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Abstract: The local binary pattern (LBP) has been widely used for extracting texture features. How-
ever, the LBP and most of its variants tend to focus on pixel units within small neighborhoods,
neglecting differences in direction and relationships among different directions. To alleviate this
issue, in this paper, we propose a novel local directional difference and relational descriptor (LDDRD)
for texture classification. Our proposed LDDRD utilizes information from multiple pixels along the
radial direction. Specifically, a directional difference pattern (DDP) is first extracted by performing
binary encoding on the differences between the central pixel and multiple neighboring pixels along
the radial direction. Furthermore, by taking the central pixel as a reference, we extract the directional
relation pattern (DRP) by comparing binary encodings representing different directions. Finally, we
fuse the above DDP and DRP to form the LDDRD feature vector. Experimental results on six texture
datasets reveal that our proposed LDDRD is effective and outperforms eight representative methods.

Keywords: texture classification; local binary pattern; local feature; multi-direction; noise
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1. Introduction

Texture stands out as a key visual element in images, indicative of the basic prop-
erties inherent in object surfaces. Texture analysis plays a pivotal role in various fields,
including palm-print recognition [1], remote sensing image processing [2,3], and expression
recognition [4]. However, since texture features can vary significantly among different
objects or even the same object under different conditions, the effective classification of
textures is necessary. The local binary pattern (LBP) was proposed by Ojala et al. [5].
Due to its robustness to illumination changes, ease of computation, and efficient feature
discrimination, it has garnered significant attention in texture classification tasks and has
found widespread use in dynamic texture recognition [6,7], color texture classification [8,9],
medical image analysis [10], and image retrieval [11], among other fields.

Since the LBP was proposed, various variants have been developed to enhance the
accuracy, rotational invariance, and noise robustness of texture features. To extract richer
local features, the completed LBP (CLBP) [12] utilizes local difference signs, magnitudes,
and center pixel information to construct a 3D joint histogram for texture representation,
effectively capturing texture characteristics. Inspired by the complementary nature of
the CLBP operator, the extended LBP (ELBP) [13] extends the LBP by extracting central
information, neighborhood differences, and radial differences. In addition, the pairwise
rotation-invariant co-occurrence LBP (PRICoLBP) [14] and 2D-LBP [15] incorporate the
spatial context information of corresponding LBP groups into texture representation. The
partial local gravity feature (PLGF) [16], inspired by the law of gravity, extracts the mag-
nitude and angle features of local gravity to improve recognition rates. The attractive
center-symmetric local binary pattern (ACS-LBP) [17] captures both micro and macro
texture structures by introducing local and global grayscale information. The adaptive
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binarized magnitude vector (ABMV) [18] adaptively calculates an average vector threshold
to replace the scalar threshold, enabling more precise extraction of magnitude features in
different local spaces.

Some variants introduce robust patterns to achieve rotation invariance. For example,
Ojala et al. [5] proposed the uniform pattern descriptor, which classifies images based on
the number of transitions in binary encodings. Additionally, the completed local binary
count (CLBC) [19] considers contrast information by encoding local differences, specifically
by calculating the number of ‘1’ bits present in the binary strings. Another class of variants
focuses on finding robust permutations. The dominant rotation-invariant LBP (DRLBP) [20]
rotates encoding weights based on the local dominant direction. The normalized difference
vector (NDV) [21] sorts the binary strings and circularly shifts all orientations, selecting
the descriptor with the smallest index as the unique NDV. Furthermore, the local gradient
pattern (LGP) [22] employs a global threshold that does not depend on the rotation angle
of the image, enabling rotation invariance in related image processing algorithms. Song
et al. [23] proposed the locally encoded transformed rotational invariant scale-space
texture histogram (LETRIST), which utilizes Gaussian derivative filters to establish rotation-
invariant features.

To enhance noise robustness, the local ternary pattern (LTP) [24] extends binary en-
coding to ternary encoding, enabling a greater reduction in noise interference. The binary
rotation-invariant and noise-tolerant (BRINT) descriptor [25] effectively enhances robust-
ness during preprocessing by averaging image pixels. Following this, the median robust
extended local binary patterns (MRELBP) [26] incorporates a median filter in the preprocess-
ing stage to boost robustness. SFB-OCPS [27] adopts an adaptive threshold quantization
edge-selection strategy to re-screen robust center pixels, while SPALBP [28] utilizes gradi-
ent values to obtain adaptive sampling radii in eight directions for robust neighborhood
sampling. Both methods achieve noise robustness by converting non-uniform patterns
into uniform patterns. Song et al. [29] created the LGONBP descriptor, which encodes
neighborhood pixel intensity order and applies a mean filter to integrate local and global
information for enhanced noise robustness.

