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Abstract: The era of big data has brought rapid growth and widespread application of data, but the
imperfections in the existing data integration system have become obstacles to its high-quality devel-
opment. The conflict between data security and shared utilization is significant, with traditional data
integration methods risking data leakage and privacy breaches. The proposed Privacy-Preserving
Record Linkage (PPRL) technology, has effectively resolved this contradiction, enabling efficient and
secure data sharing. Currently, many solutions have been developed for PPRL issues, but existing
assessments of PPRL methods mainly focus on single indicators. There is a scarcity of comprehensive
evaluation and comparison frameworks that consider multiple indicators of PPRL(such as linkage
quality, computational efficiency, and security), making it challenging to achieve a comprehensive
and objective assessment. Therefore, it has become an urgent issue for us to conduct a multi-indicator
comprehensive evaluation of different PPRL methods to explore the optimal approach. This article
proposes the use of an modified CRITIC method to comprehensively evaluate PPRL methods, aiming
to select the optimal PPRL method in terms of linkage quality, computational efficiency,and security.
The research results indicate that the improved CRITIC method based on mathematical statistics
can achieve weight allocation more objectively and quantify the allocation process effectively. This
approach exhibits exceptional objectivity and broad applicability in assessing various PPRL methods,
thereby providing robust scientific support for the optimization of PPRL techniques.

Keywords: Privacy-Preserving Record Linkage; CRITIC method; weight allocation; multi-indicator
comprehensive evaluation

MSC: 68P27

1. Introduction

The era of big data has led to an explosive growth in data, which is deeply inter-
twined with people’s lives and extensively utilized across various fields [1,2]. The linkage
and integration of data [3,4] provide a robust foundation for the efficient operation and
development of diverse industries and society as a whole. Record linkage, also referred
to as record matching, constitutes a core technology in data integration, facilitating the
identification and classification of identical or similar records from diverse sources to
disclose corresponding real-world entities. It is typically employed in combination with
truth discovery [5] when addressing complex data integration tasks. Entity alignment [6],
also known as entity matching or ontology alignment, is a key step in the knowledge
graph. It involves cross-language and cross-domain knowledge graphs. The goal is to
identify and map together nodes describing the same real-world entity in different graphs.
In practice, record linkage is often a subtask or pre-step in entity alignment. However,
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as we proceed with the implementation of record linkage, we must also confront a series of
challenges. Nowadays, hosting database services on cloud systems has become a common
practice characterized by highly dynamic data that possesses substantial capacity and is
susceptible to loss [7]. These characteristics pose significant challenges to privacy and
security. They also hinder inter-system information exchange, leading to low utilization
rates and high circulation costs. How do we address the critical concern of privacy pro-
tection in the process of record matching? For instance, we can select the appropriate
privacy protection methods based on the varying sensitivity of the data, thereby ensuring
both the availability of the data and safeguarding sensitive information to prevent privacy
breaches when disseminating interval value data [8]. And an efficient privacy-preserving
semantic-aware multi-keyword-ranked search scheme in the cloud to meet users in the
cloud environment for efficient, accurate, privacy and security search needs [9]. Henceforth,
Privacy-Preserving Record Linkage technology emerged [10], aiming to identify matching
records without compromising the privacy or confidentiality of unmatched entities by
only sharing final results between sources [11]. This effectively enables data linkage and
integration without exposing personal sensitive information. PPRL finds wide application
in medical care, government departments, educational institutions, social networks among
other fields, for instance, protecting the privacy of patients’ medical records [12,13] while
facilitating accurate analysis for personalized treatment plans in healthcare settings; simi-
larly safeguarding user privacy on social platforms while enabling personalized service
recommendations based on interest and behavior analysis.

The existing PPRL technology has achieved many results [14], such as Bloom Filters,
Homomorphic Encryption algorithms, Secure Multi-Party Computation, and Differential
Privacy Mechanisms. So choosing a secure and efficient PPRL method according to the
requirements of scenarios has become an urgent problem to be solved. The current evalua-
tion of PPRL methods is mainly evaluated by focusing on a single metric, such as linkage
quality or computational efficiency [15,16], and it fails to fully consider the balance among
security, efficiency and linkage quality of PPRL methods. There is a lack of a comprehensive
evaluation and comparison framework for PPRL methods that consider multiple indicators.
For example, Dinusha Vatsalan’s group proposed a general framework equipped with
standardized measures [17]. This framework aims to provide an overall evaluation criterion
for PPRL methods, evaluating their performance in terms of scalability, linkage quality
and privacy protection. However, it has limitations as it emphasizes adjusting the weights
of these indicators according to users’ specific needs and preferences but does not clearly
provide a specific quantitative method for calculating these weights.

Aiming at the above problems, we propose a comprehensive evaluation method of
privacy protection record chaining technology based on the modified Criteria Importance
Through Intercriteria Correlation(CRITIC) method [18–22]. This method can comprehen-
sively consider a variety of key performance indicators according to the needs of business
scenarios. It adaptively modifies the assessment methodology in response to the intrinsic
connections within the indicator data. By accounting for the differences and conflicts among
the indicators within PPRL methods, it clearly outlines the process for assigning weights
to each indicator. This enables a comprehensive evaluation of its various aspects [23–26],
culminating in the identification of the method with the superior overall performance.
Consequently, it offers a more secure and efficient solution for safeguarding privacy in the
digital era.

The key contributions of our method are as follows:

• We meticulously select a series of key indicators tailored to the specific business sce-
nario. By employing the forward and backward normalization methods, we effectively
mitigate the discrepancies caused by varying dimensions and value ranges among
different indicators. This refined approach makes the evaluation results more precise
and objective.
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• We use the coefficient of variation to quantify the variability among indicators. By con-
sidering their average values and the extent of their dispersion, we achieve a more
objective and rational weight allocation.

• According to the internal relationship between the selected indicators, Pearson corre-
lation coefficient calculation formula or Spearman correlation coefficient calculation
formula can be used to flexibly and accurately quantify the correlation between indica-
tor variables, so that the subsequent evaluation and analysis results are more accurate
and objective.

