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Abstract: This paper presents a probabilistic model for various machine learning (ML) applications.
While deep learning (DL) has produced state-of-the-art results in many domains, DL models are
complex and over-parameterized, which leads to high uncertainty about what the model has learned,
as well as its decision process. Further, DL models are not probabilistic, making reasoning about their
output challenging. In contrast, the proposed model, referred to as Yet Another Discriminate Analy-
sis(YADA), is less complex than other methods, is based on a mathematically rigorous foundation,
and can be utilized for a wide variety of ML tasks including classification, explainability, and uncer-
tainty quantification. YADA is thus competitive in most cases with many state-of-the-art DL models.
Ideally, a probabilistic model would represent the full joint probability distribution of its features,
but doing so is often computationally expensive and intractable. Hence, many probabilistic models
assume that the features are either normally distributed, mutually independent, or both, which can
severely limit their performance. YADA is an intermediate model that (1) captures the marginal
distributions of each variable and the pairwise correlations between variables and (2) explicitly maps
features to the space of multivariate Gaussian variables. Numerous mathematical properties of the
YADA model can be derived, thereby improving the theoretic underpinnings of ML. Validation of
the model can be statistically verified on new or held-out data using native properties of YADA.
However, there are some engineering and practical challenges that we enumerate to make YADA
more useful.

Keywords: machine learning; explainability; probabilistic model; synthetic data; uncertainty quantification

MSC: 68T01; 68T37; 62H05

1. Introduction

Deep learning (DL) has achieved state-of-the-art results in several domains [1–4]. How-
ever, DL techniques produce very complex models due to the large number of parameters
and nonlinear relationships that are represented, making them difficult to interpret [5],
susceptible to adversarial manipulation [6,7], and overconfident in their predictions [8,9].
As DL is being considered in more high-consequence domains, several research fields
are emerging, including explainability [10,11], ethical AI [12], and uncertainty quantifi-
cation [13,14], to quantify the risks associated with using DL. Herein, we examine the
application of a probabilistic model that is straightforward, can be used for a wide variety
of ML tasks, including classification, explainability, and uncertainty quantification, and is
competitive in most cases with many state-of-the-art DL models. The proposed probabilis-
tic model represents both the marginal distributions and pairwise correlations from the
dataset, and is an extension to similar models in engineering disciplines [15,16] and the
Gaussian copula in finance [17–19], medicine [20,21], geomechanics [22], climate [22–24],
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and astronomy [25]. The use of copulae in machine learning has thus far been limited; for
example, ML classification has been studied [26].

Often in ML applications, the input features are modeled (at least theoretically) as
random variables. However, DL does not produce probabilistic models, making rea-
soning about their outputs and quantifying their uncertainty challenging [27]. Bayesian
neural networks seek to build probabilistic models, but they are expensive to train and
increase the overall complexity of the model [28]. In problems of practical interest, the
features/variables are interdependent, often times in very complex ways, and the full joint
distribution function is required to correctly represent them. However, calculating and
implementing a model for the full joint distribution from data are not feasible, even with a
relatively small number of features. One solution that is often pursued is to assume that
the features are mutually independent, so that the joint distribution is equal to the product
of the marginal distributions, which can easily be estimated from data. This assumption is
very limiting and can lead to poor results.

We present a model that captures the marginal distributions and pairwise correlations
from the dataset, referred to as Yet Another Discriminant Analysis or YADA, which can
be viewed as an intermediary step between modeling just the marginal distributions and
modeling the full joint distribution. A list of benefits of YADA includes the following:

• YADA is less complex than other methods and yet is based on a mathematically
rigorous foundation. It is straightforward to derive, for example, joint distributions,
joint likelihood functions, joint entropy, and K-L divergence, among others.

• YADA can represent continuous or discrete-valued features with arbitrary marginal
distributions, i.e., the normality assumption is not required.

• Pairwise correlations between features are well represented, i.e., an assumption of
mutual independence is not required.

• Given an unlabeled test point, YADA can be used to assess the joint likelihood that the
point came from any of the relevant classes. If the likelihood of the point is sufficiently
small for all classes, this is an indication that this point is out of distribution and any
predicted label should not be trusted. This can be used as a measure for confidence in
the prediction that is lacking in standard ML.

• YADA has the ability to utilize the empirical distribution combined with an extrapola-
tion model for the left and right tails for more refined feature modeling.

• The YADA model provides a mapping between the feature space and the space of
multivariate normal (MVN) random variables, which can be very useful because many
calculations are straightforward in the MVN space.

• YADA provides ML explanations based on the marginal likelihood for each feature,
and can be used to create realistic synthetic data to address, for example, class and/or
feature imbalance.

YADA is an extension to the Gaussian copula due to its use for explainability, out-
of-distribution detection, prediction confidence, refined feature modeling, and synthetic
data generation. While there have been some limited studies of Gaussian copulae for ML
applications, we believe this paper to be the first survey in the broad use of the approach
and inspire future research in this area.

Despite these benefits, YADA has several limitations. First, it can be less accurate
for classification than large, complex DL models. Second, YADA captures only marginal
distributions and pairwise correlations among features. Higher-order information, such as
the full joint distribution, may not be captured accurately. Further, YADA operates only
on the known feature vector (as opposed to DL models, which can learn their own set of
features through the layers of the network). We view YADA as a first step to providing a
theoretic model that would be suitable for high-consequence applications. Future work
would address these short-comings of YADA to improve its performance goals.

The outline of our paper is as follows. The YADA model is described in detail in
Section 2, with subsections on definitions and model properties. YADA for machine learn-
ing applications is presented in Section 3, with sections on training, synthetic data gener-



Mathematics 2024, 12, 3392 3 of 25

ation, classification, and uncertainty estimation; some of these topics require additional
details, which are presented in the attached Appendices. Some concluding remarks and
thoughts about future work are provided in Section 4. Examples with commonly available
datasets are provided throughout the discussion to further illustrate the approach.

2. The YADA Model

Let x = (x1, . . . , xd)
T denote a vector of d ≥ 1 features with the corresponding

class label y ∈ {0, . . . , κ − 1}, where κ denotes the number of classes. Often, in machine
learning applications, the features are modeled as random variables; we use the notation
X = (X1, . . . , Xd)

T to represent a vector of random variables used to model the feature
vector x. In this section, we present a probabilistic model for X, which we call Yet Another
Discriminant Analysis (YADA), that can be used to represent correlated features with
arbitrary marginal distribution.

The main premise behind the YADA model is to represent each feature as a function h
of a standard normal or Gaussian random variable. This allows for the marginal distribution
of each feature to be controlled by the functional form of h, while the correlation of the
underlying d Gaussian random variables controls the correlation between features. Both
continuous and discrete-valued features can be modeled in this way.

Hence, the YADA model captures the pairwise correlations and marginal distributions
from the dataset of interest. Many probabilistic models assume that the features are either
normally distributed, mutually independent, or both, which can limit their performance
(see Figure 1). While YADA does not have these limitations, it is important to acknowledge
that there is no guarantee that higher-order information, such as joint distributions of any
two or more features, will be represented accurately.