Recently, texture recognition methods based on deep convolutional neural networks
(CNNs) have also garnered significant attention. Cimpoi et al. [30] combined the Fisher
vector with the deep convolutional activation feature (DeCAF) to describe textures in the
wild. DeepTEN [31] integrates dictionary learning and residual encoding into its network
layers, constructing an end-to-end framework. The feature aggregation module CLASS [32]
models CNN feature maps from different layers and incorporates statistical self-similarity
to capture spatial texture features more effectively. Compared to traditionally handcrafted
descriptors, deep features demonstrate superior representational capabilities for complex
texture images. However, the training process of deep models is time-consuming and
demands high computational resources. Moreover, on small-scale datasets with limited
data, deep models are prone to overfitting, which restricts their application scope to
a certain extent. In contrast, traditional handcrafted descriptors still hold potential in
specific scenarios.

The traditional LBP is limited to extracting pixels from a narrow neighborhood within
the texture image to form local symbolic structures. Furthermore, the LBP ignores direc-
tional amplitude variations and focuses solely on the relationship between one neighbor-
hood sample and the center point, restricting its ability to fully describe local directional
texture. Additionally, as the scale increases, the required dimensionality grows exponen-
tially. To address these issues, this paper proposes a novel, highly discriminative texture
descriptor called the local directional difference and relational descriptor (LDDRD). Gradi-
ent information reflects the direction and intensity of pixel value changes in an image and
consists of both radial and tangential components. Extracting both radial and tangential
information simultaneously can improve the descriptive power of the descriptor for texture
features [33]. Therefore, the LDDRD employs simple arithmetic operations to fuse the
grayscale differences between multiple neighboring points and the central point along the
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local radial direction, thereby generating directional differences. Following this, the CLBP
encoding strategy is applied to extract the directional difference pattern (DDP). To further
extract directional texture features, the encoded differences from the comparisons between
directions are processed to create a directional relation pattern (DRP). Finally, the LDDRD
is constructed by combining the DDP and DRP, incorporating central pixel information
along with directional differences and inter-directional relationship information. It achieves
good performance in texture classification.

Our main contributions are as follows:

• We propose a novel local directional difference and relational descriptor (LDDRD)
for texture classification. Our proposed LDDRD captures directional differences and
directional relationships.

• We build two complementary operators: a directional difference pattern (DDP) and a
directional relation pattern (DRP). The DDP integrates difference information obtained
by contrasting multiple neighboring pixels radially with the central pixel, enabling fine-
grained encoding of local directional difference information. The DRP compares the
direction codes corresponding to different directions to capture directional differences,
revealing the relationships between different directions.

• Experimental results on five well-known texture datasets show that our proposed
LDDRD is effective and robust against different noise disturbances.

The structure of this paper is as follows. Section 2 provides the foundational back-
ground for this paper, including the LBP, CLBP, and NLBP. In Section 3, we introduce the
LDDRD in detail. Section 4 summarizes the results of comparing the proposed descrip-
tor with different LBP variants across multiple databases. Lastly, Section 5 provides the
concluding remarks of this paper.

2. Related Works

The local binary pattern (LBP) [5] analyzes intensity differences by comparing the
central pixel with its surrounding adjacent pixels. To reduce dimensionality, Ojala et al. [5]
introduced the uniform pattern “riu” into the LBP, resulting in LBPriu. LBPriu catego-
rizes patterns with no more than two transitions from 0 to 1 or from 1 to 0 in the binary
string as uniform patterns, classifying the rest as non-uniform patterns. This reduces the
dimensionality of the LBP to P + 2.

To enhance the discrimination capability of the original LBP, Guo et al. [12] sup-
plemented the sign information of the LBP by incorporating complementary magnitude
information, denoted as CLBP_M. The central pixel also plays a crucial role in describing
features. In the complete LBP (CLBP), the symbolic information is encoded as CLBP_S, and
the central pixel is encoded as CLBP_C. By paralleling these three operators, the CLBP can
be obtained.

Additionally, in our previous work, we proposed the MCDR [34], JRLP [35], and
SMDCP [36] descriptors, all of which are improvements on the LBP. The MCDR captures
robust texture features by combining local count vectors, taking into account multi-scale
characteristics simultaneously. The JRLP focuses on the differences between adjacent pixels
within local regions. Furthermore, the SMDCP, building upon the JRLP, enhances the
representation by incorporating the extraction of directional and contour information. To
capture global information more comprehensively, Song et al. [29] proposed the NLBP.
The NLBP processes the grayscale values of all pixels in an image by arranging them in
ascending order. The sorted vector is then uniformly divided to obtain the average grayscale
values, which serve as anchor points to capture structural changes in local regions relative
to the whole image.

3. Proposed Method

Although the CLBP [12] effectively enhances classification accuracy by integrating local
sign and magnitude information, its ability to capture local directional information remains
limited during the comparison of selected neighboring pixels. In our work, the MCDR [34]
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considers expanding the neighborhood range but ignores directional information. In
contrast, both the JRLP [35] and SMDCP [36] focus only on the relationships between
symmetric pixels along the horizontal and vertical directions. Therefore, we introduce a
novel approach named the local direction texture descriptor (LDDRD).