The experimental findings indicate that the improved CRITIC method can more
precisely and objectively identify the approach or framework that exhibits the most superior
comprehensive performance across several pivotal indicators. This refined CRITIC method
not only aids researchers and decision-makers in conducting a more comprehensive and
precise analysis and comparison of the performance of various framework models, thereby
facilitating the selection of the optimal solution for a given scenario, but it also exerts a
profound influence on advancing the progress and fostering the application development
within related technological fields. It is noteworthy that the scope of application of this
improved CRITIC method is not limited to PPRL method, and it can be extended to
encompass a wide array of indicator framework models, inclusive of time series prediction
models. The integration of time series forecasting models, which is a technology that
leverages historical time data to anticipate future events or trends [27]. Its integration
further broadens the application field and practical value of CRITIC method.

The structure of the subsequent parts of this paper is as follows: Section 2 outlines
the preliminary work related to the methods proposed in this study. Section 3 introduces
the problem definition and related background knowledge. Section 4, as the methodology
section, illustrates the implementation process of this method by enumerating a concrete
example. Section 5 comprehensively evaluates and summarizes several mainstream PPRL
methods. Section 6 summarizes the article and points out some deficiencies as well as
future research directions.

2. Related Work

The section primarily discusses the current challenges in evaluating PPRL methods,
focusing on both single indicator evaluation and comprehensive evaluation. Subsequently,
we propose a research direction for conducting multi-indicator comprehensive evalua-
tion [28–30] of various PPRL methods to address these challenges.

Currently, numerous solutions have been engineered to address the challenges posed
by PPRL technology. However, the assessment of these methods predominantly revolves
around the evaluation of individual metrics, with only a few comprehensive evaluation
frameworks having been suggested. The constraints inherent in these evaluation ap-
proaches hinder a clear determination of the relative merits and flaws of the various
methods. The limitations of both single-indicator evaluations and multi-indicator compre-
hensive assessments are primarily centered on the following aspects:

The delicate balance between privacy preservation and data utility is often overlooked:
The fundamental objective of PPRL technology is to effectively utilize data while simultane-
ously upholding privacy standards. An evaluation that relies solely on a single metric may
fail to capture the nuanced equilibrium between these two critical aspects. For instance,
a method might excel in safeguarding privacy yet fall short in terms of accurate data
matching or maintaining data integrity, and the converse can also be true.

Inadequacy in Handling Diverse Scenarios: Various application contexts impose
distinct demands on PPRL. A single metric may not adequately capture performance across
different scenarios. In healthcare data linkage, privacy concerns might be paramount,
whereas in commercial data integration, the focus could be on matching accuracy and
efficiency [31,32].

Insufficient Comprehensive Performance Analysis: Evaluations based on a single
metric often concentrate on one performance dimension, such as linkage accuracy, privacy
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protection level, or computational efficiency. However, assessing PPRL technology necessi-
tates a multifaceted approach due to the inherent trade-offs between privacy and accuracy.
A single metric may not provide a holistic view of a technique’s performance.

Challenges in Comparing Methods: Different PPRL methods may employ varied
privacy protection strategies, algorithmic designs, or implementations. A single metric
evaluation might not facilitate an accurate comparison of their respective strengths and
weaknesses. Some methods may prioritize privacy protection, while others optimize for
linkage accuracy.

Lack of Standardized Evaluation Criteria: PPRL spans several domains, including
privacy, data mining, and information security, but lacks unified evaluation criteria. Con-
sequently, single-indicator assessments can vary based on the assessor’s background and
objectives, compromising comparability and credibility.

Potential Inaccuracy in Evaluation Results: Single-indicator evaluations can be in-
fluenced by factors such as dataset choice and parameter settings, leading to unstable or
biased outcomes. Employing a multi-indicator evaluation approach, complemented by
statistical tests, can provide a more precise assessment of the PPRL performance.

Nonetheless, implementations of comprehensive, multi-indicator evaluation and com-
parison frameworks for PPRL methods are relatively scarce, for instance, Dinusha Vatsalan’s
group introduced a universal framework accompanied by standardized metrics [17], which
is designed to offer a holistic evaluation benchmark for PPRL methods. This framework
aims to assess their performance across dimensions such as scalability, linkage quality,
and privacy protection. Nevertheless, this framework has its limitations; for example,
the selected evaluation metrics may not be exhaustive enough to thoroughly gauge the
performance of PPRL methods, frameworks may display a hint of inflexibility in the face
of rapid changes in privacy protection requirements and application scenarios, and the
experimental datasets utilized might not be diverse enough to encapsulate the full spec-
trum of potential real-world scenarios. Similarly, Nanayakkara Charini’s team presented a
comprehensive and robust set of evaluation indicators and methodologies [33] within the
context of group-based record linkage (GBRL) to assess the efficacy of group-based record
linkage techniques. However, while group-based record linkage has broad applicability
across various domains, our method focuses on a subset of these scenarios, which could
compromise the generality of the findings. Consequently, the evaluation outcomes might
be skewed or constrained, failing to capture the full range of performance characteristics in
different contexts.

The current evaluation methods are constrained to assessing PPRL methods from
various angles but fall short of achieving a holistic evaluation. To overcome these deficien-
cies, we adopt a multi-indicator comprehensive evaluation methodology when evaluating
PPRL methods, which strikes a balance among multiple indicators like runtime, linkage
quality, and security [34]. We adjust the most suitable evaluation benchmarks [35] in ac-
cordance with the specific requirements and constraints of the application scenario. Such
an evaluation facilitates a thorough consideration of the advantages and disadvantages of
PPRL methods within a particular application context, enabling us to identify the method
that performs best across several key indicators and thereby providing secure and efficient
decision-making support for practical applications. Hence, developing a comprehensive
evaluation method applicable to various indicators and different application scenarios is
an urgent matter that we need to tackle.

