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Abstract: The transition from text to images as the primary form of information transmission has
recently increased the need for secure and effective encryption techniques due to the expanding
information dimensions. The color picture encryption algorithm utilizing chaotic mapping is limited
by a small chaotic range, unstable chaotic state, and lengthy encryption duration. This study integrates
the Ackley function and the Styblinski–Tang function into a novel two-dimensional hyperchaotic
map for optimization testing. A randomness test is run on the chaotic sequence created by the system
to check that the new chaotic system can better sustain the chaotic state. This study introduces two
techniques, genetic recombination and clock diffusion, to simultaneously disperse and mix images at
the bit level. This study utilizes chaotic sequences in genetic recombination and clock drift to propose
an image encryption technique. The data indicates that the method demonstrates high encryption
efficiency. At the same time, the key also successfully passed the NIST randomness test, verifying
its sensitivity and randomness. The algorithm’s dependability has been demonstrated and can be
utilized for color image encryption.

Keywords: 2D hyperchaotic map; Ackley function; Styblinski–Tang function; color image encryption;
genetic recombination

MSC: 68P25

1. Introduction

Due to the rapid advancement of the Internet and multimedia, images are increasingly
replacing words as the primary medium for transmitting information. The security of
photographs has gained increasing attention, particularly with the emergence of blockchain
and metaverse concepts. Since images are two-dimensional or three-dimensional data, the
data correlation between neighboring pixel positions of the image is vital. Conventionally,
the one-dimensional data encryption approach is no longer adequate for image encryp-
tion, so many researchers have poured into the field of encryption algorithms, and new
algorithms are continually being presented. These algorithms are primarily categorized
into optical-based, spatial-domain-based, and frequency-domain-based. The encryption
algorithm in the spatial domain directly manipulates the image pixels using a key to ensure
secure transmission. The security of the key directly impacts the outcome of encryption.
Chaos is significant in this field. Edward Lorenz introduced the concept of chaotic sys-
tems in 1963 while studying meteorological systems. Claude Shannon [1] utilized it in
encryption in 1994 due to its sensitivity to beginning values, randomness, determinism,
and ergodicity. Claude Shannon suggested encrypting data by utilizing random sequences
derived from chaotic sequences, serving as the foundation for numerous subsequent chaotic
encryption techniques.

Chaos is widely used in cryptography for maintaining chaotic systems in chaotic states
and generating pseudo-random sequences, making it a significant topic of research. In 1990,
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Aihara et al. [2] included chaotic dynamics in the Hopfield network, presenting a chaos
model that addressed the issue of the network getting stuck in a locally optimal solution.
Nevertheless, low-dimensional chaos mapping in image encryption has drawbacks such as
a limited chaos interval, periodic window, and inadequate nonlinear dynamic behavior.
Hyperchaotic systems are gaining interest in cryptography studies. Hyperchaos is char-
acterized by many positive Lyapunov exponents in a chaotic system. This year, several
strategies have been presented to address the limitations of one-dimensional chaotic map-
ping. Zhou et al. [3] employed a cascade approach to create a novel chaotic map by linking
two one-dimensional chaotic maps sequentially. They utilized logistic mapping as a switch
control to determine the iteration process between tent mapping and sine mapping. Ana-
lyzed for information entropy, a chaotic sequence exhibits a strong association. Aside from
cascade and switching, there are many techniques that utilize chaotic models, including
combination and coupling. Cosine and sine functions are commonly utilized to analyze the
fundamental oscillation of chaotic systems simultaneously.

Recently, some new hyperchaos [4–6] have been developed using different chaos
combination techniques, many of which exhibit superior performance when compared to
conventional chaotic mapping. Nevertheless, there could be constraints in the execution
of chaos. Its lack of sensitivity to the starting value and the volatility of the chaotic state
could affect subsequent keys, making it suitable for picture encryption. There are still
certain restrictions on the application. Recently, chaotic mapping design has incorporated
optimized test functions [7]. This function has a more intricate visual expression compared
to the sine function previously utilized. While sustaining oscillation, its oscillation ripples
also exhibit increased diversity. Hence, the chaotic map derived from this function is better
suited for encryption applications.

Image encryption algorithms based on chaotic systems can be divided into pixel level,
bit level, and block level according to the encryption method. The pixel-level chaotic
picture encryption algorithm is a widely accepted encryption technique. In 2004, Chen
et al. [8] developed a three-dimensional cat map by extending a two-dimensional cat map.
They rearranged the pixel coordinates of the image and applied an XOR operation using
the logistic map to encrypt the image. The encrypted output is effective in repelling sta-
tistical estimates and differential attacks, but its key has a minimal correlation with the
plaintext and is relatively easy to decrypt. Most encryption algorithms based on pixel
level rarely deal with scrambling and diffusion strategies separately without considering
the correlation between the two. Wang et al. [9] introduced a rapid picture encryption
technique that utilizes diffusion and scrambling. The method involves dividing the im-
age into pixel blocks and employing spatiotemporal chaos to create a random number
sequence. This sequence is then used to simultaneously diffuse and scramble the image.
Wang et al. [10] developed a novel image encryption algorithm that achieves the effects of
diffusion and scrambling by decomposing the plaintext into bit planes based on its weight
position and reorganizing it. The algorithm is based on Lorenz hyperchaos and genetic
recombination. Recently, various encryption algorithms have been enhanced by using
DNA coding [11], quantum coding [12], and other technologies, significantly diversifying
encryption techniques. Despite the satisfactory performance of these algorithms in quan-
titative assessments, their reliance on a singular data format imposes constraints on the
extension of their encryption methodologies.

A novel two-dimensional hyperchaotic map is created by utilizing the Ackley function
and Styblinski–Tang function. This map is then integrated with the genetic recombination
process to develop a bit-level color image encryption algorithm. Both the Ackley function
and the Styblinski–Tang function are widely used optimization detection functions with
multi-modal and non-concave function images. Hence, the complexity of the chaotic
mapping derived from these two factors is also ensured. The picture encryption algorithm
utilizes AST hyperchaos and incorporates genetic recombination to enhance confusion
ability at the bit level. The 2D-AST chaos mapping and picture encryption methods have
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been thoroughly compared with sophisticated technologies through experiments. This
study’s primary contributions can be summarized as follows:

• This study introduces a novel two-dimensional chaos map with an expanded parame-
ter range, higher Lyapunov exponent, more intricate chaotic dynamics, and improved
performance in terms of permutation entropy and sample entropy.

• We utilize genetic recombination in the process of encrypting images. The new scram-
bling technique operates at the bit level, which has increased its resilience to attacks
compared to the prior pixel-based scrambling method. We suggested a novel encryp-
tion approach that integrates several data structures and introduced a data encryption
technique for genetic recombination based on the new composite framework.

• A novel color image encryption method is introduced, utilizing AST hyperchaotic
mapping as the primary component and integrating the clock rotation algorithm and
genetic recombination algorithm. The viability of this image encryption algorithm is
validated by comparison with other existing algorithms, offering new opportunities
for the development of future encryption methods.

The following sections are included in the rest of this article: The second section
presents different design kinds of hyperchaotic mapping developed in recent years. The
third section designs a new type of 2D hyperchaotic mapping and performs dynamic
analysis on it. Section 4 introduces the clock diffusion method and genetic recombination
algorithm, which are integrated with the hyperchaos from Section 3 to develop a novel color
image encryption algorithm. Section 5 provides a summary of the article and discusses
future prospects.