In this section, we provide the details of the proposed texture descriptor, the local
directional difference and relational descriptor (LDDRD). First, in Section 3.1, we intro-
duce the directional difference pattern (DDP), which obtains richer directional difference
information. Then, in Section 3.2, we introduce the directional relation pattern (DRP),
which captures the associations between different directions, thereby complementing the
DDP. Finally, we integrate the DDP and DRP to represent the LDDRD in the form of a
joint histogram.

3.1. Directional Difference Pattern (DDP)

We propose the directional difference pattern (DDP), which represents local directional
differences by capturing the grayscale difference information between multiple pixels and
the central pixel in the direction of the image. Since the local binary pattern (LBP) focuses
only on the information exchange between a single neighborhood and the central pixel,
this limitation renders it insufficient for adequately representing the texture characteristics
in a given direction. Moreover, the LBP solely utilizes the sign information obtained from
subtracting two pixels, neglecting the magnitude information present in the differences.
Furthermore, as the sampling neighborhood increases, the LBP fails to consider the com-
bined effect of multiple pixel differences within the same direction. These limitations
hinder its accuracy in processing local directional difference information. Although the
SMDCP takes directional information into account, it only extracts the differences in sym-
metric pixels along the horizontal and vertical directions. Therefore, the DDP supplements
directional difference information through the operations outlined below.

First, we consider expanding the selection area of sampling neighborhoods based on
the LBP to acquire more neighborhood pixels in various directions. Figure 1 illustrates
the sampling structure of the LDDRD. For simplicity, the figure only shows a sampling
structure with a window size of 5 × 5. In this structure, we define gc as the central pixel.
Simultaneously, on each circle with a different radius R, the LDDRD employs bilinear
interpolation to obtain P neighboring pixels, denoted as gp,n (where P ranges from 0 to 7).
Each direction, indicated by the line connecting a neighborhood pixel to the central pixel, is
considered an orientation. Compared to the original LBP neighborhood, this design allows
for capturing more neighboring pixels in the same direction. This enhancement not only
enriches the descriptor but also improves its ability to express image texture features. As a
result, the LDDRD is capable of acquiring richer and more detailed directional information.

gc g1,2g1,1

g2,2

g2,1

g3,2

g3,1

g4,2

g4,1

g5,2

g7,1

g8,1
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g6,1

g8,2

g7,2

g6,2

Figure 1. The sampling structure of the DDP (w = 5).
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Assuming the size of the DDP sampling window is w × w, we calculate the differences
between the neighborhood pixels of different scales along the same radial direction and
the central pixel, resulting in N pixel difference values corresponding to each of the P
different radial directions. The total difference value is obtained by summing the differences
along the same radial direction, and the difference information is decomposed into sign
information DDP_S and magnitude information DDP_M according to the CLBP. The sign
information of the DDP can be defined as follows:

DDP_S =
P−1

∑
p=0

s

(
N

∑
n=1

(
gn,p − gc

))
2p, s(x) =

{
1, x ≥ 0
0, x < 0

, (1)

where gn,p represents the nth neighborhood pixel in the pth direction, gc corresponds to the
central pixel, and s(x) is the binarization function, as shown in Equation (1). The dimension
RP of the original LBP is determined by the radius R and the number of directions for
neighboring pixel sampling P. Excessively large values of R and P can lead to a sharp
increase in the dimension. Therefore, we fix P = 8 to construct the feature image. When
the window size changes, the resulting feature vector remains constant at 2p compared to
other variants. When N = 1, DDP_S only considers the differences between the central pixel
and its nearest neighboring pixels in the pth direction. At this point, DDP_S is identical to
CLBP_S under the R = 1 setting. Therefore, the DDP inherits the advantage of illumination
invariance from the CLBP to a certain extent. The expansion of the sampling neighborhood
increases the amount of information in each direction, which can compensate for the lack
of macroscopic information in those directions. Similarly, DDP_M is defined as

DDP−M =
P−1

∑
p=0

s

(
N

∑
n=1

mn,p − cp

)
2p, (2)

where mn,p represents the value of |gn,p − gc| and s(x) is defined in the same way as in
Equation (1). As mentioned above, P = 8 represents the number of directions for sampling
neighboring pixels. cp is the average grayscale of ∑N

n=1 mn,p in the whole image, which is
defined as

cp =
∑K

i=1 ∑H
j=1

(
∑N

n=1 mn,p(i, j)
)

K × H
(3)

where mn,p represents the value of |gn,p − gc| and K × H is the size of the entire image.
During the amplitude binarization calculation, we add up the absolute values of

the differences. This approach avoids the potential loss of critical information due to
the cancellation of positive and negative differences. By preserving and emphasizing
the absolute values of these differences, we can maximize the integrity of the features
in each direction. When N = 1, DDP_M is identical to CLBP_M under the R = 1 setting.
Both DDP_S and DDP_M employ the “riu” mode. As N gradually increases (N > 1),
the two-dimensional histogram generated by the combination of DDP_S and DDP_M
consistently maintains a size of 100 bins, significantly reducing the feature dimensionality
of the descriptor. In contrast, methods like the LBP may lead to computational complexity
due to their excessively high dimensionality. According to our experiments, the DDP
achieves the best classification performance when N = 3. Therefore, in this method, the
window size w is set to (2N − 1). Figure 2 provides a specific implementation example of
the DDP within a 5 × 5 window.