3. Preparation Work
3.1. Problem Definition

Definition 1 (Privacy-Preserving Record Linkage). Suppose each of the P parties P1, P2, . . . ,
PP(P ≥ 2) owns the dataset D1, D2, . . . , DP. Parties want to determine which of their records
R1,i ∈ D1, R2,j ∈ D2, . . . , Rp,k ∈ Dp match (corresponding to the same entity) based on record
encryption or encoding of Quasi Identifiers (QIDs): attributes that have the potential to identify a
record. The decision model C(·) classifies the record(R1,i, R2,j, . . . , Rp,k) set into two classes: match
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and mismatch. In the above process, only the records classified as matching are shared among the
participants, and the information of other unmatched records is not leaked.

Definition 2 (Spearman’s rank correlation coefficient). The Spearman’s rank correlation coeffi-
cient, proposed by Charles Spearman, measures the correlation between the ranks (orders) of two
variables. It depends on the order of the data rather than the specific values. Ranging from −1 to 1,
a coefficient of 1 indicates a perfect positive correlation, −1 indicates a perfect negative correlation,
and 0 indicates no linear correlation.

Definition 3 (Pearson correlation coefficient). The Pearson correlation coefficient, devised by
Karl Pearson, quantifies the strength of the linear relationship between two continuous variables.
It operates under the assumption that these variables are normally distributed and continuous
in nature. Similar to Spearman’s rank correlation coefficient, the Pearson correlation coefficient
occupies a spectrum from −1 to 1. A coefficient of +1 signifies a perfect positive linear relationship,
−1 a perfect negative linear relationship, and 0 indicates no discernible linear association between
the variables.

3.2. CRITIC Introduction

Typically, when assigning weights to indicators, there is a tendency to focus on the
data itself. However, the fluctuations between data points or the correlations among them
also convey valuable information. We can leverage the extent of data volatility or the
correlation between data points to calculate the weight for each indicator.

The CRITIC weighting method is an objective approach that considers data volatility.
It is based on two key measures: volatility, also known as contrast strength, and conflict,
which is a measure of correlation. Volatility is quantified by the standard deviation—a
higher standard deviation signifies greater fluctuation and thus a higher weight. Conflict is
captured by the correlation coefficient; a higher degree of correlation between indicators
implies less conflict and consequently a lower weight. The underlying principle is to deter-
mine the objective weight of an indicator by assessing the balance between contrast strength
and conflict, thereby achieving an objective weight distribution for the evaluation scheme.
This method is particularly useful for assessing the stability of data and is well-suited for
analyzing datasets where indicators or factors exhibit a certain degree of correlation. The
exhaustive steps of the method are as follows:

Constructing data matrices: We construct the initial data matrix according to the
collected indicator data.

Dimensionless Processing: To eliminate the influence of varying dimensions on the
evaluation outcomes, dimensionless processing is essential for each indicator. Depending
on the type of indicator, the CRITIC weighting method typically employs either direct or
indirect normalization techniques.

Indicator variability: Within the CRITIC methodology, the standard deviation is
employed to capture the disparity and fluctuation among the internal values of each
indicator. A higher standard deviation indicates a greater numerical spread within the
indicator, signifying that it encapsulates more information and possesses a stronger intrinsic
evaluation power. Consequently, such indicators should be allocated a higher weight in
the overall assessment.

Indicator conflict: The correlation coefficient is utilized to represent the interdepen-
dence among indicators The stronger the correlation with other indicators, the less conflict
there is between the indicator in question and the others. This high correlation suggests
that the indicators reflect similar information, leading to a degree of repetition in the evalu-
ation content. Consequently, the intrinsic evaluation strength of the indicator is somewhat
diminished, warranting a reduction in the weight assigned to it.

Information carrying capacity: The larger Cj is, the greater the role of the j-th eval-
uation indicator in the whole evaluation indicator system, and more weight should be
assigned to it.
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Weight assignment: According to the obtained information bearing capacity, the weight
wj of the indicator is calculated.

4. Methodology

To address the issue that current evaluation methods fall short of providing a holistic
assessment of PPRL methods, this project employs an modified CRITIC approach to
examine the interplay among multiple indicators, discern the relational model between
these indicators, and subsequently devise an appropriate solution method. By aggregating
the information from various indicators of the PPRL method, a comprehensive indicator is
derived, which serves to encapsulate the overall performance of the PPRL method.

In the following sections, in conjunction with the multiple indicators within the PPRL
method, a detailed exposition of the three modules of the comprehensive evaluation
methodology for privacy-preserving record linkage technology based on the improved
CRITIC method will be provided. These modules include the construction of a standard-
ization matrix, the allocation of indicator weights, and the comprehensive evaluation.
The entire processing flow is depicted in Figure 1, with Algorithm 1 offering a detailed
breakdown. Table 1 delineates the parameters utilized in the proposed method and their
respective significance.

Figure 1. Flowchart of comprehensive evaluation of privacy-preserving record linkage techniques
based on the modified CRITIC method.
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Table 1. Parameter table of PPRL multi-indicator comprehensive evaluation algorithm based on
improved CRITIC method.

Parameters Meaning

m The number of PPRL methods involved in the evaluation
Mi The i-th PPRL method (1 ≤ i ≤ m)
B The data source for each method
Si The security of method i
Li linkage quality of method i
Ri The runtime of method i
j indicator j(1 ≤ j ≤ 3)

x̄j The mean of the indicator j
sj The standard deviation of the indicator j
vj Coefficient of variation of the indicator j
rij Correlation coefficient between indicator i and indicator j
f j The conflict of the indicator j
Cj The information carrying capacity of the indicator j
wj The weight of the indicator j

Algorithm 1: PPRL Multi-indicator comprehensive evaluation algorithm utiliz-
ing the enhanced CRITIC approach

Input:(M1, M2, ..., Mi, ..., Mm, B)

Output:(E1, E2, ..., Ei, ..., Em)

1: Si=security_test(Pi, B);

2: Li=linkQuality_test(Pi, B);

3: Ri=runtime_test(Pi, B);