2. Existing Hyperchaotic Mapping

This section will present an overview of the chosen 2D hyperchaotic mapping [13–18].
Lin et al. [13] employed the cross-mapping approach to create a new 2D hyperchaotic
map using the sine function as the infinite collapse map. This new map exhibited two
positive Lyapunov exponents within its control parameter range, along with specific initial
parameter values. Exhibits superior performance. Sun J [14] created a new two-dimensional
hyperchaotic map by incorporating the infinite collapse map into the sine function and
implementing a symmetrical structure, resulting in hyperchaos over various parameter
ranges; in 2021, Hua et al. [15] created a new 2D hyperchaotic mapping by combining
logistic mapping with sinusoidal mapping and increasing the phase space dimension to
two dimensions. The sample entropy fluctuates about 2 despite having a broad chaotic
range for its characteristics. Li et al. incorporated the sine function into the discrete
mapping, resulting in complicated dynamic phenomena characterized by the oscillation
of the trigonometric function. This led to a relatively stable hyperchaotic state within the
specified parameter range. Qin et al. [16] initially integrated the Chebyshev map with the
sine map to create a novel one-dimensional map and then incorporated the cosine map to
expand its phase space to two dimensions. They utilized a coupling method to create and
analyze a novel hyperchaotic system. The mapping’s Lyapunov exponent remains stable
in two positive states and has successfully passed the randomness test, demonstrating its
suitability for picture encryption. Wang et al., 2023 [17], constructed a new 2D hyperchaotic
mapping by coupling x and y using a sine function while embedding them into a logistic
map, which exhibited multiple LE indices greater than 0 in multiple parameter fields. Wang
et al. [18] utilized cubic mapping and infinite collapse mapping to create and analyze a novel
2D hyperchaotic mapping. The double largest Lyapunov exponent remains steady around
0, whereas the sample entropy varies at 1.6 and the permutation entropy is approximately
1. It exhibits positive, chaotic traits. In our subsequent study, we will assess the newly
proposed 2D hyperchaotic map by comparing it with chaotic maps generated using other
approaches. In conclusion, despite the unique strengths and weaknesses of hyperchaotic
systems produced by distinct methods, they collectively enhance the intricacy and variety
of chaotic dynamics, advancing our use and comprehension of chaotic systems (Table 1).
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Table 1. Existing hyperchaotic mapping.

Ref. 2D Chaotic System Parament

[13]
{

xi+1 = sin
(

α
sin(yi)

)
yi+1 = β sin(π(xi + yi))

α, β

[14]
xi+1 = r sin

(
π
(
(yi + h)k sin

(
aπ
xi

)))
yi+1 = r sin

(
π
(
(yi + h)k sin

(
aπ
xi

))) r, a, b, h

[15]
{

xi+1 = cos(4axi(1− xi)) + b sin(πyi) + 1
yi+1 = cos(4ayi(1− yi)) + b sin(πxi) + 1

a, b

[16]
{

xi+1 = cos
(
α cos−1(sin(xi − yi))

)
yi+1 = β sin(π(xi + yi))

α, β

[17]
{

xi+1 = sin(π((xi + 3)µsin(πxi)(1− sin(πxi)) + θ sin(πyi)))
yi+1 = sin(π((yi + 3)µsin(πyi)(1− sin(πyi)) + θ sin(πxi)))

µ, θ

[18]
xi+1 = cos

(
π
(

ax3
i + (1− a)xi + sin

(
a
yi

))
+ ea(xi+yi)

)
yi+1 = cos

(
π
(

ay3
i + (1− a)yi + sin

(
a
xi

))
+ ea(xi+yi)

) a

3. Proposed 2D-AST Mapping
3.1. Ackley Function

The Ackley function [19] is a prevalent nonlinear mathematical function introduced
by David Ackley in 1987. It is now a common practice to utilize this approach for testing
optimization algorithms due to its non-convexity and the presence of several local minima.
The form of its function is as follows:

f (x) = −20× exp

(
−0.2×

√
1
n∑n

i=1 x2
i

)
− exp

(
1
n∑n

i=1 cos(2× π × xi)

)
+ 20 + e, (1)

Figure 1 displays the graph of the Ackley function in a two-dimensional space, with its
lowest point located at x = y = 0. The Ackley function, comprised of cosine and exponential
elements, contains numerous local minima surrounding the global minimum. It spreads
outward in ripples from the global minimum point, creating a distinct pattern. The ongoing
multi-modal landscape demonstrates that the Ackley function exhibits good diversity. The
Ackley function can display chaotic behavior through iteration, and the resulting time series
can serve as a crucial component in picture encryption techniques.

Mathematics 2024, 12, x FOR PEER REVIEW 5 of 30 
 

 

 
Figure 1. Ackley function. 

3.2. Styblinski−Tang Function 
The Styblinski−Tang function [20] was introduced by J.S. Styblinski in 1975. It is pri-

marily utilized in performance testing optimization methods. The formula is as follows: 𝑓(𝑥) = ଵଶ ∑ (𝑥௜ସ − 16𝑥௜ଶ + 5𝑥௜)ௗ௜ୀଵ , (2) 

Among them, x is an n-dimensional vector, and d is the dimension of vector x. The 
Styblinski−Tang function is simpler than typical multi-modal functions as it is composed 
solely of power terms. Aside from multimodality and non-convexity, the Styblinski−Tang 
function also exhibits superior smoothness. Figure 2 displays a two-dimensional Styblin-
ski−Tang function defined as follows: 𝑓(𝑥, 𝑦) = ଵଶ [(𝑥ସ − 16𝑥ଶ + 5𝑥) + (𝑦ସ − 16𝑦ଶ + 5𝑦)], (3) 

The global lowest point of the Styblinski−Tang function is −2.903534, which is 
achieved when each dimension’s value is −2.903534. The number of local minimum values 
of a function is directly connected to its dimension, with each dimension having its local 
minimum. Thus, in low dimensions, the function exhibits a local minimum in each dimen-
sion while also preserving smoothness, significantly complicating identifying the optimal 
solution. 

Figure 1. Ackley function.



Mathematics 2024, 12, 3457 5 of 29

3.2. Styblinski−Tang Function

The Styblinski−Tang function [20] was introduced by J.S. Styblinski in 1975. It is
primarily utilized in performance testing optimization methods. The formula is as follows:

f (x) =
1
2∑d

i=1

(
x4

i − 16x2
i + 5xi

)
, (2)

Among them, x is an n-dimensional vector, and d is the dimension of vector x. The
Styblinski−Tang function is simpler than typical multi-modal functions as it is composed solely
of power terms. Aside from multimodality and non-convexity, the Styblinski−Tang function
also exhibits superior smoothness. Figure 2 displays a two-dimensional Styblinski−Tang
function defined as follows:

f (x, y) =
1
2

[(
x4 − 16x2 + 5x

)
+
(

y4 − 16y2 + 5y
)]

, (3)
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The global lowest point of the Styblinski−Tang function is −2.903534, which is
achieved when each dimension’s value is −2.903534. The number of local minimum
values of a function is directly connected to its dimension, with each dimension having its
local minimum. Thus, in low dimensions, the function exhibits a local minimum in each
dimension while also preserving smoothness, significantly complicating identifying the
optimal solution.

