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Abstract: BigTech credit has enhanced financial inclusion, but it also poses concerns with its bound-
aries. This article uses theoretical frameworks and numerical simulations to examine the risks and
inclusiveness of technology-empowered credit services for “long-tail” clients. This research discov-
ered that the discrepancy between the commercial boundaries of BigTech credit and the technical
limitations of risk management poses a risk in BigTech credit. The expanding boundaries of BigTech’s
credit business may mitigate the representativeness of the data, resulting in a systematic deviation of
unclear characteristics from the training sample data, which reduces the risk-control model’s ability
to identify long-tail customers and raises the risk of credit defaults. Further computer simulations
validate these results and demonstrate that competition among various companies would expedite
the market’s transition over the boundary in case of a capital shortage. Finally, this article proposes
setting up a joint-stock social unified credit technology company with data assets as an investment to
facilitate the healthy and orderly development of financial technology institutions.

Keywords: financial inclusion; credit risk; BigTech credit
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1. Introduction

The deep integration of finance and technology has become a global trend, with the
Internet and information communication technologies significantly enhancing services
such as mobile payments, digital insurance, investments, and information lending. Unlike
traditional financial institutions that tend to favor the wealthy, Internet lending has indeed
broadened the coverage of the financial system, especially through large tech companies
providing loans using digital technologies, which significantly reduce the economic cost of
financial services [1]. This has made loan services easier to access for low-income groups
and small and medium-sized enterprises (SMEs), promoting inclusive finance [2–4]. Some
claim that fintech performs financial activities over the Internet, using the Internet as a
technological tool [5], and that this technology-driven financial innovation, which focuses
on finance, centers around financial services [6]. While BigTech companies such as Ant
Group leverage their technological prowess to raise funds, regulators have recalled the
failed peer-to-peer (P2P), raising concerns about the risk management strategy of similar
BigTech lending and financial stability.

In order to recognize the risks of technology’s inclusive advantages in finance, this
article attempts to examine the expansion of financial business through the lens of big data
risk control, with a specific emphasis on credit operations that are considered the most
representative. By doing so, we seek to explore the boundaries between inclusiveness and
risk, aiming to provide insights into addressing these issues to some extent.
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Fintech, in theory, is a notion that falls on a spectrum, positioned between conventional
financial lending in markets and “financial disintermediation” [7]. Recent research empha-
sizes the importance of economies of scope in understanding the dynamics of Big Tech
corporations, highlighting that bundling services and leveraging user data significantly
contribute to their growth [8]. Asymmetric information and transaction costs underpin
conventional financial lending and markets [7]. As Internet technology advances, finan-
cial practices will approach no financial lending corresponding to the Walrasian general
equilibrium [9]. In its 2020 ‘Regulations on Internet Lending by Commercial Banks’, the
China Banking Insurance Regulatory Commission specified Internet lending as commercial
banks using Internet and mobile communications technologies, cross-verifying and manag-
ing risk through risk data and models, automatically processing loan applications online,
conducting risk assessments, and completing core operations such as credit approval,
contract signing, loan disbursement, and post-loan management, and providing personal
loans and working capital loans for eligible borrowers for consumption, daily business
operations, and other purposes. Technological empowerment of finance, particularly in the
credit business, reduces transaction costs and information asymmetry between lenders and
borrowers, broadening possible financial transactions and making previously impossible
transactions possible [10], enabling “financial disintermediation” to be more sophisticated.

A prominent Internet lending approach is “peer-to-peer (P2P)”—unsecured credit
loans made between lenders and borrowers via online lending platforms rather than
banks [11]. At the Financial Forum 2021, Liu Fushou, the chief lawyer of the China Banking
and Insurance Regulatory Commission, reported that the number of operational P2P online
lending institutions had dropped from 5000 at its peak to zero by mid-November 2020 (See
https://www.cnfin.com/news-xh08/a/20211022/2005181.shtml for details (accessd on
30 November 2022)). The thirteen years of P2P practice have revealed that reality is not as
rosy as theory implies. Identifying borrowers’ information has dominated the theoretical
study of this technique. Scholars have used empirical data from different P2P platforms to
discover that basic borrower characteristics, such as gender, age, marital status, education,
and race [12–14], financial characteristics [15,16], and linguistic characteristics [17,18] sig-
nificantly affect borrowing. It is true that many of these factors affect P2P lending success,
but P2P online lending companies differ significantly from traditional financial institutions
in their business models, meaning lending decisions still mainly rely on explicit hard data
such as asset and liability data. More data do not modify the credit model or reduce
screening time [19].

Thus, improving financing convenience for those with low or middle incomes and
small and medium-sized firms has increased default rates and inclusivity, increasing finan-
cial risks. However, BigTech lending, pioneered in China, uses advanced data analytics
for risk management [20]. Large Internet technology companies benefit from their “ecosys-
tems”, cutting search costs compared to P2P. The long-tail impact of cheap search costs
allows these companies to escape the P2P paradigm and reach the under-explored blue
ocean market of conventional financial institutions’ long-tail industries [21], granting them
a competitive advantage. Big data technology removes “information noise”, allowing
prospective inclusive finance consumers to precisely profile themselves via information
search, scaling up small loans and micro-loans, and herein lies its worth [22]. BigTech
lending credit risk management benefits from the big tech ecosystem and big data risk con-
trol models [23]. This fintech approach enhances SME default risk prediction, facilitating
financial inclusion [24].

