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Abstract: Load forecasting is an integral part of the power industries. Load-forecasting techniques
should minimize the percentage error while prediction future demand. This will inherently help
utilities have an uninterrupted power supply. In addition to that, accurate load forecasting can
result in saving large amounts of money. This article provides a systematic review based on the
Preferred Reporting Items for Systematic Review and Meta-Analyses (PRISMA) framework. This
article presents a complete framework for short-term load forecasting using metaheuristic algo-
rithms. This framework consists of three sub-layers: the data-decomposition layer, the forecasting
layer, and the optimization layer. The data-decomposition layer decomposes the input data series
to extract important features. The forecasting layer is used to predict the result, which involves
different statistical and machine-learning models. The optimization layer optimizes the parameters
of forecasting methods to improve the accuracy and stability of the forecasting model using different
metaheuristic algorithms. Single models from the forecasting layer can predict the results. However,
they come with their limitations, such as low accuracy, high computational burden, stuck to local
minima, etc. To improve the prediction accuracy, the hyperparameters of these models need to be
tuned properly. Metaheuristic algorithms cab be used to tune these hyperparameters considering
their interdependencies. Hybrid models combining the three-layer methods can perform better by
overcoming the issues of premature convergence and trapping into a local minimum solution. A
quantitative analysis of different metaheuristic algorithms and deep-learning forecasting methods is
presented. Some of the most common evaluation indices that are used to evaluate the performance of
the forecasting models are discussed. Furthermore, a taxonomy of different state-of-the-art articles is
provided, discussing their advantages, limitations, contributions, and evaluation indices. A future
direction is provided for researchers to deal with hyperparameter tuning.

Keywords: optimization; short-term load forecasting; metaheuristic algorithms; evaluation indices;
hyperparameters

MSC: 37N40; 46N10; 68R01

1. Introduction

Electricity plays a pivotal role in every person’s day-to-day life and with the population
growth, electricity demand is also growing [1]. A competitive market and deregulated
structure within the modern power system is introduced, which basically reshaped the
1990s monopolistic behavior of power sectors [2,3]. A balance is needed between demand
and supply to maintain the resilience of the power system. However, maintaining balance
is becoming challenging due to incorporating distributed renewable energy sources, energy
storage, linear and nonlinear loads, etc. Therefore, electricity demand faces a change due
to these characteristics, which also requires a change in electricity supply. That is why
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predicting present and future load demand is necessary to maintain an uninterrupted
power supply to the customer side and enhance system reliability and security [4]. Load
forecasting is used to predict future demand which is one of the prime interests of scientists
and researchers as it leads the way in how power system operation, energy trading, and
planning happens [1]. The utility industry can have an idea of future demand using load
forecasting, which helps to mitigate the difference between the generation side and the
demand side. As power generation is an expensive process, load prediction helps to avoid
the under-power or over-power generation cost [5]. Load-forecasting methods are classified
into four categories depending on different time horizons [6–10]:

• Very short-term load forecasting (VSTLF): VSTLF is performed a few minutes to an
hour ahead. The method is used for real-time prediction. If there is a fast variation in
load profile, the method can be used in high-speed applications [11,12]. The method is
utilized in energy prediction and operation and maintenance of power utility.

• Short-term load forecasting (STLF): Load prediction is based on 30 min to 2 weeks
before using STLF. The utility industry uses this method for daily operations and
scheduling the generation and transmission of electric power. If the prediction error
is very small, it can save the utility industry from a deficit of generation capacity or
wasting resources [13,14].

• Medium-term load forecasting (MTLF): The MTLF method is used to predict the load
for a period of a month to a year. The utility industry uses this method for revenue
assessment, energy trading, and outage planning [15,16].

• Long-term load forecasting (LTLF): LTLF ranges from a year up to 20 years or even sev-
eral decades. The method is important for strategic planning, expansion of resources,
and future investment [16–18].

As load forecasting has been a prime interest for researchers to improve the efficiency
of power generation, many state-of-the-art methods have been investigated. Several chal-
lenges are hindering the accuracy of these methods. As weather is unpredictable, it is one of
the main challenges faced by the researchers while developing a load-forecasting method.
Metering systems such as smart and traditional systems impact load forecasting. The utility
industry should develop a different forecasting algorithm for each of the metering systems
to avoid a forecasting error. Data collection is also a challenging factor that affects the
load-forecasting model. When designing a model, the transient behavior of the network
or unexpected faults must be considered. Again, the utility company should consider an
acceptable margin of error while deciding on a forecasting model.

In this article, short-term load-forecasting models are considered. For load dispatching,
the STLF requires more accurate forecasting results than MTLF and LTLF [19]. For energy
saving, cost reduction, fine scheduling management, and security enhancement, accurate
prediction of STLF is necessary [20]. The single STLF models demonstrate the behavior of
overfitting or trapping into local solutions. Metaheuristic algorithms can be combined with
single or hybrid STLF models to overcome these issues. Again, the emphasis is given to
metaheuristic algorithms because of their ability for hyperparameter optimization, which is
eventually required to obtain better prediction accuracy. This review paper has found 160
articles based on short-term load forecasting combined with metaheuristic algorithms. As
a result, these algorithms play a vital role in enhancing the accuracy and stability of load-
forecasting methods. This article has investigated ten review research papers that discuss
the various aspects of load forecasting and different methods applied to short-term load
forecasting. However, these articles did not discuss the effects of metaheuristic algorithms
on load forecasting. Therefore, it is important to establish a guideline for the researchers to
access the metaheuristic algorithms for hyperparameter tuning of combined models.

This paper is outlined as follows: Section 2 gives an overview of the research scope,
including research gaps, challenges, and contributions. Section 3 provides a methodology
for this study. Section 4 process discusses the factors that affect load forecasting. Section 5
discusses the advantages of metaheuristic algorithms on load forecasting. Section 6 dis-
cusses different evaluation indices used for prediction. Section 7 proposes a complete
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framework for load forecasting using metaheuristic algorithms. Section 8 provides a gener-
alized approach for STLF using metaheuristic algorithms. Section 9 gives an overview of
the existing literature, and Section 10 and 11 discusses results and research findings and
recommendations, which follow with a conclusion.

2. Research Scope
2.1. Research Gaps

As load forecasting has been one of the primary issues faced by the utility industries,
several review articles have been published over the years. The authors have provided
a comprehensive review of load forecasting for different generation modalities [21]. This
paper explores the existing literature and discusses the common trend followed in the
literature and advancement in the area.

A systematic review is presented to guide the researchers in choosing the efficient
model for a particular case [22]. A comparison based on input, outputs, data size, and error
type is made among the existing literature articles. It is found that for STLF, ML algorithms
and time series techniques are more efficient than statistical methods.

The article summarizes the load-forecasting methods based on artificial intelligence
(AI) [23]. The paper gives an overview of data processing studies as to how the data are
obtained. A comparison is made between one-step and rolling forecasting methodologies.
Finally, several AI-based models are briefly discussed.

Artificial intelligence-based deep-learning techniques are discussed in [24]. This
article has reviewed research articles from 2015 to 2020. The study focuses on deep-learning
techniques, distributed deep-learning methods, Back-Propagation (BP), and non-BP-based
methods. It is found in this survey that the computation time can be reduced by depending
on data aggregation.

The article provides an overview of the recent STLF methods based on Machine-
Learning (ML) algorithms, especially the hybrid models [25]. The advantages and limita-
tions of single and hybrid predictive models are briefly discussed, and a comparison is also
made using different performance indices.

A review is presented which discusses the emerging deep Artificial Neural Network
(ANN)-based methods [26]. The individual methods, such as CNNs, RNNs, LSTMs, GRUs,
DBNs, AEs, SAEs, and SDAEs, are briefly discussed.

For microgrid load forecasting, a survey is presented in [27] focusing on the latest
analytical and approximation techniques. This article surveys the existing literature focused
on energy demand forecasting, price and load forecasting, and renewable generation
forecasting. A brief review is presented of different models along with their methodology
and applications.

Another review of microgrid load forecasting is proposed in [28], which focuses on
deep-learning-based methods. This article gives a direction for researchers on which
datasets to use for particular applications. It is found that the efficiency of deep-learning-
based methods depends on the amount of the dataset and therefore gives an indication for
using larger data storage devices and high processing devices.

Low-voltage-level load-forecasting review is presented in [29], which discusses the
current trends, main applications, challenges faced in this field, and recommendations.
This article encourages further research work in a low-voltage field by establishing an open
community-driven dataset.

The article explores the current state-of-the-art methods for STLF at the residential
level [30]. Deep-learning-based techniques are focused mainly on this paper. It also
discusses the inclusion of probabilistic methods in the deep-learning methods.

Among all these recently published reviews, there is no investigation on the key
hyperparameters, and their interaction among themselves is not discussed. Moreover, there
is no discussion of the effect of metaheuristic algorithms on load-forecasting methodology.
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2.2. Research Challenges

In recent years, designing a lightweight model with fewer weights and parameters,
which will eventually provide reasonable accuracy, has been a challenge due to the strict
choices of hyperparameters [31,32]. There are two ways to go for hyperparameter tuning:
(1) the number of hyperparameters increases when a complex structure is considered,
and (2) to provide a satisfying accuracy with a carefully designed model needs fewer
hyperparameters, which must be tuned to the stricter range. If the model structure is
known, then it is possible to tune these parameters manually with experienced engineers
or knowledge from previous works. However, it can be done on a smaller scale. If the
model becomes complex or very emerging, then it becomes a great deal of manual work,
even for experienced professionals to properly tune the hyperparameters. Again, there
is a need for a guideline for less experience professionals on how to properly tune these
parameters. Therefore, this study is motivated by the emerging trend of designing and
training different models of load forecasting.

2.3. Research Contribution

The objective of this study is to conduct an extensive review of feasible metaheuristic
algorithms for hyperparameter tuning. A comparison has been made in Table 1 to better
understand the contribution of this work compared to existing literature.

Table 1. A comparison of existing reviews and this article. DDL—Data-decomposition layer,
ML—Machine learning, MH—Metaheuristic, HPT—Hyperparameter tuning, HM—Hybrid model.

Ref. Duration DDL ML MH HPT HM Contribution

[24] 2018–2022 X
√

X X
√ It provides insight into methodologies and models based on

artificial intelligence at different time series. Both
deep-learning and machine-learning models are provided.

[25] 2015–2020 X
√

X X X

Distributed deep-learning techniques with back and
non-back-propagation have been discussed. It proposes the
Hilbert–Schmidt Independence Criterion without
back-propagation to obtain higher accuracy in load forecasting.

[26] 2000–2020 X
√ √

X
√ It provides a comparative analysis of single and hybrid

machine-learning algorithms, including their advantages,
disadvantages, and functions.

[27] 2015–2021 X
√

X X X It provides insight only on deep-learning-based models.

[28] 2003–2020 X
√ √

X
√ A review of analytical and approximation techniques has been

discussed for load forecasting in a microgrid environment.

[29] 2006–2020 X
√

X X X
It discusses different deep-learning models for renewable
energy and load forecasting and discusses future trends in
smart energy management systems.

[30] 2004–2021 X
√

X X X
This article discusses different regression and machine-learning
models for low-voltage distribution networks. It also provides
insight into probabilistic forecasting.

[31] 2013–2023
√ √

X X
√

Different load-forecasting techniques have been examined for
residential load forecasting and energy management. It also
provides a recommendation for combining probabilistic
methods with machine-learning models.

[33] 2013–2023 X
√ √

X
√ Different algorithms of load forecasting, such as digital twin,

data mining, federated learning, etc, are examined. It provides
insight into choosing a viable load-forecasting model.

This work 2014–2024
√ √ √ √ √

This review gives a roadmap for choosing a metaheuristic
algorithm along with machine-learning models for
hyperparameter optimization to improve the
forecasting results.
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The main contributions of this paper are:

• Hyperparameters of different machine-learning algorithms are discussed to provide
insight into their importance and involvement in optimization.

• A comprehensive assessment of state-of-the-art articles, which include existing meth-
ods, time resolution, and evaluation matrices, is presented.

• A complete framework is given to the researchers for short-term load forecasting using
optimization algorithms.

• A comparative study is presented on different decomposition methods and single
deep-learning-based forecasting methods.

• The challenges faced by the industry while load forecasting are discussed briefly.
• A generalized approach is proposed using a metaheuristic algorithm.
• A brief taxonomy is on previous research articles, including their advantages, limita-

tions, and contributions, is presented.
• A guideline has been proposed based on the research findings.

3. Methodology

A critical and comprehensive review of state-of-the-art academic research articles
on electric forecasting is undertaken in this study. This article follows a rigorous sys-
tematic protocol outlined in the Preferred Reporting Items for Systematic Reviews and
Meta-Analyses (PRISMA) [34] to select appropriate papers. There is a difference between
traditional review and systematic review in the way of literature searches and meta-analysis
findings to reduce biases [35]. The main objective of this paper is to find research articles
based on short-term load forecasting that use metaheuristic algorithms for optimization.
Research articles from 2013 to 2023 are selected for this purpose. In this review, four steps
are followed for systematic protocol:

1. Searching through keywords: Google Scholar is a powerful tool to search for research
articles using keywords. Some common keywords appear, such as “electricity de-
mand forecasting”, “electricity load forecasting”, and “electricity prediction”. While
searching for “electricity load forecasting” in everything, including abstract, title, and
the rest of the content, then 49,000 results appear in the first search. To limit the search
space, the “with the exact phrase” option is used from advanced search in Google
Scholar. Then, the search results come down to 1040. Again, to limit the search space
further, “metaheuristic”, “optimization”, “short-term”, and specific algorithm names
such as “GA” and “DE” keywords have been used with electricity load forecasting
separately. Another 230 articles were identified across different databases.

2. Screening: The selected research papers found from key word searching are screened
by giving emphasis on electric load forecasting or prediction using metaheuristic
algorithms. The screening process was carried out through the title and abstract of
1085 articles. Around 880 articles were excluded as they did not meet the inclusion
criteria.