Figure 1. How YADA compares with other discriminant methods.

The definition of the YADA model is presented in Section 2.1, followed by a derivation
of some properties of the model in Section 2.2. Examples using standard machine learning
datasets are included throughout for demonstration.

2.1. Definition

We define the YADA model in this section. We start with a single continuous feature
to simplify the discussion, then generalize the model to the case of two or more features
that can be continuous or discrete.

2.1.1. Single Feature

Consider first the case of a single feature x = x, and let X be a continuous random
variable that represents a model for x. Further, let G ∼ N(0, 1) denote a standard normal or
Gaussian random variable with zero mean, unit variance, and probability density function
(pdf) ϕ(u) = (1/

√
2π)e−u2/2, −∞ < u < ∞. The proposed YADA model for feature x is

given by

X = h(G) = F−1(Φ(G)), (1)
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where F is an arbitrary cumulative distribution function (cdf) and Φ(z) =
∫ z
−∞ ϕ(u)du

denotes the cdf of G. Because F and Φ are both cdfs (monotonic functions), h = F−1 ◦ Φ is
invertible, that is,

G = h−1(X) = Φ−1(F(X)). (2)

We can therefore interpret G defined by Equation (2) as the Gaussian image of X.
In general, the functional form of h is nonlinear so that X defined by Equation (1) is a

non-Gaussian random variable, and it is simple to show that F is actually the cdf of X. This
follows because

Pr(X ≤ a) = Pr(h(G) ≤ a) = Pr(G ≤ Φ−1(F(a))) = Φ(Φ−1(F(a))) = F(a).

For example, let X be an exponential random variable defined by cdf F(x) = 1 − e−λx,
x ≥ 0, where λ > 0 is a parameter. By Equation (1), X can be expressed as h(G) =
−(1/λ) ln(1− Φ(G)) because F−1(y) = −(1/λ) ln(1− y) is the inverse cdf of X. Similarly,
X = h(G) = a + (b − a)Φ(G), with a < b, is a uniform random variable on the interval
[a, b]. These examples are illustrated in Figure 2. On the left is a histogram of 10,000 samples
of a standard Gaussian random variable G. These samples can be mapped to samples
of an exponential or uniform random variable using the mapping function, h, described
above. The model defined by Equation (1) is referred to as the Nataf transformation [29] or
translation random variable [15].

Figure 2. Histograms of random samples of exponential and uniform random variables from samples
of a standard Gaussian variable using Equation (1).

2.1.2. Two or More Features

Next, consider the more general case of d > 1 continuous features. The YADA model
for the ith feature is given by

Xi = hi(Gi) = F−1
i (Φ(Gi)), i = 1, . . . , d, (3)

where each Gi ∼ N(0, 1) is a normal or Gaussian random variable with zero mean and unit
variance, and each hi is an invertible function. The Gaussian variables {G1, . . . , Gd} are
correlated and have joint pdf:

ϕd(u1, . . . , ud; c) = ϕd(u; c) = (2π)−d/2 det(c)−1/2 e−1/2(uT c−1u) (4)
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where c = {E[Gi Gj]} is a d × d correlation matrix with determinant det(c); Equation (4)
is also referred to as the multivariate normal pdf. Note that c is symmetric and positive
definite with ones on the diagonal. The model described by Equation (3) is referred to as a
translation random vector [16] and Gaussian copula [17].

The inverse of Equation (3) is given by Equation (2) with the addition of subscript i
and provides the marginal distribution for Gi, the Gaussian image of Xi. However, when
applying this inverse mapping, there is no guarantee that the collection {G1, . . . , Gd} will
be jointly Gaussian.

The connection between the feature space and the space of multivariate Gaussian
random variables is an important property of the YADA model, and one that is exploited in
the following sections for classification, synthetic data, and other applications. To further
illustrate this connection, consider Figure 3, which illustrates two features X1 and X2
mapped to two correlated Gaussian variables G1 and G2; the marginal histograms are also
shown. The data can be mapped back and forth from the two spaces using Equation (3)
and its inverse. These data came from the phoneme dataset [30].

Figure 3. The connection between the feature space (left) and the space of multivariate Gaussian
random variables (right) for the phoneme dataset [30], where Xi and Gi, i = 1, 2, are defined by
Equation (3).

Throughout this section, we have assumed continuous-valued features/random vari-
ables. Discrete-valued features can be modeled as discrete random variables and, with some
modifications, can be handled in the same manner; see Appendix A for additional details.

2.2. Properties

We next derive some properties of the YADA model, such as the correlation matrix
and joint distribution functions of (X1, . . . , Xd). As mentioned in the previous section,
there is a direct connection between the features {Xi} and their Gaussian images {Gi}; see
Equation (3). It follows that many of the properties of {Xi} can be expressed in terms of
the well-known properties of {Gi}.
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2.2.1. Marginal Distributions

The marginal cdf and pdf of Xi, the model for the ith feature, define the probability
distribution of the ith feature independent of the others. They can be expressed in terms
of Φ and ϕ, the cdf and pdf of a standard univariate Gaussian random variable. This
relationship is

Fi(xi) = Φ(wi(xi)) (5)

and

fi(xi) =
d

dxi
Fi(xi) =

∣∣∣∣ d
dx

wi(xi)

∣∣∣∣ϕ(wi(xi)), (6)

where we have introduced function wi(x) = h−1
i (x) for notational convenience. Functions

Fi and fi defined by Equations (5) and (6) are the marginal cdf and pdf, respectively, of
non-Gaussian random variable Xi.

2.2.2. Joint Distribution

The marginal distributions are not sufficient to define a collection of two or more
random variables; we need the joint distribution to perform this. Next, let

F(x1, . . . , xd) = Pr(X1 ≤ x1, . . . , Xd ≤ xd)

denote the joint cdf of all d features X1, . . . , Xd. It follows that the joint pdf of X1, . . . , Xd
can be expressed in terms of the d-variate normal pdf (Equation (4)), i.e.,

f (x1, . . . , xd) =
∂d

∂x1 · · · ∂xd
F(x1, . . . , xd)

=

∣∣∣∣∣ d

∏
i=1

d
dxi

wi(xi)

∣∣∣∣∣ϕd(w1(x1), . . . , wd(xd); c)

=
d

∏
i=1

(
fi(xi)

ϕ(wi(xi))

)
ϕd(w; c), (7)

where w = (w1(x1), . . . , wd(xd))
T and the last line follows from the results in Appendix B.

Hence, the joint pdf of X1, . . . , Xd is the product of their marginal distributions and the
joint pdf of G1, . . . , Gd.

As mentioned in the introduction, the YADA model works by capturing the pairwise
correlations and marginal distributions of the dataset of interest. However, the joint pdf
as imposed by Equation (7) may not be sufficient to represent the true joint distribution of
the underlying data. This should be considered when building the YADA model and is a
trade-off between more complex models.