Next, after encoding the symbolic information and intensity information into binary
form, they are concatenated in parallel with the central pixel information to obtain the
descriptor. In [29], the NLBP mechanism ingeniously leverages multiple anchors to effec-
tively encode the intensity differences between adjacent sampling points and these anchors,
thereby capturing abundant non-local interaction information.
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Figure 2. Illustration of an example of the specific implementation of the DDP within a 5 × 5 local
neighborhood window.

Drawing upon this, to better delve into the details of the global information C and
smoothly capture a broader range of global dependency relationships, we introduce the
absolute grayscale information of pixels into DDP_C. Through the distribution of image
grayscale, we perform a classification of the central pixels. The central pixels across the
entire image are categorized into J distinct levels, each corresponding to a unique threshold.
This approach can be regarded as an extension of the CLBP_C descriptor, which segments
the image based on multiple thresholds. Consequently, the central pixel information
DDP_C can be defined as

DDP_C =
J−1

∑
j=0

s
(

gc − cj
)
, (4)

where J represents the number of thresholds and cj is the jth threshold. During the specific
calculation process, the pixels of the image are first sorted in ascending order of their
grayscale values. Afterward, the sorted pixels are divided into J equal parts. Finally, the
mean value of the jth partition is calculated to obtain cj.

DDP_C retains the advantages of the original descriptor while significantly enhancing
its ability to capture and describe global information by introducing grayscale levels. Since
the thresholds are calculated based on the average pixel grayscale, DDP_C exhibits a certain
degree of illumination invariance and noise robustness.

Finally, we adopt the joint histogram of DDP_S, DDP_M, and DDP_C as the directional
difference pattern. Unlike the CLBP, we consider extending the range of the sampling
neighborhood, which makes it easier for the DDP to capture more favorable directional
features. At the same time, by accumulating the absolute values of differences in the
same direction, we effectively fuse information between different pixels in that direction,
allowing for a more natural handling of textural features in terms of direction. Furthermore,
during the extraction process of the local central pixels, we refer to the anchor setting
concept in the NLBP, dividing the set of image pixels into several subsets to further refine
the extracted directional features. This enhances the sensitivity of features to image details.
The DDP inherits the advantages of the CLBP, making it robust against rotation and scale
variations in images.

3.2. Directional Relation Pattern (DRP)

The directional relation pattern (DRP) is used to capture the differential relationships
between directions. Although the DDP effectively encodes the directional difference infor-
mation within the local neighborhood surrounding each pixel in an image, it fails to capture
the intrinsic connections between these local directions, which limits its discriminative
ability to a certain extent. Specifically, when performing difference comparisons, the DDP
focuses solely on the differences between multiple pixels within a single direction, without
considering the relationships among multi-pixel groups across different directions. Infor-



Mathematics 2024, 12, 3432 7 of 15

mation across different directions can represent the tangential information of gradients to a
certain extent. To overcome this limitation and enhance the discriminability and robustness
of the DDP descriptor, we propose a complementary descriptor named the DRP. The DRP
utilizes pixels within multiple radius neighborhoods to obtain a unique identifier value for
each direction. The sign differences of these identifier values are then encoded into binary
to capture the relationships between directions. Figure 3, with R = 2 as an example, details
the specific implementation steps of the DRP.

First, to quantify the relative relationships among pixels in these directions, we com-
pare the magnitude of each pixel within the neighborhood with that of the central pixel gc
and construct a binary string along the direction, which represents the relative information
of that direction. In this example, we select circular neighborhoods with two different radii
(R1 and R2) to acquire the neighboring pixels gp,1 (r = 1) and gp,2 (r = 2) in these circular
neighborhoods. gp,r represents the rth directional neighboring pixel in the pth direction. For
R neighboring pixels in one direction, an R-bit binary code is generated. Here, each bit (0
or 1) directly reflects the grayscale value change relative to the central pixel gc in a specific
direction.

Then, to ensure that each direction can be accurately encoded, we need to integrate
the difference symbols within the same direction through binary coding. This combination
is based on assigning corresponding weights to elements according to their importance,
thereby constructing a code (denoted as Γ) that represents the local directional relationship.
In this process, higher weights are assigned to pixels closer to the central pixel. For instance,
gp,1 should have a higher weight than gp,2. Based on this principle, for the local directional
characteristic of pixel gp,r in a specific direction p, we can express its local directional
information code Γ as follows:

Γp =
R

∑
r=1

s
(

gp,r − gc
)
2R−r, (5)

where 2R−r functions as the weighting mechanism for converting the directional binary
string into a unique directional relationship code (represented as a decimal value) and
s(x) is defined by Equation (1). Employing a weighted method allows for the unique
identification of Γ for each direction, ensuring the accuracy of the information.