3. Extra article identification: While going through the selected papers found in Step 2,
some extra articles are found from these through citation. These extra articles are also
screened by following Step 2.

4. Selection of appropriate articles: The articles found from Step 2 and Step 3 are carefully
investigated for their objectives, methodologies, selected models, efficiencies etc.
Results and future direction are also found in this step.

By following the above four steps, 165 research articles have been found that are
based on short-term load forecasting using different metaheuristic algorithms (Figure 1).
Figure 2a shows the number of publications from 2013 to 2023, and their publication sites
are shown in Figure 2b. These publication sites are mostly part of Elsevier, IEEE, MDPI,
Springer, Hindawi, etc. The percentage shares of these publishers are shown in Figure 2c.
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4. Factors Affecting Load Forecasting

Electricity demand depends on various factors shown in Figure 3 are discussed be-
low [36,37]:
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4.1. Meteorological Factors

Load forecasting is affected by weather conditions such as temperatures, humidity,
wind speed, rain, snowfall etc. The weather plays an important role in the load profile.
For example, during the summer and winter seasons, the usage of cooling and heating
appliances goes up. Therefore, the peak demand is recorded at the coolest or warmest
day relative to the demand during the days with average weather conditions. That is why
weather forecast data are needed to predict the accurate load demand [38,39].

4.2. Calendar Factors

In different years, there is a variation of the same month, which is known as the
calendar effect. The holidays, such as special occasions that depend on moon sightings,
vary each year. This is known as moving holiday effects. This effect has a great impact on
residential and commercial load profiles [25,36].

4.3. Economy Factors

Recession or flourishment affects the load profiles of residential and commercial
consumers. Gross domestic product (GDP) and Gross national product (GNP) are used
as indicators of a country’s economic trend. The usage of electric appliances depends on
the number of members residing in a household. Again, the population growth rate also
impacts the power consumption rate. The economic development of a country depends
on industrial development, which will, in turn, increase power consumption as well. The
price increase or decrease in electricity price also has an impact on load forecasting [40].

4.4. Load Distribution

Depending on the load type, such as residential, commercial, or industrial loads, the
load profiles change. As a result, the load-forecasting method will also change.

4.5. Lifestyle of Consumers

Consumer’s lifestyle affects the peak and off-peak hours which depend on the time
of the usage of appliances within the households. A variation in load profile is also seen
during weekdays and weekends. Again, the type of electrical appliances varies from
consumer to consumer. However, a similar pattern can be recognized, which has similar
characteristics [41].
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4.6. Miscellaneous

If there is a special event such as a festival or sports event, then the usage of electricity
increases. Therefore, the load profile changes within that area, which impacts the load
forecasting [36].

5. Advantages of Metaheuristic Approaches in Load Forecasting

The load-forecasting methods can be categorized into two ways such as statistical meth-
ods and artificial intelligence-based methods [42]. Linear regression analysis method [43,44],
Kalman filter [45], Box–Jenkin method [46], and Autoregressive Integrated Moving Aver-
age [47] are some examples of statistical models. Statistical models offer simpler structures
and fast convergence rates. However, they suffer from lower prediction accuracy due to
their linear behavior. Artificial intelligence-based models can better fit the nonlinear struc-
ture of the dataset and can work in changing environments. Although they show promising
behavior, they have their limitations, such as overfitting and trapping into local minima.
Therefore, the main challenges faced by forecasting methods are model generalization and
hyperparameter optimization. The performance and accuracy of a prediction method can
be improved by properly tuning hyperparameters and weighting coefficients [48]. Classical
or metaheuristic algorithms can be used to tune these hyperparameters. Classical methods
use analytical approaches to find near-optimum results. They can search through a specific
subset of parameters or from predefined ranges. They are efficient in finding global solu-
tions within the defined spaces. Again, if the fitness function contains multi-objectives, it
becomes difficult for classical methods to solve the function due to its limitation on search-
ing criteria [49]. These drawbacks can be overcome by metaheuristic algorithms, which are
computationally intelligent and can solve complex multi-variable problems. One of the
advantages of metaheuristic algorithms is that they can solve both linear and nonlinear
problems. Again, they can be used for single or multi-objective problems [50]. Again,
hyperparameters are the parameters that cannot be updated during the training process.
However, the structure of the model is built on these parameters. As these parameters have
a great influence on training accuracy and speed, they must be optimized carefully even
before the training process [51]. An efficient optimization algorithm is needed to optimize
these parameters to remove the human effort from the loop of the deep-learning process.
The optimization requires large computational resources to optimize several hyperparame-
ters together. Therefore, metaheuristic algorithms are preferred over classical methods to
properly tune the hyperparameters, which will eventually improve the forecasting results.

6. Evaluation Criteria

To validate the accuracy of a forecasting model, several performance evaluation indices
are used.

Mean square error (MSE): MSE is the square of the difference between actual and
forecasted values [52,53]. The smaller the error is, the more accurate the model is. The
equation for MSE is:

MMSE =
1
n∑n

t=1

(
x(t)− x̂(t))2 (1)

where n is the number of iterations at time t, x(t) is the actual value at time t and x̂(t) is
the predicted value.

Root mean square error (RMSE): RMSE is defined as the standard deviation of the
prediction errors which is shown in the equation [54,55]. It measures the concentration of
the data points around the best-fitted line.

MRMSE =

√
∑n

t=1(x(t)− x̂(t))2

n
(2)
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Mean absolute error (MAE): MAE is the average of absolute difference between actual
values and estimated values as shown below equation [56]:

MMAE =
1
n∑n

t=1 x(t)− x̂(t) (3)

Mean absolute percentage error (MAPE): MAPE is the percentage of the average
absolute difference between actual values and estimated values, which is divided by actual
value [57,58]. The equation for MAPE is:

MMAPE =
1
n∑n

t=1

∣∣∣∣ x(t)− x̂(t)
x(t)

∣∣∣∣× 100% (4)

Symmetric mean absolute percentage error (SMAPE): SMAPE is calculated by the dif-
ference between actual values and estimated values divided by the sum of these values [59].
This evaluation index avoids any biases due to its symmetrical properties, which makes it
non-dependent on the time horizon of the data series.

MSMAPE =
1
n∑n

t=1

∣∣∣∣∣ x(t)− x̂(t)
x(t)+x̂(t)

2

∣∣∣∣∣× 100% (5)

Normalized root mean square error (NRMSE): NRMSE can be calculated either by
mean values or using the difference between maximum and minimum values [60].

MNRMSE =

√
∑n

t=1(x(t)−x̂(t))2

n
xmax − xmin

(6)

where n is the number of iterations at time t, x(t) is the actual value at time t and x̂(t) is
the predicted value, and xmax is the maximum value and xmin is the minimum value.

Coefficient of determination (R2): R2 is defined as the variation in the dependent
variables that can be derived from independent variables [61].

MR2 = 1 −

√√√√∑n
t=1(x(t)− x̂(t))2

∑n
t=1(x(t))2 (7)

As MSE is the square of the difference, it is sensitive to large errors. It can be used
during model training and optimization. RMSE is also sensitive to large errors like MSE.
When the dataset is significantly large, then RMSE can be used to compare different models.
MAE is less sensitive to large errors than MSE and RMSE. As a result, MAE treats all
errors equally, irrespective of data size. MAPE is suitable for making a comparison among
different datasets. However, if there is a possibility that the actual value is going to be zero
or near zero, then it should be avoided as it will lead to undefined or extremely high values.
NRMSE can be useful when there is variability in data ranges and there is a need for a
standardized measure of error for multiple forecasting scenarios. R2 can be used to explain
variance rather than minimize prediction errors.

7. A Complete Framework of Load Forecasting Using Metaheuristic Algorithms

This article proposes a short-term load-forecasting methodology using metaheuristic
algorithms based on state-of-the-art articles. Any load forecasting model consists of three
layers: the data-decomposition layer, forecasting layer, and optimization layer shown in
Figure 4. The data-decomposition layer is used to decompose the original information from
nonlinear and nonstationary datasets. The forecasting layer is used to predict the result
over a selected time horizon. To improve the prediction accuracy, the optimization layer is
used to optimize the parameters of the forecasting layer.
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7.1. Data-Decomposition Layer

The complexity of the forecasting layer is reduced using the data-decomposition layer.
It helps input variables to follow the decomposed sequence [62]. Forecasting accuracy is
also improved as the unnecessary information from the input signal is eliminated through
the feature extraction process. Some of the common data-decomposition technologies
that are being used in this layer are Empirical Mode Decomposition (EMD), Variational
Mode Decomposition (VMD), Wavelet Transform (WT), and Singular Spectrum Analysis
(SSA) [63].

7.1.1. Wavelet Transform (WT)

Wavelet Transform can filter out irrelevant information from the input signal. A
continuous input time series is divided into different scale components by a mathematical
function called wavelet [64]. It is a band pass filter that filters out the lowest level of
components, ensuring the coverage of the whole spectrum. A mother wavelet, which is an
oscillatory function, is translated and copied into wavelets. There are two types of Wavelet
Transform: Continuous Wavelet Transform (CWT) and Discrete Wavelet Transform (DWT).
If the input signal is x(t), then CWT can be defined as follows:

CWTψ(a, b) =
(

1/
√
|a|

)∫ ∞

−∞
x(t)ψ ∗ ((t − b)/a)dt (8)

where a, b are the scale and translation parameters, and ψ is the wavelet function.
DWT can be defined as follows:

DWTx(m, n) =
(

1/
√

2m
)
∑k xkψ ∗ ((k − n)/2m) (9)
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where m is scale factor, and n is the number of samples.
The identity of the input signal is carried out by the low-frequency components,

which are the important part. Again, high-frequency components represent signal details
that are filtered out by Wavelet Transform containing different mother wavelets and their
corresponding wavelets.

7.1.2. Empirical Mode Decomposition (EMD) and Its Different Versions

Empirical Model Decomposition (EMD), which was first proposed in [65], can select
the appropriate features based on the input signal characteristics. One of the drawbacks
of Wavelet Transform is that it requires preselection of wavelet functions. This drawback
can be overcome by EMD as it does not depend on the preselection of functions, which
eventually reduces human intervention. EMD is considered to be a sieving process that
decomposes the input signal into a series of oscillation functions, which are known as
intrinsic mode functions (IMFs). This trend term was used in [66], which decomposes the
input signal into five IMFs. The equation for EMD is given as follows [67]:

f (t) = ∑N
k=1 fk(t) + r(t) (10)

where input signal f (t) is decomposed into N + 1 number of IMFs fk(t) and r(t) is the
residual noise.

There are some obvious limitations of EMD, such as mode aliasing, false mode detec-
tion, and end effect. Therefore, researchers have focused on improving EMD for different
load-forecasting scenarios.

Ensemble Empirical Mode Decomposition (EEMD)

EEMD uses white Gaussian noise to the input signal and was first discussed in [68].
White Gaussian noise has uniform frequency characteristics, which can change the distri-
bution of extreme signal points. EEMD can effectively eliminate the mode-aliasing effect
of EMD. The equation for EEMD is the same as Equation (10). The only difference is that
white noise is added each time [69].

f (t) = ∑N
k=1 fkj(t) + f j(t) (11)

where j is the number of added noise.
However, computational time is increased due to the multiple decomposition processes

and residual noise in reconstruction is seen due to adding white noise.

Complete Ensemble Empirical Mode Decomposition (CEEMD)

A complete ensemble empirical mode decomposition (CEEMD) is suggested to extract
the residual noise from the data mixture by adding positive and negative white noise to the
original data, which is of the same amplitude [70]. Though this method has used the same
magnitude of noise similar to EEMD, the residual noise is effectively removed from IMFs
through CEEMD.

The IMF generated by CEEMD is denoted by [71]:

fk(t) =
1

2N ∑N
k=1 f+kj(t) + f−kj(t) (12)

where f+kj(t) is the kth IMF generated in jth positive trial and f−kj(t) is the kth IMF
generated in jth negative trial.

Though the denoising effect is achieved by CEEMD, the computation burden is still
high.
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Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN)

Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEM-
DAN) was first proposed in [72], where adaptive white noise of opposite signs is added
to each stage of the decomposition process. After the decomposition process, the output
signal matches with the input sequence which represents no reconstruction error. The
denoising effect is achieved as well as the computational cost problem [73].

A comparative analysis of EMD and its derivatives is shown in Table 2.

Table 2. Shows a comparative analysis of EMD and its derivatives.

Methods Process Advantages Disadvantages

EMD Decomposes the original signal into a
series of IMFs

• Does not depend on the
preselection of functions.

• Reduces human intervention.

• Mode aliasing
• False mode detection
• End effect

EEMD Adds white Gaussian noise to the
original signal

• Modal aliasing effect is
eliminated.

• Noising effect
• Computational burden

CEEMD Adds positive and negative
white noise

• Denoising effect is achieved. • Computational burden

CEEMDAN Adds adaptive white noise
• Computation efficiency is

increased. • Still have some residue.

7.1.3. Variational Mode Decomposition (VMD)

The Variational Mode Decomposition method is based on the frequency domain,
which was first proposed in [74]. This decomposition method is used to construct and solve
variational problems. It is an adaptive, non-recursive, quasi-orthogonal decomposition
method that consists of Weiner filtering, Hilbert transformation, and multiplier [62]. Weiner
filtering is used to achieve the denoising effect, the marginal spectrum problem is solved by
Hilbert transformation, and multipliers are used to solve an unconstrained problem. The
input signal f (t) is decomposed into a k number of sub-modes uk which contains specific
sparsity components. The center frequency is ωk. The goal of the VMD process is to find
the optimal solution for k modes, which makes the smallest bandwidth [67].

min
uk ,ωk

{
∑K

k=1

∥∥∥∥σt

[(
δ(t) +

j
πt

)
∗ uk(t)

]
e−jωkt

∥∥∥∥2
}

s.t. ∑K
k=1 uk = f (t) (13)

where δ(t) is the Dirac distribution function,
(

δ(t) + j
πt

)
∗ uk(t) is the Hilbert transforma-

tion, e−jωkt is the exponential term to adjust the frequency spectrum.
One of the drawbacks of VMD is the mode-aliasing effect. Therefore, parameters such

as the number of modes k must be selected carefully.