To demonstrate the joint distribution of a YADA model, we consider a simple example.
Let

X1 = h1(G1) = 2 + eG1

X2 = h2(G2) = 2 + e1/2+G2

be the YADA model for d = 2 features, where G1 and G2 are correlated Gaussian variables
with E[G1 G2] = −0.2. Features X1 and X2 are correlated and each has a log-normal
marginal distribution. Contours of f (x1, x2), the joint pdf of (X1, X2)

T , are illustrated by
the right panel in Figure 4; the left panel illustrates contours of ϕ2(u1, u2), the joint pdf of
(G1, G2)

T , i.e., the Gaussian image of (X1, X2)
T . Again, the connection between these two

functions is defined by Equation (7) with d = 2.
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Figure 4. Contours of the joint pdf of (G1, G2) (left) and (X1, X2) (right).

2.2.3. Pairwise Correlations

The correlation between two features Xi and Xj can be expressed in terms of cij =
E[Gi Gj], the correlation between their Gaussian images, i.e.,

E[Xi Xj] = E[hi(Gi) hj(Gj)] =
∫
R2

hi(u) hj(v) ϕ2

(
u, v;

(
1 cij
cij 1

))
du dv, (8)

where E[A] denotes the expected value of random variable A, and ϕ2 is the bi-variate
normal pdf with zero mean defined by Equation (4) with d = 2. It is typically not possible
to further simplify the relationship between E[Xi Xj] and E[Gi Gj].

We note that there is no guarantee that the resulting matrix {E[Xi, Xj]} constructed
from these correlations will be positive semi-definite, as is required for it to be a valid
correlation matrix. This issue has been studied extensively (see [16,31], Section 3.1) and
some solutions have been suggested, e.g., [32]. However, this is a not an issue in our
case because, as will be described in Section 3.1, we compute the correlation matrix of
the Gaussian image of the data, which is guaranteed to be positive semi-definite [33]
(Chapter 7).

2.2.4. Likelihood Functions

The likelihood function can be used to measure how well the YADA model explains
observed data; we can define a marginal likelihood function for data on a single feature, as
well as a joint likelihood for all features in the dataset. The marginal log-likelihood function
is the log of the marginal pdf defined by Equation (6), i.e.,

ln( fi(x)) = ln
(
|w′

i(x)|
)
− 1

2

(
ln(2π) + wi(x)2

)
. (9)

The joint log-likelihood function follows from Equation (7) and can be expressed as

ℓ(x) = ln( f (x)) =
d

∑
i=1

ln
(

fi(xi)

ϕ(wi(xi))

)
+ ln(ϕd(w; c))

=
d

∑
i=1

ln( fi(xi))−
d

∑
i=1

ln(ϕ(wi(xi)))

− 1
2

(
ln(det(c) + wTc−1w + d ln(2π)

)
. (10)

Note that the first two terms in Equation (10) are the log of the marginal likelihood function
for feature Xi and its Gaussian image, and the third term is the log-likelihood function of
the d-variate normal distribution with zero mean.
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2.2.5. Conditional Distributions

We can also derive the distribution of a conditional YADA model, which can be useful
when the values of some of the features are known and fixed. Let the feature vector be
partitioned as

(X1, . . . , Xd)
T = (Y1, . . . , Ym, Zm+1, . . . , Zd)

T =

(
Y
Z

)
where the features have been re-ordered such that any with known fixed values are collected
into vector Z, and the remaining m ≤ d features are random variables and collected into
vector Y. The joint pdf of Y, given that Z = z is known and fixed, can be obtained by
exploiting the well-known property that conditional Gaussian variables also follow a
Gaussian distribution [31] (Appendix C), that is,

fY|Z(y|z) =
f (x)
fZ(z)

=
m

∏
i=1

(
fi(yi)

ϕ(wi(yi))

)
ϕm

(
wY; cYZ c−1

ZZ wZ, cYY − cYZ c−1
ZZ cT

YZ

)
, (11)

where

c =

(
cYY cYZ
cT

YZ cZZ

)
, wY = (w1(z1), . . . , wm(zm))

T , and wZ = (wm+1(zm+1), . . . , wd(zd))
T .

2.2.6. Entropy and K-L Divergence

Some information on the theoretic properties of the YADA model can also be estab-
lished. The (differential) joint entropy of a YADA model is given by

−
∫
Rd

f (x) log f (x)dx, (12)

where f is the joint pdf defined by Equation (7), and log f (x) can be obtained from Equa-
tion (10).

Suppose that we have two YADA models with joint pdfs f (i) and f (j); the relative
entropy or Kullback-Liebler (K-L) divergence is a type of statistical distance between the
two models. The K-L divergence of model i from reference model j is given by

dKL(i, j) =
∫

Rd
f (i)(x) log

(
f (i)(x)
f (j)(x)

)
dx. (13)

Using Equations (7) and (10), we have

dKL(i, j) =
∫

Rd

d

∏
k=1

(
f (i)k (xk)

ϕ(w(i)
k (xk))

) d

∑
k=1

ln

 f (i)k (xk)

f (j)
k (xk)

+ ln

ϕ(w(j)
k (xk))

ϕ(w(i)
k (xk))

−

1
2

ln

(
det(c(i))
det(c(j))

)
− 1

2
(w(i))T(c(i))−1w(i)+

1
2
(w(j))T(c(j))−1w(j)

]
ϕd(w

(i); c(i))dx, (14)

where c(i) and w(i) represent covariance matrix c and vector w defined above for model i.
The K-L divergence is not symmetric, meaning that dKL(i, j) ̸= dKL(j, i) in general.

Equation (14) may be difficult to compute in practice, but there is an alternative.
Because of the connection between each feature and its Gaussian image, i.e., Equation (3),
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we can also compute the K-L divergence in the space of multivariate normal random
variables as

dKL(i, j) =
1
2

(
tr
(
(c(j))−1c(i)

)
− ln

(
det(c(i))
det(c(j))

)
− d

)
, (15)

where tr(c) denotes the trace of matrix c, and d is the number of features.

3. YADA for Machine Learning

In this section, we discuss using the YADA model in the context of machine learning
applications. The topics of training a YADA model and utilizing it for classification are
presented in Sections 3.1 and 3.2, respectively. As described in Section 3.3, explanations for
predicted labels can also be provided; a separate model for explainability is not needed.
An approach for assessing confidence in ML model predictions with YADA is presented in
Section 3.4, and Section 3.5 contains a discussion on creating synthetic data from a trained
YADA model. Examples using standard machine learning datasets are included throughout
for demonstration.

3.1. Training

Suppose we have training data {(x, y)j, j = 1, . . . , n}, where each x = (x1, . . . , xd)
T

is a vector of d features, and each y ∈ {0, . . . , κ − 1} is a class label. In this section, we
describe how a YADA model can be trained with these data, that is, how the data can be
used to learn the functions h1, . . . , hd and the correlation matrix c defined by Equations (3)
and (4), respectively.