3.3. 2D Hyperchaotic Mapping Design

The construction of a new hyperchaotic map begins by utilizing the Ackley function
as the foundation of the chaotic map. To smooth the oscillations of the chaotic map, the
Styblinski−Tang function is integrated with it simultaneously. Ultimately, the mapping
was restructured among the function terms to further augment its intricacy. The resultant
2D−AST chaotic mapping acquires the following form: xi+1 = −a× exp

(
−10×

√
1
2 ×

(
x2

i + y2
i
))

+ x5
i − y3

i + xi mod β

yi+1 = −a× exp
(

1
2 × (cos(b× xi) + cos(b× yi))

)
+ y5

i − x3
i + yi mod β

, (4)

The current states of the chaotic map are denoted by xi and yi, the chaotic states of the
subsequent time point are represented by xi+1 and yi+1, the controllable variables of the
chaotic map are a and b, and the modular operation is denoted by mod.
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In Figure 3, the design path of the 2D−AST hyperchaotic mapping is illustrated. To
derive the first part of the 2D−AST mapping, the two−dimensional forms of the Ackley
function and the Styblinski−Tang function are divided. By combining the initial parts of
both functions, the first part of the 2D−AST mapping is obtained. The second part of the
mapping is derived similarly by merging the remaining parts of the Ackley function and
Styblinski−Tang function.
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In the Ackley function, the xi component is modified by selecting the exponential
term with x2 + y2 to introduce coupling and accelerate evolution with ea. Simultaneously,
to enhance complexity, the first part of the Styblinski–Tang function, x4 − 16x2 + 5x is
incorporated. To further improve coupling and highlight its nonlinear effect, the equation is
adjusted to x5 − y3 + x. The yi component is integrated into the secondary part of Ackley’s
function. The exponential term of yi involves the coupling of x and y cos() function terms,
unlike xi. The objective is to ensure the stable production of chaotic oscillatory behavior
in the mapping. The yi component retains the residual portion of the two-dimensional
Styblinski–Tang function to enhance the correlation between y and x, ensuring their close
interconnection and maintaining the oscillation of the cosine function throughout the
iteration phase, preventing it from deteriorating or stabilizing. The specific construction
process is shown in Figure 4.
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Prevent it from deteriorating or stabilizing. The 2D-AST chaos map incorporates power
terms and introduces the mod function to enhance the observation of chaotic behavior.
The 2D hyperchaotic map is defined by three parameters: a, b, and β, where a and b are
within the range of (0, ∞) to sustain a chaotic state. The suitability of a chaotic map as an
encryption key for images is contingent upon the parameters’ range. The key’s complexity
is defined by the range of its parameters. The AST chaotic map remains sensitive to the
starting parameters and is extremely flexible to them. This feature enables the generation
of diverse chaotic sequences based on random factors, enhancing the complexity of the key
and improving resistance against brute force attacks. Thus, the chaotic mapping is suitable
for use in encryption.

3.4. Bifurcation Diagrams and Trajectories

Bifurcation diagrams are a crucial tool for analyzing chaotic mapping and serve as a
widely used visual assessment method. The bifurcation diagram illustrates the evolution
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of each component in the chaotic map when the parameters are manipulated, depicting
the map’s shift from order to chaos. A high-quality chaotic map should display a scattered
and evenly distributed bifurcation diagram. Reducing the number of trajectories shown
in the bifurcation diagram improves the visualization of chaos in the mapping. Figure 5
displays the bifurcation diagram. By adjusting the parameters a and b, it is observed that
the scatter plots of the chaotic map exhibit consistent spacing and lack a clear trajectory,
suggesting that the 2D hyperchaotic map possesses distinct features under each parameter
setting. This implies that the chaotic map has a broader interval, meeting the encryption
algorithm’s essential criteria for enhanced chaos properties.
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3.5. Lyapunov Exponent 

The Lyapunov exponent (LE) [21] is the primary metric used to assess the presence 
of chaos in a system. The essence is to quantify the departure rate between neighboring 
trajectories of the system in phase space. If the LE is positive, small disturbances in the 
system will rapidly grow, causing the trajectory to spread out. The system is currently 
chaotic, characterized by great sensitivity to initial conditions and considerable unpredict-
ability. On the contrary, it signifies that the current system is in a stable state and will not 
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.
Phase space trajectory is a frequently utilized tool in chaos mapping studies. It depicts

the system’s state at each moment as a point in phase space. The point’s trajectory represents
the system’s development as time progresses. In a chaotic system, the anticipated system
path is dispersed and spread out in phase space, lacking any discernible pattern. Figure 6
displays the two-dimensional spatial trajectory diagrams of xi and yi, as well as the three-
dimensional trajectory diagrams of xi, xi+1 and xi+2; yi, yi+1 and yi+2. No clear paths are
visible in the three photos depicting trajectories. This is closely linked to the improved
chaotic behavior of the AST chaos map. The 2D hyperchaotic map demonstrates significant
sensitivity to the beginning value and can be utilized in the field of encryption.
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3.5. Lyapunov Exponent

The Lyapunov exponent (LE) [21] is the primary metric used to assess the presence
of chaos in a system. The essence is to quantify the departure rate between neighboring
trajectories of the system in phase space. If the LE is positive, small disturbances in the sys-
tem will rapidly grow, causing the trajectory to spread out. The system is currently chaotic,
characterized by great sensitivity to initial conditions and considerable unpredictability.
On the contrary, it signifies that the current system is in a stable state and will not be dis-
turbed by tiny changes in the original value. Hyperchaos refers to the condition in which
multiple positive LEs of a high-dimensional system exist in the same state. In contrast
to low-dimensional chaotic mapping, hyperchaotic systems exhibit increased complexity,
accelerated evolution, and heightened sensitivity.

The computation of the multiple LEs of a multidimensional chaotic system is accom-
plished by utilizing the Jacobian matrix J(xi, yi) of the system. The matrix formula for a
chaotic mapping in two dimensions is given below:

J(xi, yi) =

((∂ f1(xi ,yi)
∂xi

)

(∂ f2(xi ,yi)
∂xi

)

)( (∂ f1(xi ,yi)
∂yi

)

(∂ f2(xi ,yi)
∂yi

)

), (5)

Currently, the chaos mapping equation is as follows:

f (x, y) =
{

xi+1 = f1(xi, yi)
yi+1 = f2(xi, yi)

, (6)

The Lyapunov calculation formula is:

LEi = lim
n→∞

1
n∑n−1

i=1 ln|λi(J)|, (7)

λi(J) represents the i-th eigenvalue of the Jacobian matrix J(xi, yi), while n denotes
the number of iterations that can be performed. Lyapunov exponent 1(LE1) and Lyapunov
exponent 2(LE2) are the LEs of x and y in the 2D chaotic map, respectively. LE1 and LE2 of
the two-dimensional AST chaos map have a range of chaos values between 0 and ∞. The
Figure 7 depicts the three-dimensional representation that occurs when the a and b control
parameters are altered. It is apparent from the image that when the control parameters
are altered within the range of 0 to 10, LE1 and LE2 also experience minor fluctuations;
however, they remain essentially constant and exhibit significantly higher values. is equal to
zero, proving that the 2D-AST chaotic map is hyperchaotic. Simultaneously, the parameters
β = 8, b = 10, and a ∈ (0, 10) are chosen in order to validate the AST map compared to the
pre-existing two-dimensional chaotic map. Table 2. presents the values of the items. The
respective average Lyapunov indices for 2D-AST are 9.2184 and 8.9975. 4.4839 and 3.7984
are the nearest values of alternative chaotic maps, both of which are inferior to the LE of
AST. Consequently, the chaotic map presented in this paper maintains a hyperchaotic state
at a ∈ (0, 10), demonstrating that it exhibits commendable chaotic performance.

Table 2. Comparison of chaos mapping indicators.