As seen above, peer-to-peer (P2P) lending has ceased operations, whereas BigTech
lending, despite facing challenges, continues to thrive. While BigTech lending has the
potential to advance inclusive finance, it shares genetic similarities with P2P lending, raising
concerns about the possibility of encountering similar pitfalls. The “black box” nature of
big data-driven risk control also poses questions about its long-term trustworthiness. These
issues highlight the need for robust regulatory frameworks to ensure that BigTech lending
remains a sustainable and trustworthy component of inclusive financial services. This

https://www.cnfin.com/news-xh08/a/20211022/2005181.shtml
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article uses mathematical models and numerical simulations to examine how technology
enables finance to benefit “long-tail” clients inclusively and the associated risks in using
the most common credit business in digital finance.

This study found that expanding company boundaries decreases data representative-
ness, generating systematic disparities between unknown data features outside the sample
and sample data, harming big data risk control. This, in turn, may trigger potential financial
risks. Specifically, in the competition for long-tail-end customers, a monopolistic big data
lending model might have an inherent incentive to attract borrowers with excessively
high risks, thereby increasing credit risks. Additionally, big data lending strategies might
entirely replace conventional ones. Numerical simulations further indicate that interest
rate competition among multiple institutions will accelerate market reach of the possible
risk border in case of scarce funds.

This article makes three marginal contributions. First, it expands credit research in
digital finance, as the existing literature extensively emphasizes financial technology’s
benefits and role in financial inclusion. However, studies on potential risks associated with
financial technology are few. This study examines the inclusivity and invisible risks of
technology-based lending on a wide scale, using credit services as an example to bring new
perspectives to the existing research on this topic. Secondly, this paper aims to integrate
the representativeness in borrower data leading to increased loan defaults [19], as well
as the potential vulnerabilities of fintech lending institutions during the pandemic [25].
This paper integrates the front-end of fintech credit business expansion with the back-end
of risk control technology and uses mathematical and numerical simulation to explore
fintech’s potential risks, supplementing existing research. Thirdly, the article shows that
technical risk management boundaries do not match the operational constraints of financial
institutions participating in BigTech lending, causing risk in the commercial applications of
this approach. This discovery offers regulators a theoretical basis for targeted oversight, as
BigTech firms face risk challenges [26]. In summary, this paper evaluates the advantages
and hazards of fintech from one viewpoint of the model to help support regulation to keep
up with the irreversible wave of technology and healthy and compliant fintech growth.

The subsequent sections of this paper are organized as follows: Section 2 constructs
a mathematical model for a theoretical dissection of how technology empowers finance;
Section 3 conducts numerical model analysis; Section 4 further discusses the conclusions
from the mathematical analysis; and Section 5 concludes the paper.

2. Theoretical Model

This paper focuses on two types of entities in constructing mathematical models:
borrowers, or those with loan demand, and lending institutions, including emerging
Internet-based BigTech credit providers and traditional bank-type lenders. Both observable
factors, such as income, and unobservable latent risk variables affect each borrower’s
default risk. New Internet-based BigTech credit providers are compared to established
banks. This study excludes large commercial banks owing to market segmentation, which
serve non-tail-end customers. Traditional banks, usually regional commercial banks, here
referred to as financial institutions, share clients with BigTech lenders. Different lending
institutions use different methods to detect unobservable risk factors for borrowers, which
influence loan costs and business models. Traditional banks identify risk through due
diligence and financial audits. In addition to traditional risk models, the institutional
business manager’s expertise with the client based on the data obtained is used for assessing
client risk. The institution has to engage with each client in detail, rendering a high marginal
cost and declining returns to scale. Instead, Internet-based big tech credit institutions take
advantage of the ecosystem to obtain consumer credit data at a reduced cost. Information-
based risk factor detection can be improved by better data representativeness. More
comprehensive credit data and default histories of loan clients in the institutional database
will improve risk assessment for new customers. However, if the data is limited or lacks
an outline of default characteristics for a certain customer group, it will be less accurate
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in assessing new clients’ risk. Data-driven rising returns to scale are the outcome of
artificial intelligence and big data technologies, which differ from the conventional credit
institution’s credit assessment approach by showing marginal increasing returns.

Under the circumstances described above, this paper examines the differences in
market structure and interest rate levels in the steady state as market capacity increases,
considering the presence of (multiple) large technology credit institutions in the market and
their coexistence with traditional financial institutions in different competitive scenarios. It
will examine how BigTech credit affects credit market competitiveness, risk identification,
credit bubbles, credit accumulation, and other key areas.

2.1. The Model
2.1.1. Market Subjects

Borrowers: The borrowers in this model are characterized by tuple (Y × Ω, F), where
Y × Ω denotes the state space, Y = R+ denotes the set of borrower income, and Ω denotes
the set of risk states. We assume Ω = Rn without loss of generality. F is a probability
density that characterizes the joint distribution of the borrowers in terms of income and
risk states. Let p : Y × Ω → [0, 1] be a measurable function that, for each type of borrower
(y, ω) ∈ Y × Ω, p(y, ω), denotes its potential default probability. For each type of borrower
(y, ω) ∈ Y × Ω, we assume that its income y is public information to the institution, while
its risk state ω is an unobservable variable. We further assume that the lending institution
does not know the distribution of borrowers or the conditional distribution of borrowers’
risk states on observable income F(y|.). The lending institution needs to gather market
data to estimate the risk state distributions F̂ and F̂(y|.), and infer the borrower’s risk state
before granting a loan and setting the interest rate.