We first partition the training data per class, then train κ YADA models, one for each
class. Each model represents the probability distribution for a single class; we are not
modeling one class versus all of the other classes. For each class, we follow five steps
for training:

1. Estimate Fi, the marginal cdf for each of the d features. This can be performed,
for example, using the empirical cdf or kernel-based methods such as the kernel
density estimator with a Gaussian kernel. The former is appropriate if it is especially
important to maintain the support of each random variable observed in the data,
while the latter is important if interpolation within and extrapolation beyond the
support of the observed data are desired. Further, YADA has the ability to use the
empirical cdf combined with an extrapolation model for the left and right tails; see
Appendix C.

2. Estimate the corresponding inverse marginal cdf for each feature. If a kernel density
estimator was used for the previous step, we can solve for the inverse using, for
example, interpolating spline functions.

3. Compute the Gaussian image of each feature in the training set using Equation (2);
this will produce n samples of a random vector that we assume follows a d-variate
normal distribution.

4. Compute the sample covariance matrix c of the data produced in the previous step.
5. Compute the inverse and log-determinant of c. In practice, we compute the pseudo-

inverse and pseudo-determinant to handle any numerical issues caused by collinearity
in the data. For any features with zero variance, IID Gaussian noise with small
variance can be added to the data.

As mentioned, we first partition the training data per class, then train κ YADA models,
one for each class. This approach is useful when applying YADA for classification, where it
is necessary to evaluate the likelihood that a test point comes from the YADA model for
each of the labels; this will be discussed in Section 3.2. As in other ML methods, the quality
of the model depends on the quality and amount of the training data. If data of one class
outnumber those of another class, YADA models for any underrepresented classes will
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have lower quality. However, the amount of data required by YADA is significantly less
than that typically required for DL models.

It is possible to instead train a single YADA model to all of the data regardless of class
label. As discussed in Section 3.5, this approach is useful for synthetic data generation
when, in addition to producing synthetic data on features alone, we also want to produce
synthetic data on the corresponding labels.

Once trained, comparing the YADA models can provide useful information about how
well separated the training data are among the different classes. This measure can provide a
baseline for trustworthiness; if the classes are close together and hence difficult to separate,
we should perhaps be skeptical of any predictions by ML models trained on these data.
To illustrate, we consider the Modified National Institute of Standards and Technology
(MNIST) dataset of images of handwritten digits 0, 1, . . . , 9 [34]. The dataset contains
60,000 images for training and 10,000 images for testing, and they are approximately evenly
distributed over the 10 classes. Each image contains 28 × 28 grayscale pixels which, when
scaled, can be interpreted as 282 = 784 continuous features that take values in the interval
[0, 1]. We trained a YADA model for each class, and then, as described in Section 2.2.6,
computed the K-L divergence amongst the 10 models. The results are illustrated in Figure 5.
The left panel illustrates the K-L divergence between the 10 models as a matrix colored by
the value of the divergence, with values ranging from 0 along the diagonal to a maximum
of approximately 350; the divergence is greatest for the YADA models of class 0 and class 1.
The right panel illustrates a “class separation score”, which is simply a symmetric version
of the K-L divergence, i.e., (dKL(i, j) + dKL(j, i))/2, with each being normalized by the
entropy of the reference distribution (see Equation (12)). The class separation scores take
values between zero and one and are illustrated as a bar plot, sorted in decreasing order.
The greatest separation is between classes 0 and 1; the least separation is between classes 7
and 9.

Figure 5. The K-L divergence between 10 YADA models trained to the MNIST dataset (left). The
(right) panel illustrates the class separation score, which is a symmetric and normalized version of
the K-L divergence, sorted in descending order.

3.2. Classification

Suppose we have followed the steps outlined in Section 3.1, resulting in κ-trained
YADA models, one for each class label. We distinguish YADA models for different classes by
using a superscript to denote the class label for all relevant model properties. For example,
c(i) will denote the sample covariance obtained in training step 4 and f (i) represents the
joint PDF defined by Equation (7), both for the YADA model for class i. Let x∗ denote a
feature vector with an unknown label. In this section, we present ways to use the collection
of YADA models to predict the label for x∗.
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3.2.1. Likelihood

The probability that x∗ comes from class i is given by a version of Bayes’ formula, i.e.,

Pr(class i|x∗) = Pr(x∗|class i) Pr(class i)
κ−1

∑
j=0

Pr(x∗|class j) Pr(class j)

=
f (i)(x∗)π(i)

κ−1

∑
j=0

f (j)(x∗)π(j)

, (16)

where π(i) = Pr(class i) is the prior probability that an unlabeled test point belongs to
class i, and f (i)(x∗) defined by Equation (7) can be interpreted as the joint likelihood that
x∗ comes from class i. Typically, the prior probabilities are assumed to be the relative
frequency of each class in the training dataset; non-informative priors, where each class is
assumed equally likely, can also be used. To address any numerical issues, for calculations,
we instead compute the log of Equation (16), i.e.,

ln
(

Pr(class i|x∗)
)

∝ ℓ(i)(x∗) + ln(π(i)),

where ℓ(i) = ln( f (i)) is given by Equation (10), and a ∝ b means that a is linearly propor-
tional to b.

To demonstrate classification, we trained three YADA models on the Fisher iris data,
one per class label, then evaluated Equation (16) throughout the feature space to determine
the classification regions for each label, that is, the regions

Ri = {x : Pr(class i|x) > Pr(class j|x), ∀j ̸= i}. (17)

Hence, region Ri is the set of all points in feature space that YADA will predict as coming
from class i. Figure 6 illustrates 2D projections of regions R0 (blue), R1 (orange), and
R2 (green). The training data are also shown for reference. Note that in the plot on the
right, the white area represents a part of the feature space where the likelihood of all three
models is extremely small, and YADA cannot provide a prediction for test points that fall
in this area.

Figure 6. Two-dimensional projections of the YADA classification regions Ri, i = 0, 1, 2, for the Fisher
iris dataset.

3.2.2. Mahalanobis Distance

One alternative approach for classification is to utilize the Mahalanobis distance, a
measure of the distance of a point to a distribution. Given a test point x∗, we can calculate
its Gaussian image g(i) assuming it originates from class i; g(i) is a vector of d coordinates,
with each coordinate obtained by using Equation (2), i.e.,

g(i)j = Φ−1
(

F(i)
j (x∗j )

)
,

where F(i)
j is the cdf for feature j assuming class i.
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For classification, we assign x∗ to class i if it is closest to the YADA model for class i,
that is, if mi(x∗) ≤ mj(x∗), j = 0, . . . , κ − 1, where

mi(x∗) =
(
(g(i))T(c(i))−1g(i)

)1/2
(18)

is the Mahalanobis distance of x∗ from the YADA model for class i.