Chaos LE1 LE2 PE SE

[13] 1.9 1.8481 0.96811 1.3982
[14] 4.4839 1.549 0.99383 1.807
[15] 3.8005 3.7984 0.99865 0.90858
[16] 1.844 1.6131 0.97261 1.3408
[17] 0.37197 1.5189 0.85285 0.49676
[18] 3.5989 3.6037 0.98177 1.592
AST 9.2184 8.9775 0.99875 2.0947
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3.6. Sample Entropy

Proposed by Richman et al., in 2000, sample entropy (SE) [22] is a statistical index
that assesses time complexity and regularity. Approximate entropy [23] is utilized to
enhance the entropy of the sample. The complexity of the time series is quantified by both
metrics, with the dimension change representing the likelihood that the sequence produces
novel patterns. In contrast to alternative metrics utilized to assess chaos dynamics, sample
entropy exhibits a more robust characteristic. A comparison chart of sample entropy under
various parameters is presented in Figure 8. As the SE increases, the chaotic sequence’s
regularity decreases, increasing the sequence’s complexity.
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The image reveals that the sample entropy of the chaotic map fluctuates to varying
degrees in response to parameter changes, whereas the fluctuation of the AST chaotic map
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is relatively modest and remains consistently above 2. The mean sample entropy of every
chaotic map within the parameter range of 0 to 10 is presented in Table 2. The 2D-AST
chaotic map possesses a number of benefits in comparison to the current 2D hyperchaos.

3.7. Permutation Entropy

Permutation entropy serves as a statistical metric for both time complexity and regu-
larity. In contrast to sample entropy, permutation entropy [24] computes the permutation
frequencies of distinct subsequences after establishing a fixed-length window and partition-
ing the time series into non-overlapping subsequences. Since identical numbers arranged
differently will be identified as distinct, this method is more sensitive than sample entropy.
The degree of randomization of the sequence is denoted by PE. When the entropy value [25]
is greater, the time series becomes more intricate and stochastic. Conversely, this indicates
that the time series norms are straightforward. The comparison of the permutation en-
tropies of the chaotic map and 2D-AST, as presented in Table 2, is illustrated in Figure 9.
As the permutation entropy approaches 1, it signifies an increase in complexity and an
enhancement in chaotic performance. It can be seen from the image that the permutation
entropy of the AST chaotic map does not change substantially as the parameters change
in (0, 10) and can be stabilized at 1. Several chaotic maps have exhibited a substantial
reduction in the range of specific parameters; however, there are still some chaotic maps
in which the distinction from the image is difficult to discern. The mean value of the
permutation entropy for every chaotic map is presented in Table 2. It is evident that while
numerous chaotic maps exhibit permutation entropies exceeding 0.99, the AST permutation
entropy remains marginally greater than that of other chaotic maps at 0.0015. This suggests
that while the parameters of AST may fluctuate, their permutation entropy remains at an
optimal level.
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3.8. Cobweb Plot

In the examination of nonlinear dynamic systems, the Cobweb plot serves as a vi-
sualization technique frequently employed to study its iterative course. A qualifying
chaotic system inside a dynamic framework must have a trajectory in a chaotic state that
is discrete, non-repetitive, and does not converge to one or multiple discrete points as
iterations increase. Figure 10 illustrates the Cobweb plot of x and y for the AST chaotic map,
the intersection point in the graph is its possible convergence point. The graphic clearly
illustrates that as the number of iterations increases, the trajectories become uniformly
distributed, and the output values do not exhibit a convergence trend, demonstrating the
system’s robust chaotic properties.
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3.9. NIST Randomness Test

If the chaotic sequence is utilized in the field of encryption, its randomness is a
crucial reference index. The NIST SP800-22 statistical test standard [21], developed by the
American National Institute of Standards and Technology (NIST) Institute and comprising
15 statistical packages, is one of the most prevalent random test experiments. In this paper,
the initial parameters x = 0.5, y = 0.5, a = 10, b = 10, and 100,000,000 iterations are conducted
to process the obtained chaotic sequence. The formula for processing is shown in Equations
(8) and (9), and the processed time series will be tested for randomness, and the results of
the test are displayed in Table 3.

yi =
(

1010 × xi

)
mod 1, (8)

z(t) =
{

0, 0 ≤ yi < 0.5
1, 0.5 ≤ yi < 1

, (9)

Table 3. NIST result.

Subset
x y

p-Value Proportion p-Value Proportion

Frequency 0.596578 99% 0.109898 100%
Block frequency 0.879688 98% 0.537979 100%

Cumulative sums 0.754420 100% 0.691823 100%
Runs 0.474986 99% 0.817415 98%

Longest run 0.621999 99% 0.054168 99%
Rank 0.455937 100% 0.869096 99%
FFT 0.883171 98% 0.153024 100%

Non-overlapping 0.595549 100% 0.799433 98%
Overlapping 0.867692 99% 0.114662 100%

Universal 0.419021 98% 0.471428 99%
Approximate entropy 0.394250 100% 0.274153 100%
Random excursions 0.941144 100% 0.899947 98%

Random excursions variant 0.957319 100% 0.612846 100%
Serial 0.419021 99% 0.592468 100%

Linear complexity 0.401199 100% 0.463541 100%

The NIST randomness passing criterion is that the p-value is greater than 0.01, and the
15 test sets in the table are all greater than 0.01, so it can be demonstrated that the random
sequence is random and can be applied to the field of encryption.



Mathematics 2024, 12, 3457 12 of 29

4. Proposed Encryption Algorithm

The picture encryption algorithm utilizing 2D-AST hyperchaotic mapping is often seg-
mented into three components: key generation, clock diffusion, and genetic recombination.
The initial sub-algorithm is a key generation, which acquires the starting parameters of
the chaotic map from the original image to enable the AST map to create the encryption
key. The second part encrypts the pixel values of the image’s three channels using clock
diffusion and the generated key. The final sub-algorithm employs a genetic recombination
technique to randomize the pixels at the bit level.

4.1. Key Generation

Keys are always crucial in image encryption methods. The complexity of an encryption
algorithm’s key directly impacts the security of the image encryption algorithm. This
article’s encryption approach utilizes the time series of the AST chaotic map as the key. The
chaotic map is highly sensitive to the beginning value in the chaotic state; hence, the initial
value of the generated key comes from the initial image. Both the clock technique and
the genetic recombination procedure necessitate keys during the subsequent encryption
process. To guarantee the security of the encryption algorithm, chaotic keys with varying
initial values will be employed at different encryption stages. This study uses SHA-512
to compute the hash value H = (h1, h2, · · · , h64) derived from the plaintext picture to
establish the initial value. The precise procedure is outlined as follows:

H′ = hex2dec(H), (10)
x1 = mod(H′(5)× H′(9), 15) + (H′(1) + H′(13))× 2−8

y1 = mod(H′(18)× H′(22), 15) + (H′(14) + H′(24))× 2−8

a1 = mod(min(H′(25), · · ·H′(33))×max(H′(34), · · ·H′(42)), 10)
b1 = mod(min(H′(43), · · ·H′(51))×max(H′(52), · · ·H′(60)), 10)

(11)


x2 = mod(H′(6)× H′(10), 15) + (H′(2) + H′(14))× 2−8

y2 = mod(H′(19)× H′(23), 15) + (H′(15) + H′(25))× 2−8

a2 = mod(min(H′(26), · · ·H′(34))×max(H′(35), · · ·H′(43)), 10)
b2 = mod(min(H′(44), · · ·H′(52))×max(H′(53), · · ·H′(61)), 10)

(12)


x3 = mod(H′(7)× H′(11), 15) + (H′(3) + H′(15))× 2−8

y3 = mod(H′(20)× H′(24), 15) + (H′(16) + H′(26))× 2−8

a3 = mod(min(H′(27), · · ·H′(35))×max(H′(36), · · ·H′(44)), 10)
b3 = mod(min(H′(45), · · ·H′(53))×max(H′(54), · · ·H′(62)), 10)

(13)

The hex2dec() function transforms the hash value from hexadecimal to decimal. Three
chaotic time series are needed for the encryption procedure of this article. Consequently, for
the identical plaintext, three distinct sets of x, y, a, and b must be constructed for temporal
diffusion and genetic recombination, respectively. Algorithm 1 utilizes initial values x and
y, along with control parameters a and b, to employ the AST chaos map as the iteration
core for producing chaotic times xi and yi.