4: for y in range(3):
5: j=[]
6: for x in range(m):
7: j.append(m[x][y])
8: IF type(j)==maximal_type:
9: RETURN j=positive_standardization(j)
10: Elif type(j)==minimal_type:
11: RETURN j=reverse_standardization(j)
12: for i in range(m):
13: matrix.append([Si, Li, Ri]);
14: x̄j =

1
m ∑m

i=1 x
′

ij

15: sj =

√
1

m−1 ∑m
i=1

(
x′

ij − x̄′
ij

)2

16: vj =
sj
x̄j

17: IF is_correlation(i, j)==1 :
18: RETURN rij=pearson_correlation(i, j)
19: ELSE:
20: RETURN rij=spearman_correlation(i, j)
21: f j=indicators_conflict(rij)

22: Cj = vj f j

23: wj =
Cj

∑m
j=1 Cj

24: Ei = ∑n
j=1 wjx

′

ij
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The function of the standardization matrix construction module is to gather and
analyze various indicator data related to the PPRL method. This involves normalizing the
collected indicator data using direct and indirect normalization techniques, subsequently
creating the standardization matrix.

The weight allocation module is designed to assign weights to indicators in a sci-
entifically sound and rational manner. It begins by utilizing the coefficient of variation
to quantify the variability among indicators, taking into account the impact of both the
average level and the degree of dispersion of the indicators on the weight distribution.
Next, depending on the characteristics of the indicator data, either the Pearson correlation
coefficient formula or the Spearman correlation coefficient formula is applied to calcu-
late the conflict among indicators. Finally, the weights are determined by integrating the
information-carrying capacity derived from these two approaches.

The comprehensive evaluation module is responsible for calculating the ultimate score
for each PPRL method based on the assigned weights and provides a comparative summary
of the results.

4.1. Standardized Matrix Construction Module

This module primarily aggregates indicator data pertaining to three key aspects of
the PPRL method: security, linkage quality, and runtime. It then employs a suite of
standardization techniques to normalize the indicator data, ultimately constructing a
standardization matrix (Algorithm 1, line 4–13).

4.1.1. Data Collection

The evaluation indicator data for the PPRL method can be gathered across three key
dimensions [17,36]: (1) security assessment, (2) linkage quality assessment, and (3) runtime
assessment. Among these three aspects, security is a pivotal factor that influences both
linkage quality and runtime. A higher level of security necessitates more intricate encryp-
tion (or encoding) methods, which in turn increase runtime and diminish computational
efficiency. Additionally, enhanced security often results in more complex encryption (or
encoding) processes, leading to a wider discrepancy between the encrypted (or encoded)
ciphertext (or code) and the original plaintext, thereby reducing linkage quality.

Security

Security is typically appraised through various lenses, such as privacy leakage risk
assessment, differential privacy testing, and mock attack testing. The subsequent section
delves into the evaluation of the risk of privacy disclosure (line 1 of Algorithm 1).

Suppose the dataset processed by privacy-preserving technology is referred to as
the Masked Database (DM), while the global dataset is labeled as B. DM may match
successfully with records in B that possess identical attribute values, potentially resulting
in information disclosure. In this context, the concept of Disclosure Risk (DR) is defined.
DR is a numerical value ranging from 0.0 to 1.0, where 0.0 signifies absolute security,
with no information leakage, and 1.0 denotes complete exposure, where all information
is compromised.

Suppose aM is an attribute within dataset DM, and ng represents the count of aM

attribute values in DM that share the same value with B. In this case, the probability that
aM is disclosed is 1/ng, which is expressed in Equation (1) following normalization.

Ps(aM) =
1/ng − 1/N

1 − 1/N
(1)

DR Is usually divided into three types: maximum leakage risk, marketing leakage risk,
and average leakage risk.
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The maximum leakage risk refers to the highest leakage risk value among all attributes
of DM. The maximum leakage risk helps to limit the leakage risk value to ensure data
privacy, and its calculation process is shown in Equation (2).

DRMax = max
aM∈DM

(Ps(aM)) (2)

Marketing leakage risk is the proportion of attributes whose leakage risk is 1, which is
of great significance for the statistics of fully leaked attributes, and its calculation process is
shown in Equation (3).

DRMark = |{aM ∈ DM :Ps(aM) = 1.0}|/n (3)

The average leakage risk is used to evaluate the average leakage probability, and the
calculation process is shown in Equation (4).

DRMean =
1
n ∑

aM∈DM

Ps(aM) (4)

Then, the calculation process of the security indicator in this paper is shown in the
following Equation (5).

Security = 1 − DR (5)

Linkage Quality

Linkage quality is commonly assessed across three dimensions: Precision, Recall,
and F-Measure [14] (line 2 of Algorithm 1). The True Duplicates (Tds) denote the set of
actual matching records within the dataset, while the Declared Duplicates (Dds) refer to the
set of matched records identified by the method. True Positive (TP) denotes instances where
records representing the same entity are correctly identified as matches; True Negative (TN)
occurs when records representing distinct entities are correctly identified as non-matches;
False Positive (FP) arises when records representing different entities are erroneously
identified as matches; and False Negative (FN) occurs when records representing the
same entity are incorrectly identified as non-matches. Consequently, Precision, Recall,
and F-Measure are computed as follows.

Precision: The ratio of the number of true matching record groups in the candidate
record group to the number of candidate record groups, the higher the ratio, the more
accurate the result of the method, which is calculated by the following Equation (6).

Precision =
|Td| ∩ |Dd|

|Dd| =
|TP|

|TP|+ |FP| (6)

Recall: Regarding the ratio of the number of true matching record groups in the
candidate record group to the number of true matching record groups in the data set,
the higher the ratio, the more comprehensive the true matching records found by the
method, and it is calculated by the following Equation (7).

Recall =
|Td| ∩ |Dd|

|Td| =
|TP|

|TP|+ |FN| (7)

F-measure: The value of F is the harmonic mean of recall and precision and is usually
expressed as the following Equation (8).