For individual borrowers, whether to borrow from a given institution depends on the
interest rate level offered by the institution. For simplicity, this paper assumes that each
borrower has a reservation interest rate characterized by R : Y × Ω → [−1, 1] . A given
borrower (y, ω) is willing to borrow from an institution at an interest rate r if R(y, ω) > 0
and exceeds the lending rate. If r(y, ω) < 0, a given borrower is willing to deposit a unit of
income into the institution at r as long as it exceeds −R(y, ω). Depositors have no default
issue while borrowing; therefore, this study assumes their default rate is always 0, i.e.,
p(y, ω) ≡ 0 when R(y, ω) ≤ 0. To streamline the analysis, we assume that for each type
of borrower (y, ω), only one unit of loan (deposit) can occur, so the borrower’s decision
in each period is a binary choice. In the more general case, the total amount of deposits
and loans made by each borrower at a given interest rate can be characterized by adjusting
the distribution function. We also assume that depositors’ reservation interest rate for
depositors, characterized by R(y, ω) ≤ 0, remains constant, effectively necessitating an
excess of funds in the deposit market. The spontaneous reservation interest rate choice will
complicate money shortages in the deposit market; therefore, it is not used in the subsequent
analysis, and in situations where there is a shortage of funds, lending institutions allocate
funds based on competitive priority.

Lending institutions: This article examines two types of lending institutions, data-
based BigTech credit institutions and conventional ones such as banks. According to
the previous discussion, the credit model adopted by BigTech credit institutions based
on Internet and big data technologies has an incremental benefit effect of data size, a
feature that can be portrayed by the following Markowitz-based mean-variance expected
utility function

π(r, M, N) = a ∑
l∈N

[
(1 + rl)

(
1 − p

(
yl , ω′

l
))

− p(yl , ωl)
]
− b

∫
Ω ∑

l∈N
(ωl − ω′

l)
2d ∏

l∈N
F
(
ωl

∣∣ω′
l , N

)
− FC

= a ∑
l∈N

[
(1 + rl)

(
1 − p

(
yl , ω′

l
))

− p(yl , ωl)
]
− b∥F̂N − F∥KS − FC,

(1)

where FC is the fixed cost of the technology input and M is a set of consumers obtained
by independent sampling from the distribution F. N ⊂ M is the potential customer
base of the institution. ∥ · ∥KS is the maximum norm of the given function. F̂N is the
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empirical approximation of the distribution F constructed by the set N. ω′
l is the institution’s

inferred value of the true risk state ωl of a consumer l ∈ N given information about the
potential customer base N. We assume that the conditional distribution of ω′

l given ωl
and N is the distribution of the normal random variable N

(
ωl , ∥F̂N − F∥KS

)
. Given ω′

l
and N, the posterior distribution of ωl is the distribution of the normal random variable
N
(
ω′

l , ∥F̂N − F∥KS
)
, provided that the prior distribution is uniform. The profit function

of the institution Equation (1) requires that the net profit of the institution equals the
difference between expected return and risk cost (described by the posterior variance of
the speculation error ωl − ω′

l) and the fixed cost of technology investment based on the
customer group N.

We assume that the traditional bank-type lenders’ expected utility function, based on
the decreasing returns to scale, is

π(r, M, N) = a ∑l∈N

[
(1 + rl)

(
1 − p

(
yl , ω′

l
))

− p(yl , ωl)
]
− C(|N|), (2)

where the cost function C(n) is monotonically increasing with n, and limn→∞C(n) = ∞.
Traditional bank-type lenders’ utility decreases monotonically with clientele size, which
must be finite, which is determined by the equilibrium condition in which the difference
between the expected return on a marginal loan and its marginal cost is zero. Traditional
banks use a credit approach that incorporates client monitoring and communication, which
allows them to collect reliable credit information from consumers even without a massive
clientele. Therefore, we assume the risk cost term in utility function (2) is 0. However,
credit reporting will bring higher financial service costs, and for many clients, management
expenses may outpace potential advantages.

2.1.2. Optimization Problems and Competition Rules for Lending Institutions

If there is only a unique credit institution in the market and assuming that the market
capacity is expanding over time, i.e., given a market sequence M1 ⊂ M2 ⊂ · · · , the optimal
interest rate r∗n and the optimal market share Nn =

{
l ∈ Mn : 0 < r∗n,l ≤ R(yl , ωl)

}
at the

time n will be obtained by solving the following sequential optimization problem:

• Define that N0 = ∅ and F̂N0 ≡ 1;
• For any n ≥ 1, we solve the following constrained optimization problem to obtain the

optimal interest rate r∗n and the market share Nn =
{

l ∈ Mn : 0 < r∗n,l ≤ R(yl , ωl)
}

at
the optimal interest rate.

max
r

π(r, Mn, N)

s.t.
{

0 < rl ≤ R(yl , ωl) ∀l ∈ N
Nn−1 ⊂ N ⊂ Mn

.

K credit institutions (K > 1) compete on interest rates and customers, and the opti-
mal interest rate vector r∗n =

{
r∗n,1, . . . , r∗n,K

}
with market share Nn = {Nn,1, . . . , Nn,K} is

determined by the Nash equilibrium of the following interest rate game:

• For k = 1, . . . , K, define N0,k = ∅, r∗0,k,l ≡ R(yl , ωl) and F̂N0,k ≡ 1;
• For any n ≥ 1 and any k = 1, . . . , K, then, in period n, given the equilibrium interest rates

of the other institutions with market shares r∗n,−k and Nn,−k, the equilibrium interest rate

r∗n,k and market share Nn,k =
{

l ∈ Mn : 0 < r∗n,l < min
(
{R(yl, ωl)} ∪

{
r∗n,k′,l : k′ ̸= k

}})
should solve the following constrained optimization problem.

max
r

π(r, Mn, N)

s.t.