The chaotic time series x and y vary in range according to the value of β. In the
following research of this article, the value of β is chosen to be 8. The current chaotic
sequence is a floating-point number less than β. The chaotic time series will be preprocessed
to facilitate its use in the encryption process. The preprocessing formula is as follows:

q =
⌊
(xi − f loor(xi))× 1014

⌋
mod n, (14)

xi represents the chaotic time series, n stands for the number of operations needed in the
encryption procedure, and q is the encryption key for the final image.
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Algorithm 1. Key generation

Input: x1, y1, a, b, k, β;
Output: x, y

1. Start
2. Get x1, y1, a, b
3. for i = 1:k

4. xi+1 ← −a× exp
(
−10×

√
1
2 ×

(
x2

i + y2
i
))

+ x5
i − y3

i + xi mod β ;

5. yi+1 ← −exp
(

1
2 × (cos(b× xi) + cos(b× yi))

)
+ y5

i − x3
i + yi mod β ;

6. End
7. Stop

4.2. Clock Spreading Algorithm

Diffusion and scrambling are key encryption techniques in traditional picture encryp-
tion systems. In recent years, several diffusion encryption methods, like DNA encoding,
have been commonly utilized in the diffusion stage. Their performance at the diffusion
stage is commendable. Due to the encoding and decoding procedure, it has some draw-
backs in terms of computing time. Hence, we suggest a novel diffusion encoding technique
grounded on the concept of the clock. The clock’s hour hand, minute hand, and second
hand are represented by R, G, and B, respectively. The rotation amplitude is determined
using a key to encrypt pixel values. Its pseudocode is displayed in Algorithm 2.

Algorithm 2. Clock spreading algorithm

Input: x1, I; x1 is the chaotic time series produced by AST chaos mapping, and I is the image to be
encrypted.
Output: x, Iciped

1. Start
2. Get x, I,
3. [M, N] = size (I);
4. Ir = I(:,:,1); Ig = I(:,:,2); Ib = I(:,:,3);

5. Keyr ← (x− f loor(x))× 1014 ; Keyg ← ⌊Keyr/60⌋; Keyb ←
⌊

Keyg/60
⌋

;

6. Ir ← mod(Ir + Keyr, 256); Ig ← mod
(

Ig + Keyg, 256
)

; Ig ← mod
(

Ig + Keyg, 256
)

;

7. End
8. Stop

The simulation process of clock diffusion is illustrated in Figure 11. Upon analyzing
the image, the following three channels are acquired: R, G, and B. The code lines containing
the necessary keys for the diffusion procedure are 4. To minimize gray value correlation
among the three channels of a single pixel, the following is implemented: the R channel
represents the second hand, the G channel represents the minute hand, and the B channel
represents the hour hand. The R channel consistently undergoes a 360-unit rotation, the
G channel undergoes a 60-unit rotation, and the B channel undergoes a one-unit rotation.
Additionally, since the grayscale value range is [0, 255], the mod() function will be applied
subsequent to the rotation process in order to restrict the range of pixel values to a specified
region. In summary, this pseudocode executes the clock diffusion algorithm, which encodes
pixel values after converting the incoming chaotic sequence into the encryption key of the
corresponding channel after operation, and each channel of the image is entered into the
corresponding vector to facilitate subsequent operations.
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4.3. Genetic Recombination Algorithm

The rearrangement of DNA sequences via the separation and reassembly of chro-
mosomes or chromosome segments is referred to as genetic recombination. Genetic re-
combination [26] is the exchange of genetic material between distinct organisms, which
results in progeny with a unique combination of characteristics compared to their parents.
Genome recombination is a naturally occurring process that expands the genetic diversity
of sexually reproducing organisms, thereby enabling them to manifest novel phenotypes.
Moreover, each pixel can be represented by an 8-bit binary, and the weights and quantities
of information associated with data at various positions vary. The decomposed image of
coffee’s photograph is depicted in Figure 12.
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As illustrated in the figure, the R, G, and B channels of the image are initially de-
composed. It is evident that as the bit plane decreases, there is a corresponding gradual
reduction in the quantity of information contained within the image. Consequently, to
achieve a random distribution of bits conveying disparate information within the encrypted
image, this work architecturally divides the pixel bits and converts them into queues and
stacks. Each process sequentially selects distinct pixel blocks and recombines them based
on the key. The algorithm is shown in Algorithm 3. Subsequently, the article performs
the following operations: it swaps the high and low three bits of the R channel, exchanges
the high and low three bits of the G channel, and finally advances the lowest bit of the
B channel to the highest bit. The resulting image retains its original dimensions, but it is
evident that a substantial amount of information has been lost. Acquiring corresponding in-
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formation from images after genetic recombination poses a significant change. The second
pseudocode is illustrated in Algorithm 3.

Algorithm 3. Genetic recombination algorithm

Input: a, b are two pixels selected for gene recombination; index is the breakpoint of this gene
recombination.
Output: Iciped

1. Start
2. Get a, b, index;
3. binary_a← dec2bin(a, 8);
4. binary_b← dec2bin(b, 8);
5. queue_c = []; stack_c = [];
6. f or j = 1 : i queue_c← [queue_c, binary_a(j)]
7. f or j = i + 1 : 8 stack_c← [binary_b(j), stack_c ]
8. d = [];
9. f or j = 1 : length(queue_c) d← [d, queue_c(j)]
10. f or j = 1 : length(stack_c) d← [d, stack_c(j)]
11. d = bin2dec(d);
12. End
13. Display I
14. Stop

Dec2bin() and bin2dec() in pseudocode 3–4 and 11 are functions that facilitate the
conversion of pixel values between decimal and binary formats. The parameter c denotes
the storage parameter of the algorithmic process, categorized as stack_c in stack format and
queue_c in queue format. The operational procedure is illustrated in Figure 13. The first
and tenth pixels in the plaintext are designated as target factors for recombination via the
key, with the chosen recombination point being five. “10000101” and “00101101” represent
8-bit pixel values, respectively. The data are read sequentially from the highest bit and
partitioned based on bit 5. Queue Q1 receives “001”, stack S1 receives “10110”, queue Q2
receives “001”, and stack S2 receives “10100”. Utilizing the first-in-first-out principle of
queues and the first-in-last-out principle of stacks, we amalgamate the head of the queue
with the base of the stack to create composite structures H1 and H2 that maintain identical
output sequences. H1 and H2 are sequentially output, and the final decimal results “44”
and “105” are reintegrated into the sequence to finalize gene recombination.
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4.4. Image Encryption Algorithm

Figure 14 illustrates the execution of a color image encryption algorithm that employs
genetic recombination and clock diffusion.
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Step 1. Input the M × N × 3 color image into three matrices denoted as Ir, Ig and Ib,
utilizing the three channels of R, G, and B, respectively. The elements and grayscale values
of the corresponding channel pixels in all three matrices are identical.

Step 2. The clock diffusion encryption process necessitates a single key sequence,
whereas the succeeding genetic recombination process demands two key sequences. As
a result, the encryption procedure described in this study necessitates a total of three key
sequences so as to maximize the degree of equality between keys. Three disorganized time
series constitute independent key sequences. As initial parameters, we select the fourth
and sixth planes of Ir, the seventh and fourth planes of Ig, and the fifth and second planes
of Ib, respectively; that is, we obtain three initial xi (i = 1, 2, 3) by applying Formula (5) to
a = 40, 72 and 18.

Step 3. Pass xi (i = 1, 2, 3) as the initial parameter into the 2D-AST chaos mapping
so that it iterates M × N + 100 and M × N × 3 + 1000, respectively, and removes the first
1000 data to ensure the chaos of its time series, and finally obtains two time series with
length M × N × 3 and a chaotic time series with length M × N.