7.1.4. Singular Spectrum Analysis (SSA)

Singular spectrum analysis (SSA), a non-parametric method, consists of classical time
series analysis, multivariate statistics geometry, and signal processing [75,76]. SSA consists
of decomposition and reconstruction stages. In the decomposition stage, input data are
decomposed, and the original signal is reconstructed to predict the new data points at a
later stage [77]. This method is useful for short time series, extracting seasonality factors,
smoothing, and extracting important information of different amplitudes. Some of the
limitations of SSA are that it cannot handle large datasets, cannot reconstruct the original
signal when the spectrum spreads, and computational complexity exists.
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7.2. Forecasting Layer

The forecasting layer is used to predict the results by taking the data from the data-
decomposition layer. This layer consists of two models, namely the statistical model and
the machine-learning model.

7.2.1. Statistical Model

The most widely used statistical model, also referred to as the time series model, is the
Autoregressive Integrated Moving Average (ARIMA) model. Two statisticians, George Box
and Gwilym Jenkins, first introduced the ARIMA model in 1970 [46]. The ARIMA model is
composed of an Autoregressive model (AR), a Moving Average (MA), and an integration
of both AR and MA. This model is effective for short time series. However, this model
cannot handle the nonlinear and nonstationary behavior of data series. Therefore, Box
and Jenkins include seasonality to ARIMA, which is known as SARIMA, by introducing a
seasonal exponential smoothing factor. This model is adaptive and can handle seasonal
and nonlinear data series. However, the limitations of this method are (a) the computation
burden is high, (b) it requires past values of data, and (c) it needs a good understanding of
statistics.

7.2.2. Machine-Learning Model

Statistical models are limited in number and can lead to unsatisfactory prediction
results due to higher computational burden and nonlinear and fluctuated behavior of
power system data series [22]. Machine-learning models provide a promising alterna-
tive in this context. When the learning algorithm is selected, these models can work by
themselves without being programmed [78]. The widely used machine-learning methods
for forecasting are Support Vector Machine (SVM), Least Square Support Vector Machine
(LSSVM), Random Forest (RF), and Gradient Boosting. The deep-learning model is another
branch of machine-learning. Some of the popular deep-learning methods include Artifi-
cial Neural Network (ANN), Convolutional Neural Network (CNN), Recursive Neural
Network (RNN), Long Short-Term Memory (LSTM), Generalized Regression Neural Net-
work (GRNN), Back-Propagation Neural Network (BPNN), Radial Basis Function Neural
Network (RBFNN), ELM (Extreme Learning Machine) and ELMAN neural network. A
comparative analysis of these deep-learning methods is discussed in Table 3.

Table 3. A comparative analysis of deep-learning methods.

Algorithms Advantages Disadvantages

ANN

• Performance is not affected if
there is any loss of information

• Fault tolerance
• Parallel processing capability

• Depends on hardware.
• Unknown network duration.
• Interpretation of the network

is difficult.

CNN

• Can handle large datasets
• Extracts features automatically
• Unsupervised learning

• High computational burden.
• Needs a high-speed

processing unit.

RNN

• Remembers each information
• Model size remains the same if

the input size becomes bigger

• Exploding and vanishing
gradient problem.

• Difficult to train an RNN.
• Cannot process long data

sequences.
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Table 3. Cont.

Algorithms Advantages Disadvantages

LSTM

• Long-term information can be
stored

• Data can be trained in backward
and forward directions

• Exploding and vanishing
gradient problem is solved

• Computational burden is
high

• Higher data storage is
required during the training
stage

• Not suitable for parallel
processing.

GRNN

• Training process is faster
• Has only one free parameter
• Guaranteed global optima

• Computational burden is
high

• Sensitive to noise.

BPNN
• Versatile algorithm
• Computationally efficient

• Can stuck into local minima
• Exploding and vanishing

gradient problem
• Requires parameter tuning.

RBFNN

• Can process high-dimensional
data

• Can train and test data quickly
• Tolerate to noise

• Computational complexity
increases

• A nonlinear system cannot
be modeled strongly.

ELM

• Generalization capability
increases

• Human intervention is minimal
• Learning process is speedy

• Interpretation is difficult
• Lacks control over the

hidden layer.
• Sensitive to noise.

ELMAN

• Can deal with nonlinear and
complex data

• Keeps the information of the
previous data

• Cannot guarantee an
optimal solution

• Convergence rate is slow
• Inflexibility

Hyperparameters of Machine-Learning Models

Some of the key hyperparameters of neural network architectures shown in Table 4
are discussed below:

Learning rate (η): The learning rate helps to determine the strength of the model
where the information from the previous iteration is replaced by new information [79]. If
the learning rate is 0, then the model will not learn anything, and if it is 1, then the model
progresses according to the new information.

Number of hidden layers (d): The number of hidden layers influences the final output
directly by determining the overall structure of the model. With the increase in the number
of layers, the complexity of the model increases [80].

Number of neurons (ω): The number of neurons in a neural network refers to the
count of individual processing units (or nodes) in a given layer of the network [81]. Each
neuron receives input, processes it through an activation function, and produces an output
that can be sent to the next layer.

Activation function: Activation function introduces nonlinear properties to the output
of neurons. A neural network model behaves as a simple linear regression model with-
out the activation function. The most commonly used activation functions are sigmoid,
hyperbolic tangent rectified linear units (ReLU) [82], and Swish [83].



Mathematics 2024, 12, 3353 15 of 51

Epochs: During the training process, epochs are the number of complete passes
through the entire training dataset [81].

Batch size: During the training process, the dataset is often too large to pass through
all at once. That is why they are divided into smaller groups called batches. The batch size
refers to the number of samples included in each of these groups [51].

Kernel size: A kernel is a small matrix used to perform convolution on input data. It
slides over the input data to extract features by performing mathematical operations. Kernel
Size refers to the dimensions of the kernel used in convolutional layers of a convolutional
neural network (CNN). It specifies how many rows and columns the kernel contains [84].

Number of filters: The number of filters refers to the quantity of convolutional kernels
in a particular convolutional layer [85].

Stride: Stride refers to the number of pixels by which a convolutional kernel moves
across the input data during the convolution operation. The stride affects the dimensions
of the output feature map [86].

Pooling size: Pooling is a down-sampling operation that reduces the spatial dimen-
sions of the feature maps while retaining important information. Pooling size refers to
the dimensions of the pooling window used in pooling layers of a convolutional neural
network (CNN) [87].

Dropout rate: Dropout rate refers to the proportion of neurons that are randomly
set to zero during training in a neural network, effectively dropping out these neurons.
The dropout technique is designed to improve the generalization of a neural network
by preventing it from becoming overly reliant on any single neuron or a small group of
neurons [88].

Spread parameter: The spread parameter controls the shape of the Gaussian activation
function by measuring the similarity between input patterns. It determines how quickly
the influence of a given training sample diminishes as the distance from that sample
increases [89].

Momentum: Momentum is designed to accelerate the convergence of the training
process and help navigate through the loss landscape. It helps to carry forward the previous
updates to the weights, smoothing out the optimization trajectory [90].

Regularization parameter: The regularization parameter controls the complexity of
the model and prevents overfitting. Regularization techniques add a penalty to the loss
function based on the magnitude of the model parameters [91].

Table 4. Hyperparameters of deep-learning methods.

Algorithms Hyperparameters

ANN

• Number of hidden layers (d)
• Number of neurons (ω)
• Activation function
• Learning rate
• Epochs
• Batch size

CNN

• Number of filters
• Kernel size
• Stride
• Pooling size
• Learning rate
• Dropout rate
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Table 4. Cont.

Algorithms Hyperparameters

RNN

• Number of hidden layers (d)
• Learning rate
• Epochs
• Batch size
• Dropout rate

LSTM

• Number of LSTM units
• Learning rate
• Epochs
• Batch size
• Dropout rate
• Sequence length

GRNN
• Spread parameter (σ)
• Number of neurons (ω)

BPNN

• Number of hidden layers (d)
• Number of neurons (ω)
• Activation function
• Learning rate
• Epochs
• Momentum

RBFNN

• Number of neurons (ω)
• Spread parameter(σ)
• Learning rate
• Epochs

ELM

• Number of neurons (ω)
• Activation function
• Regularization parameter

ELMAN

• Number of hidden layers (d)
• Activation function
• Learning rate
• Epochs
• Momentum
• Regularization parameter

Interdependencies Among Hyperparameters

The interdependencies among hyperparameters make it critical to use systematic
tuning methods to find optimal values in combination. A breakdown of how some key
parameters can interact across different models is given below:

1. Learning rate and epochs

Learning rate is proportional to the convergence rate which means a higher learning
rate can lead to faster convergence. However, having a high learning rate may overshoot
the optimal solution. If the learning rate is too high, it might require fewer epochs as the
model fails to converge. Conversely, a lower learning rate may necessitate more epochs
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to reach convergence. There is a need to balance between learning rate with the number
of epochs.

2. Batch size and learning rate

Smaller batch sizes can lead to more noisy gradient estimates, which can help escape
local minima but may require a lower learning rate to stabilize training. Larger batch
sizes provide a more accurate estimate of the gradient but might benefit from a higher
learning rate. Tuning both together is essential for achieving optimal convergence speed
and stability.

3. Number of neurons and layers

If the number of neurons or layers increases, it also increases the network’s capacity to
learn complex patterns. However, there is a risk of overfitting if regularization techniques
or training data are not sufficient. Therefore, the architecture should match the complexity
of the data; otherwise, the model may either underfit (few neurons/layers) or overfit (many
neurons/layers).

4. Dropout rate and network complexity

The dropout rate helps mitigate overfitting in complex networks by randomly dis-
abling a fraction of neurons during training. A high dropout rate in a simple network
may hinder learning. The effectiveness of dropout is highly dependent on the network’s
architecture and the amount of training data available.

5. Spread parameter and number of neurons

A larger spread makes the network more general but can reduce its capacity to capture
complex patterns, especially if there are fewer neurons. The choice of the spread parameter
must align with the number of neurons to ensure the model captures relevant patterns
without losing specificity.

6. Activation function and learning rate

Different activation functions can respond differently to learning rates. For example,
ReLU can cause dying neurons if the learning rate is too high, while sigmoid or hyperbolic
tangent functions might cause vanishing gradients with a lower learning rate. Choosing the
right activation function relative to the learning rate is important for maintaining gradient
flow and ensuring effective learning.

7.3. Optimization Layer

The main objective of the optimization layer is to optimize the parameters of forecast-
ing methods by different metaheuristic algorithms to improve the accuracy and perfor-
mance of the prediction model.

The article surveys 165 articles, which gives an idea of which methods are extensively
used. Among all the metaheuristic algorithms from the existing literature, the most popular
ones for load forecasting are shown in Figure 5. These algorithms are Particle Swarm
Optimization (PSO), Genetic Algorithm (GA), Fruit-fly Optimization Algorithm (FOA),
Harmony Search Algorithm (HAS), Artificial Bee Colony (ABC), Cuckoo Search (CS),
Gravitational Search Algorithm (GSA), Gray Wolf Optimization (GWO), Grasshopper
Optimization Algorithm (GOA), Bat Algorithm (BA) and Whale Optimization Algorithm
(WOA). The chart reveals that the PSO has been used extensively in the literature. The
next most used algorithm is GA. Artificial Bee Colony also gains popularity. Another two
algorithms used are GWO and BA. The next section provides a genderized discussion of
these algorithms.
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Genetic Algorithm (GA): Genetic Algorithm uses biological concepts to find the ap-
proximate solution. This is based on Darwin’s survival of the fittest theory [92,93]. It finds
the solution through biologically inspired processes such as selection, crossover, and muta-
tion. A workflow of this algorithm is shown in Figure 6a. Initial population individuals can
be altered and mutative. These can be crossed over in pairs to create a better one. These
individuals can be mutated to replace the previous one for better fitness function in the
next iteration.

Grasshopper Optimization Algorithm (GOA): Grasshopper algorithm mimics the
foraging and swarming behavior of grasshoppers [94,95]. Their lifecycle consists of three
stages—egg, nymph, and adult—going through a process called metamorphosis. A young
agent takes a smaller step slowly, whereas an adult agent takes the bigger steps, and at
this stage, they destroy the crops. This behavior is modeled mathematically to form this
optimization technique. Figure 6b shows the workflow of this algorithm.

Whale Optimization Algorithm (WOA): The algorithm mimics the hunting behavior
of whales. Their hunting behavior is known as the bubble-net feeding method, where
whales hunt their prey close to the surface. During this process, they create distinctive
bubbles along a circular path. There are three steps in this algorithm such as: sieging the
prey, attacking the prey, and searching for prey. A detailed procedure of WOA can be found
here [96]. A generalized workflow is shown in Figure 6c.

Artificial Bee Colony (ABC): This algorithm uses the social searching behavior of
finding food [97]. Three types of bees performing in the colony, such as working bees,
watchdogs, and scouts, are modeled. Working bees execute the exploitation procedure by
nourishing food sources, which are converted to candidate solutions. Watchdogs identify
the most promising food sources based on the feedback given by working bees. If there is
no change in the food source, scout bees begin the exploration procedure. Figure 6d shows
a generalized workflow of the ABC algorithm.