F − Measure =
2 × Recall × Precision

Recall + Precision
(8)
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Runtime

Runtime serves as a primary metric for assessing the scalability of the PPRL method.
To evaluate the scalability of the PPRL method, this paper employs the runtime generated
during the linkage process as the basis for evaluation (Algorithm 1, line 3). We apply
the PPRL method to the data source B, under identical other conditions, for n iterations,
and record the runtime for each iteration. The average of these runtimes is then taken as
the runtime for the PPRL method, which is calculated using Equation (9).

t̄ =
1
n

n

∑
i=1

ti (9)

4.1.2. Construction of the Normalized Matrix

In this paper, we evaluate it from three aspects: security, runtime and linkage quality.
The security of the PPRL method is tested by the DR (Disclosure Risk), and the F-Measure is
used to represent the linkage quality of the PPRL method. We apply the PPRL method to the
same data source B, and on the basis of ensuring the same participants and other variables,
we use the above measurement methods to collect data on the three indicators of the PPRL
method: runtime, linkage quality and security. For example, there are three existing PPRL
methods, M1, M2, and M3, and we collect data on their three metrics: runtime, linkage
quality, and security. The collected results are as follows: the performance metrics for
runtime are recorded as 50, 18, and 100, while the metrics for linkage quality are 0.85, 0.9,
and 0.95. Additionally, the security metrics are 0.85, 0.8, and 0.9. The compiled data are
presented in Table 2 below.

Table 2. Each evaluation indicator of the three PPRL methods.

Methods
Indicators Runtime Linkage Quality Security

M1 50 0.85 0.85

M2 18 0.9 0.8

M3 100 0.95 0.9

We formulate the initial data matrix utilizing the gathered data in conjunction with
Equation (10), and the construction result is shown in Equation (11).

X =


x11 · · · x1n

...
. . .

...
xm1 · · · xmn

 (10)

X =

 50 0.85 0.85
18 0.9 0.8

100 0.95 0.9

 (11)

The primary objective of data standardization is to eliminate the discrepancies in
dimension and value range between various indicators, thereby enhancing the reliability
and precision of analytical outcomes. By transforming the indices to a common dimension
and value range, more precise comparisons and comprehensive analyses can be conducted
across different indices. Furthermore, standardization aids in mitigating the impact of
outliers, reducing the likelihood of distortion and inaccuracy in the analysis results.

Each metric falls into a specific category: extremely large, extremely small, inter-
mediate, or interval type. The runtime is an extremely small type, aligning it with the
reverse indicator category, where a smaller value indicates higher computational efficiency.
Linkage quality and security, on the other hand, are extremely large types, categorized as
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positive indicators. Higher values signify superior linkage quality and security within the
range of 0 to 1: a higher value signifies superior performance. It is essential to convert
these metrics to a uniform type for comparison purposes. Additionally, given the varying
magnitude of each metric, it is necessary to normalize them to a common metric range
for meaningful comparison. This article employs both forward and reverse normalization
techniques to standardize the data.

Reverse Normalization: The inverting process is used to convert an inverse metric
(smaller is better) into a positive metric, while also dimensioning the compressed data in
the [0, 1] range. A negative indicator usually represents a bad state or risk, which needs to
be reversed into a positive indicator, so that it can be analyzed and compared with other
positive indicators.

Direct Normalization: The forward process is mainly used to keep the positive in-
dicator (that is, the indicator with higher values is better) positive and convert it to a
dimensionless relative value in the range [0, 1]. This processing helps to eliminate the
dimensional differences between different indicators so that different indicators can be
compared and analyzed.

We apply the reverse calculation method to the data associated with the reverse
indicator runtime, Its calculation formula is shown in the following Equation (12).

x′ij =
max(xij)− xij

max(xij)− min(xij)
(12)

We utilize a positive calculation method for the data associated with the two positive
metrics of linkage quality and security. Its calculation formula is shown in the following
Equation (13).

x
′
ij =

xij − min(xij)

max(xij)− min(xij)
(13)

Here, xij represents the j-th indicator value of the i-th method, while x
′
ij is the normal-

ized value. max(xij) denotes the maximum value of the j-th indicator, and min(xij) is the
minimum value of the j-th indicator.

By employing the aforementioned processing method, the element of xij in matrix
X =

(
xij

)
m×n after normalization processing is denoted as x

′
ij, and the matrix formed by

these normalized elements is referred to as the normalized matrix X⋆ =
(

x
′
ij

)
m×n

. The

results are shown in Equation (14).

X⋆ =

0.6097561 0 0.5
1 0.5 0
0 1 1

 (14)

4.2. Weight Allocation Module

In this section, the weights of the three indicators of the PPRL method are assigned
using the modified CRITIC method. Balancing the relationship between these indicators
and ensuring a reasonable distribution of their weights is crucial for the comprehensive
evaluation of the PPRL method. Building upon the CRITIC method, we employ the coeffi-
cient of variation rather than the coefficient of standard deviation to gauge the variability
between indicators (lines 14–16 of Algorithm 1). The coefficient of variation addresses
the impact of disparate units and/or mean values on the comparison of variability levels,
making it suitable for comparing the dispersion of datasets with distinct units or means.
Moreover, being a relative number, the coefficient of variation is not influenced by the
measurement unit of the original data, thus enhancing its universality and comparability.

Additionally, when assessing the conflict between indicators, we utilize different
correlation coefficients depending on the interrelationship between indicators (lines 17–20
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of Algorithm 1). This approach allows for a more precise quantification of the correlation
between indicator variables, thereby enhancing the accuracy of subsequent evaluation
and analysis. The following outlines the detailed process for calculating the coefficient of
variation, assessing conflict, and determining the weights [37,38].

4.2.1. Coefficient of Variation

The coefficient of variation (CV) is defined as the ratio of the standard deviation to
the mean. This measure eliminates the influence of varying units and/or means on the
comparison of variability levels, allowing for the comparison of the dispersion of datasets
with different units or means. Since the coefficient of variation is a dimensionless quantity, it
should be used as the reference when comparing two sets of data with different dimensions
or mean values, rather than the standard deviation. A smaller coefficient of variation
indicates a smaller degree of variation (deviation), implying lower risk, and thus a lower
weight should be assigned to the corresponding indicator. Conversely, a larger coefficient of
variation suggests a greater degree of variation (deviation), indicating higher risk, and thus
a higher weight should be assigned to the indicator.