Step 4. In step three, chaotic time series of the M × N type are processed using
Formula (6). At this moment, the value n = 1 is chosen. The clock key of the R channel is
the processed one-dimensional sequence, which is compared to 60 and 360, respectively.
By performing a division operation, the keys of G and B can be obtained. The acquired
key is appended to the corresponding channel and maintained within its valid range
using the mod() function. The three newly acquired vectors Ir, Ig, and Ib represent the
encrypted pixels.

Step 5. Formula (6) is applied to the M × N × 3 chaotic time series acquired in step
3. The values n = M × N × 3 and 8 are subsequently chosen to represent the breakpoint
coordinates and index coordinates of genetic recombination, respectively. Convert the three
vectors Ir, Ig, and Ib to unit8 form and combine them into a one-dimensional vector. To
obtain a new one-dimensional vector I, select the exchange point using the index key, break
the link, and reorganize the breakpoint key. The final encrypted sequence is as follows.
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Step 6. The one-dimensional vector I should be converted to a decimal matrix of size
M × N × 3 before being output. This matrix represents the encrypted final image.

The process of decrypting the image is the exact opposite of the encryption operation.

5. The Experiments for the Proposed Encryption Scheme

This section chooses three color photographs of coffee, an airplane, and a baboon
as experimental objects. Airplane and baboon are from the SIPI public database. Their
respective dimensions are 512 × 512 × 3, 512 × 512 × 3, and 256 × 256 × 3, unless
otherwise specified. The chosen parameters for 2D-AST are β = 8 and a = b = 10.

5.1. The Correctness Analysis of the Algorithm

The image encryption algorithm must meet these two conditions in order to ensure
the secure transmission of information, which is its primary function. One is that the image
must become so cluttered that valid information cannot be extracted following encryption
algorithm processing. The second requirement is that the encrypted file can be decrypted.
Obtain the information in its entirety prior to encryption. The encryption and decryption
outcomes of three images are illustrated in Figure 15.
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Figure 15. Encryption and decryption comparison of test objects: (a) coffee (512 × 512 × 3); (b) air-
plane (512 × 512 × 3); (c) baboon (256 × 256 × 3).

Figure 15 demonstrates that it is difficult for human vision to extract useful information
from an encrypted image. This algorithm can accurately encrypt and decrypt images since
the decrypted image retains all of the information contained in the original image.
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5.2. Information Entropy

Information entropy [27] is the mean quantity of information contained in each re-
ceived message, and a decent encrypted image should have sufficient randomness. The
formula for the information entropy is:

Q(x) = ∑n
i=0 R(xi)log2

1
R(xi)

, (15)

R(xi) represents the proportion of gray pixel distribution within an image, and n is
the number of different pixel values, the total number of values that pixel value x can take.
Theoretically, a reasonable entropy value for encrypted image data should be close to 8.
Tables 4 and 5 depict the information entropy of various password images of the encryption
algorithm and the information entropy comparison result. According to Table 5, the
information entropy of a single channel of a 512 × 512 × 3 encrypted image is kept above
7.999, and the information entropy of its RGB three channels is 7.9998. The information
entropy of a 256 × 256 × 3 image is stable above 7.9970, and the information entropy of
RGB reaches 7.9990. This indicates that the pixels in these encrypted images are distributed
uniformly and randomly; their information is disordered.

Table 4. Information entropy result.

Image Cipped R Cipped G Cipped B Cipped RGB

Coffee-512 7.9994 7.9993 7.9993 7.9998
Airplane-512 7.9993 7.9993 7.9993 7.9998
Baboon-256 7.9972 7.9970 7.9970 7.9990

Table 5. Information entropy comparison.

Image File Cipped R Cipped G Cipped B

Lena-512 This paper 7.9993 7.9994 7.9994
[28] 7.9992 7.9993 7.9993
[29] 7.9993 7.9994 7.9993
[30] 7.9975 7.9974 7.9973

Airplane-512 This paper 7.9993 7.9993 7.9993
Baboon-256 This paper 7.9972 7.9970 7.9970

Lena-256 This paper 7.9971 7.9970 7.9970
[30] 7.9969 7.9971 7.9971
[29] 7.9968 7.9973 7.9969

5.3. Histogram

A histogram depicts the distribution of pixel values within an image. The more evenly
an image’s pixel values are distributed, the more resistant it is to statistical analysis. The
histograms of the three images and their corresponding cipher images are illustrated in
Figure 16. The figure illustrates that the pixel value distribution of the three channels
in the original image is nonuniform, whereas the pixel values of the encrypted image
are distributed in an even range spanning from 0 to 255. This demonstrates that the en-
crypted image conceals any statistical features in the image, demonstrating the algorithm’s
resistance to statistical attacks.



Mathematics 2024, 12, 3457 19 of 29

Mathematics 2024, 12, x FOR PEER REVIEW 20 of 30 
 

 

5.3. Histogram 
A histogram depicts the distribution of pixel values within an image. The more 

evenly an image’s pixel values are distributed, the more resistant it is to statistical analysis. 
The histograms of the three images and their corresponding cipher images are illustrated 
in Figure 16. The figure illustrates that the pixel value distribution of the three channels in 
the original image is nonuniform, whereas the pixel values of the encrypted image are 
distributed in an even range spanning from 0 to 255. This demonstrates that the encrypted 
image conceals any statistical features in the image, demonstrating the algorithm’s re-
sistance to statistical attacks. 

    

    
(a) (b) (c) (d) 

Figure 16. Histogram of original image and encrypted image: (a) image; (b) red histogram of (a); (c) 
green histogram of (a); (d) blue histogram of (a). 

5.4. Correlation Analysis 
The statistical assault is a method of attack that is relatively common in information 

transmission. To resist statistical attacks, an excellent image encryption algorithm must 
have a low relationship between adjacent images. The correlation coefficient reflects the 
relationship between pixels in an image adjacent horizontally, vertically, and obliquely. 
Following is the formula for calculating the correlation coefficient: 𝐸(𝑥) = ଵே ∑ (𝑥௜)ே௜ୀଵ , (16) 𝑦(𝑡 + 1) = 𝑘𝑦(𝑡) − 𝑧(𝑡)𝑓(𝑡) − ℎ, (17) 

𝑐𝑜𝑣(𝑥, 𝑦) = 1𝑁 ෍(𝑥௜ − 𝐸(𝑥௜))(𝑦௜ − 𝐸(𝑦௜))ே
௜ୀଵ , (18) 

Figure 16. Histogram of original image and encrypted image: (a) image; (b) red histogram of (a);
(c) green histogram of (a); (d) blue histogram of (a).

5.4. Correlation Analysis

The statistical assault is a method of attack that is relatively common in information
transmission. To resist statistical attacks, an excellent image encryption algorithm must
have a low relationship between adjacent images. The correlation coefficient reflects the
relationship between pixels in an image adjacent horizontally, vertically, and obliquely.
Following is the formula for calculating the correlation coefficient:

E(x) =
1
N ∑N

i=1 (xi), (16)

y(t + 1) = ky(t)− z(t) f (t)− h, (17)

cov(x, y) =
1
N

N

∑
i=1

(xi − E(xi))(yi − E(yi)), (18)

rxy =
cov(x, y)√

D(x)
√

D(y)
(19)

The correlation coefficient is positively correlated with the correlation between adjacent
pixels. The greater a pixel’s correlation, the closer its coefficient is to 1. Therefore, in
order to ensure the security of the compiled image, its horizontal, vertical, and diagonal
correlation coefficients should be as low as possible, indicating that no correlation exists
between adjacent pixels. Figure 17 depicts the correlation between the original image and
its ciphered image. Table 6 compares the correlation coefficients between original and
encrypted images.
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Table 6. Image correlation analysis.