0 < rl < min

{
{R(yl , ωl)} ∪

{
r∗n,k′ ,l : k′ ̸= k

}
∪
{

r∗n−1,k′ ,l : k′ ̸= k
}}

∀l ∈ N

rl = min
{

R(yl , ωl), r∗n−1,k,l

}
∀l ∈ Nn−1,k

N

N ⊂ Mn
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This single (multiple) institution interest rate pricing and market share capture prob-
lem assumes that once a customer l becomes a customer of a given institution, the in-
stitution cannot voluntarily terminate the lending contract without competition from
other institutions.

2.2. Equilibrium

Given the borrower distribution F, this paper considers the two scenarios that the
market is well-funded (i.e.,

∫
Ω I(R(y, ω) > 0)− I(R(y, ω) ≤ 0)dF ≤ 0) and that the market

is not well-funded (i.e.,
∫

Ω I(R(y, ω) > 0)− I(R(y, ω) ≤ 0)dF > 0, respectively), where
I() is the indicator function. First, consider the well-funded scenario, where we have our
first proposition.

Proposition 1. Assume

i For every market Mn, there is |Mn| = n · c, where |N| denotes the cardinality of the set N,
and c is a positive integer. In other words, the market expands by c consumers each time.

ii R(y, ω) > 0 and (1 + R(y, ω))(1 − infω p(y, ω))− infω p(y, ω) > 1 hold for all (y, ω) ∈
Y × Ω, i.e., with the most optimistic risk assessment for each consumer, there is a positive
expected return on lending to each consumer.

iii R(y, ω) > 0 and (1 + R(y, ω))(1 − supω p(y, ω))− supω p(y, ω) < 0 hold for all (y, ω) ∈
Y × Ω, i.e., with the most pessimistic risk assessment for each consumer, there is a negative
expected return on lending to each consumer.

Then the following hold.

i In the case of a single institution: ∀δ > 0,

lim
n→∞

Pr(|Nn/Mn| ≥ 1 − δ) = 1, (3)

and r∗n,l ≡ R(yl , ωl).

ii In the case of multiple institutions: ∀δ > 0,

lim
n→∞

Pr(min
k

∥F̂Nn,k − F∥KS < δ) = 1, (4)

iii If we additionally define

(a) For i = 1, . . . , K, ki,n is defined to make ∥F̂Nn,kk,n
− F∥KS the ith element in the

ascending sorted
{
∥F̂Nn,1 − F∥KS, . . . , ∥F̂Nn,K − F∥KS

}
;

(b) Let r∗i = lim infnr∥F̂Nn,ki,n
−F∥KS

, where rε = {rl : (1+ rl)(1− infωp(yl,ω))− infωp(yl,ω) = ε};

(c) Let i+ = min{k : k = 1, . . . , K; r∗i > 0};
(d) Let r∗ = {min{rl , R(yl , ωl)} : (1 + rl)(1 − p(yl , ωl))− p(yl , ωl) = 0};

(e) Let lr∗n =
{

lr∗n,l = min
{

R(yl , ωl), r∗n,1,l , . . . , r∗n,K,l

}
: l ∈ Mn

}
,

then every element in r∗n is monotonically non-increasing along n and

lim
n→∞

Pr
(

lr∗n ∈
[
r0, max

(
r∗i+ , r∗

)]
| ∥F̂Nn,kK,n

− F∥KS > 0
)
= 1, (5)

lim
n→∞

Pr
(

lr∗n ∈ [r0, r∗] | ∥F̂Nn,kK,n
− F∥KS = 0

)
= 1. (6)

Proof of Proposition 1. See Online Supplementary S1. □

The first conclusion of Proposition 1 indicates that when there is only one large
technology credit institution in the market, this institution will monopolize the entire
market with a probability of 1, and its optimal loan interest rate will be consistent with the
borrower’s reservation interest rate, i.e., the consumer surplus of borrowers is zero.
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When there are risky borrowers (y, ω), such that the expected net return on their
borrowing (1 + R(y, ω))(1 − p(y, ω))− p(y, ω) < 0, this group of borrowers will still be
institutional clients. Thus, institutions have an intrinsic incentive to sign up high-risk
borrowers despite big data. According to the first conclusion of Proposition 1, a single large
technology credit institution will cause excessive credit expansion (excessive inclusion),
excessive risk-taking that cannot be covered by equilibrium interest rates, and a credit
bubble, especially when the proportion of high-risk borrowers in the market is large enough
that

∫
Ω(1 + R(y, ω))(1 − p(y, ω))− p(y, ω)dF(y, ω) < 0.

The second and third conclusions of Proposition 1 suggest that, in the case of multiple
BigTech credit institutions, there is at least one institution whose entire clientele constitutes
a subset that is fully representative of all clients. All institutions’ equilibrium interest rates
will converge with probability 1, and no customer’s loan rate may provide any institution
with a positive expected return. Therefore, in terms of the equilibrium interest rate, any
borrower is considered to have excessive risk.

Due to the diminishing returns of traditional banking loan institutions’ expected utility,
combined with Proposition 1, we have the following corollary.

Corollary 1. If both BigTech credit institutions and traditional banks provide lending services,
then lim

n→∞
Pr(|Nc

n| = 0) = 1, where Nc
n ⊂ Mn denotes the optimal market share of traditional

banks c. In other words, the market share of traditional banks will converge to 0 with probability 1,
i.e., squeezed out by BigTech institutions.