Let the standard deviation of the j indicator be sj, the mean be x̄j, and the coefficient
of variation be vj. The calculation process is shown in the following Equations (15)–(17).

sj =

√
1

m − 1

m

∑
i=1

(
x′

ij − x̄′
ij

)2
(15)

x̄j =
1
m

m

∑
i=1

x
′
ij (16)

vj =
sj

x̄j
(17)

By solving the aforementioned formula, one can determine the standard deviation and
coefficient of variation for each indicator. Table 3 presents the standard deviations and coef-
ficients of variation for each indicator of the three PPRL methods, using Equations (15)–(17).

Table 3. The contrast intensity of each indicator.

Indicators Runtime Linkage Quality Security

Standard deviation 0.41151385 0.40824829 0.40824829

Coefficient of variation 0.76691217 0.81649658 0.81649658

4.2.2. Conflictibility

The inter-indicator conflict can be quantified by computing the correlation coefficient
between the indicators (line 21 of Algorithm 1). The correlation coefficient is a statistical
metric used to gauge the strength and direction of the linear association between two
variables. In the assessment of indicator conflict, the correlation coefficient serves as a
tool to assess the degree of correlation between different indicators, thereby capturing
the conflict between them. When a strong positive correlation is observed, a smaller
conflict value suggests a lower weight should be assigned. The magnitude of the conflict
between the j indicator and the remaining indicators is denoted as f j, and rij represents
the correlation coefficient between the i indicators and the j indicators. It is calculated as
shown in Equation (18) below.

f j =
m

∑
i=1

(1 − rij) (18)

The measure of indicator conflict is achieved by computing the correlation coefficient
between them. Consequently, the exploration of indicator conflict hinges on the selection of



Mathematics 2024, 12, 3476 13 of 23

an appropriate correlation coefficient. For instance, there exists a certain linear relationship
between runtime and security, and hence the Pearson correlation coefficient is employed
when calculating the correlation coefficient between these two. In contrast, when calculating
the correlation coefficient between runtime and linkage quality, or between linkage quality
and security, where no linear relationship is present, the Spearman correlation coefficient
is used.

The Pearson correlation coefficient is denoted as rρ, and the Spearman correla-
tion coefficient is denoted as rs. The formulas for calculating them are provided in
Equations (19) and (20), respectively.

rρ = rxy =
cov(x, y)

σxσy
=

∑n
i=1(xi − x̄)(yi − ȳ)√

∑n
i=1(xi − x̄)2

√
∑n

i=1(yi − ȳ)2
(19)

rs = 1 −
6 ∑n

i=1 d2
i

n3 − n
(20)

In the context of calculating the Spearman correlation coefficient, x and y represent the
indicator vectors, σxσy is the covariance of x and y, σx and σy are the standard deviations of
x and y, respectively, and di is the rank difference between the two indicator vectors.

The rank difference for the Spearman correlation is computed as follows:

• Sort the observations of the two variables by magnitude and assign a rank (i.e., the
sorted position) to each observation. If there are identical observations, their ranks
are averaged.

• Calculate the squared difference between the rank of each variable and its correspond-
ing position, d2

i , where di is the rank difference for the i-th observation, that is, the
rank of xi minus the rank of yi. The calculation progress is shown in Table 4 below.

Table 4. Indicator element rank difference.

Variable xi
Element Position

(Desc) Rank Variable yi
Element Position

(Desc) Rank Rank Difference

0.609756 1 1 0 3 3 2

0 3 3 0.5 2 2 1

0.5 2 2 1 1 1 1

By solving the above method, we can obtain the correlation coefficient between the
indicators, as shown in Table 5 below.

Table 5. Correlation coefficient between indicators.

Indicators (Runtime, Linkage Quality) (Runtime, Security) (Linkage Quality, Security)

Correlation Coefficient −0.5 −0.99206453 0.5

Table 6 shows the conflict obtained by using Equation (18) for each indicator of the
three PPRL methods.

Table 6. The contrast intensity of each indicator.

Indicators Runtime Linkage Quality Security

Conflict 3.49206453 2 2.49206453
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4.2.3. Calculated Weight

Let the information carrying capacity of indicator j be denoted as Cj (line 22 of
Algorithm 1), and the weight assigned to indicator j be wj (line 23 of Algorithm 1), which
can be computed as shown in Equations (28) and (29) below.

Cj = vj f j (21)

wj =
Cj

∑m
j=1 Cj

(22)

Table 7 shows the weight assignments obtained by using Equations (28) and (29)
for each indicator of the three PPRL methods (the outcome is retained precisely to six
decimal positions).

Table 7. Weight allocation of each indicator.

Indicators Runtime Linkage Quality Security

Weight 0.422024 0.257332 0.320644

4.3. Comprehensive Evaluation Module
4.3.1. Calculate Score

There are numerous approaches to comprehensive evaluation. Currently, the most
commonly employed model for multi-index comprehensive evaluation is the index scoring
method based on weighted averages. The core of this method is to aggregate the results
of the various indices into a single comprehensive evaluation value through the weighted
average technique. This approach is straightforward, easy to understand, and provides
clear conclusions, with strong operational capabilities. We compute the final evaluation
score for the PPRL method using the weighted average method. Let the final evaluation
score of PPRL method Mi be Ei (line 24 of Algorithm 1), and its calculation formula is as
shown in Equation (23) below.

Ei =
n

∑
j=1

wjx′ij (23)

Table 8 shows the final evaluation scores obtained by using Equation (23) for each
index of the three PPRL methods (the outcome is retained precisely to six decimal positions).

Table 8. Evaluation scores for each PPRL method.