As illustrated in Figure 3, we calculate the differences between neighborhood pixels
and the central pixel under two different radii and then convert this difference information
into a 2-bit binary string through binarization. This process is repeated for eight different
directions, generating unique binary codes representing each direction. To effectively utilize
these directional codes for comparison, we need to design local thresholds to convert them
into a single numerical form. Meanwhile, it is important to ensure that this conversion
process does not introduce additional dimensions.

Next, when selecting the baseline point for local thresholds, we consider that the
central pixel can more intuitively reflect local features than the local average. Based on this,
we adopt the central pixel as the reference for the local thresholds to explore the correlations
between different directions within the local neighborhood. However, it should be noted
that the range of the central pixel values (from 0 to 2P) often does not directly correspond to
the range of the directional relationship encodings (from 0 to 2R). To address this mismatch,
we design a conversion formula. This formula aims to map the central pixel values into a
numerical range that is compatible with the directional relationship encoding. The specific
conversion formula is as follows:

µ =

⌊
gc ×

2R − 1
2P − 1

⌋
, (6)

where ⌊x⌋ is the floor function. Through the transformation function, a comparative
benchmark for the directional relationship can be obtained. In Figure 3, the result of the
conversion for central pixel 45 is 0.
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Finally, we calculate the difference between Γp and µ to obtain the directional rela-
tion pattern (DRP). The DRP is a binary pattern that describes the correlation between
directions. This process involves encoding the R neighboring pixels within the local neigh-
borhood across p different directions to generate a representative binary code for each
direction. These encoded binary codes are then compared with each other to capture the
differences between the directions. Consequently, for a pixel (i, j) in an image, its DRP can
be represented as

DRPi,j =
P−1

∑
p=0

s
(

Γp − µ
)
2p, (7)

where s(x) represents the weight function, which is defined in Equation (1). Γp and µ are
defined by Equations (5) and (6), respectively.
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Figure 3. Illustration of an example of the specific implementation of the DRP within a 5 × 5 local
neighborhood window.

The distinction between the DRP and DDP lies in the fact that the DRP primarily
focuses on capturing the correlation among multiple directions within a local neighbor-
hood. The DRP employs the associative nature of radial pixels to establish clear directional
identifiers. These identifiers are compared with reference points and use differential infor-
mation to describe the relationship between directions, thereby effectively supplementing
the description of local directional texture features.

The DDP captures the relationships between adjacent central pixels across multiple
scales and different directions, while the DRP gathers the directional relationships between
distinct orientations. As a result, these two components display a mutually beneficial
relationship, where one complements the other, thereby augmenting their respective ca-
pabilities. Ultimately, we concatenate the histograms generated by the DDP and DRP to
form a local directional difference and relational descriptor (LDDRD). The overall process
is illustrated in Figure 4. LDDRD can be defined as

HLDDRD = (HDDP, HDRP), (8)

The feature dimension of HDDP is J × 100, where J represents the number of thresholds
in DDP_C (J = 3). Meanwhile, the feature dimension of HDRP is 10.

DDP_S

DDP_M

DDP_C

DDP

DRP

LDDRD

Hsitogram

NNC

Classifier

Figure 4. The flowchart of the proposed LDDRD descriptor.

4. Experimental Results

In this section, we conduct a series of experimental validations on seven representative
datasets, demonstrating the effectiveness of the local directional difference and relational
descriptor (LDDRD) for texture classification.
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4.1. Databases and Experimental Setup

We compared the LDDRD with LBP variants, specifically focusing on their perfor-
mance in texture classification across multiple benchmark texture datasets, including
Brodatz [37], KTH-TIPS [38], UIUC [39], CUReT [40], and Outex [5]. The methods used
for comparison were LBPriu [5], CLBP [12], CLBC [19], MCDR [34], JRLP [35], CRDP [33],
LGONBP [29], SMDCP [36], and ABMV [18].

4.1.1. Brodatz Dataset

The Brodatz dataset [37] comprises 112 types of texture images, all of which are derived
from real-world texture samples. We chose the grayscale version of Brodatz, where each
grayscale image has a size of 640 × 640 pixels. For the purpose of experimentation, each
image in the dataset is split into 25 smaller images, each of which has a size of 128 × 128
pixels. Consequently, the dataset comprises 112 texture classes, with 25 images per class,
resulting in a total of 2800 images. We selected 11 images per class (N = 11) for training and
retained 14 images for testing.