Bat Algorithm (BA): Bats use certain sound systems to locate prey, barriers, and nests
while moving in the darkness. This phenomenon is the inspiration of this algorithm, where
the best current position is determined by changing the speed and position of each bat [98].
Bats fly at random velocity toward a particular position. During the hunting stage, bats
vary their frequency, loudness, and pulse emission rate. Search is intensified by random
walk. When it reaches the stopping criteria, then it is considered that the best solutions are
found. A generalized workflow is shown in Figure 6e.

Cuckoo Search Algorithm (CS): The Cuckoo Search Algorithm imitates the parasitic
behavior of cuckoos to lay eggs in host birds’ nests [99]. The goal is to increase reproductiv-
ity while preventing the host birds not to finding the eggs. First, each cuckoo lays one egg
and dumps it in a nest randomly. In the next generation, only high-quality eggs in the best
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nests are selected. However, there is also a probability of the host bird finding the eggs and
throwing away or building a new nest. Figure 6f shows a generalized workflow of the CS
algorithm.

Particle Swarm Optimization (PSO): Particle Swarm imitates the flying behavior of a
bird’s flock [100]. First, the objective function is calculated at a specific point. The flying
path is selected based on the current position and the previous best position. This step
is repeated several times until the stopping criteria are met. A generalized workflow is
shown in Figure 6g.

Gravitational Search Algorithm (GSA): The laws of gravity and motion are the basis of
this algorithm [101]. Each particle is considered to be an object, and its masses determine
its performance. All objects attract each other due to the gravitational force. Lighter objects
tend to move to the heavier objects due to this phenomenon. During the exploitation of
the algorithm, heavier objects move more slowly than lighter objects. The global optima is
found at the position where mass is heaviest. Figure 6h shows a generalized workflow of
the GSA algorithm.

Gray Wolf Optimization (GWO): This algorithm imitates the predatory and hierar-
chical process of gray wolves [102]. Alpha, beta, delta, and omega are four types of gray
wolves whose leadership hierarchies are simulated. The major steps that are considered
in this algorithm are searching for prey, sieging the prey, and attacking the prey. Alpha is
considered to be the fittest solution, followed by beta and gamma, and omega is considered
to be the worst solution. Each type of wolf updates its position in the new generation
based on the best solutions found from the first three groups in the previous generation. A
generalized workflow is shown in Figure 6i.

Harmony Search Algorithm (HSA): This algorithm is inspired by the natural musical
performance processes where a better state of harmony is searched by a musician [103].
Harmony search has selection and mutation stages whereas crossover is not explicitly
used like GA. There are three stages in HAS: harmony memory usage, pith adjusting, and
randomization. Figure 6j shows a generalized workflow of the HSA algorithm.

Fruit-fly Optimization Algorithm (FOA): Fruit-fly Optimization Algorithm is based
on the food-hunting behavior of a fruit-fly [104]. First, an individual fruit-fly searches for
food in a random direction. They use smell sensation to search for food. Then, they use the
vision to fly in that direction. A generalized workflow is shown in Figure 6k.

Table 5 shows a quantitative analysis of the most commonly used metaheuristic
algorithms, including their advantages, disadvantages, process and developers, solving
capability, and computation time.



Mathematics 2024, 12, 3353 20 of 51Mathematics 2024, 12, x FOR PEER REVIEW 20 of 53 
 

 

Start Initialize 
population

Compute 
fitness

Criteria 
met?

Parent 
selection

Crossover

Mutation

Compute 
fitness

End
Yes

No

 

Start Initialize 
population

Calculate fitness 
value of each 

agent

Update 
parameters

Determine target 
position

Criteria met? Update position 
of each agentEnd

NoYes

 

Start Initialize 
population

Calculate fitness 
value of each 

agent

Determine the 
best position of 

the herd

Update 
individual 
position

Criteria met?End
NoYes 

 

(a) (b) (c) 

Start Initialize 
bee colony

Employed bee 
phase

Onlooker bee 
phase

Scout bee phaseSave best food 
position

Is scout bee in the 
colony 

Criteria met?End

Yes

Yes

No

No

 

Start Initialize 
population

Calculate the 
pulse frequency 

for each bat

Evaluate the 
performance

Update velocity 
and position

Picked the bat 
with the best 

position

Does it satisfy the 
circumstance

Raise the pulse 
rate

Criteria met?End

Yes

Yes

No

No

 

Start
Initialize 

Cuckoos with 
eggs

Generate new 
solutions using 

levy flights

Replace host 
nest with new 

solution

Abandon worst 
nest & generate 

new solution

Is population less 
than max value 

Kill cuckoos in 
worst area

Check survival 
of eggs in nests

Criteria met?End

Yes

Yes

No

No

 

(d) (e) (f) 

Figure 6. Cont.



Mathematics 2024, 12, 3353 21 of 51Mathematics 2024, 12, x FOR PEER REVIEW 21 of 53 
 

 

Start
Initialize 
Swarm 

parameters

Generate initial 
condition for 
each particle

Evaluate 
searching point 
of each particle

Update each 
particle’s 

searching point

Criteria 
met?End

Yes No

 

Start Initialize 
population

Calculate fitness 
value of each 

agent

Update 
gravitational 

constant

Calculate mass 
and acceleration 

of each agent

Update velocity 
and position of 

each agent

Criteria met?End
Yes No

 

Start Initialize 
population

Calculate fitness 
value of each 

agent

Criteria met?

Update wolves 
current position

Update 
parameters

Calculate the 
fitness value of 

the wolfEnd
Yes No

 

(g) (h) (i) 

Start
Initialize 

Harmonies  in harmony 
memory (HM)

Sort harmonies 
in HM

Improve a new 
harmony

If new 
harmony is 

better

Update HM

Criteria met?End

Yes
No

Yes No

 

Start
Initialize 

fruit flies features 
and locations

Calculate fruit fly  
smell concentration

Determine if smell 
concentration is same for 

all fruit fly

Update smell 
concentration with 

greater value

Update food 
location

Criteria met?

End

Yes

Yes

No

No

 

 

(j) (k)  

Figure 6. Workflows for (a) GA (b) GOA (c) WOA (d) ABC (e) BA (f) CS (g) PSO (h) GSA (i) GWO (j) HSA (k) FOA. Figure 6. Workflows for (a) GA (b) GOA (c) WOA (d) ABC (e) BA (f) CS (g) PSO (h) GSA (i) GWO (j) HSA (k) FOA.



Mathematics 2024, 12, 3353 22 of 51

Table 5. A quantitative analysis of different metaheuristic algorithms.

Algorithms Advantages Disadvantages Solving Capability of
Simple Problem

Solving Capability of
Complex Problems Computational Time Depends on Initial

Solution

GA
• Flexible
• Parallel processing is possible

• Risk of premature convergence
• Limited understanding of results Excellent Poor For larger datasets, requires

huge computational time. No

PSO

• Tuning of fewer parameters
• Simpler constraints
• Can be applied to multi-objective

optimization problem

• Premature convergence
• Low-quality solution Excellent Excellent PSO requires much less time to

converge than GA No

FOA
• Clear principle
• Fewer parameters

• Falls into local optima
• Strategic update is fixed
• Fitness function is always positive

Excellent Poor Simple computational process Yes

ABC
• Strong equation-searching ability
• Simpler process
• Avoids falling into local optima

• Insufficient population diversity
• Weak developing capacity Excellent Excellent Slow global convergence No

CS
• Guaranteed global optima
• Balanced mixing ability • Requires tuning of parameters Excellent Excellent Slow convergence rate No

GSA
• Easier implementation
• Adaptive learning capability
• Offers high-precision results

• Gets stuck in local solution in last iteration
• Parameters are complex
• Becomes inactive after convergence

Excellent Poor Less computation time No

GWO
• Requires fewer parameters
• Simpler structure
• Easier implementation

• Low solution accuracy
• Falls into local optimum Excellent Excellent Slow convergence rate No

GOA
• Easier development
• Higher accuracy
• Offers high-precision results

• Falls into local optimum easily
• Problems in exploiting search space
• No theoretical convergence property

Good Excellent Slow convergence rate No

BA
• Easier implementation
• Shows efficiency in solving

continuous and discrete problems.

• Premature convergence
• Low precision Excellent Excellent Convergence becomes slower in

later stages No

WOA
• Simpler structure
• Higher accuracy

• Cannot handle variable inputs
• Global optimum solution is not guaranteed Excellent Excellent Faster convergence rate Yes
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8. A Generalized Approach for Load-Forecasting Procedure

A generalized approach shown in Figure 7 is followed to develop a load-forecasting
model, which is illustrated as follows:

Step 1: Collect historical load, weather, and event data from meters, data servers, etc.
Step 2: Prepare the load data.
Step 3: Analyze the load, weather, and event data.
Step 4: Prepare the model for the selected dataset.
Step 5: Choose an algorithm depending on time horizons and input parameters.
Step 6: Check whether the algorithm is appropriate for the given dataset or not.
Step 7: If not appropriate, then the hyperparameters are tuned using metaheuristic algo-
rithms. In Step 7, the following steps are undertaken:

7.1. Parameters such as weights, threshold, bias, smoothing factor, and learning rate
of forecasting methods need to be initialized.
7.2. Initial position and maximum number of iterations need to be set.
7.3. Read the load characteristics at a specific point.
7.4. Run the forecasting model and calculate the values at each specific point
7.5. Calculate the fitness function.
7.6. Check whether the stopping criteria are met. If yes, then go to Step 5.
7.7. If the stopping criteria are not met, then update the position and go to Step 7.4.

Step 8: If the algorithm is appropriate, then refine the model.
Step 9: Check whether there is any change in data or not.
Step 10: If there is any change in data, then go to Step 3.
Step 11: If there are no changes in data, then the model can be run for load forecasting.
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9. An Overview of Short-Term Load Forecasting

A hybrid model consisting of Seasonal Support Vector Regression (SVR) and a Chaotic
Gravitational Search Algorithm (CGSA) is proposed in [105]. To refine the searching space,
the chaotic mapping function is applied to GSA. Electricity demand depends on seasonal
factors, which are considered in this article by a seasonal mechanism in conjunction with
SVR. The load-forecasting performance is improved from 2.587% to 3.199% by including
seasonal indices.

Similarly, hyperparameters of SVR are optimized by the Particle Swarm Pattern Search
optimization (PSwarm) algorithm [106]. The advantages of global optimization, such as
Particle Swarm, and local minimization, such as Pattern Search, are combined to form this
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hybrid algorithm called PSwarm. The hourly-based dataset used in this article is from a
North American utility [107–109].

The feature selection and parameter optimization of SVR are carried out simultane-
ously by Comprehensive Learning Particle Swarm Optimization (CLPSO) in the framework
of the Memetic Algorithm (MA) [110]. A similar approach has been adopted in [111]
for short-term load forecasting. The article proposes a Seasonal SVR (SSVR) algorithm
with Chaotic Simulated Annealing (CSA). Again, a cloud theory is employed with CSA
to overcome the issue of the temperature annealing process. The model is tested on two
datasets: one is from Northeastern China, and the other one is from New York Independent
System Operator (NYISO), New York City.

Another article proposes SVR with a metaheuristic algorithm to improve the predic-
tion accuracy [112]. Metaheuristic algorithm such as Tabu Search (TS) shows premature
convergence and local optima trapping. To avoid these shortcomings, quantum computing
mechanics is applied to TS. The forecasting index MAPE shows a smaller value of 1.32%
for SVR-CQTS than 1.89% for SVR-QTS.

To do microgrid load forecasting, the Least-Squares Support Vector Regression (LSSVR)
model with a metaheuristic algorithm is proposed [113]. A Fruit-fly Optimization Algo-
rithm (FOA) is used in this article which mimics the foraging behavior of fruit flies. To
overcome the issues of premature convergence and becoming trapped in local optima faced
by FOA, QCM is used to add quantum behavior, and a cat-mapping function is adopted to
help a fruit-fly not to become trapped in local optima. This model shows a minimum error
(MAPE = 1.01%) than the other existing methods.

A modified fruit-fly algorithm (MFOA) is used to optimize the parameters of SVR for
STLF [114]. Using the modified version, the prediction error is decreased from SVR-FOA
(MAPE = 1.8051%) to SVR-MFOA (MAPE = 1.6909%).

A hybrid model with a metaheuristic algorithm is proposed for short-term load fore-
casting of microgrids [115]. Empirical mode decomposition (EMD) is used to decompose
the load data into Intrinsic mode function (IMF). Prediction of IMF components is car-
ried out by two forecasting algorithms named Extended Kalman filter (EKF) and Extreme
Learning Machine with Kernel (KELM). The parameters of this model are optimized by the
Particle swarm optimization (PSO) algorithm.

The article in [116] follows the same approach as [115]. The only difference is that SVR
is used rather than EKF and KELM to construct IMFs.

For short-term load forecasting, a hybrid model consisting of EMD, PSO, Genetic
algorithm (GA), and SVR is proposed [117]. As discussed above, EMD is used for the
decomposition of data series into lower and higher frequency components. The higher and
lower frequency parameters of the SVR model are optimized by PSO and GA, respectively.

Another application of EMD is demonstrated in [118], which is combined with seasonal
adjustment, PSO, and Least square support vector machine (LSSVM). After decomposing
into smaller components, seasonal components are eliminated, and LSSVM is used to
model the resultant data series, which is then optimized by PSO. The final prediction result
is achieved by multiplying the seasonal indexes by the forecast results from PLSSVM.

The proposed model consisting of EMD, Gray rational analysis (GRA), MPSO, and
LSSVM is used for short-term load forecasting and tested on the Jibei area of China [61].
The data series is decomposed into smaller subsequences by EMD and GRA. Then, these
subsequences are forecasted by MPSO and LSSVM. The combined model shows better
performance than BP, SVM, LSSVM, PSO-LSSVM, MSO-LSSVM, and EMD-MPSO-LSSVM.