Image Image Size Channel File Horizontal Vertical Diagonal

Lena 512 × 512 × 3

R Original 0.97716 0.98774 0.96407
Encrypted −0.003545 0.0034381 −0.000291

[11] −0.0367 −0.0059 0.0182
[31] −0.0022 0.0057 0.00007

G Original 0.97731 0.98834 0.96433
This paper −0.0094703 0.0050664 0.0026209

[11] 0.0030 0.0587 −0.0123
[31] 0.0009 −0.0041 0.0038

B Original 09556 0.97433 0.93203
This paper −0.0042469 −0.0016389 0.000638

[11] −0.0037 −0.0227 −0.0134
[31] 0.0013 0.0017 0.0104

Airplane 512 × 512 × 3

R Original 0.97247 0.95675 0.93559
G This paper 0.001480 0.0069754 0.0061268

Original 0.95786 0.96793 0.93352
B This paper −0.0089081 −0.0014546 −0.0035603

Original 0.96208 0.93595 0.91541
This paper 0.0059152 −0.010841 0.0043028

Baboon 256 × 256 × 3

R Original 0.94899 0.93012 0.90883
This paper −0.0078139 0.0018101 0.013868

[27] 0.0078 0.0045 0.0765
[32] −0.0036 −0.0109 −0.0052

G Original 0.90897 0.8785 0.83944
This paper −0.00039714 −0.0055859 −0.0006205

[27] −0.0067 −0.0004 0.0078
[32] −0.0008 −0.0070 0.0095

B Original 0.94745 0.9339 0.90945
This paper 0.011955 −0.017032 0.011271

[27] 0.0045 −0.0023 0.0189
[32] −0.0009 0.0082 −0.0113

Figure 17 reveals that the correlation between the pixels of the ordinary image is
extremely high, whereas the correlation between the pixels of the password image is
evidently diminished. Table 6’s results also support this conclusion. Strong correlation
exists between adjacent pixels in the original image, so its correlation coefficient is close to 1.
However, the correlation coefficient of the compiled image decreases considerably, and its
average value is less than 0.01, demonstrating that there is currently no correlation between
adjacent pixels. We believe that the algorithm presented in this study will significantly
reduce the correlation between pixels for the purpose to withstand statistical attacks.

5.5. Key Sensitivity in Encryption

An effective encryption algorithm must be sensitive to the key, such that a minor
change in the key will result in a substantial change in the output. The greater the key
sensitivity, the larger the key space, and the greater its resistance to brute force attacks.
This article’s key is produced by hyperchaotic mapping. Therefore, the sensitivity of the
key is also the sensitivity of the map. Figure 18 depicts the main difference produced by
the four parameters x, y, a, and b in the algorithm described in this paper when they are
altered slightly. After the fifth iteration, the chaotic system’s key generation displays a
significant dispersion, which suggests that the system is more affected by the initial value
of the generated key.
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5.6. Key Space Analysis

Exhaustive attack is the most common attack method of various encryption algo-
rithms. Therefore, whether it has good resistance to exhaustive attacks is an important
indicator for evaluating the feasibility of an encryption algorithm. The key space will
directly affect the algorithm’s resistance to exhaustive attacks. The larger the key space,
the more difficult it is to extract the key; that is, the stronger the security of the encryption
algorithm. The key in this article consists of a time series of chaotic neurons, but differ-
ent key sequences will be generated when the same time series is subjected to different
modulo operations. Therefore, the key space of this encryption algorithm consists of 4 pa-
rameters. The range of its initial value is y and x ∈ (0, 255), a and b ∈ (0, +∞). At the
same time, because double precision float can be accurate to 14 decimal places, the key
space K = 28 × 1014 × 28 × 1014 × 263×2 ≈ 2226. Its key space is much larger than 2120 [33].
Therefore, the key can resist brute force attacks.

5.7. Computational Complexity Analysis

The cryptographic efficiency standard is an important criterion for judging the quality
of encryption algorithms. Specifically, it refers to the factors that affect the performance
of encryption algorithms while ensuring security. Regarding cryptographic efficiency
standards, the computational complexity of image encryption is the most critical indicator
for evaluation. Computational complexity is related to the feasibility of the encryption
algorithm and its requirements for hardware, which is mainly divided into time complexity
and space complexity. The encryption algorithm in this paper mainly includes three
stages: key generation, clock diffusion, and genetic recombination. In the process of key
generation, we iterate the chaotic sequence M × N × 3 × 4 times. Clock diffusion and
genetic recombination require one operation and M × N × 3 operations, respectively.
Therefore, the total number of operations is 15 ×M × N + 1, and its time complexity is
O (MN). Table 7 shows the encryption and decryption time and comparison of the image
in this study’s algorithm. The time in the table is the average time of 10 encryption and
decryption of the image. Since the gene recombination algorithm performs scrambling
and diffusion at the same time, compared with existing encryption algorithms such as
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DNA, we have eliminated the intermediate encoding process, so the encryption time has
been significantly shortened, as shown in the table. The consistent encryption time of
approximately 0.3 s for 512 × 512 × 3 demonstrates its effective encryption capability.

Table 7. Time comparison of different image encryption algorithms (Lena).

Algorithm 256 × 256 512 × 512

This article Encryption 0.1358 0.3380
[34] Encryption 0.5726 2.0181
[35] Encryption - 2.236
[36] Encryption 2.2234 9.0013
[37] Encryption - 0.4842
[16] Encryption - 0.8385
[17] Encryption 0.1119 -

This article Decryption 0.1025 0.4271

At the same time, the space complexity of the encryption algorithm is an important
criterion for whether the encryption algorithm can be truly applied, and it has certain
requirements on the computer hardware. If an encryption algorithm has a high space
complexity, the encryption process may be interrupted due to insufficient hardware memory
during operation. In the encryption process of this paper, most of the calculation processes
are direct operations on the original image, thus saving some intermediate storage. At
the same time, for color images, only a single channel M × N length key is required to
complete its encryption. In addition to the key requirements for genetic recombination, the
encryption algorithm requires a key length of 10 ×M × N, and its space complexity is O
(MN). We compared it with the existing encryption algorithms, as shown in Table 8. We can
find that, compared with the existing algorithms, the space complexity of this algorithm is
basically consistent with them. However, compared with the quantum algorithm [38], its
algorithm is not associated with the key but is related to the number of bits n after quantum
encoding. Therefore, the space complexity of the algorithm is still a certain distance away
from it.

Table 8. Space complexity.

Algorithm This Article [39] [37] [33]

space complexity O (MN) O (MN) O (MN) O (n)

5.8. Differential Attack Analysis

The purpose of a differential attack is to infer the possible value of the key by com-
paring the difference between a pair of plaintext and ciphertext. A qualified encryption
algorithm should effectively resist differential attacks. Number of pixels rate of change
(NPCR) and uniform change intensity (UACI) can be used to quantify this capability. The
formulas for both are as follows:

NPCR =

Σ
i,j

D(i, j)

M× N
× 100%, (20)

UACL =
1

M× N

[
∑
i,j
|C(i, j)− C′(i, j)|

]
× 100%, (21)

M and N represent the image’s length and width, respectively, whereas C and C’
represent the encrypted image that is one pixel different from the original. The ideal
expected values of NPCR and UACI were 99.6094% and 33.4635%, respectively. Wu [38]
and others noted that the values of NPCR and UACI are dependent on the image format
and image dimensions and are not static. NPCR should exceed 99.5693 and UACI should
be at (33.2824, 33.6447) for a 256 × 256 image. NPCR should be greater than 99.5893,
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and UACI should be between (33.3730, 33.5541) for 512 × 512 images. Table 9 displays
the pertinent outcomes and comparisons. The table demonstrates that all images of the
algorithm presented in this paper meet the corresponding standards, indicating that the
algorithm has a greater capacity to resist differential attacks.