4.1.2. KTH-TIPS Dataset

The KTH-TIPS dataset [38] encompasses 10 diverse texture categories, each containing
81 images. The images reflect realistic textures with nine different scales, three distinct
poses, and nine types of lighting conditions. For training purposes, we selected 40 images
from each category while reserving the remaining images for testing.

4.1.3. UIUC Dataset

The UIUC dataset [39] contains texture images from 24 different species, with each
category comprising 32 images. The challenge of this database lies in the fact that each cate-
gory contains images with viewpoint changes while also exhibiting substantial differences
between categories. Each image has a resolution of 640 × 480 pixels. From each category,
half of the images were selected as training images, and the other half were designated as
test images.

4.1.4. CUReT Dataset

The CUReT dataset [40] comprises 61 distinct categories and is commonly used for
detecting and recognizing the surface materials of objects. Each category contains 92 im-
ages of the same scale but with different lighting conditions. The size of the images is
200 × 200 pixels. Specifically, we used 46 × 61 images for training in this paper, with the
rest serving as the test set.

4.1.5. Outex Dataset

The Outex dataset [5] contains a total of 17 sub-datasets. We used Outex_TC11
(TC11), Outex_TC12 (TC12), and Outex_TC10 (TC10) for our experiments. They all contain
24 texture categories, with each category represented by three types of illumination (“Inca”,
“tl84”, and “horizon”) and nine different rotation angles (0◦, 5◦, 10◦, 15◦, 30◦, 45◦, 60◦, 75◦,
and 90◦). TC11 includes images in 100 dpi and 120 dpi resolutions. When constructing
the training and testing sets, we adhered to the original recommended segmentation of
the Outex dataset. Specifically, we utilized 24 × 20 images under the “Inca” illumination
and a 0◦ angle for training. For the Outex_TC10 dataset, we selected the images from the
remaining eight angles for testing. For the Outex_TC12 dataset, all samples captured under
different lighting conditions were included in the test set.

For the CUReT, KTH-TIPS, UIUC, and Brodatz datasets, there were no fixed training
and testing sets. We conducted 10 experiments on each dataset and calculated the average
accuracy as the comparison metric. During image preprocessing, each image underwent
normalization with a mean of 0 and a standard deviation of 1. Subsequently, in the noise
robustness testing, we added different types of noise to the images. As the density of
noise increased, it indicated a higher degree of noise pollution. In our experiment, we
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set the number of neighborhood orientations P to 8. The parameter configurations of the
remaining LBP variants all followed the settings described in their respective papers.

The classifier selects the nearest neighbor classifier (NNC) to categorize texture images.
The NNC is the K-nearest neighbor (KNN) classifier when K = 1. All methods employed
the NNC classifier in this paper. The NNC uses the cardinality distance to measure the
similarity between the texture histograms, specifically comparing those of the test set
against those of the training set. We selected the class with the smallest distance to the test
image as its classification result. The definition formula is as follows:

Dχ2(H1, H2) = ∑ K
[H1(k)− H2(k)]

2

H1(k) + H2(k)
, (9)

where H1 and H2 represent the feature histograms of the test images and the training
images, and H1(k) and H2(k) represent the kth level index of histograms H1 and H2.

4.2. Parameter Evaluation

The LDDRD is composed of the DDP and DRP, and both the window size w of the
DDP and the scale size r of the DRP have an impact on classification accuracy. To study the
effects of w and r, we conducted experiments on the OutexTC10 dataset. For example, in
one of our experiments, the local image block size was set to 3 × 3, which corresponds to a
window size of w = 3 for the DDP. Figure 5 illustrates the effects of these specific parameter
settings on the classification performance of the LDDRD.

It can be observed in Figure 5 that, under noise-free conditions, the classification
performance of the LDDRD improved as the values of w and r increased. When w = 7
(assuming a 7 × 7 window size for the DDP), the DDP achieved a relatively high clas-
sification accuracy and integrated well with the DRP. Specifically, when w equals 7, the
accuracy of the LDDRD was generally higher than that of other w values. For instance,
when r was fixed at 1, the accuracies of the LDDRD were 98.30%, 99.06%, 99.24%, and
98.95%, respectively (with w ranging from 3 to 9). When the value of w was set excessively
high, the classification performance of the LDDRD showed a declining trend. When w
was increased to 9, the overall performance of the LDDRD decreased notably by 0.54%
compared to when w = 7. This indicates that there exists an optimal value for w, and after
reaching this peak, the classification effectiveness of the LDDRD diminishes. Within the
range of r ∈ [4, 6], the DRP achieved better classification results. Specifically, when r = 6,
the combination with the DDP achieved the best complementarity, reaching an accuracy of
99.8% on OutexTC10. Therefore, the optimal window size of the DDP was set to 7 × 7, and
the scale of the DRP was set to 6.