Methods M1 M2 M3

Evaluation score 0.417654 0.550690 0.577976

4.3.2. Discussion

In this section, we have assessed three approaches via a practical case, concentrating
on three crucial aspects: linkage quality, runtime, and security. The final scores are relative
measures derived from internal comparisons among the methods. Here is the detailed
analysis of the results:

Method 3 emerged as the top scorer in the comprehensive evaluation, highlighting its
significant advantage in linkage quality. Although it is not the most efficient in terms of run-
time, its robust performance in security contributes to its overall outstanding performance.
This result indicates that Method 3 is the preferred choice when projects demand high
precision in linkage analysis and strong security; Method 2 excelled in runtime, significantly
enhancing the efficiency of data processing. While it may fall slightly short of Method 3 in
terms of linkage quality, its exceptional runtime performance is sufficient to meet the needs
for rapid response. Consequently, Method 2 demonstrates its unique strengths in scenarios
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where both processing speed and linkage quality are of paramount importance; Method 1
displayed a moderate level across all three evaluation dimensions, with no single metric
standing out significantly, nor any noticeable weaknesses. Its composite score reflects a
balance in performance, offering stable and reliable linkage quality, reasonable runtime,
and ensured security without the pursuit of extreme performance. For projects seeking a
comprehensive balance and versatility, Method 1 provides an ideal balanced solution.

In summary, each of the three methods has its distinct features, and their compre-
hensive evaluation scores reflect their overall performance across different dimensions.
Method 3 is suitable for scenarios with stringent requirements for linkage quality and
security, Method 2 for occasions where processing speed is crucial while maintaining
linkage quality, and Method 1 for applications that prioritize a well-rounded balance
in performance.

5. Experiment and Analysis
5.1. Preparatory Work

The dataset employed in this experiment is the North Carolina Voter Registration List
(NCVR), which can be downloaded from the FTP address ftp://alt.ncsbe.gov/data/, ac-
cessed on 3 September 2024. The data utilized in our method were extracted from genuine
public voter record information, ensuring the authenticity and reliability of the dataset. This
article implemented the methods discussed using PyCharm (2023.3). The experimental config-
uration included an Intel Core i5-12600KF CPU, 32 GB of memory, a 1 TB hard drive, and was
operated on a 64-bit Windows 10 system. The development environment was PyCharm
(2023.3), and the dataset used was the North Carolina Voter Registration List (NCVR).

This section will comprehensively evaluate the current four mainstream PPRL meth-
ods, which are Randall et al.’s PPRL method based on homomorphic encryption (HE-
PPRL) [39], Durham et al.’s PPRL method based on composite bloom filter (RBF-PPRL) [40],
Karapiperis et al.’s PPRL method based on the FEDERAL framework (F-PPRL) [41], and the
PPRL method (MD-PPRL) proposed by Vatsalan et al., which combines a bloom filter, secure
summation, and Dice coefficient similarity calculation protocol [42].

5.2. Experimental Data Collection
5.2.1. Scalability Testing

Firstly, the scalability of each PPRL method was assessed by examining how the
runtime of the method varied with the increase in the size of the data source. We maintained
a fixed number of parties, p = 5, and measured the runtime of each method as a function of
the data source size (5 k, 10 k, 50 k, 100 k, 500 k, 1000 k). The test results are presented in
the following Figure 2.

Figure 2. Runtime versus data source size.

ftp://alt.ncsbe.gov/data/
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Secondly, to assess how the runtime of each PPRL method is affected by the increase in
the number of parties, we fixed the data source size at B = 5 k. We then tested the runtime
of each method as the number of parties varied (3, 5, 7, 9), and the results are depicted in
the following Figure 3.

Figure 3. Runtime versus number of participants.

5.2.2. Method Performance Testing

The performance evaluation of each PPRL method encompasses three key aspects:
Precision, Recall, and F-Measure. We set the size of the data source to B = 5 k and exam-
ined how the Precision, Recall, and F-Measure of each method evolved with the number
of participants (3, 5, 7, and 9, respectively). The test outcomes are illustrated in the
Figures 4–6 below.

Figure 4. Precision versus number of participants.
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Figure 5. Recall versus number of participants.

Figure 6. Recall versus number of participants.

5.2.3. Security Testing

The security assessment of each PPRL method involves quantifying the risk of data
privacy leakage. With a fixed data source size of B = 5 k and a set number of participants
p = 5, the security test results for each method are presented in the following Figure 7.

Figure 7. Security of each method.
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5.3. Experimental Results and Analysis

Drawing on the comprehensive test data for each PPRL method, we extract the crit-
ical index data for each method under the specific conditions of a data source size of
B = 5 k and a participant count of p = 5. As depicted in the following Table 9, to conduct
a comprehensive evaluation of these methods, we consider three fundamental metrics:
runtime, linkage quality (with the F-Measure serving as a reference metric for linkage
quality), and security. This comprehensive evaluation aims to provide a more accurate
understanding of the performance characteristics of each method, thereby laying a solid
foundation for subsequent optimization and selection.

Table 9. Indicator data of each method.

Methods
Indicators Runtime(/S) Linkage Quality Security

HE-PPRL 58.2 0.68 0.981

RBF-PPRL 42.9 0.66 0.932

F-PPRL 31.4 0.52 0.912

MD-PPRL 36.8 0.29 0.926

Based on the correlation analysis of the data, runtime is categorized as a negative
indicator, while linkage quality and security are considered positive indicators. It is
worth noting that there is a certain linear relationship between runtime and security.
Considering these data characteristics, we standardize them to enhance analysis and
application. Table 10 displays the data after normalization.

Table 10. Standardized indicator data.

Methods
Indicators Runtime Linkage Quality Security

HE-PPRL 0 1 1

RBF-PPRL 0.570895522 0.948717949 0.28985507

F-PPRL 1 0.58974359 0

MD-PPRL 0.798507463 0 0.20289855

As illustrated in Figure 8, the safety index exhibits a higher degree of data dispersion,
indicating a more significant variation in its values. This substantial variation highlights
the importance of the safety index in the overall evaluation, justifying the allocation of a
correspondingly higher weight to accurately reflect its impact on the overall results.

The following Table 11 displays the coefficient of variation calculated for each in-
dex based on its degree of variation, which will serve as a crucial reference for weight
allocation and aid in more accurately measuring the relative importance of each index in
the overall evaluation. This ensures the accuracy and reliability of the data analysis and
processing results.
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Figure 8. The standardized index data of each method.