Table 9. NPCR and UACL of encrypted images.

Image Image Size Algorithms Channel NPCR UACL

Lena 512 × 512 × 3

This paper R 99.6101 33.4234
[40] 99.6535 33.4943
[37] 99.6140 33.5627
[41] 99.6136 33.4783

This paper G 99.6063 33.5112
[40] 99.5770 33.5117
[37] 99.6017 33.5218
[41] 99.5922 33.4796

This paper B 99.6014 33.5513
[40] 99.6560 33.5901
[37] 99.6140 33.4339
[41] 99.6109 33.4916

Airplane 512 × 512 × 3
This paper R 99.5880 33.4633
This paper G 99.6143 33.4958
This paper B 99.6273 33.4626

Baboon 256 × 256 × 3
This paper R 99.6368 33.4628
This paper G 99.5834 33.4397
This paper B 99.5987 33.5125

5.9. Image Quality Analysis

When evaluating the encryption algorithm, the image quality [42] evaluation will be
used as one of the common indicators; the encrypted image will be compared to the original
image after decryption in order to determine if the information has been lost during the
encryption process. PSNR is a standard metric used to evaluate image quality. This index
determines whether information has been lost by comparing the signal-to-noise ratio of the
decrypted and original images. The formula is as follows:

PSNR = 10× log10
(MAX)2

MSE
, (22)

MSE =
1

M× N

M

∑
i=1

N

∑
j=1

(X(i, j)−Y(i, j))2, (23)

Among them, MAX represents the utmost pixel value, which is 255. Mean square
error (MSE) is the sum of the squares of the pixel differences between two images; it can
also be used as a measure of image quality. Generally speaking, if the value of PSNR is
between (20, 30), it can be considered that the quality of the image is high, and the final
decrypted image and the original image do not have a large loss of information. The results
of the assault tests described in Sections 5.10 and 5.11 will be presented and divided using
PSNR as an indicator, as shown in Table 10.

5.10. Resistant to Noise Attacks

In the process of transmitting image data, in addition to various malicious assaults,
environmental interference is a significant cause of information loss. Communication
noise is a type of environmental interference that is more likely to occur during the image
transmission process. Certain information will be lost after decryption if the image has been
corrupted by noise, and it may even be impossible to decrypt the image. Gaussian noise
and salt-and-pepper noise are chosen for simulation experiments on airplane (512 × 512)
in this paper. Gaussian noise with a mean value of 0 and a variance of 0.0005, 0.005, 0.01,
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and salt-and-pepper noise of 5% are selected to interfere with the encrypted image. The
comparison diagram following decryption is depicted in Figure 19.
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Visually, the decrypted image after noise pollution will generate a certain amount of
noise, but it does not lose a significant amount of the original image’s information, which
is acceptable. Table 9 displays concurrently the PSNR value of the decrypted image. Under
the influence of Gaussian noise, the PSNR value is still greater than 20, and the image
quality is acceptable. Although the PSNR values under the influence of salt-and-pepper
noise are below 20, they are all greater than 18. Experimental results indicate that the
algorithm has some noise pollution resistance.

5.11. Missing Data

In addition to the possibility of noise contamination during Internet image transmis-
sion, data loss is another reason to reuse image information. During transmission, the
image may encounter network congestion, data packet loss, or flaws in the data transmis-
sion protocol, resulting in the terminal receiving incomplete data. Two categories of image
data loss exist: blocking and cropping attacks. The former is the loss of a portion of a single
channel, while the latter is the simultaneous loss of all pixel values in an area. In this paper,
simulation experiments are conducted on both types. After encryption, the blocking attack
causes the airplane image to lose varying channel values in various regions. The cropping
attack will remove 6.25 percent, 12.5 percent, 25 percent, and 50 percent of the encrypted
airplane image. The comparison between Figures 20 and 21 depicts decryption.
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Although the blocking attack results in the loss of pixel values in different areas of
multiple channels, the majority of the original image’s information is still visible, whereas
the cropping attack does not change considerably until 50% of the image is lost. When 50%
of the data is lost, the image becomes evidently blurry, but the original image’s outline
and content can still be seen. Table 10 shows the PSNR of the experimental results. In
the blocking attack, it is evident that the PSNR of the G channel with the greatest loss is
considerably lower than that of the other two channels, but its average value is still greater
than 18. As the loss area increases in the clipping attack, the PSNR begins to decline sharply,
but the average PSNR is still above 10, even in the 50 lost area. It can be seen that the
algorithm confuses the pixel sequence while encrypting the pixel value, and that it is more
resistant to data loss attacks.

Table 10. PSNR result.

Attack R Channel G Channel B Channel

Gauss noise—0.0005 21.0713 20.4366 21.6251
Gauss noise—0.005 16.2561 15.5950 16.6946
Gauss noise—0.01 14.3329 13.6317 14.4615

Salt and pepper noise 20.1299 19.9205 20.1488
Block attack 15.6317 15.5994 15.8552

6.25% shearing 25.7698 25.5021 25.6311
12.5% shearing 19.6441 19.4130 19.7270
25% shearing 13.6640 13.4004 13.7402
50% shearing 10.8459 10.5556 10.7402

6. Conclusions

This study studied the Ackley function and the Styblinski–Tang function and cross-
mixed the two to acquire a new type of two-dimensional hyperchaotic mapping, 2D-AST
mapping. Through the utilization of various indicators, including the LE, information
entropy, permutation entropy, phase space trajectory, and bifurcation diagram, it has been
demonstrated that the hyperchaotic mapping encompasses a more extensive range of chaos
states than the current chaotic mapping. Moreover, it enables the chaotic dynamics system
to maintain its chaotic state with greater stability. As a result, NIST randomness testing
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was performed on the time series produced by 2D-AST to ensure that they are suitable
for implementation in image encryption algorithms. This paper concurrently presents
algorithms for genetic recombination and clock diffusion. Clock diffusion simulates the
second hand, minute hand, and hour hand of the three channels of the color image, thereby
increasing the efficacy of the encryption algorithm by diffusing all three channels. Simul-
taneously, we chose two distinct data structures, queue and stack, from the existing data
structures to construct a new composite data structure. By standardizing the data structure
regulations, we integrate the mechanisms of gene chain fragmentation and recombination
seen in nature, thus introducing a novel image encryption methodology. The color image
encryption algorithm, which incorporates clock diffusion and gene recombination and
generates keys via 2D-AST chaotic mapping, has been evaluated against conventional
encryption techniques. The information entropy of the 512 × 512 × 3 image remains stable
at 7.9998, and that of the 256 × 256 × 3 image is stable at 7.9990. Moreover, compared to
existing multi-class diffusion algorithms, its encryption efficiency has been significantly
enhanced while maintaining the encryption effect. Averaging 0.3 s for 512 × 512 color
images and 0.1 s for 256 × 256 color images. This demonstrates that while maintaining
image quality, the color image encryption algorithm circumvents the lengthy encoding
and decoding process of the diffusion algorithm. The viability of the gene recombina-
tion encryption technique has enhanced the diversity of image data representation, hence
facilitating the further development of image encryption algorithms.

However, we also found that the image encryption algorithm has certain limitations
when encrypting high-precision images, and the length of its key is positively correlated
with the size of the image. When encrypting high-resolution images, the required key
length also gets longer and longer, which puts higher requirements on computer hardware.
Therefore, how to reduce the storage space required for chaos without affecting chaos
degradation will be our future research direction.
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