The number of borrowers that potentially generate expected profits will exceed the
number of potential savings customers in a poorly funded market, i.e.,

∫
Ω I(R(y, ω) > 0)−

I(R(y, ω) ≤ 0)dF > 0, resulting in competition among loan customers and the likelihood
that some are unlikely to receive loans. Insufficient funds leading to competition among
loan clients result in a much more complex limit state of the optimal (equilibrium) interest
rate and market share for a single (multiple) institution than that in a well-funded market.
For simplicity, this article assumes a constant savings interest rate of 0. Multiple institutions
compete by total quantity. If there are m loan customers with positive marginal returns
and n savings customers, and m > n, then only the first n customers can obtain loans after
all m loan customers are sorted in descending order by expected return. If there is only one
BigTech credit institution in the market, the following proposition can be obtained:

Proposition 2. When the market is poorly funded and there is only one BigTech credit institution,

if we let t =
∫

Ω I(R(y,ω)≤0)dF∫
Ω I(R(y,ω)>0)dF and Rp = sup

{
r
∣∣∫

Ω I(R(y, ω) ≤ r)dF ≤ p
}

, then

lim
n→∞

Pr
(

F̂Nn

(
R(y, ω)< Rp

)
< F

(
R(y, ω)< Rp

))
= 1. (7)

Proof of Proposition 2. See Online Supplementary S2. □

When the market is under-funded, competitive forces might compel BigTech credit
institutions to provide more loans to high-interest-rate groups. Adverse selection in the
market caused by asymmetric information, i.e., high-interest-rate groups have a higher risk
tolerance, cannot be eliminated through big data according to Proposition 2.

In a poorly funded market where there are multiple BigTech credit institutions and/or
traditional lenders competing, the competitive stable state is much more complex than
when there is only one BigTech credit institution. Thus, we will perform a computer
simulation to assess multi-agency competition and compare it to the well-funded scenario
in the next section.
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3. Numerical Simulation

This section will exhibit competitive equilibrium interest rates, market shares, and
representative data trends for single/multiple BigTech credit institutions using numerical
simulations. The simulation settings are set as follows:

(a) Borrowers correspond to the parameter space Ω = R+ × R, and the distribution of
borrowers on it is F = Fχ1 ⊗ FN , that is, the product distribution consisting of the
Chi-square distribution Fχ1 on R+ with degree of freedom 1 and the standard normal
distribution FN on R.

(b) The default risk function of the borrower is p(y, ω) = FN(ω − y), where FN denotes
the cumulative distribution function of the standard normal distribution. According
to the above setting, the borrower’s probability of default increases with his risk
factor ω and decreases with his income level y. The borrower’s probability of default
increases with his risk factor ω and decreases with his income y.

(c) The reserve interest rate for the borrower is R(y, ω) = p(y, ω) + r, where the reserve
interest rate of each borrower (y, ω) is the sum of a benchmark interest rate r and the
default risk premium. We set r = 0.05.

(d) In the profit function of a BigTech credit institution, we set a = 1 and b = 0.1.

With the above parameter settings, each simulation in this paper independently
and repeatedly samples 1,000,000 players from the borrower space Ω to obtain a bor-
rower set according to the probability distribution F. Let the market expansion last
T = 1000 times, where for each n = 1, . . . , T. Market capacity is |Mn| = n · 1000, i.e.,
there are 1000 potential customers for each expansion. We investigate the different sce-
narios of the number K = 1, . . . , 5 of BigTech credit institutions, and denote the equilib-
rium market share sequence {(Nn,1, . . . , Nn,K) : n = 1, . . . , T}, data representative sequence{(

∥F̂Nn,1 − F∥KS, . . . , ∥F̂Nn,K − F∥KS

)
: n = 1, . . . , T

}
, and in the case of K > 1, the equilib-

rium interest rate sequence {lr∗n : n = 1, . . . , T}.
We will simulate well-funded and poorly funded markets based on the above setting.

We assume that depositors, as the source of money, have deposited funds with lending
institutions at a set interest rate, hence the simulation assumes that this rate stays 0. In the
case of a well-funded market, we assume the total amount of depositors is 1.25 times that
of borrowers |Mn|; and the reverse holds true in the scenario of a poorly funded market.

Figures 1 and 2 depict market share, data representativeness, and interest rate evolution-
ary patterns for plentiful and scarce institutions. Figure 1a,b show the optimal market share
and data representativeness for the case of a single BigTech credit institution. Figure 1c,d
show the equilibrium share and data representativeness when K > 1. Figure 1e shows the
equilibrium interest rate when K > 1 (average by individual borrower). In Figure 1d, the
envelope of representative evolutionary trajectories of multi-institutional data is marked
with red lines, i.e., the trajectory of

{
min

(
∥F̂Nn,1 − F∥KS, . . . , ∥F̂Nn,K − F∥KS

)
: n = 1, . . . , T

}
.

Figure 1e displays the institution’s average interest rate level r∗ under zero-profit conditions
(see definition iii(e) in Proposition 1), with a green line based on the number of borrowers.
The difference between the mean and equilibrium interest rates, as well as the evolution trend
of the standard deviation, are marked with red lines and error bars (where for each period n,
the aforementioned standard deviation is defined as the sample standard deviation obtained
by individual borrower l for the variable interest rate difference r∗l − lr∗n,l).