3.2.3. Ensemble Method with Dimension Reduction

A second alternative to using the likelihood approach is to classify using an ensemble
of reduced-order YADA models. This approach can be beneficial if the computational cost
of using all features is too great, or when there exists some collinearity between the features
that results in a poorly conditional covariance matrix. Let I′ ⊆ {1, . . . , d} = Id be a subset
of d features, with |I′| = d′ ≤ d. The d′ features can be selected at random or by some
feature importance metric. From Equation (7), the joint PDF of the reduced-order feature
vector is obtained by integrating out the dependence on those features not contained in
I′, i.e., ∫

Rd−d′
f (x) ∏

i∈Id\I′
dxi = ∏

i∈I′

(
fi(xi)

ϕ(wi(xi))

)
ϕd′(w

′; c′), (19)

where w′ is a vector with d′ coordinates wi(xi), i ∈ I′, and c′ is a d′ × d′ covariance matrix
obtained by retaining the rows and columns from the original covariance matrix c defined
by Equation (7) with indices contained in I′.

For the ensemble classification of unlabeled test point x∗, we follow three steps:

1. Choose d′ ≤ d features at random from the original set to make up the reduced feature
set, I′;

2. Remove the corresponding d − d′ features from the test point x∗ that do not belong
to I′;

3. Predict the label for the reduced-order version of x∗ using the methods defined in
Sections 3.2.1 or 3.2.2 with the reduced-order YADA model with joint pdf defined by
Equation (19).

By repeating the above steps numerous times, we obtain an ensemble of label pre-
dictions, and we can interpret the empirical distribution over the class labels to be the
probabilities that x∗ belongs to each class.

3.3. Explanations

Recall Equation (16), where the numerator term f (i)(x∗)π(i) can be interpreted as
the posterior joint likelihood that test point x∗ comes from class i. The posterior marginal
likelihoods are given by

f (i)j (x∗j )π(i), j = 1, . . . , d, (20)

where f (i)j is the marginal pdf of feature j defined by Equation (6), assuming class i, and
x∗j is the value of the jth feature at the test point. The values defined by Equation (20)
approximately explain how each feature contributes to the posterior probability that x∗

comes from class i. This is only an approximation; the exact relationship between the
marginal and joint likelihoods is given by Equation (7), and is more complex.

One approach to explainability is to simply plot the scores defined by Equation (20).
To illustrate, we consider a dataset containing measurements of 570 human cancer cells [35].
Thirty cell features are recorded, such as cell area and perimeter; each measurement has
a label of either benign (B) or malignant (M). We train a YADA model for each class, and
then use the marginal likelihoods defined by Equation (6) as a means for explaining class
predictions. Figure 7 illustrates the marginal likelihoods of a test point with true label
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M; the marginal likelihood that the point comes from both classes are illustrated for each
feature. The likelihood that the point comes from class M is greater for nearly all 30 features,
but most significantly for features 14 (smoothness_se) and 19 (fractal_dimension_se).

Figure 7. Marginal likelihoods of a test point from the cancer dataset with class label M.

A second approach to explainability using YADA, particularly useful when the number
of features d is large, is to examine a subset of the d posterior marginal likelihoods, for
example, a subset of the 10 largest posterior marginal likelihoods, or those that are larger
than the average of all d posterior marginal likelihoods, because the members of this subset
contribute more to the posterior probability. To illustrate, recall the MNIST dataset [34]
introduced previously. We trained a YADA model for each class, then predicted labels
for each image in the test set. The first two test images are illustrated in Figure 8. In each
image, 14 pixels are highlighted (white); these are the features that contribute the most to
the joint likelihood score. They can be interpreted as explaining which pixels were most
important to the classifier. We observe that pixels near the outline of a digit are important,
but pixels with zero values are also indicative.

Figure 8. Explanations for two MNIST test images. The white pixels are the features that contribute
the most to the joint likelihood score and can serve as explanations.

3.4. Prediction Confidence

Let x∗ denote an unlabeled test point with predicted label y∗; this prediction can
originate from YADA and the methods from Section 3.2, or from a completely separate ML
model such as a trained neural network. There are a variety of sources of uncertainty that
impact the outputs of ML models [36,37]. High uncertainty leads to low confidence in the
predicted label. However, ML (and particularly DL) models are generally overconfident in
their predictions [9,38]. We can use YADA to provide an independent confidence score for
any test point.

In this section, we present a method to assess the confidence in the predicted label
y∗ that is a function of the distance of the test point to the training data. Computing
the confidence values can be used to (1) quantify the uncertainty of a prediction from an
ML model on inference data for tasks such as out-of-distribution (OOD) detection (when
inference data are different from the data used for training) [9]; (2) identify outliers and
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anomalies in training data that could have adverse effects when used for training [39]; and
(3) detect concept drift when the target data have changed over time and invalidates the
ML model [40]. As a method for detecting OOD data, we show that YADA is an effective
method for measuring confidence; we utilize the Mahalanobis distance of x∗ from a trained
YADA model, as defined by Equation (18). Two approaches are considered.

3.4.1. Empirical Approach

One approach is to compute the Mahalanobis distance of x∗ from the YADA model
trained on the data with predicted class label y∗, then compare this distance with the
population of distances of the training data from that same model. For example, if y∗ = i
is the predicted class label, we would compare mi(x∗) defined by Equation (18) with the
population of distances mi({x(i)}) of all training data for class i. Intuitively, if mi(x∗) is
close to the mean of the population, we can have higher confidence in the predicted label
y∗ than if mi(x∗) is in the tail of the population.

3.4.2. Approach Based on Theory

Let G = (G1, . . . , Gd)
T be a Gaussian random vector with mean vector µ and covari-

ance matrix c. It is well known that the random variable M2 = (G− µ)Tc−1(G− µ) follows
a chi-squared distribution with d degrees-of-freedom. For applications, we instead have
samples of vector G, which (approximately) follows a d-variate normal distribution, and
we can compute the sample mean vector µ̂ and sample covariance matrix ĉ. This result
provides a theoretical means of determining the likelihood that the Mahalanobis distance
mi(x∗) came from the theoretical distribution for the Mahalanobis distance for class i.

Using this approach, we can derive the following as a measure for the confidence that
test point x∗ comes from class i

confi(x∗) ∝ exp
(
−1

2

(
mi(x∗)2 − d + 1

))
, (21)

where d is the number of features in the model; this expression is based on the fact that the
square of the Mahalanobis distance of a multivariate normal random vector follows the
chi-squared distribution with d degrees-of-freedom.

3.4.3. Applications

To illustrate these concepts for prediction confidence, we considered three different
applications. First, we trained three YADA models on the Fisher iris dataset, one model
per class label. We then treated each of the 150 data points as test points, and classified
them using the likelihood approach. The confidence in these predictions as computed by
Equation (21) are illustrated by Figure 9.

Figure 9. Prediction confidence confi(x∗) defined by Equation (21) for Fisher iris data.

