANcl 83.10% 91.48% 74.72% 79.07% 91.48% 84.82% 0.811358
TANhcsp 84.72% 91.48% 77.97% 81.19% 91.48% 86.03% 0.824361
FSSJ 84.72% 91.48% 77.97% 81.19% 91.48% 86.03% 0.824361

SMOTE-ENC kDB 79.59% 85.54% 73.64% 76.98% 85.54% 81.03% 0.772367
AODE 63.25% 59.16% 64.49% 33.88% 59.16% 43.09% 0.565243
AWNB 74.72% 92.56% 56.89% 69.54% 92.56% 79.41% 0.723558
MANB 65.00% 97.31% 28.78% 60.79% 97.31% 74.83% 0.649694
CBFW 64.36% 72.50% 61.89% 38.30% 72.50% 50.12% 0.559547
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In Table 6 we observe that the best accuracy among the models built on balanced
training datasets were those that applied OVER and UNDER with MANB (88.64%). Sur-
prisingly, models trained on the reduced training dataset (UNDER) performed poorly in
the training phase (Table 5), but performed well when training models with MANB, with
accuracy above 88.64%, obtaining a performance like the models trained under the original
dataset (Baseline). This implies that the patterns found in the records of the test set have
been represented within the models learned under the balanced training set. Furthermore,
models trained on the balanced training set with SMOTE-ENC have also achieved good
performance, with those trained with FSSJ and TANhcsp standing out ( 84.72%).

In Table 6, we have included the percentages of sensitivity and specificity to analyze
the goodness of the model when identifying positive and negative cases of preeclampsia.
Specificity measures the proportion of negative instances labeled as negative, whereas
sensitivity measures the percentage of positive cases classified as positive. Furthermore,
sensitivity and specificity are represented in Figure 3 as the abscissas and ordinates, respec-
tively. As can be observed, the Baseline kDB, SMOTE-ENC FSSJ, SMOTE-ENC TANhcsp,
and SMOTE-ENC TANcl models make up the Pareto optimum front (non-dominated solu-
tions). Among them, when the sensitivity and specificity percentages were concurrently
maximized, the SMOTE-ENC TANhcsp and SMOTE-ENC FSSJ models, which obtained the
same values of sensitivity and specificity, produced the best trade-off. In the figure, a red
circle encircles it.

Baseline NB

Baseline TANcl

Baseline TANhcsp

Baseline FSSJ
Baseline kDB

Baseline AODE
Baseline MANB

Baseline CBFW

UNDER NB

UNDER TANcl

UNDER TANhcsp

UNDER FSSJ

UNDER kDB

UNDER AODE

UNDER AWNB

UNDER MANB

UNDER CBFW

OVER NB

OVER TANcl
OVER TANhcsp

OVER FSSJ

OVER kDBOVER AODE

OVER AWNB

OVER MANB

OVER CBFW

ROSE NB

ROSE TANcl

ROSE TANhcsp

ROSE FSSJ

ROSE kDB
ROSE AODE

ROSE AWNB

ROSE CBFW

SMOTE-NC NB

SMOTE-NC TANcl

SMOTE-NC TANhcsp
SMOTE-NC kDB
SMOTE-NC AODE

SMOTE-NC CBFW

SMOTE-ENC NB
SMOTE-ENC TANcl

SMOTE-ENC TANhcsp
SMOTE-ENC FSSJ

SMOTE-ENC kDB

SMOTE-ENC AODE

SMOTE-ENC AWNB

SMOTE-ENC MANB

SMOTE-ENC CBFW60.00%

65.00%

70.00%

75.00%

80.00%
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Figure 3. Sensitivity vs. specificity percentages achieved by the BNC models. The dashed yellow line
marks the Pareto optimal front. The red circle encloses the best tradeoff solution.

Table 6 and Figure 3 demonstrate that, while the Baseline FSSJ model achieved the
highest percentages of accuracy, its percentages of sensitivity and specificity are uneven. In
contrast, although with slightly lower accuracy than that achieved by Baseline FSSJ, the
SMOTE-ENC TANhcsp and SMOTE-ENC FSSJ models are able to better detect both positive
and negative cases of preeclampsia. This implies that the algorithms used to train BNC
models were better able to capture the patterns that define positive cases of preeclampsia
due to the balanced training dataset. With a sensitivity and specificity of 91.48% and
77.97%, respectively, the SMOTE-ENC TANhcsp and SMOTE-ENC FSSJ models achieved
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an accuracy of 84.72% without sacrificing the accurate categorization of both positive and
negative cases of preeclampsia.

Overall, the performance of BNC models on the test dataset allows us to draw the conclu-
sion that, while models built on balanced training datasets do not always result in significantly
improved accuracy, they do achieve a better balance between sensitivity and specificity
percentages in a binary classification problem like the one this manuscript addresses.

5. Conclusions

This study looked at how training the Bayesian classification models that predict the
likelihood of developing preeclampsia is affected by oversampling and undersampling
strategies. The oversampling and undersampling techniques that deal with numerical
and categorical variables were taken into consideration since we found both types in our
dataset. These techniques included UNDER, OVER, ROSE, SMOTE-NC, and SMOTE-ENC.

The results indicate that there is no improvement in accuracy percentages while class
imbalances on the training dataset were handled. But when it came to correctly classifying
positive and negative instances of preeclampsia in the test dataset, the models that were
built on the balanced training datasets yielded a more balanced outcome in terms of
sensitivity and specificity. We can draw the conclusion that, while using oversampling
and undersampling techniques to address imbalanced training datasets can help balance
the sensitivity and specificity percentages in binary classification problems, like the one
under review in this manuscript, an improvement in the models’ accuracy is not always
guaranteed. This finding may vary across different datasets and applications.

As future work, and with the aim of offering a direction for practical application of
our conclusion, we plan to expand the study of the performance of classifier models, which
were trained on balanced data with oversampling and undersampling, to different domains
and applications.
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