Figure 1 presents the numerical test of Proposition 1. The scenario of a single BigTech
credit institution has the market share of the institution converging towards 1, and its
data representativeness (measured by the KS distance based on the empirical distribution
of customer groups and the actual loanee distribution) converges to 0, which verifies
conclusion 1 of Proposition 1. Figure 1e shows that in the multi-institutional situation,
the equilibrium market interest rate decreases and eventually falls below zero on average.
The intersection of the average equilibrium interest rate trajectory with the average zero-
profit interest rate implies an overexpansion of credit and an overaccumulation of risk in a
market-wide sense. The peak of Figure 1e’s red error line will steadily shrink and potentially
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drop below 0 when additional institutions are included (K = 4, 5). This implies that for
most borrowers, credit institutions’ equilibrium interest rates are insufficient to cover their
default risk, and the market tends toward credit overexpansion and risk overaccumulation,
verifying conclusion 3 in Proposition 1.
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Figure 1d depicts data representativeness dynamics in the multi-institution scenario.
First, the minimum value of the data representativeness measure for all institutions con-
verges toward zero, and each institution’s measure also tends to converge toward zero,
validating and strengthening Conclusion 2 in Proposition 1. Next, unlike the scenario in
Figure 1b, when multiple institutions compete, the representativeness measure’s conver-
gence and minimum value towards 0 for each institution’s data are not a monotonically
decreasing process, but rather exhibit a fluctuating decline. As n increases, the representa-
tive measure reaches a local minimum point, then reverses to increase until it reaches the
next local maximum point before decreasing. The new minimum is less than the previous
one, thus the local minima are cyclically converging towards 0. This convergence of cyclical
fluctuations indicates market competitiveness. When the data representativeness metric is
strictly greater than zero, an institution may misjudge a borrower’s default risk. Different
borrowers have an equal chance of making errors in the case of a single institution. Thus,
while recruiting new loan customers, the odds of various borrowers being absorbed are
essentially equal, preventing a skewing of customer pool data towards a particular group.
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The multi-institutional scenario is different, with institutional competition driving down
the equilibrium rate. Therefore, only a greater intake of clients who are at equilibrium
interest rates and higher absolute interest rates is likely to make the institution profitable.
This leads to institutions not only misestimating the probability of default, but also more
likely to make mistakes in high interest rate groups when the representative measure of
institutional data is strictly greater than zero. The newly acquired customer base may tend
to shift towards high-interest-rate groups, which will decrease data representativeness
and cause the evolutionary trajectory to show a periodic growth trend (Figure 1d). How-
ever, competitive pressure will hasten the overall drop in interest rates for groups with
higher equilibrium interest rates, substituting high-interest-rate groups for low-interest-rate
groups. This will bias institutional misjudgment behavior towards the initial low-interest-
rate group in later iterations owing to competitive pressure, restoring institutional data
representativeness and causing the periodic downward trend in Figure 1d. This process
also illustrates inter-institution competition’s intricacy.

Figures 1 and 2 show that the poorly funded market exhibits significantly different
dynamic from the well-funded market. A single institution, constrained by financial
limitations, cannot dominate the whole market, resulting in the inevitability of borrowers
being unable to obtain loans. At the same time, the institution’s data representativeness
metric will no longer converge to zero, and it will rebound and rise after reaching a positive
minimum point. The institution’s client base will continue to deviate from key lending
groups and its variance from the market’s whole sample will grow.

Second, in the multi-institutional case, comparing Figure 1c with Figure 2c shows that
equilibrium multi-institutional competition levels the well-funded market. For the poorly
funded market, competition among multiple institutions will force some to exit the market
(i.e., their market share tends towards 0), granting the leading institution monopolistic
strength (i.e., it has a significantly greater market share than other institutions, and the gap
is growing). A more competitive market has caused complicated shifting patterns in data
representativeness among institutions. Combining Figure 2d,e, it is clear that institutions
whose equilibrium market share shows a trend of convergence to zero have more violent
data representativeness fluctuations, while the head institution, with its position as the
head, maintains a constant level that is significantly greater than zero and fluctuates less.
Compared to the institutional data trajectory in Figure 1d with sufficient funds, the equilib-
rium market share converges to zero. Figure 2d shows typical fluctuations comparable to
Figure 1d, but at a much greater frequency. Due to growing competition between institu-
tions, inadequate funding leads to more misjudgment behavior by institutions. Figure 2d
shows no fluctuations in the head organization’s data representativeness trajectory. The
leading institution will progressively monopolize the market as smaller institutions are
forced out or lose market share. The evolutionary trajectory of the data representativeness
shows little volatility since its client base has stabilized.

In the case of multiple institutions competing in a poorly funded market, the equilib-
rium interest rate similarly displays a continuous decreasing trend, as seen in Figures 1e
and 2e. Credit growth and risk buildup will result from the equilibrium interest rate falling
below institutions’ zero-profit threshold. This suggests that conclusion 3 in Proposition 1
applies to a poorly funded market. Figure 2e shows that the mean of the equilibrium
interest rate and zero profit interest rate intersect much sooner than in Figure 1e. In a
poorly funded market, inter-institutional interest rate competition will enable the market
to discover the limits of excessive loan growth sooner. Figure 2e shows that even with
a modest number of institutions (K = 2), the peak of the red error line will fall below 0
after the evaluation. In a poorly funded market, inter-institutional competition will accel-
erate credit growth, and reducing the number of competing institutions is not enough to
reverse this tendency. The average equilibrium interest rate reflected by the blue line in
Figure 2e is much lower than that in Figure 1e. This suggests that market competition in a
poorly funded market accelerates the decline in equilibrium interest rates, which is another
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indicator of excessive credit expansion, resonating with our findings that institutional
competition worsens it and confirming Proposition 2.