The data are ordered so that points 1–50 are from class Iris-setosa, points 51–100 are
from Iris-versicolor, and points 101–150 are from class Iris-virginica. For points 1–50, the
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prediction confidence that these points come from the Iris-setosa class is very high, and
the confidence for the other two classes is near zero. For points 51–100, the prediction
confidence is, in general, the greatest for the (correct) Iris-versicolor class, but the confidence
that these points come from Iris-virginica is not zero, so there is some uncertainty in the
predicted class labels for these points. Similar results can be observed for points 100–150.

A second example is based on the MNIST dataset of images of handwritten digits 0, 1,
. . . , 9 [34]. We trained a YADA model for each class, then predicted labels for each image
in the test set; we also computed confidence values for each predicted label. The five test
images with the greatest confidence values are illustrated by the top row in Figure 10. The
bottom row illustrates the test images of a ‘2’ and ‘6’ that had the greatest (left) and least
(right) confidence values.

Figure 10. Prediction confidence for the MNIST dataset. The top row illustrates the 5 test images with
the greatest confidence values. The bottom row illustrates the test images with the greatest and least
confidence for both the ‘2’ class (left two images) and the ‘6’ class (right two images).

For a third example, we utilize a DL model (ResNet50 [41]) pre-trained on the CIFAR-
10 dataset and compare how well YADA detects OOD data. CIFAR-10 [42] is a 10-class
dataset for general object detection containing 50,000 training samples. For this study, data
from CIFAR-10 is considered to be in-distribution and any other data are OOD. We then
consider the following benchmark object recognition datasets in an OOD study: (1) CIFAR-
100 [42], which is similar to CIFAR-10 except that it has 100 classes; (2) Tiny ImageNet
(TIN) [43], an object detection dataset that is a subsample of the ImageNet database of over
14 million images (with any intersection of images from CIFAR-10 removed); (3) MNIST [44];
(4) SVHN [45], a dataset of mostly house numbers representing digits in natural images;
(5) Texture [46], a collection of textural images in the wild; and (6) Places365 [47], a scene
recognition dataset. We apply the pre-trained DL model and framework for executing ex-
periments from OpenOOD [48] that compare other state-of-the-art OOD detection methods.
In particular, we use the values from the last layer in the neural network as input to the
OOD detection methods.

We limited our approach to state-of-the-art OOD detection methods. Other probabilis-
tic methods could have been used but would require a higher computational overhead.
Thus, rather than increasing the computational overhead, we chose to focus on the selected
methods. Other DL models could have been used and may provide some variation in
results. However, the provided example highlights the ability of YADA to quantify the
uncertainty of OOD data with similar performance as other state-of-the-art techniques.

We compute the Mahalanobis distance as our confidence measure and use it for OOD
detection in YADA and compare against the following: traditional Mahalanobis distance
(MDist) [49], Virtual Logit Matching (ViM) [50], and Deep Nearest Neighbor (DNN) [51].
YADA models trained using both the empirical distribution and a kernel density estimator
are considered. The results are summarized in Table 1, which correspond to area under the
corresponding ROC curve. In all cases except for the Texture dataset, YADA outperforms
the traditional Mahalanobis distance (MDist), suggesting that transforming the data to the
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MVN space (meeting the assumptions of Mahalanobis distance) is beneficial. YADA is
competitive with the other OOD methods considered.

Table 1. AUC values for detecting OOD data. CIFAR-10 is considered in-distribution against several
OOD datasets. Across all datasets, YADA is competitive with state-of-the-art approaches.

MDist ViM DNN YADA with Empirical cdf YADA with KDE

CIFAR-100 85.95 87.45 89.75 87.35 88.31
TIN 87.63 89.68 91.71 89.32 87.89
MNIST 88.61 94.27 94.41 91.97 96.62
SVHN 91.83 94.48 93.01 90.96 92.72
Texture 93.78 94.77 93.02 91.63 86.86
Places365 86.63 89.19 92.10 90.02 88.76

3.5. Synthetic Data Generation

Synthetic data have a variety of uses, such as creating additional training or testing
data, or to compensate for label and/or feature imbalance. In particular, YADA can be used
to produce synthetic but realistic images for image-related applications. Because YADA
is a probabilistic model, it is straightforward to generate synthetic data. There are several
ways to perform this, as will be described in the following sections.

Recall from Section 3.1 that we can take two approaches to train a YADA model. First,
we can partition the data according to class label, which produces one trained YADA model
for each class. To produce synthetic data for this case, we apply the procedures described
below for each YADA model separately. Second, we train a single YADA model on all
the available data regardless of class. In this approach, we simply treat the label as an
additional “feature” and build and train a single model on d + 1 features.

3.5.1. Random Sampling

The first approach to creating synthetic data is by simple random sampling, where
samples are drawn independently at random from the trained joint distribution of a YADA
model, i.e., Equation (7). This is the most straightforward and probably the most common
way to produce synthetic data. An algorithm to create random samples of a YADA model
requires two steps:

1. Create independent samples of a d-variate Gaussian vector with zero mean and
covariance matrix c;

2. Map the samples of {Gi} to samples of {Xi} using Equation (3).

There are numerous methods to execute step (1) provided by various statistical pack-
ages.

3.5.2. Conditional Sampling

There may be scenarios where we want to create synthetic data with one or more
of the features held constant at a fixed value. For example, we may want to produce
synthetic images but know that pixels along the boundary should always be of one color; a
conditional sampling approach can be used to achieve this.

Suppose the vector X of d features is re-ordered so that all d − m features with known
fixed values are collected into vector Z and the remaining m features are collected into
vector Y, i.e., X = (Y, Z). An algorithm to create samples of Y|Z = z requires six steps:

1. Re-arrange the columns and rows of the covariance matrix c to be consistent with the
re-ordered feature vector;

2. Partition c as described in Section 2.2.5 to create sub-matrices cYY, cYZ, and cZZ;
3. Compute wZ, the Gaussian image of z, using Equation (2);
4. Create samples of an m-variate Gaussian vector with mean cYZ c−1

ZZ wZ and covariance
matrix cYY − cYZ c−1

ZZ cT
YZ;

5. Map these samples to samples of (Y1, . . . , Ym)T using Equation (3);
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6. Assemble the full feature vector by appending the fixed values z, and then retract the
re-order step.

3.5.3. High Probability Sampling

For some applications, it may be of interest to create synthetic data from samples that
occur with high probability, i.e., samples “near” the mean of the joint distribution instead
of out in the tails. Let p ∈ [0, 1] be the target probability value. The idea is to modify
the algorithm for the random sampling presented above to include an intermediate step,
where we compute the Mahalanobis distance of each sample from the origin, and keep
only those samples with distances less than r2 = (χ2

d)
−1(p), where χ2

d denotes the cdf of
the chi-squared distribution with d degrees-of-freedom. Hence, if p is close to zero, many
samples are rejected and only those very close to the origin are retained. Likewise, all
samples are retained when p = 1, i.e., random sampling.