Figure 5. Effects of the DDP sampling window size (w) and the DRP scale size (r) on the classification
performance of the LDDRD.
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4.3. Classification Performance Comparison

In this subsection, we validate the effectiveness of the LDDRD by comparing it with
nine classification methods for texture classification, utilizing six benchmark datasets
for a comprehensive evaluation. Among them, the scale (R,P) for LBPriu, CLBP, CLBC,
MCDR, JRLP, SMDCP, and ABMV was set to (3,24). For LGONBP, the scale was set to
(3,24)+(5,24)+(7,24), and for CRDP, the scale was set to (1,8)+(3,8)+(5,8).

Table 1 presents the classification accuracy in detail, from which the following obser-
vations can be made. The proposed LDDRD achieved accuracies of 96.8%, 95.3%, 98.8%,
98.3%, 99.8%, 95.6%, and 99.6%, respectively. Additionally, the standard deviations of the
LDDRD on the CUReT, KTH-TIPS, UIUC, and Brodatz datasets were 0.87, 0.96, 0.50, and
0.16, respectively. Compared to the CLBP, the LDDRD achieved classification accuracy im-
provements of 2.93%, 2.6%, 0.71%, 0.71%, 0.86%, 0.31%, and 2.08% across various datasets.
This is primarily attributed to the fact that the LDDRD enhances its ability to capture
contrast difference information by extending the sampling range, allowing for the effective
acquisition of local directional information. In contrast to the JRLP and SMDCP, the LD-
DRD demonstrated a more effective capture of texture features through the extraction of
information from eight distinct directions. Although the LDDRD holds some advantages
over certain LBP variants, CRDP demonstrated superior performance. CRDP, through
its multi-scale fusion strategy, particularly the scale combination of (1,8) + (3,8) + (5,8)
in conjunction with the support vector machine (SVM) classifier, demonstrated superior
performance. In contrast, the LDDRD, utilizing the scale of (3,8), fell short of CRDP in terms
of performance across multiple datasets. Notably, when employing the same neighborhood
size, CRDP achieved a result of 98.52% on the TC10 dataset. The accuracy of the LDDRD
was 99.79%, which was 1.27% higher than that of CRDP. This indicates that the LDDRD
is more effective under this condition. Furthermore, the methods used for comparison
with the LDDRD primarily consisted of variants of the LBP approach. However, when
compared to SPR [41], a texture method based on random projection, SPR demonstrated
higher results, achieving an accuracy of 99.05% on the CURET dataset.

Table 1. Classification accuracy (%) of different classification algorithms on eight datasets.

Method
Texture Databases

KTH-TIPS UIUC Brodatz CUReT TC10 TC12 TC11

LBPriu [5] 95.07 73.18 90.36 87.45 95.07 85.05 77.71
CLBP [12] 93.90 92.71 98.04 97.58 98.93 95.32 97.5
CLBC [19] 94.63 93.23 97.86 96.89 98.77 94.01 98.54
MCDR [34] 93.17 85.42 87.86 87.13 98.85 95.06 76.67
JRLP [35] 95.61 91.41 95.18 94.90 96.15 92.96 88.54
CRDP [33] 99.37 — — 99.46 99.92 98.82 —
LGONBP [29] 94.87 90.10 92.14 96.86 99.60 97.89 98.33
SMDCP [36] 90.97 89.06 97.32 96.40 98.33 92.12 98.34
ABMV [18] 95.12 94.79 98.55 96.46 99.42 96.20 97.92
LDDRD 96.83 95.31 98.75 98.29 99.79 95.63 99.58

Figure 6 displays the average classification accuracy when the number of training
image samples varied across different datasets. For each class within the dataset, N images
were randomly selected as training samples, while the remaining images served as test
samples. It can be observed in Figure 6 that as the number of training samples decreased,
the classification accuracy of the LDDRD generally declined. This is because fewer training
samples usually lead to a decrease in the generalization ability of the descriptor. With a
training sample size of N = 20, the LDDRD demonstrated the best performance, achieving
classification accuracies of 99.79%, 94.62%, 98.18%, and 94.63% on the respective datasets.
Additionally, on the TC_10 dataset, the accuracy did not notably decrease as N decreased,
with the drop being maintained at 1.33%. This indicates that the LDDRD possesses a degree
of flexibility, allowing it to adjust the value of N based on actual conditions. This flexibility
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enables the LDDRD to reduce computational time without excessively compromising
classification accuracy.
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Figure 6. Classification accuracy of LDDRD under different numbers of training samples.

Table 2 shows the running time and feature dimensionality of the LDDRD. We com-
pared the total runtime on the Outex_TC10 dataset under the operational conditions of
MATLAB (R2019b) configured with an Intel Core i5-10400 CPU and GTX 1050 Ti. Compared
to other texture classification methods, the LDDRD ran faster than LGONBP, while LBPriu

had the shortest running time. Overall, the LDDRD maintained a moderate running time
while achieving high accuracy. The number of features extracted by the LDDRD was 410.
Table 2 shows that LBPriu had the lowest dimensionality, while LGONBP had the highest.
Therefore, the LDDRD was able to capture texture with fewer feature dimensions, resulting
in a relatively lower computational cost. Furthermore, when the neighborhood size was
increased, the LDDRD maintained a constant number of feature dimensions, which did not
increase with the increase in r.