4. Discussion

In an unpredictable world, finance optimizes cross-temporal and geographical re-
source allocation while assuming risk. Information processing serves to identify, analyze,
monitor, and price risks in the financial sector. Then, the smoother the chain of informa-
tion processing from data to information, information to knowledge, and knowledge to
decision-making, the more it will converge the risk of financial activities from unknown
risk in Knight’s category to known risk [27]. For credit operations, due to incomplete
information in financial markets, interest rates not only differentiate between borrowers
through adverse selection but also influence borrower behavior through incentive effects,
thus creating perverse incentives for borrowers and leading to adverse selection in lend-
ing [28]. In a crisis, borrowers’ moral hazard may worsen the bank’s finances [29]. As a
result, financial institutions prefer customers with good collateral and hard information
(credit reports), while customers at the long tail, who bear high uncertainty, have a large
mismatch between contingent losses and risk compensation; therefore, they are forgone.
Financial inclusion may reach a limit when the cost of financial risk equals the reward of
risk within external constraints. The Internet’s big data age has lowered financial insti-
tutions’ risk while dealing with long-tail consumers, from unknown hazards that were
previously impossible or difficult to evaluate to known dangers that can be quantified. This
enhances financial inclusivity. In the differentiated competitive environment, providing
small loans (small amounts, unsecured credit) to small and medium-sized enterprises is
a challenge for small and medium-sized banks. Their risk identification and assessment
of customer service rely not only on standard risk models and credit reports but more
on deep contact with customers by credit business personnel, which results in relatively
higher marginal costs. Big tech credit depends on internet platform ecosystems’ enormous
data and AI and big data technology. Owing to big data, credit data is essentially free
and the risk assessment model is more accurate. Comparing the two models based on
data-style control reveals two main differences. One is the vastly different cost of obtaining
credit data; the other is the differing scale of credit data on which data analysis is based,
and the resulting differences between relying on human experience judgment and relying
on artificial intelligence algorithm judgment. The Internet credit system needs a broad
technology ecosystem to acquire customers and build digital footprints. This may explain
why Ant Group, JD Digits, and Tencent Financial Technology are growing but P2P lending
has vanished. Using technology, an Internet credit system rooted in the platform ecosystem
can compete with traditional financial institutions for long-tail customers (see the corollary
to Proposition 1) and advance financial inclusion. Big data risk control models are lowering
risks to known dangers, but model and technological advancements are not eliminating
financial risk. Essentially, using computer algorithmic procedures to analyze big data and
make out-of-sample predictions (including classifications) is a generalization process, the
strength of which depends on the similarity of the system characteristics of the training
data and the unknown data. As businesses grow and competition increases, training data
will become less representative, causing unknown data to deviate from system features
and thus posing financial risks.

In this study, we present a novel theoretical model for BigTech credit risk management
that is grounded in measure theory, distinguishing our work from existing approaches.
By leveraging the rigorous mathematical framework of measure theory, we effectively
quantify and analyze the complex relationships between data distributions and risk factors
associated with long-tail customers. This approach enables us to address the inherent
limitations of traditional risk models, which often struggle to account for the variability
and uncertainty present in extensive data sets. Furthermore, we employ numerical simula-
tions to calibrate our model, providing empirical validation of our theoretical findings and
enhancing the robustness of our predictions. By integrating measure-theoretic principles
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with simulation techniques, we offer a comprehensive framework that deepens the under-
standing of risk dynamics in BigTech lending, contributing significantly to the literature on
inclusive finance and technological innovation.

According to the first conclusion of Proposition 1, even with big data technology,
institutions have an intrinsic incentive to attract risky borrowers, which can lead to over-
inclusion (over-expansion of credit) and a credit bubble. The Ant Group remains in the
advantageous phase of the big data credit model, supported by the extensive Ali ecological
network, facilitating the identification of relatively high-quality borrowers from the first
influx of consumers throughout the model’s development. However, large-scale growth
makes risk control dependence on technology lines challenging. As the size margin grows,
Internet credit data representation worsens (see the numerical simulation section). Inter-
institutional interest rate competition will help the market break through over-inclusion
(over-expansion of credit) sooner, particularly in a poorly funded market. The eco-platform
on which the big data credit model is based may have a crossover of customers, which
may be different from the current situation where customer data are independent. Will
the current algorithms be able to respond in a timely manner, and will this introduce new
contingent risk factors?

Further, the big data credit model uses technology to promote financial inclusion
and risk by using the Internet platform’s ecosystem. The boundary of prevalence for risk
converges at the point where a single borrower has an expected return of zero, and it can be
relaxed to the point where the expected return of the customer as a whole is zero. According
to Ant Group’s growth, financial institutions may manage risks and make a profit when
they reach the inclusive critical boundary of big data credit. The progressive overshooting
from the former to the latter with fast incremental growth increases financial risk while
providing financial services to more people. Visible, rapid scale-up will drive big data credit
financial institutions’ customers to the long tail. As customer groups’ quality declines, data
accumulate and systematic deviations occur. It is crucial that BigTech credit institutions
that weather risk management algorithms are able to accurately assess long-tail customer
groups’ risk. This group with reduced risk tolerance and debt capacity might highlight
client appropriateness challenges, lowering credit quality and rendering risk accumulation.
The supply side of credit funds, from the purchase of credit asset-backed securities (ABS)
to the joint loan to the diversion mode, from the contribution of credit enhancement to the
implicit credit enhancement to the complete absence of credit enhancement, has strongly
boosted Ant Group’s scale to explosively increase. At this stage, lending is profit-driven,
not risk-driven. As the customer base continues to expand rapidly and shifts toward the
long tail, financial institutions that have previously relaxed their vigilance may need to
reassess their risk management strategies. There is a possibility that these institutions
could become more alert to the challenges posed by this evolving landscape. Additionally,
BigTech credit institutions, while taking proactive initiatives to serve a broader market,
may encounter moral hazard risks. This situation necessitates a careful evaluation of
their practices to ensure that the drive for growth does not compromise ethical lending
standards or exacerbate financial risks. It is unclear how to separate credit evaluation
and risk management across businesses with various risk exposures. In conclusion, how
to reconcile the business boundary of financial institutions in big data credit with the
technological border of risk management is likely the source of hazards in commercial
application scenarios of big data credit and should be the focus of regulatory efforts.