As EMD is used to decompose the data, an end effect is produced during this process,
which will vary the final result. To eliminate the end effect, an improved version of EMD
(IEMD) is proposed to be hybridized with Autoregressive integrated moving average
(ARIMA), Wavelet neural network (WNN), and FOA [119]. An extension version of EMD
known as Ensemble empirical mode decomposition (EEMD) is used in [120] along with the
ARIMA and Culture Particle Swarm Optimization (CPSO) algorithm.



Mathematics 2024, 12, 3353 25 of 51

Another hybrid model based on EEMD and subsection PSO (SS-PSO) is tested on the
dataset from the Chongqing grid in China [121]. Each section of the optimization is divided
into 12 subsections which will have only one minima in each subsection. A comparison
is made among these 12 minimum values from 12 subsections, and the last optimization
value is chosen. In the EMD model, IMFs only contain information at a specific time scale.
However, if the input data have a change at a certain time scale, IMFs may contain these
components, which is difficult to predict for EMD. Therefore, EEMD adds white noise to
the input data which is distributed for different time scales.

Though EEMD can eliminate the added noise, it cannot effectively neutralize the noise.
That is why a complete ensemble empirical mode decomposition (CEEMD) along with the
Whale optimization algorithm (WHOA) and LSSVM is used for load forecasting [122]. The
WHOA algorithm takes inspiration from the hunting behavior of humpback whales.

The article [123] proposes a Support vector machine (SVM) algorithm for load fore-
casting supported by PSO. In this model, significant temperature variations are considered.

A Complete Empirical Mode Decomposition with Adaptive Noise (CEEMDAN) is
used with SVM and the Modified Gray Wolf Optimization Algorithm (MGWO) [124]. The
daily peak load is decomposed into multiple smaller sequences, and then SVM and MGWO
are used to predict these smaller sequences. The adaptive white noise smoothing factor
is added in decomposition by CEEMDAN to utilize the characteristics of mean Gaussian
white noise to eliminate the mode mixing. An improved CEEMDAN (ICEEMDAN) is used
for data preprocessing in [125], along with the Elman neural network (ELM), whose param-
eters are optimized by the multi-objective dragonfly algorithm (MODA). The behavior of
dragonflies is mimicked in DA.

A hybrid model combining SVM and Grasshopper optimization algorithm (GOA) is
proposed for STLF [126]. The proposed model uses a similar day approach as it considers
that the local climate conditions show better performance (MAPE = 1.5%) than other
methods, such as GA-SVM (MAPE = 2.13%) and PSO-SVM (MAPE = 1.94%). The nonlinear
behavior of load data makes it difficult to load forecasting.

A combined model of SVM and Singular spectrum analysis (SSA) and Cuckoo Search
(CS) is proposed in [127]. To analyze the time series data, SSA is used to identify and extract
trends or noise. The behavior of cuckoo birds is followed to develop the CS algorithm. The
optimization of the parameters of SVR is completed by the CS algorithm. The model shows
better performance than SVM, SSA-SVM, CS-SVM, SARIMA and BPNN.

The authors have proposed a hybrid method comprising SVM and the Manta Ray
Foraging Optimization (MRFO) algorithm [128]. MRFO is based on the eating behavior
of the manta rays living in the ocean. A comparison is made among the proposed MRFO
algorithm (RMSE = 4.715) and the other existing metaheuristic algorithms Slime Mold
Algorithm (SMA) (RMSE = 8.7450), Tug of war optimization (TWO) (RMSE = 9.159),
Moth fame optimization (MFO) (RMSE = 9.075), Satin bowerbird optimization (SBO)
(RMSE = 9.248) and FOA (RMSE = 9.740).

An SVR model with Differential empirical mode decomposition (DEMD) and Quan-
tum Particle swarm optimization (QPSO) is proposed to do the load forecasting [129].
Quantum mechanics helps to resolve the issue of premature convergence of PSO. The
data series is decomposed into IMFs, and SVR is used for high-frequency data forecasting
chosen by QPSO. Autoregressive (AR) modeling is used to forecast the residuals as it shows
monotonous behavior.

Another SVR model with chaotic quantum particle swarm optimization (SVRCQPSO)
is proposed [130]. The chaotic phenomenon is applied by keeping the diversities of the
components of PSO to avoid trapping onto a local optimum solution. If the Eastern region is
considered, then SVRCQPSO shows better performance (MAPE= 1.5940%) than SVRQPSO
(MAPE = 1.9830%). A similar approach is followed in [131] with a difference of using
GA rather than PSO. A comparison is made between SVRCQPSO and SVRCQGA for
the Eastern region, and SVRCQGA shows better performance (MAPE = 1.5180%) than
SVRCQPSO (MAPE = 1.5940%).
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A learning algorithm named Extreme Learning Machine (ELM) is proposed with
switching delayed particle swarm optimization (SDPSO) to obtain better forecasting re-
sults [132]. The proposed method shows 0.72% less MAPE than the state-of-the-art method
Radial basis function neural network (RBFNN).

A combination of Wavelet Transform (WT) and Gray Model (GM), whose coefficients
are optimized by PSO, is proposed in [64]. The input data series includes the temperature,
humidity, wind speed, and day-ahead load data. Another application of WT in combi-
nation with LSSVM and FOA is proposed in [133]. To validate the proposed model, it is
compared with WT-LSSVM (MAPE = 1.111%), FOA-LSSVM (MAPE = 1.353%), PSO-LSSVM
(MAPE = 1.414%), and LSSVM (MAPE = 1.8457) and shows better performance
(MAPE = 1.068%).

A hybrid model comprising of Bayesian neural network (BNN), Discrete wavelet trans-
form (DWT), and GA is proposed for load prediction [134]. The input data are decomposed
by DWT into different resolutions of components to extract the nonlinear information of load
data. The Bayesian approach is to train NN by assigning a probability density function.

The optimization of weighting coefficients of different components is completed by
GA. A hybrid model is proposed in [135] consisting Artificial Neural Network (ANN)
optimized by an Artificial Bee Colony (ABC) metaheuristic algorithm. The behavior of
honeybees while searching for food is the inspiration behind this algorithm. A comparison
is made among ANN-ABC, ANN-GA, and ANN-PSO using an evaluation index MSE,
which shows 7.16 × 10−4, 3.95 × 10−3, and 8.79 × 10−4, respectively.

The article proposes a combined model of Back-Propagation Neural Network (BPNN),
Radical Basis Function Neural Network (RBFNN), Generalized Regression Neural Network
(GRNN), and Genetic Algorithm Back-Propagation Neural Network (GABPNN) where
the Cuckoo Search (CS) algorithm is used to optimize the coefficients of each model [136].
Cuckoos’ nature of laying eggs and breeding gives the inspiration to develop CS.

A modified GRNN is proposed with a Multi-Objective Firefly Algorithm (MOFA),
which considers seasonal patterns and data-preprocessing techniques [137]. The weighting
coefficients and thresholds of GRNN are optimized by MOFA. Again, to deal with the
nonlinearity of the load dataset, a hybrid model consisting of GRNN and FOA with
decreasing step size is proposed [138].

A two-step parameter optimization based on Grid Traverse Algorithm (GTA) and PSO
is used in combination with SVR for short-term load forecasting. To narrow the search
space from global solution to local solution, GTA is used, and PSO selects the best solution
from the local solutions that can be selected for SVR. Then, the SVR function determines
the forecasted value [139].

The authors in [53] propose five ANN-based models such as BPNN, GABPNN, WNN,
RBFNN, and GRNN. The original data are integrated into a dataset constructed by multiple
seasonal patterns, and EMD is used to decompose this dataset into smaller IMFs. Then,
ANN-based models are used to forecast the IMFs. Each model gives different forecasting
values, which are then added to be optimized by a multi-objective flower pollination
algorithm (MOFPA). A similar approach is followed to find the forecasting value combining
BPNN, Cuckoo Search BPNN (CSBPNN), GRNN, FOAGRNN, and RBFNN with Non-
dominated sorting genetic algorithm III (NSGA-III) [140].

Artificial intelligent-based Long Short-Term Memory (LSTM) and Gated Recurrent
Unit (GRU) are proposed for load forecasting [141]. The hyperparameters of both models
require appropriate tuning to improve efficiency. Therefore, the Boosted Self-Adaptive Sine
Cosine Algorithm (BSA-SCA) is used to tune the parameters.

10. Results

A prediction framework is proposed in this article, which contains a data-decomposition
layer, forecasting layer and optimization layer. To validate the efficacy of this framework, a
comparison has been made among different models shown in Table 6. Several observations
can be made from this table:
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Remarks 1. Forecasting models can predict results with the highest MAPE, such as SVR, LSSVM,
LSTM, and RBFNN, showing 6.0183, 3.5215, 1.1829, and 3.6645, respectively, within their
respective datasets.

Remarks 2. The forecasting layer, along with metaheuristic algorithms, shows superior performance
than the forecasting layer with the data-decomposition layer. It also shows the importance of the
hyperparameters tuning of the model using metaheuristic algorithms. For example, LSTM-WOA
shows a MAPE of 0.7615 which is lower than 0.8 of VMD-LSTM [122].

Remarks 3. In the data-decomposition layer, CEEMD shows better performance than EEMD and
EMD [122].

Remarks 4. A combination of the data-decomposition layer, forecasting layer, and optimization
layer shows superior performance than any other combination, such as only the forecasting layer
or forecasting and data-decomposition layer or forecasting and optimization layer. For example,
VMD-LSTM-WOA has shown superior performance with MAPE of 0.6986 than LSTM-WOA
(MAPE = 0.7615), VMD-LSTM (MAPE = 0.8) and LSTM (MAPE = 1.1829) [142].

Table 6. MAPE for different models proposed in the existing literature.

Reference Model MAPE (%) Reference Model MAPE (%)

[116]

EMD-SVR-PSO 3.4323

[143]

NN-DE 0.7173

EMD-SVR 3.9898 WT-CNN 1.0808

SVRPSO 5.9826 VMD-GRNN-GSA 0.6722

SVR 6.0183

[144]

EEMD-BPNN-FPA 1.0731

[122]

CEEMD-LSSVM-WOA 1.5602 WT-BPNN 1.7317

EEMD-LSSVM-WOA 1.5724 EEMD-BPNN 1.2104

EMD-LSSVM-WOA 3.1486 BPNN-CS 1.6463

LSSVM-WOA 3.3885

[145]

EEMD-SVM-WOA 1.3249

LSSVM 3.5215 RBFNN 3.6645

[142]

LSTM 1.1829 ARIMA 3.3396

VMD-LSTM 0.8 BPNN 3.1382

LSTM-WOA 0.7615

VMD-LSTM-WOA 0.6986

Again, the accuracy and stability of forecasting models largely depend on the type of
datasets. Therefore, to evaluate the performance, they must use the same datasets. After
doing a careful investigation, it is found that articles [113,130,131] use the data from the
Global Energy Forecasting Competition (GEFCOM), 2014. Figure 8 shows a comparative
analysis of different forecasting models used in these three articles. These articles use
different evaluation indices. However, MAPE is the most common among these three. The
MAPE of LSSVR-CQFOA is 1.02, which is the lowest among these algorithms. Therefore,
it shows superior performance than the other methods. The next highest-performing al-
gorithms are SVRCQBA and SVRCQGA, whose MAPEs are 1.07 and 1.16, respectively.
This also shows a similar interpretation of the results from the previous discussion:
(1) properly tuning hyperparameters increases the prediction accuracy (2) choosing the
right metaheuristic algorithm can increase the performance of the models.

A taxonomy is presented in Table 7, which includes the year of publication, data type,
resolution of the dataset, evaluation indices, compared methods and contributions of the
proposed methodology, and their advantages and drawbacks.
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Table 7. A taxonomy of the state-of-the-art articles.

Reference Year Algorithm Advantages Limitations Test Set Input Resolution Contribution Compared Methods Evaluation
Indicators

[141] 2023 LSTM-BSA-SCA

• LSTM introduces a memory
state cell to store information
effectively.

• GRU passes information
through network.

• Exploitation and exploration
are boosted by BSA.

• Huge computation
burden.

• Modest population
size is used.

• Only a few iterations
are conducted to find
optima.

Dataset from
ENTSO-E [146] Hourly

Solar, wind, weather,
and load data have
been considered.

LSTM-SCA,
LSTM-ABC,
LSTM-FA, LSTM-S

MSE, RMSE, MAE,
R2

[147] 2023 MFGBM-HIGWO

• MFGBM shows higher
prediction accuracy.

• Theoretical solution of
complex model is possible.

• HIGWO can be applied to
nonlinear high-dimensional
model.

• Interaction between
variables is ignored.

Dataset from Sichuan
Province, China

The proposed
method has a better
nonlinear fitting, and
the traditional GWO
method is also
improvised.

LSSVR, AdaBoost,
RFS MAPE, RMSE, MAE

[128] 2023 SVR-MRFO

• SVR can handle larger and
nonlinear datasets.

• The proposed model shows
99.9% and 99.3% accuracy for
training and testing datasets.

• Accuracy is affected
by initial parameters.

The classical SVR
model only predicts
point values that can
be overcome by
MRFO, as it shows
error controllability
and fast
convergence.

PSO-SVR, PSO-BP,
EMD-SVR-AR,
DEMD-SVR-AR,
AFCM, ARIMA,
SVRCGSA,
SSVRCGSA

MSE, RMSE, MAE,
MAPE, RAE, R2,
NMSE

[148] 2023 FE-AGO-LWSVR

• Dimensionality reduction is
solved by FE.

• AGO tunes the weighting
coefficient and bias of
LWSVR to provide stable,
robust, and fast solutions.

• Considered only
historical data.

• Key factors affecting
the forecasting are not
considered.

Dataset from NSW,
Victoria, Australia
and CAISO, USA

Hourly

The proposed
method improves
precision, stability,
and convergence
rate.

NARX, DNN, GTB,
RF MAPE, MAE

[149] 2023 ECWOA-SVR

• Initial values are generated
by a chaotic mechanism,
which improves the
convergence rate.