Table 2. The running time (s) and feature dimensions of different classification algorithms on the
Outex10 dataset.

Method Time Size

LBPriu [5] 11.6 10
CLBP [12] 32.8 200
CLBC [19] 23.3 162
MCDR [34] 246.9 462
JRLP [35] 94.6 245

LGONBP [29] 982.1 1404
SMDCP [36] 65.5 243
ABMV [18] 185.8 200

LDDRD 426.5 410

4.4. Robustness Experiment Results

In this subsection, we aim to showcase the robustness of the LDDRD against different
types of noise. First, we added noise to the Brodatz benchmark database. Then, we
compared the LDDRD with seven representative and robust texture descriptors. Table 3
shows the classification results of the LDDRD on the Brodatz dataset under different levels
of salt-and-pepper noise.

It is clear from Table 3 that the classification performance of the LDDRD fluctuated
relatively little under different levels of salt-and-pepper noise, with the best performance
occurring at a noise level of 0.01. The classification accuracies of the LDDRD under different
salt-and-pepper noise levels were 98.75%, 98.57%, and 97.21%, respectively. Even when
the noise level reached 0.1, its accuracy remained above 97%, which was higher than that
of most LBP variants. The SMDCP was more robust against noise levels of 0.1 due to its
utilization of texture contour and directional information. As the noise intensity increased,
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the accuracy of the LDDRD decreased by only 1.25%, while the decreases for the LBP
and CLBP were 4.11% and 1.35%, respectively. This indicates that, overall, the LDDRD
exhibited robustness to salt-and-pepper noise.

Table 3. Classification accuracy (%) of various methods under different salt-and-pepper noise levels
on the Brodatz dataset.

Method
Salt-and-Pepper Noise

0.01 0.05 0.1

LBPriu [5] 94.82 92.67 90.71
CLBP [12] 98.39 98.10 97.04
CLBC [19] 97.86 98.10 97.38
MCDR [34] 94.64 92.32 93.92
JRLP [35] 97.31 97.61 96.91

LGONBP [29] 93.03 93.57 94.10
SMDCP [36] 97.14 98.03 97.67
ABMV [18] 98.04 97.75 97.47

LDDRD 98.75 98.57 97.32

Second, Table 4 shows the classification results under different levels of Gaussian noise
added to the Brodatz benchmark database. As the level of Gaussian noise increased (from
0.01 to 0.1), the classification performance of all methods decreased. It can be observed in
Table 4 that the LDDRD outperformed both the CLBP and SMDCP in terms of classification
accuracy under varying levels of Gaussian noise. Specifically, compared to the CLBP,
the accuracy of the LDDRD improved by 0.71%, 5.54%, and 5.37% under different noise
levels. Similarly, compared to the SMDCP, the improvements were 2.50%, 0.71%, and
1.78%, respectively. This indicates that the proposed LDDRD performed better than other
LBP variants under different levels of Gaussian noise. Furthermore, we compared the
magnitude of performance degradation under varying levels of Gaussian noise. As the
noise level increased from 0.01 to 0.1, the performance decline for the LDDRD was recorded
at 7.14%, while other LBP variants, excluding LGONBP, generally suffered decreases of
approximately 10%. To a certain extent, this reflects the robustness of the LDDRD in
resisting Gaussian noise.

Table 4. Classification accuracy (%) of various methods under different Gaussian noise levels on the
Brodatz dataset.

Method
Gaussian Noise

0.01 0.05 0.1

LBPriu [5] 86.07 82.86 76.25
CLBP [12] 98.57 90.53 86.77
CLBC [19] 98.57 94.82 89.82
MCDR [34] 86.96 83.04 74.82
JRLP [35] 91.61 89.46 86.25

LGONBP [29] 90.18 89.82 88.93
SMDCP [36] 96.78 95.36 90.36
ABMV [18] 96.25 92.50 87.32

LDDRD 99.28 96.07 92.14

5. Conclusions

In this paper, we propose a local directional difference and relational descriptor
(LDDRD) for texture classification. Our proposed LDDRD is built using a directional
difference pattern (DDP) and a directional relation pattern (DRP) in the form of histograms
to capture different directional texture features of local neighborhood pixels and central
pixels. Our DDP integrates multiple differences in the same direction to encode differential
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information in different directions. However, our DRP is introduced to capture the relative
relationships between different directions, complementing the DDP and enhancing its
discrimination ability. Our proposed LDDRD requires no training and exhibits a certain
degree of invariance to image rotation and illumination changes. Experimental results show
that the LDDRD performs well on popular benchmark texture datasets. It outperforms
eight other texture classification methods under various levels of salt-and-pepper noise
and Gaussian noise, demonstrating robustness to noise.
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