An algorithm to create p-probability samples requires five steps:

1. Create one sample of a d-variate Gaussian vector with zero mean and covariance
matrix c;

2. Compute m2, the square of the Mahalanobis distance of this sample to the origin;
3. Retain the sample if m2 ≤ r2; otherwise, reject it;
4. Repeat steps 1–3 until the desired number of samples have been retained;
5. Map the retained samples of {Gi} to samples of {Xi} using Equation (3).

3.5.4. Applications

In this section, we illustrate the different sampling methods for several example
applications. First, consider again the cancer cell data [35] introduced in Section 3.3. Here,
we trained a YADA model for class B and another for class M, then used them to create 500
synthetic data points; random sampling was used. Figure 11 illustrates scatter plots for six
random pairings of the thirty available features. Each panel illustrates both the 569 training
data (’x’) and 500 synthetic data (’o’) for both benign (B) and malignant (M) class labels.

Figure 11. Scatter plots of the cancer dataset for 6 random pairings of the 30 available features. Each
panel illustrates the 569 real training data (‘×’) and 500 synthetic data (‘•’) for both benign (‘B’) and
malignant (‘M’) class labels.
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As a second example, recall the MNIST dataset of images of handwritten digits 0, 1,
. . . , 9 [34]. We trained a YADA model for each class, then used them to create synthetic
images of handwritten digits. Within the dataset, there are numerous features (pixels)
that are blank for all images considered (e.g., the four corners of an image). Conditional
sampling was therefore utilized to ensure that the synthetic images also had these same
blank pixels. Figure 12 illustrates some of the results; original training images are shown in
the top row, and synthetic images of the same class are shown in the bottom row. These
results demonstrate that capturing the marginal distributions and pairwise correlations of
the training data is sufficient to produce adequate synthetic images of handwritten digits.

Figure 12. Images of handwritten digits: MNIST training data (top row) and synthetic images
produced by YADA (bottom row).

A third example illustrates high probability sampling; Figure 13 illustrates 500 syn-
thetic data from YADA models trained to the Fisher iris dataset. From left to right, the
scatter plots show data for two of the features assuming probability values p = 1, p = 0.5,
p = 0.1, and p = 0.005. As p approaches zero, the samples approach increasingly closer
to the sample mean, denoted by a black ‘x’; the case wherein p = 1 is identical to simple
random sampling.

Figure 13. Synthetic data using high probability sampling for the Fisher iris data.

As a final example, we consider the bone marrow transplant dataset [52] containing 36
features from 187 pediatric patients, including age, body mass, dosage, and recovery time.
An MLP classifier was trained on these data to predict patient survival status; the mean
accuracy of the classifier for a 5-fold cross validation analysis was 70%. We also trained
a YADA model on these data and applied random sampling to produce an additional
250 synthetic training data. Once re-trained, the mean accuracy of the classifier improved
to 83%.



Mathematics 2024, 12, 3392 19 of 25

4. Conclusions

While deep learning (DL) methods have enjoyed much success in recent years, they
remain overly complex, over-parameterized, overconfident in predicting unknown labels,
and difficult to explain and/or interpret. This motivated our work on a probabilistic model
for ML applications we refer to as Yet Another Discriminant Analysis (YADA). YADA is
a general-purpose probabilistic model that can be used for a wide variety of ML tasks
that DL models do not perform well, including (1) providing explanations; (2) quantifying
the uncertainty in a prediction; and (3) out-of-distribution detection. Further, YADA
has few parameters and provides a mechanism to predict labels with explanations while
also providing an associated confidence score from a single model (typically, predictions,
explanations, and confidence are not all provided by a single model). YADA can represent
continuous or discrete-valued features with arbitrary marginal distributions that exhibit
nonzero correlations. It is based on a mathematically rigorous foundation so that joint
distributions, joint likelihood functions, joint entropy, K-L divergence, and other properties
are readily derived. In addition, realistic synthetic data can be generated using YADA
in a variety of ways. The YADA algorithm is based on the translation random vector or
Gaussian copula, which has seen widespread use in finance, engineering, climate science,
and other disciplines, but its use for ML applications remains limited. As mentioned, YADA
can be less accurate for classification tasks than many DL models and, for this reason, we
do not make any direct comparisons on classification accuracy.

We view YADA as a first step in developing probabilistic models based on a mathe-
matically rigorous foundation, and see several areas for improvement and future work.
Currently, YADA operates on raw features, whereas DL algorithms are able to extract
features through the layers of a neural network. Integrating feature learning could help
improve the performance of YADA. Also, YADA is limited based on only modeling correla-
tions between pairs of features. Improving modeling more complex feature interactions
would increase the fidelity of YADA. We also mention that DL has received significant
engineering research to improve hardware and software stacks the make training and
inference more efficient. Similar gains would be helpful for scaling YADA, which is limited
by inverting the covariance matrix.

Our intention is that this paper provides a foundation for further improvement in
mathematically based probabilistic models that are simple enough to understand rather
than start from overly complex models and trying to extract meaning from them. This
paper serves as an alternative approach starting from more simplistic results that are largely
overlooked by the ML community.
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features from 187 pediatric patients, including age, body mass, dosage, and recovery time. Several
image datasets were also studied, including (6) The Modified National Institute of Standards and
Technology (MNIST) image dataset of handwritten digits [34]; (7) CIFAR-10 [42], a 10-class dataset
for general object detection containing 50,000 training samples; (8) CIFAR-100 [42], which is similar
to CIFAR-10 except that it has 100 classes; (9) Tiny ImageNet (TIN) [43], an object detection dataset
that is a subset of ImageNet; (10) SVHN [45], a dataset of mostly house numbers representing digits
in natural images; (11) Texture [46], which contains a collection of textural images in the wild; and
(12) Places365 [47], a general scene recognition dataset.
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Appendix A. Discrete-Valued Random Variables with YADA

Let X be a discrete random variable that takes values x1 < · · · < xr with proba-
bilities p1, . . . , pr, where ∑r

i=1 pi = 1. In this section, we show that X can be expressed
in terms of G ∼ N(0, 1), a standard Gaussian random variable, as was performed in
Sections 2.1 and 2.2, assuming X was continuous. In particular, we develop results that are
analogous to Equations (1), (2), and (6) below.

The cdf and probability mass function (pmf) of X are given by

F(x) =
r

∑
i=1

pi 1(x ≥ xi) and f (x) =
r

∑
i=1

pi 1(x = xi), (A1)

respectively, where 1(A) is the indicator function, equal to one if event A is true and equal
to zero otherwise; f (x), defined by Equation (A1), is a version of Equation (6) for discrete
variables. It follows that we can express X as

X = h(G) =
r

∑
i=1

xi 1(G ∈ βi), (A2)

where βi = (ai−1, ai] are sets on the real line with convention β1 = (−∞, a1] and βr =
(ar−1, ∞). We can think of {βi} and {ai} as bins and bin boundaries, respectively, with
boundaries defined by

ai = Φ−1(p1 + · · · pi), i = 1, . . . , r − 1.