• Population diversity is
increased by elite
opposition-based learning
strategy. It helps to avoid
falling into local optima.

• Feature selection is
not added.

• Online testing is not
possible.

Load data from
Singapore and load
and price data from
GEFCOM, 2014.

Half-hourly and
hourly

SVR is combined
with WOA to balance
the exploration and
exploitation of the
algorithm.

SVR, WOA-SVR,
PSO-SVR, BPNN

MSE, RMSE, MAE,
MAPE, R2
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[150] 2023 PSO-VMD-TCN-
Attention

• Modal number and
bandwidth constraint re
optimized by PSO.

• Feature extraction is easier.
• TCN can handle longer

sequences.

• The number of
iterations is small.

• Hard to implement.

Dataset from
Panama case
published on Kaggle.

Hourly

Manual adjustments
of parameters
required by VMD are
overcome using PSO.

PSO-VMD-LSTM,
PSO-VMD-GRU,
LSTM, GRU, TCN

MSE, RMSE, MAE,
MAPE

[151] 2023 CS-GWO-DA-
BiGRU

• Sensitivity to key features is
improved by DA.

• Population diversity and
global search ability are
enhanced by CS-GWO.

• Leads to unstable
operation when
exposed to new data
series.

Combination of
feature and temporal
attention
mechanisms is used
to form DA.

DA-BiGRU,
PSO-DA-BiGRU,
WOA-DA-BiGRU,
CSO-DA-BiGRU

RMSE, MAE,
SMAPE, R2

[152] 2023 WHODL-STLFS

• Computational complexity is
reduced by WHO.

• Prediction accuracy is
improved by parameter
optimization by AAO.

• Stability and
convergence rates are
ignored.

Dataset from FE and
Dayton grid Hourly

A three-stage process
is proposed
combining
WHODL-STLFS,
ALSTM and AAO.

FCRBM, AFC-ANN,
Bi-level, MI-ANN,
LSTM

MAPE

[153] 2023 Bi-LSTM +
Dropout-LF-PSO

• Convergence rate of LF-PSO
is better than PSO.

• LF-PSO explores new search
space to improve the tuning
of hyperparameters.

• Computational
complexity increases
with the increase of
larger datasets.

• Depends on the initial
values.

Dataset from Smart
Grid Smart City,
Australia.

Half-hourly

The proposed
method has
outperformed the
other state-of-the-art
methods in terms of
forecasting accuracy.

LSTM, GRU, SVR,
ARIMA MAE, RMSE, MAPE

[154] 2023 PSVMD-SSA-CGA

• Randomness and subjectivity
of the parameters of VMD
are avoided by SSA.

• Weighting assignment is
solved by CGA.

• Computational time
is large.

Load data from
Quanzhou, Fujian,
China

Half-hourly

PSVMD is used to
break down the load
data into several
quantities and CGA
is used for
forecasting.

CGA,
GA-VMD-CGA,
SSA-VMD-CGA

MAE, RMSE, MAPE,
R2

[155] 2023 LCR-AdaBoost-FA-
ELM

• Implementation is easier.
• Weighting coefficient and

biases of ELM are optimized
by FA to reduce the
prediction error.

• Diversified datasets
are not used.

Load data of
furniture factory. Hourly

A day-ahead load
forecasting is
proposed and FA
combined with ELM
can reduce
prediction error.

SVR, ELM, FA-SVR,
FA-ELM,
AdaBoost-FA-SVR

MAE, RMSE, MAPE
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[156] 2023 EWT-SSA-GRNN

• Forecasting errors can be
avoided by smoothing the
load sequence by EWT.

• SSA performs better in
uncertain environments.

• Computational
burden is increased
during the data
reconstruction stage.

Dataset from a city in
southern Australia Half-hourly

Problems associated
with load forecasting,
such as volatility
uncertainty, can be
solved by this
method.

EWT-GRNN, GRNN,
LSTM, SVR,
CNN-RNN, RNN,
VMD-GRNN,
VDM-SSA-GFNN

MAE, RMSE, MAPE,
MSE, R2

[157] 2023 BES-VMD-CNN-Bi-
LSTM-EC

• The nonlinear nature of
complex load data is
addressed by Bi-LSTM.

• Stability and security are
enhanced.

• Diversified load types
are not considered.

• Meteorological factors
are not considered.

Dataset from
GEFCOM 2012 Hourly

Prediction accuracy
is increased by
improving error
correction, which
considers short-term
factors.

RF, SVM, LSTM,
GRU, Bi-LSTM,
CNN-LSTM,
CNN-GRU,
CNN-Bi-LSTM, O-
VMD-CNN-LSTM,
O-VMD-CNN-GRU,
O-VMD-CNN-Bi-
LSTM,
BES-VMD-CNN-Bi-
LSTM

MAPE, RMSE

[158] 2023
IPSO-DBiLSTM-
VMD-attention
mechanism

• The model can work with
extremely volatile and
nonlinear load sequence.

• Prediction accuracy and
robustness are enhanced by
estimating the parameters of
DBI-LSTM using PSO.

• Meteorological factors
are not considered.

Dataset from Ninth
Electrical Attribute
Modeling
Competition

The data are
decomposed into
different quantities
by VMD, DBiLSTM
is used for price
representation of the
data, and IPSO helps
to avoid local optima
and premature
convergence.

GS-VMD-DBiLSTM-
Attention,
PSO-VMD-
DBiLSTM-Attention,
LSTM, Bi-LSTM,
Bi-LSTM-Attention,
DBiLSTM, TCN

MAE, RMSE, MAPE,
R2

[159] 2022 ISOA-SVM

• To overcome the problem of
random feature selection of
SVM, ISOA is used.

• Prediction accuracy and
convergence rate are
improved by ISOA.

• Stability and
generalization ability
need to be improved.

• The model must be
more universal.

Load data from a
power plant in
eastern Slovakia

Half-hourly

Parameters of SVM
are optimized by
ISOA to improve the
optimization
performance and
convergence rate.

SOA-SVM, SVM, BP MAE, RMSE, MAPE,
R2

[160] 2022 FC-FWA-LSSVM

• Can mitigate the effects of
uncorrelated factors.

• Global search capability is
increased.

• Overfitting of data is
still prevalent.

Residential data from
China Half-hourly

Fuzzy cluster
analysis is used for
feature extraction
which can reduce the
data redundancy and
prediction error.

BPNN, LSSVM,
FWA-LSSVM

RE, RMSE, MAPE,
AAE
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[161] 2022 MAFOA-GRNN
• Can handle structured and

unstructured data.
• Highly adaptable.

• Adjustments of input
parameters are
needed for different
datasets.

Dataset from Wuhan,
China Hourly

Several weather
factors are
considered here.

PSO-GRNN,
FOA-GRNN,
DSFOA-GRNN, BP,
SVM, GRNN

NRMSE, MAE,
MAPE

[19] 2022 MEMD-PSO-SVR

• Peak load forecasting is
possible.

• MEMD can effectively
extract the important
features from nonlinear data
series.

• Only temperature is
considered to be the
input variable.

• PSO has a low
convergence rate.

Dataset from NSW,
Victoria, Australia Half-hourly

To reduce the loss of
an overestimated or
underestimated
power system,
multi-dimensional
input variables are
considered.

SVR, BPNN,
EEMD-SVR,
EEMD-PSO-SVR,
MEMD-SVR,
MEMD-PSO-BPNN

RMSE, MAPE, R2,

DA

[162] 2022 CEEMDAN-IGWO-
GRU

• CEEMDAN can effectively
suppress the load fluctuation
interference.

• Diversity of load-forecasting
conditions is considered.

• Search performance is
improved in IGWO than in
GWO.

• Depends on the initial
population.

Dataset from
Singapore’s utility
grid.

Half-hourly

CEEMDAN is used
to suppress the load
fluctuation, and
GRU, which is
optimized by IGWO,
is used for the
prediction of each
component.

EEMD-GRU-MLR,
PSO-VSM, GRU,
CEEMDAN-GRU,
IGWO-GRU, CIG, BP,
ELM, DBN, SAE

MAE, MAPE, RMSE

[163] 2022 CEEMD-SSA-GRU
• Noise interference is

eliminated by CEEMD.
• Adaptability is enhanced.

• Some unnecessary
IMFs are created.

• The computational
burden is increased.

Load data of an
industrial user’s
factory

Problem with modal
aliasing in historical
data is solved, and
the relationship
between the time
series characteristics
of load data is
explored.

GRU, SSA-GRU,
EMD-SSA-GRU MAE, RMSE, MAPE

[164] 2022 IPSO-Elman

• To screen the meteorological
factors, Pearson coefficients
are used.

• Reliability and prediction
accuracy is increased.

• Weighting coefficients
of climate factors are
not considered.

Dataset from two
regions 15 min

Various climate
factors that affect
load forecasting are
considered here.

MAPE, RMSE, MAE

[165] 2022 VMD-CISSA-LSSVM

• The model shows stable
operation, search accuracy,
and convergence rate.

• It follows the trend of load
data.

• Temperature and
holiday effects are not
considered.

Dataset from
Shandong, China Half-hourly

The proposed
metaheuristic
algorithm has
avoided uneven
initial population
distribution and
trapping into local
minima.

Elman, ELM, LSSVM,
GWO-ELM,
PSO-Elman,
SSA-LSSVM,
CISSA-LSSVM,
FA-CSSSA-ELM

MSE, MAE, MAPE
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[142] 2022 VMD-IWOA-LSTM
• Load interference is

eliminated.
• Shows strong practicability.

• Complex
relationships of load
characteristics cannot
be extracted.

Dataset from a
power grid company Half-hourly

The searching area of
IWOA is enhanced
using a nonlinear
attenuation factor
and random
difference variation.

LSTM, VMD-LSTM,
WOA-LSTM,
VMD-WOA-LSTM

MAPE, MAE, RMSE

[166] 2022 MSC-PSO-SVR

• Prediction performance is
enhanced as MSC can choose
any parameter size.

• Can handle small and
nonlinear datasets.

• Cannot handle
multi-dimensional
optimization
problems.

Dataset from a
county of Jiangxi and
Germany.

The proposed
method can adapt to
the candidate size.

BPNN, LSTM, RNN,
RF, XGBoost

MAE, MAPE, RMSE,
STD

[167] 2022 VMD-mRMR-tsPSO-
LSSVR

• Multi-step prediction
uncertainty is reduced.

• Different data series can be
adopted.

• Prediction accuracy and
stability are enhanced.

• Computational time
is high.

Dataset from
California Hourly

A hybrid algorithm
is proposed to
enhance the diversity
and can perform in
extremely noisy
environments with
the help of PSO.

SVR, ANN,
PSO-LSSVR,
EMD-LSSVR,
VMD-LSSVR,
VMD-PSO-LSSVR

MAE, MAPE, MSE,
RMSE, R2

[168] 2021 FE-SVR-mFFO

• Three performances are
considered: convergence
rate, prediction accuracy, and
stability.

• The model must be
verified in more
diversified datasets.

Dataset from AEMO Half-hourly

mFFO is used to
select and tune
hyperparameters of
SVR, which will
improve the
convergence rate and
prediction accuracy

EMD-SVRPSO,
FS-TSFE-PSO,
VMD-FFT-IOSVR,
DCP-SVM-WO

MAPE, MSE, RMSE,
R, WI

[169] 2021 NN-PSO

• Does not depend on the
initial solution.

• Can detect the nonlinear
relationships among
datasets.

• Requires less statistical
training.

• Meteorological factors
such as temperature
and humidity are not
considered.

• Number of iterations
is not mentioned.

• It tends to overfit
data.

Dataset from Iran’s
power grid

PSO is used to tune
the parameters for
NN, and NN uses
the back-propagation
method for load
forecasting.

MAPE, MAE, MSE

[170] 2021 VMD-GWO-SVR

• Each component can be
predicted separately.

• Can follow the trend of load
fluctuation.

• Time series is being
delayed.

• Faces problems while
dealing with
high-frequency
components.

Dataset from the
power grid of Oslo
and surrounding
regions.

Hourly

The proposed
method separates the
important
information from
load data and,
therefore, predicts
the trend in load
change.

SVR, VMD-SVR,
GWO-SVR

MAE, MAPE, MSE,
R2
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[171] 2021 HWOA-ELM

• Can do load prediction in a
cloud environment.

• Random parameters
influence is addressed.

• Computation time is
high.

• Generalization
capability is low.

Datasets from
real-world
measurements

Trapping into local
optima and poor
convergence rate is
solved by the
proposed method.

WOA-ELM,
BSA-ELM,
CSO-ELM,
GWO-ELM

RMSE, MAPE, R2

[172] 2021 IGA-LS-SVM

• Uses equality constraints.
• Solves the load-forecasting

problem by solving a set of
linear equations.

• Computational
burden is high.

• Relative errors
between variables
need to be reduced to
achieve higher
accuracy.

Dataset from Yunnan
province.

Temperature,
meteorological
factors, holidays, and
other factors
affecting load
forecasting are
considered.

BP, LS-SVM RMSE

[173] 2021 SVR-LR-RF-PSO
• Have excellent fitting ability.
• Shows robustness.

• A comparison is
being made only with
single models.

• Number of iterations
is quite small.

Dataset from NSW,
Australia Half-hourly

A weighting factor is
applied to three
individual models.

SVR, LR RF MAE, MAPE, RMSE,
R2

[174] 2021 CNN-CHIO

• It reduces the overfitting of
classifiers.

• CHIO uses its classifiers to
increase the performance of
CNN classifiers.

• Only the residential
dataset is used.

• Computational
burden is high.

Dataset from ISO-NE

Classifiers are used
to extract the features
from the dataset, and
CHIO is used to tune
the parameters.

SVM, RF, LR, LDA MAPE, RMSE, MSE,
MAE

[175] 2021 EOBL-CSSA-LSSVM

• Can eliminate the noise
effect.

• Can improve the deficiencies
of the machine-learning
model.