As a theoretical paper, this study does not include empirical data or case studies, which
could offer more concrete validation of the proposed model. Although the flexibility of our
approach avoids strong assumptions, this can also lead to oversimplification of real-world
complexities. Additionally, the absence of comparative analysis with traditional financial
institutions or other fintech models narrows the scope of the findings. While our focus on
BigTech credit aligns with the research objectives, future studies could explore how this
model performs in relation to other lending mechanisms, offering a broader perspective on
its risks and benefits.
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Another challenge lies in the dynamic nature of the fintech sector. Technological
advancements and regulatory developments are constantly reshaping financial markets,
and our findings reflect the conditions at the time of writing. Future research should
periodically revisit and update these theoretical models to account for emerging trends
and shifts in regulation. Moreover, the generalizability of our findings may be limited by
varying regional market conditions and regulatory frameworks. Expanding the scope of
future studies to incorporate empirical data and cross-market analyses will not only validate
the insights of our model but also contribute to a more comprehensive understanding of
BigTech credit and its implications for financial inclusion and risk management.

While our model is grounded in measure theory and offers a structured and rigorous
framework for understanding risk dynamics in BigTech lending, it may not serve as a
one-size-fits-all solution. Future research could benefit from exploring the contexts in
which our model is most effective and identifying specific situations where its assumptions
may not be applicable.

5. Conclusions

This study investigates how BigTech credit institutions navigate the tension between
the expanding commercial boundaries of their operations and the inherent technological
limitations in risk management. Big data credit uses the Internet ecosystem to bridge
the gap between traditional financial services and social investment and financing needs,
offering a long-tail advantage and improving inclusive finance coverage and penetration.
The technical innovation of big data credit with science and technology has not eliminated
financial risks in finance. This paper takes the most typical and common credit business in
digital finance as an example and constructs a mathematical model, applying numerical
simulation to explore the benefits of technology-enabled finance to long-tail customers
and the associated risks. This research demonstrates that even with advanced technology,
financial risks persist. Specifically, risk control boundaries enabled by technology do
not fully align with the business boundaries of BigTech credit institutions, leading to
new forms of risk. As business boundaries expand, the quality and relevance of training
data deteriorate, resulting in deviations from unknown out-of-sample data patterns and
potential contingent risks. In addition, BigTech credit may have an incentive to attract
high-risk borrowers, which might lead to over-inclusion and a credit bubble. Thus, while
BigTech lending provides inclusive benefits, these benefits must be weighed against the
latent financial risks that accompany them. The numerical simulations find that in a poorly
funded market, interest rate competition among multiple institutions will cause the market
to break through the universal (over-expansion of credit) boundary sooner. The market
eventually formed a monopoly of lead institutions.

The black box nature of big data-based risk control introduces challenges for regulators,
as it reduces transparency and creates information asymmetries. This study recommends
the following policies based on its findings. First, integrate BigTech credit into the regulatory
framework, raise moral hazard awareness, and avoid systemic risk. The fintech credit
industry requires better digital monitoring. It should fit within the legal system and
monitoring system and be consistent. In the face of rapid scale expansion, when it is
difficult to meet market demand for a variety of channels to provide credit funds with their
own funds, beware of moral hazard in BigTech credit financial institutions’ self-managed
lending, joint lending, and lending assistance modes. Simultaneously, the substantial
volume of long-tail credit clients served by BigTech institutions has resulted in an expanding
business scale, necessitating macro-prudential oversight of these leading tech entities based
on the framework of systemically important financial institutions (SIFIs).

Second, develop fintech-specific technical indicators and business standards and offer
targeted regulatory programs to align financial institutions’ big data credit business limits
with risk control technological boundaries. To promote healthy BigTech credit development,
a long-term regulatory framework is needed after short-term risk management. Traditional
regulation emphasizes capital, while big data and digital technologies drive big tech credit
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models. This requires regulation to become digital to meet the requirements of the big data
and intelligent eras, creating a dual-element regulatory framework for finances and data.
The asymmetry of division of labor and knowledge in the BigTech credit model allows for
a minimal risk-sharing ratio.

BigTech credit shares some similarities with the P2P model, particularly in its reliance
on digital platforms and data for lending decisions. However, like P2P lending, BigTech
credit can attract high-risk borrowers due to over-inclusion, leading to credit bubbles. Nu-
merical simulations in this study indicate that in poorly funded markets, competition for
interest rates among multiple institutions may accelerate market saturation, causing credit
boundaries to be breached. The market is likely to consolidate under a few dominant play-
ers, creating monopolies and further squeezing conventional banks out of long-tail client
segments. Without careful regulation, BigTech lending may replicate the fragility observed
in P2P lending, challenging its promise as a solution for sustainable financial inclusion.
Thus, our final recommendation is to establish a joint-stock social unified credit technology
company that utilizes data assets as a basis for equity investment. This initiative aims to
break down information silos and integrate diverse data sources, significantly enhancing
the dimensionality of data available for risk assessment. By leveraging this comprehensive
data integration, we can empower financial institutions—especially small and medium-
sized enterprises (SMEs)—to better manage risks and improve their credit offerings.

Moreover, the proposed framework must address critical ethical considerations re-
garding data ownership, rights, and profit-sharing. We suggest that a government-formed
financial intermediary oversees the establishment of this company to ensure ethical prac-
tices and transparency in data usage. This intermediary would play a crucial role in
confirming data asset ownership and facilitating collaboration among various stakeholders.
By balancing the need for innovation with responsible data management, this proposal
aims to create a sustainable ecosystem that supports the healthy and orderly development
of financial technology institutions while promoting inclusive finance.
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