As proof that Equation (A2) is a valid representation for X, note that

Pr(X = xi) = Pr(h(G) = xi)

= Pr(G ∈ βi)

= Φ(ai)− Φ(ai−1)

= (p1 + · · · pi)− (p1 + · · · pi−1)

= pi, i = 1, . . . , r − 1.

For the special case of i = r, Pr(X = xr) = Pr(G ∈ βr) = 1 − ∑r−1
i=1 pi = pr.

The mapping defined by Equation (A2) is a quantization of the Gaussian distribution
and represents a version of Equation (1) for arbitrary discrete variables. For example, take
r = 2 with x1 = 0, x2 = 1, p1 = q, and p2 = 1 − q. Then, by Equation (A2), X = 1(G > a)
is a binomial random variable with parameter q ∈ (0, 1), where a = Φ−1(p).

We interpret the inverse of Equation (A2) as

G = w(X) =
r

∑
i=1

G̃i 1(X = xi), (A3)
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where G̃i is a truncated normal random variable with support βi, that is,

Pr(G̃i ≤ z) =
1
pi
(Φ(z)− Φ(ai−1)), z ∈ βi = (ai−1, ai].

This is a version of Equation (2) for the case where X is a discrete random variable.

Appendix B. Derivative of w(x)

Recall that w(x) = h−1(x) is the inverse mapping introduced by Equation (2) for
the case of continuous-valued features. The joint pdf of the feature vector defined by
Equation (7) depends on w′(x), the derivative of this function, which we derive below.

First, note that Φ : R → (0, 1) and Φ−1 : (0, 1) → R, the cdf of the N(0, 1) random
variable and its inverse, are strictly increasing continuous bijective functions. If we let
z = Φ−1(y), then y = Φ(z) and

dy
dz

= Φ′(z) = ϕ(z),

where ϕ(z) denotes the pdf of the N(0, 1) random variable. Then,

d
dy

Φ−1(y) =
dz
dy

=
1

ϕ(z)
=

1
ϕ ◦ Φ−1(y)

It follows (by the chain rule) that

w′(x) = (Φ−1 ◦ F(x))′ = ((Φ−1)′ ◦ F(x)) · F′(x) =
f (x)

ϕ ◦ Φ−1(F(x))

=
f (x)

ϕ(w(x))
, (A4)

where f and F are the pdf and cdf of random variable X defined by Equation (1). Further,
w′(x) ≥ 0 because both f and ϕ are pdfs and, therefore, non-negative.

Appendix C. Tail Modeling with YADA

Suppose we have samples x1, . . . , xn of random variable X, and assume that the
samples have been ordered in ascending order. The empirical cdf built from these data is
equal to zero for all x < x1 and equal to one for all x ≥ xn. Sometimes, it is useful to use
models that allow us to extrapolate outside of the interval defined by the observed data,
i.e., for x < x1 and/or x > xn, the left and right tails of the distribution of X.

We introduce a method, referred to as tail modeling, to extrapolate outside of the
observed data. The idea is simply to choose a distribution with a known functional form
for the left and/or right tails, and calibrate these distributions using the available data to
enforce continuity at x = x1 and x = xn.

We consider three different tail models, selected because they offer different rates of
decay in the tails; other tail models can of course be added if necessary. The tail models
considered include the following:

• Gaussian/normal tails, with pdf and cdf:

fG(x; µ, σ) =
1
σ

ϕ

(
x − µ

σ

)
and FG(x; µ, σ) = Φ

(
x − µ

σ

)
, (A5)

where µ and σ > 0 are parameters, and

ϕ(x) =
1√
2π

e−x2/2 and Φ(x) =
1√
2π

∫ x

−∞
e−u2/2 du
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denote the pdf and cdf, respectively, for the standard normal random variable. We
note that the tails of the normal pdf decay to zero as e−x2

for x → ±∞.
• Exponential tails, with pdf and cdf:

fE(x; µ, b) =
1
2b

e−|x−µ|/b and

FE(x; µ, b) =
1
2
+

1
2

sgn(x − µ)
(

1 − e−|x−µ|/b
)

, (A6)

where µ and b > 0 are parameters. The tails of this pdf decay to zero as e−|x| for
x → ±∞, which is slower than the decay rate of the Gaussian pdf.

• Log-normal tails, with pdf and cdf:

fL(x; µ, σ, c) =
(

1
2σ|x − c|

)
ϕ

(
ln(|x − c|)− µ

σ

)
FL(x; µ, σ, c) =

1
2

[
1 + sgn(x − c)Φ

(
ln(|x − c|)− µ

σ

)]
, (A7)

where µ, c, and σ > 0 are parameters. The tails of this pdf decay at a rate in between
that of the Gaussian and exponential pdfs.

Given the data x1, . . . , xn, we implement these tail models as follows:

1. Use the empirical cdf for x1 ≤ x < xn;
2. Compute µ̂, the sample mean of the data;
3. For any values x < x1 (the left tail), set the pdf and cdf to f1 and F1 as specified in

Table A1;
4. For any values x ≥ xn (the right tail), set the pdf and cdf to fn and Fn as specified in

Table A1.

Note that we can choose to model only the left tail, only the right tail, or both. Further,
the functional forms of the left and right tail models need not be identical.

To illustrate the tail modeling approach, suppose we have n = 20 random samples of
X. The cdf and left tail models are illustrated by the left panel in Figure A1; a log scale is
applied to increase the visibility of the tail. The complementary cdf and right tail models
are shown in the right panel of Figure A1. The blue line indicates the empirical cdf, which
drops immediately to zero for x < x1 ≈ −3.1 and for x > xn ≈ 1.2. The three tail models
allow for extrapolating the cdf outside of the range [x1, xn]. The exponential model (green)
exhibits the slowest decay to zero, followed by the log-normal (red) and Gaussian (orange)
models.

Table A1. The left and right tail models for the pdf and cdf.

Type f1(x), x < x1 fn(x), x > xn F1(x), x < x1 Fn(x), x > xn Parameters

Gaussian fG(x; µ̂, σ1) fG(x; µ̂, σn) FG(x; µ̂, σ1) FG(x; µ̂, σn) σ1 =
x1 − µ̂

Φ−1
(

1
n

) , σn =
xn − µ̂

Φ−1
(

1 − 1
2n

)

Exponential fE(x; µ̂, b1) fE(x; µ̂, bn) FE(x; µ̂, b1) FE(x; µ̂, bn) b1 =
x1 − µ̂

ln
(

2
n

) , bn =
xn − µ̂

ln(n)

Log-normal fL(x; µ̂, b1) fL(x; µ̂, bn) FL(x; µ̂, b1) FL(x; µ̂, bn) b1 =
x1 − µ̂

ln
(

2
n

) , bn =
xn − µ̂

ln(n)
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Figure A1. Example models for the left and right tails of the cdf.
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