• Weather and holiday
factors are not
considered.

Dataset from
South-eastern grid,
Australia

Half-hourly

VMD can reduce the
noise effect, whereas
metaheuristic
algorithms can
improve prediction
accuracy.

Elman, PSO-ESN,
SA-LSSVM,
CAWOA-ELM,
FA-CSSA-ELM

RMSE, MAPE, MAE,
MSE

[176] 2021 SMN-PSO
• Adaptive to online learning.
• Has a low computational

burden.

• Number of iterations
is not discussed.

• Meteorological factors
are not considered.

Dataset from AEMO,
Australia Half-hourly

Different PSO
variants are
considered here.

EMD-DBN RMSE, MAPE, MAE,
MSE

[143] 2020 VMD-NNGSA-
GRNNGSA

• Features can be selected
effectively by combining NN
and GSA from different signals.

• Gets higher prediction
accuracy while considering
different seasons.

• Moderate
computational
burden.

Dataset from PJM
and Spanish
electricity market.

A combinational
forecasting algorithm
is proposed, which
can select the best
inputs and
outperform other
state-of-the-art
methods.

RBF, GRNN, NN-DE,
WT-CNN

RMSE, MAE, MAPE,
TIC
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[177] 2020 MFFNN-GOA

• Input variables are selected
properly, which results in a
short prediction time.

• Reliability of the system is
enhanced.

• Loads can be forecasted at
different times.

• Iterations number is
not provided.

Dataset from the
Youth power station,
Salhiya

Hourly

Temperature and
other factors
affecting the load
data are considered.

MFFNN,
MFFNN-GA,
MFFNN-GWO

RMSE, MAE, MAPE

[178] 2020 PSO-ENN

• The key parameter is the
learning rate, which is
optimized by PSO.

• Simple structure.

• Computational
burden is high.

• Poor generalization
capability.

• Depends on initial
conditions.

Dataset from Eastern
Slovakia Half-hourly

The learning rate of
ENN can be found
dynamically by PSO

ENN, GRNN, BPNN RMSE, MAPE

[179] 2020 ICS-FARIMA

• Global optimization
capability is enhanced.

• Nonlinear data series is
properly preprocessed.

• Slow convergence
rate.

• Sensitive to scaling of
data.

Dataset from
EIRGIRD, Ireland

ICS is used for
parameter
optimization of the
forecasting
algorithm.

RBF, RNN, FARIMA MAPE, MAE

[180] 2020 ELM-RNN-SVM-
MOPSO

• It increases the accuracy and
stability.

• Computational
burden is high.

Datasets from NSW,
Queensland, and
Victoria, Australia

Half-hourly

A multi-step
forecasting algorithm
is proposed where
MOPSO is used for
optimizing the
weighting
coefficients.

ELM, RNN, SVM MAPE, MAE, RMSE

[181] 2020 QPSO-mFBM

• Stationary load series can be
generated from
nonstationary series by
mFBM.

• QPSO shows superior
performance than PSO.

• Self-similarity exists.
• Meteorological factors

are not considered.
Dataset from Eastern
Slovakia Half-hourly

QPSO avoids
trapping into local
optima by searching
for a global solution.

FBM, PSO-mFBM,
RNN

Max, mean, median,
std. deviation

[182] 2020 GBRBM-GA
• Robustness.
• Error constraints are trained

in a precise direction.

• Computational
burden is high.

Dataset from Tianjin
power station, China 15 min

Demand-side
management is
considered

PM, ARIMA, ANN,
SVR MAPE, RMSE
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[47] 2020 SVM-IPSO

• Only relevant information
is extracted.

• Prediction accuracy is
enhanced by extracting
holiday information.

• Second-order oscillation is
used to increase the accuracy
of SVM.

• Features are chosen
artificially.

• If the price is not
considered, the
results show similar
to real value.

Dataset from the
Singapore power
market

Half-hourly Real-time electricity
price is considered.

mRMR-GA-LSTM,
BPNN,
mRMR-BPNN

MAPE, MAE, RMSE,
IA

[183] 2020 LSSVM-ELM-
GRNN-WOA

• Linear equations are used for
optimization problems.

• It shows fitting capability to
nonlinear data series.

• Meteorological factors
are not considered.

Dataset from NSW,
Australia Half-hourly

WOA is proposed to
optimize the
weighting
coefficients of the
combined model.

ARIMA, BP, GRNN AE, MAE, RMSE,
NMSE, MAPE

[184] 2020 ICEEMDAN-GWO-
MKELM

• Can extract important
information efficiently.

• Forecasting ability is
improved by optimizing the
weight and parameters of
each kernel.

• Computational
burden is high.

Dataset for NSW,
TAS, Queensland,
Victoria, SA from
AEMO

Half-hourly

GWO is used to
optimize the
parameters of the
kernel for ELM.

ICEEMDAN-ANN,
ICEEMDAN-DBN,
ICEEMDAN-ELM,
ICEEMDAN-KELM,
ICEEMDAN-RF,
ICEEMDAN-SVR

MAE, MAPE, RMSE

[185] 2020
EMD-IGOA-PCA-
ARIMA-IFPA-NN-
WT

• The important features
which are related to load
demand are selected
properly.

• IFPA is used to optimize the
weights of NN to avoid
overtraining.

• Cannot handle large
datasets.

• Features and factors
are not selected
concurrently.

Dataset from Iran’s
electricity market

IGOA is used to
select the best
features and IFPA is
used for
optimization of
weighting
coefficients.

ARIMA, ADEBPNN,
IEMDAW, TSOGA MAPE, MAE, RMSE

[186] 2019 CF-SA-FFOA-SVM

• The prediction result is
improved using the
maximum temperature as
the input variable.

• The prediction accuracy is
also enhanced by grouping
the raw data.

• Number of iterations
is low.

Gas data from
PetroChina Kunlun
Gas Ltd.

The proposed
algorithm considers
the influence of
temperature types.

PSO-SVM, BPNN,
GM, ARIMA MAPE, RMSE, MSE

[187] 2019 FNN-SCG-IBA-
DWT

• Data are selected effectively.
• NN learning accuracy is

improved.

• Computational
burden is high.

Dataset from
Portuguese National
Electricity
Transmission Grid
and New England,
USA

15 min and hourly

IBA is used for
parameter selection
over two
optimization layers.

Elman-NN, RBF-NN,
SVM,
MRMRMS-RBF,
MRMRMS-MLP,
MRMRMS-WNN

MAPE, RMSE, MAE
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[188] 2019

LMD-GSA-PSO-
WNN,
LMD-GSA-PSO-
SVM,
LMD-GSA-PSO-
BPNN

• Data-preprocessing
technique is improved.

• Extracts important
information effectively.

• Fast convergence rate.

• It is difficult to
manage the
weighting coefficients
of two different
metaheuristic
algorithms combined.

Dataset from
Queensland,
Australia

Half-hourly

Approximation of
actual values can be
done by the
proposed method,
which can be applied
to a smart grid.

LMD-GSA-BPNN,
GSA-PSO-BPNN,
LMD-PSO-BPNN,
LMD-GSA-WNN,
LMD-PSO-WNN

MAE, MAPE, RMSE,
R2, DA

[189] 2019 ELM-GA and
SVM-GS

• Performance and accuracy of
the model are enhanced.

• Redundant information is
eliminated effectively.

• The performance of
the classifiers is low. Dataset from ISO-NE

Deep-learning
methods are used to
optimize the
parameters.

LG, LM, LDA, ELM,
SVM RMSE, MAPE

[190] 2019 AS-GCLSSVM
• Input features are selected

optimally.
• Cross-validation.

• Computational
burden is high.

• Implementation is
complex.

• Nonlinear
relationships among
datasets are not
considered.

• Meteorological factors
are not considered.

Dataset from NSW,
Vitoria, Queensland. Half-hourly

The parameters of
LSSVM are
optimized by GWO
and CV.

RS-LSSVM,
PS-LSSVM,
AS-LSSVM,
PS-GCLSSVM,
AS-GCLSSVM,
RF-ANN

MAPE, MAE, R2

[144] 2019 EEMD-CSFPA-
BPNN

• Complexity is reduced bus
mooting the load series.

• CSFPA changes the fixed
frequency during the
exploration and exploitation
stage.

• The model is fully
data-driven.

• Meteorological factors
are not considered.

• Low number of
iterations.

Dataset from AEMO
and IESO

Half-hourly and
hourly

CSFPA enhances the
forecasting
performance and
helps to create initial
population and
switch probability.

Cuckoo-BPNN,
EEMD-BPNN,
WT-BPNN

MAE, RMSE, MAPE

[145] 2019 EEMD-WOA-SVM

• Uncertain and irregular
nature of the data series can
be reduced.

• Requires a few parameters
for optimization.

• Cannot predict the
same accurate results
for different datasets.

Dataset from NSW
and Queensland Half-hourly

A hybrid model is
proposed, which
consists of data
preprocessing,
parameter
optimization, and
load forecasting.

BPNN, RBFNN,
ARIMA,
EMD-PSO-BPNN,
EMD-CSO-WNN,
EMD-WOA-SVM

MAE, MAPE, RMSE,
WI, ENS, ELM
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[191] 2019 FA-SVM-SSSC

• A methodology is developed
to access the season-specific
meteorological variables.

• Seasonality effect is
integrated into the
forecasting process.

• Should have
considered the
relationship between
load data and
meteorological
variables.

Dataset from SLDC,
Assam hourly

Seasonal variables
are considered, and
FA-SVM, which is
season-specific, is
proposed.

MAPE

[192] 2019 AMBA-WNN
• The convergence rate is

higher.
• Adaptive.

• Only theoretical and
statistical
representations are
used.

• Meteorological factors
are not considered.

Dataset from a city in
China

AMBA overcomes
the problems of slow
convergence and
trapping into local
minima.

WNN, PSO-WNN,
AMPSO-WNN MAE, MAPE, RMSE

[193] 2019 H-EMD-SVRPSO

• Noise is reduced.
• Datasets can be filtered.
• Future tendencies can be

forecasted.

• When datasets exhibit
mode mixing, EMD
becomes ineffective.

Dataset from NSW,
Australia Half-hourly

The data series can
be filtered, and
future tendencies can
be forecasted by
SVRPSO.

SVR, SVRPSO,
PSO-BP, SVR-GA,
EMD-SVR-AR,
EMD-PSO-GA-SVR

MAE, MAPE, RMSE,
R

[119] 2018 IEMD-ARIMA-
WNN-FOA

• Linear and nonlinear
characteristics can be
extracted properly.

• Robust and stable.

• Can not handle long
data sequences.

Dataset from AEMO
and NYISO Half-hourly

Fitting the nonlinear
component into load
data is done by
WNN, which is
optimized by FOA.

ENN, SVM, ELM,
WTNNEA,
WGMIPSO

MAPE, MAE, MPE,
RMSE

[122] 2018 CEEMD-LSSVM-
WOA

• Easier implementation.
• Multi-step forecasting at

different time intervals is
considered to give more
future information.

• Residual noise exists.
• Spurious artifact

exists.
Load data from NSW,
Australia, Singapore Half-hourly

Wind speed, electric
load, and price are
considered.

GRNN, BPNN,
WOA-LSSVM,
EMD-WOA-LSSVM

AE, MAE, MSE,
MAPE, DA

[113] 2018 LSSVR-CQFOA

• Searching space becomes
diverse.

• Appropriate parameters are
selected effectively.

• Seasonal factors are
not considered.

• Computational
burden is high.

• Results are
reproduced.

Dataset from IDAS
2014 [194] and
GEFCOM 2014 [195]

Hourly

FOA can avoid local
minima by
implementing a
chaotic global
perturbation strategy

LSSVR-CQPSO,
LSSVR-CQTS,
LSSVR-CQGA,
LSSVR-CQBA,
LSSVR-FOA,
LSSVR-QFOA

RMSE, MAE

[120] 2018 EEMD-ARIMA-
CPSO

• Robust model.
• Convergence rate is high.
• Noise is reduced.
• Population diversity is

improved.

• Residual noise exists.
• The accuracy of the

result is affected by
adding white noise.

Dataset from Shanxi,
China Half-hourly

Computational
speed and prediction
accuracy are
improved by CPSO.

ARMA, ARIMA,
EMD-ARIMA RMSE, MAE, MAPE
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Table 7. Cont.

Reference Year Algorithm Advantages Limitations Test Set Input Resolution Contribution Compared Methods Evaluation
Indicators

[124] 2018 CEEMDAN-MGWO-
SVM

• Robust model.
• Search space is enhanced.
• Residual noise can be

effectively reduced.

• Computational
burden is high.

Dataset from Hebei
Province, China

The parameters of
SVM are optimized
by MGWO which
will enhance the
global search ability.

EEMD-MGWO-
SVM, MGWO-SVM,
GWO-SVM, SVM,
BPNN

RE, MAPE, R22

[196] 2018 GA-FL and AC-FL

• Flexible working
environment is provided.

• Forecasting conditions do
not depend on training
datasets.

• During the
low-temperature
period, the
optimization process
becomes inactive.

Dataset from
National Load
Dispatch Center

Hourly

GA-FL and AC-FL
can deal with
knowledge
complexity.

MAPE

[126] 2018 GOA-SVM

• Can handle nonlinear
datasets.

• Prediction accuracy is higher.
• Fewer parameters must be

adjusted.

• Season-specific
factors are not
considered.

• Computational
burden is high.

• Cannot handle large
datasets.

Dataset from SLDC,
Assam, India

Regional climate
factors that impact
the load data are
considered here.

GA-SVM, PSO-SVM MAPE

[197] 2017
ANN-GA,
ANN-PSO,
ANN-CSA, ANN-BA

• ANN-GA gives a better
solution for fewer iterations.

• ANN-PSO performs better
than GA as the position of
particles is updated.

• ANN-CSA performs better
than GA and PSO.

• ANN-BA shows the fastest
convergence rate among
these four.

• Number of iterations
is not large.

Dataset from Xintai
power plant, China Hourly

ANN is trained by a
back-propagation-
based metaheuristic
method.

Percentage of error

[131] 2017 SVR-CQGA

• Can work with nonlinear
datasets.

• Population diversity is
enhanced.

• Can not handle long
data series.

• Meteorological factors
are not considered.

Dataset from
Taiwan’s regional
electricity company
[198] and GEFCOM
2014 [199].

hourly

Search space is
enlarged by
integrating cat
function and
quantum mechanics.

SVR-QGA,
SVR-CQTS,
SVR-QTS,
SVRCQPSO,
SVRQPSO

MAPE, MSE, RMSE,
MAE

[117] 2017 EMD-PSO-GA-SVR

• Adaptive to different
datasets.

• Volatility of SVR is reduced.
• Generalization capability is

enhanced.

• Is prone to mode
mixing.

Dataset from NYISO,
USA, and NSW,
Australia

hourly

The hybrid model
shows a generalized
capability in load
forecasting while
dealing with
different types of
data.

SVR, SVRPSO,
SVR-GA, AFCM MAPE, RMSE, MAE
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Table 7. Cont.

Reference Year Algorithm Advantages Limitations Test Set Input Resolution Contribution Compared Methods Evaluation
Indicators

[127] 2017 CSA-SSA-SVM

• Nonlinear datasets are
handled properly.

• Parameters are not selected
artificially.

• Noise effects are eliminated.

• Meteorological factors
are not considered.

• Can not handle large
data sequences.

Dataset of NSW,
Australia

Half-hourly,
hourly

CS algorithm can
train non-noisy
datasets to construct
an SVM model.

SVM, CS-SVM,
SSA-SVM, SARIMA,
BPNN

MAE, MSE, MAPE

[132] 2017 SDPSO-ELM
• Can avoid overtraining

problems.
• Can avoid redundant nodes.

• Computational
burden is high.

• Meteorological factors
are not considered.

Dataset from Fujian
province, China

The proposed
method can avoid
overtraining
problems and
unnecessary nodes.

RBFNN MAPE, MAE

[130] 2016 SVRCQPSO

• Search space is enhanced by
applying quantum
mechanics.

• Generalization capability is
enhanced.

• Prediction accuracy is
not guaranteed for
new datasets.

• Premature
convergence is not
fully avoided.

Dataset from four
regions of Taiwan
[198], GEFCOM 2014
[199].

Hourly

A hybrid model is
proposed with a
chaotic mapping
function and
quantum
metaheuristic
algorithm.

ARIMA, BPNN,
SVRPSO, SVRCPSO,
SVRQPSO, SVRCGA

MAPE

[129] 2016 DEMD-QPSO-SVR-
AR

• Instability impact is solved.
• Satisfactory parameter

solutions are achieved.

• Low iteration number
is used.

• Computation burden
is high.

Dataset from NSW,
Australia, and
NYISO, USA

Half-hourly
To optimize the
parameters of SVR,
QPSO is used.

ARIMA, BP-ANN,
GA-ANN,
EMD-SVR-AR,

MAE, RMSE, MAPE

[116] 2016 EMD-SVRPSO

• Computational complexity
does not depend on input
variables.

• Generalization capability is
enhanced.

• Cannot handle large
datasets.

• Prone to mode
mixing.

• Sensitive to noise.

Dataset from
SGHEPC, China

A hybrid model is
proposed for the
residential dataset.

EMD-SVR, PSO-SVR,
SVR

RMSE, MAE, MAPE,
VAPE

[112] 2016 SVR-CQTS

• Search space is enhanced.
• Easy to implement.
• Population diversity is

improved.

• Cannot handle large
datasets.

• Sensitive to noise.

Dataset from
Taiwan’s regional
electricity company
[130,198].

To improve the
forecasting accuracy,
quantum mechanics
is applied with Tabu
Search to enhance
the tabu memory.

SVR-QTS,
SVRCQPSO,
SVRQPSO,
SVR-CPSO, SVRPSO

MAPE

[111] 2015 SSVR-CCSA

• Discrete nature of the
temperature annealing
process is avoided.

• Seasonal mechanism is used
to align with the electric
load.

• Cannot handle large
datasets.

• Sensitive to noise.
• Depends on the initial

value.

Dataset from
Northeast China and
NYISO, USA [200]

monthly

Premature
convergence can be
avoided by cat
mapping function
and cyclic effects can
be adjusted through
seasonal mechanism.

ARIMA, SSVR-SA,
BPNN, SVR-SA,
SVR-CSA

MAPE
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Table 7. Cont.

Reference Year Algorithm Advantages Limitations Test Set Input Resolution Contribution Compared Methods Evaluation
Indicators

[123] 2014 PSO-SVM

• Switching events are
detected when required data
are available.

• Significant changes in
temperature are identified
properly.

• Tends to trap local
optima.

• Low convergence
rate.

Dataset from
Burbank Utility, USA Hourly

Temperature
sensitivity is
considered here.

Classical method MAPE

[115] 2014 EMD-EKF-KELM-
PSO

• Can handle nonlinear and
nonstationary datasets.

• Meteorological factors are
considered.

• Can not handle long
datasets.

• Sensitivity to noise.

Residential and
commercial load data
of Zhejiang Province,
China

Hourly

A hybrid method
with parameter
optimization is
proposed by
designing offline
optimization and
online forecasting.

KELM MAPE

[105] 2013 SSVR-CGSA

• Seasonal mechanism is
added.

• Current best solution is
refined.

• Can not handle long
datasets.

• Prone to noise effect.

Dataset from
Northeast China
[201].

Monthly

The proposed
methods can handle
non-historical
climate change
datasets.

ARIMA, SVR-CGA MAPE
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11. Review Findings and Recommendations

The article considers the growing interest of researchers in the field of load forecasting
combined with metaheuristic algorithms. After a careful review of the existing literature,
the following findings are discussed here:

• The accuracy and reliability of a forecasting method depend on the input data series.
Accessing datasets is a challenging task. Some of the studies have used historical
datasets such as from AEMO, ENTSO-E, and NYISO, and some have used real datasets
from the power grid. However, with the growth of penetration of renewable energy
sources, the datasets are changing, and the developed model should be able to forecast
these changes. To increase the robustness of STLF models, smart meter or social
media data source provides an opportunity for new data sources. Machine-learning
algorithms can be applied to identify the relevant data sources to develop forecasting
models in the future.

• It has been found that the combined framework predicts results more accurately than
individual ones. This is due to the hyperparameters tuning. Therefore, hyperparame-
ters play a crucial role in increasing prediction accuracy. However, there is a lacking
of exploring different metaheuristic algorithms for this parameter tuning. More al-
gorithms should be explored, such as fruit-fly and flower pollination, differential
evolution, etc., to check their efficacy in tuning hyperparameters correctly.

• The developed model should be universal as well as adaptive such as it should work
on any datasets that are given as inputs. These models should adapt to any changes
in the energy system conditions. However, it is difficult to assess the validity of a
model based on a particular dataset. A comparison should be made with the other
state-of-the-art methods on a particular dataset.

• Evaluation indices such as MAE, MAPE, MSE, and RMSE can be used to evaluate the
prediction accuracy of the models.

• Meteorological factors such as temperature, wind speed, and humidity play an impor-
tant part in the load dataset. Most of the literature ignores the weather information.
Only a handful of them did weather forecasting. If weather information from the
different meteorological bureaus can be found, then it would be useful to incorporate
that information into weather data.

• Single predictive models are prone to premature convergence and trapping to local
solutions. It is found in the literature that a hybrid or combined model can overcome
these drawbacks. In addition to that, these hybrid models have shown improved
performance efficiency and accuracy. Further research can focus on improving these
hybrid models to incorporate more input features and other challenges faced by STLF.

• As mentioned earlier, most of the works are based on historical datasets. Very little
work is carried out at the low-voltage distribution network level. In this case, the
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forecasting model will have to deal with very volatile datasets. Again, data privacy
could be an issue as well.

• Another problem with the dataset is the quality issue, which involves missing data,
measurement problems, etc. Prediction accuracy is impacted by data quality issues.
Further studies can assist in developing models that can deal with missing data or
measurement errors.

• The load data series can be of different time scales such as daily, weekly, etc.; these
also include seasonal patterns. Future research should focus on developing models
that can train datasets on multiple time scales.

• Artificial intelligence-based methods have been widely used in the existing literature
rather than statistical models because of their data processing and feature extraction
capabilities. Further studies can investigate advanced-level deep-learning methods to
handle a large number of datasets that contain different input features.

• Load data contains nonlinear and nonstationary data series. Statistical models cannot
handle the nonlinear and nonstationary behavior of these datasets. As a result, they
assume that the input data are linear and stationary. Future research can explore the
development of more flexible statistical models that can handle the nonlinearity of data.

• Real-time load forecasting becomes a necessity to increase the accuracy and timeliness
of a forecasting model. Online learning algorithms can create a path for real-time data
acquisition when it becomes available and adjust the forecasting result accordingly.
Further studies can focus on developing learning algorithms that can work online.

• Most of the forecasting models act like black boxes which means they are difficult to
interpret. However, interpretability is an important factor that can help the power
industry to have an insight into the elements that drive the prediction and make deci-
sions about resource allocation. Therefore, future research can explore the algorithms
that are easier to interpret and understand.

• Electricity demand depends on consumer behavior, environment, etc. which can influ-
ence the prediction results. Therefore, it is important to incorporate this knowledge
information into the forecasting model to improve the accuracy and diversity of the
results. Further research can be undertaken to investigate the sophisticated models to
integrate this information as input features.

• The Particle Swarm Optimization algorithm has gained popularity among all the
other metaheuristic algorithms. The recent advancement in other algorithms should
be explored, such as differential algorithms and generalized normal distribution
optimization algorithms to have a fast convergence rate.

12. Conclusions

To improve the accuracy of the forecasting techniques, researchers have worked on
numerous single and hybrid predictive models. This article has presented a comprehensive
survey of the existing state-of-the-art methods used for short-term load forecasting, which
include metaheuristic algorithms. The hybrid models are found to be more efficient
than the single models. The metaheuristic algorithms optimize the parameters of the
single models to minimize the prediction error percentage. An analysis of different data-
decomposition methods and deep-learning methods is summarized. The hyperparameters
of the deep-learning models are identified and their interdependencies have been discussed.
Furthermore, a quantitative analysis is presented on the most commonly used metaheuristic
algorithms, which include their advantages, disadvantages, and solving capability of a
problem. Every algorithm has its own advantages and limitations based on accuracy, speed,
efficiency, etc. Their applications depend on the rate of speed, data size, and parameter
setting. However, the Particle Swarm Optimization algorithm is found to be widely used
in existing literature. Genetic algorithms are also seen to be used in some articles. A huge
gap is still prevalent in the existing literature on the usage of recently used metaheuristic
algorithms in other applications. Advanced algorithms, such as differential evolution and
generalized normal distribution optimization algorithms, can be used for future work.
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Again, the developed model should be universal to cope with any dataset. Most of the
previous works are based on historical datasets. If researchers can use real-world data to
check the validity of a forecasting model, it would be more valuable for the power industry.
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Nomenclature

SSA Singular spectrum analysis ENTSO-E
European Network of Transmission System Operators for
Electricity

VSTLF Very short-term load forecasting ABC Artificial bee colony
STLF Short-term load forecasting RFR Random forest regression
MTLF Medium-term load forecasting GBRBM Gauss–Bernoulli restricted Boltzmann’s machine
LTLF Long-term load forecasting PM Persistence model
LSTM Long short-term memory FCRBM Factored conditional restricted Boltzmann machine
AEMO Australian energy market operator GWDO Genetic wind-driven optimization
MSE Mean square error MI-ANN Mutual information-based artificial neural network

RMSE Root mean square error
AFC-
ANN

ANN-based accurate and fast converging

MAE Mean absolute error mRMR Minimal redundancy maximal relevance
APE Absolute percentage error ISO-NE Independent System Operator New England
MAPE Mean absolute percentage error GS Grid Search
NRMSE Normalized root mean square error RNN Ridgelet neural network
SVM Support vector machines ENN Elman neural network
GRU Gated recurrent units MHNN Modified hybrid neural network
CNN Convolutional neural networks BFA Bacterial foraging algorithm
ELM Ensemble learning machine GSA Gravitational search algorithm
Bi-
LSTM

bidirectional LSTM DA Direction accuracy

MLP Multilayer perceptron STD Standard deviation
SVR Support vector regression LSSVR Least-squares support vector regression

MRFO Manta ray foraging optimization CEEMDAN
Complete ensemble empirical mode decomposition
adaptive noise

LR Linear Regression SVRCQPSO
support vector regression with chaotic quantum particle
swarm optimization

SCG Scaled Conjugated Gradient DEMD Differential empirical mode decomposition
AE Autoencoder NYISO New York Independent System Operator
R Correlation coefficient GEFCOM Global Energy Forecasting Competition
GWO Gray wolf optimization SGHEPC State Grid Handan Electric Power Company
ANN Artificial neural network WOA Whale optimization algorithm
FPA Flower Pollination FTS Fuzzy time series
RF Random Forest FOA Fruit-fly optimization algorithm
MGF Mean generating function IDAS Island data acquisition system
RSM Response surface method TS Tabu search
MAD Mean absolute deviation ANYISO American New York Independent System Operator
BPNN Back-propagation neural network CSA Cuckoo search algorithm
EEMD Ensemble empirical mode decomposition SARIMA Seasonal autoregressive integrated moving average
CV Coefficient of variation DBN Deep belief network
VMD Variational mode decomposition LSSVM Nonlinear least square support vector machine
WNN Wavelet neural network GRNN Generalized regression neural network
GA Genetic algorithm PSO Particle swarm optimization
SCA Sine cosine algorithm
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