Table 11. Coefficient of variation of each indicator.

Indicators Runtime Linkage Quality Security

Standard deviation 0.4320564158 0.4607662106 0.4351648886

Coefficient of variation 0.729392878267 0.726055846831 1.16607290774

Spearman correlation coefficient and Pearson correlation coefficient were used based
on the correlation between each index, and the correlation coefficient between them was
calculated, respectively. The calculation results are shown in Table 12 below.

Table 12. Correlation coefficient between indicators.

Indicators Runtime Linkage Quality Security

Correlation coefficient −0.8 −0.987046135 0.8

Based on the data presented in Table 12 above, the conflictivity between the indicators
can be determined, and the corresponding calculations are summarized in Table 13 below.

Table 13. The contrast intensity of each index.

Indicators Runtime Linkage Quality Security

Conflict 3.787046135 2 2.187046135

To balance the discrepancies and contradictions between different indicators, it may
be advisable to assign greater weight to those indicators that exhibit higher conflict and
coefficient of variation. This approach ensures a more comprehensive consideration of all
aspects of the decision-making or evaluation process, thereby enhancing the accuracy and
reliability of the outcomes. Table 14 below presents the index weight assignments obtained
in this experiment for the four PPRL methods (the outcome is retained precisely to six
decimal positions), and Figure 9 provides a visual representation of the weight ratio for
each indicator.
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Table 14. Weight allocation of each indicator.

Indicators Runtime Linkage Quality Security

Weight 0.408337 0.214663 0.377000

Figure 9. Each index weight distribution proportion chart.

According to the experimental results in the above Table 15, the PPRL method based
on homomorphic encryption (HE-PPRL) demonstrates superior performance in this ex-
periment. This indicates that under the data set chosen in this paper, especially under
the specific conditions of data source size B = 5 k and the number of participants p = 5,
the comprehensive performance of the HE-PPRL method holds a significant advantage over
the other three methods, thereby further confirming the superiority and effectiveness of
the HE-PPRL method in such scenarios. It is also essential to recognize that the other three
methods did not demonstrate an advantage in this experiment, but this does not imply that
they are inferior to the HE-PPRL method in other scenarios or conditions. Consequently,
when assessing various methods, it is crucial to consider multiple factors comprehensively
to avoid reaching one-sided conclusions.

Table 15. Final score for each method.

Methods HE-PPRL RBF-PPRL F-PPRL MD-PPRL

Evaluation scores 0.591663 0.546048 0.534934 0.402553

The evaluation method adopted in this paper, building on the research achievements of
Dinusha Vatsalan’s team, delves into the deep mining and utilization of data characteristics,
achieving the quantification of index weighting. This has led to significant advancements
in exploring and comparing the comprehensive performance of PPRL methods. Given the
diversity of data sources, the level of interference factors, and the impact of environmental
conditions, which may all lead to variations in experimental outcomes and profoundly
affect the final assessment, we have meticulously maintained a uniform experimental
environment throughout the testing phase. This has been done to eliminate potential
influences of various environmental factors on our results, ensuring their fairness and
credibility. This method not only provides strong support for the optimization of PPRL
methods but also offers a scientific basis for decision-making. After extensive experimental
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repetitions and in-depth analysis, the consistency between the experimental results and
the PPRL methods chosen in actual decision-making approaches 80%, indicating that
the method proposed in this paper holds tremendous practical value and significance
in the field.

In order to further verify the effectiveness and advancement of the improved CRITIC
method, we compare and analyze it with the existing evaluation methods. For example,
Ma Huimin and Li Qiang (2006) used AHP analytic hierarchy process to assess the risk
of ERP projects [43]. Our quantitative analysis reveals that AHP, when dealing with com-
plex decision-making problems, exhibited a high degree of variability due to subjective
judgment, with a consistency ratio (CR) exceeding the acceptable threshold of 0.1 in 60%
of the cases studied.In repeated experiments, the consistency of results obtained through
AHP reached only 70%, whereas our proposed method achieved a consistency rate of 95%.
At the same time, we also use the fuzzy analytic Hierarchy Process model based on fuzzy
logic proposed by Zhang Jijun [44]. Our results indicate that the improved CRITIC method
achieves a mean accuracy of 85% in identifying performance differences between PPRL
methods, compared to the 70% accuracy rate of the fuzzy AHP model. Additionally, the
improved CRITIC method has a lower standard deviation in the evaluation outcomes,
suggesting greater stability. Table 16 shows the comparative analysis between the proposed
method and AHP method.

Table 16. Comparison of evaluation methods.

Indicators Result Consistency Accuracy Adoption Rate

Improved CRITIC 0.95 0.85 0.80

AHP 0.70 0.70 0.85

6. Conclusions

This paper innovatively proposes a comprehensive evaluation framework based on an
improved CRITIC method, aimed at thoroughly and deeply assessing the performance of
PPRL techniques. The framework meticulously constructs a multi-dimensional evaluation
system, enabling the scientific and systematic identification of the optimal PPRL technique.
Experimental results demonstrate that the framework exhibits extremely high accuracy
and objectivity in evaluating the merits and demerits of PPRL techniques, and the evalu-
ation results are highly consistent. This not only robustly validates the scientificity and
effectiveness of the evaluation framework but also fully showcases its immense practical
value and profound societal significance in the field of PPRL technique evaluation. While
our research method can identify optimal PPRL methods, theoretical best choices may
not align with practical ones due to factors like implementation costs, operational com-
plexity, and application requirements. Our evaluation results, which reveal the theoretical
advantages of a PPRL approach, should only serve as a basis for decision-makers to make
comprehensive and balanced decisions considering practical constraints and specific needs.
Based on this, integrating two or more evaluation methods has become the latest trend
in comprehensive evaluation. Not only overcomes the limitations of a single evaluation
method but also brings out the synergistic advantages of multiple methods, making the
evaluation process more scientific, objective, and accurate. Looking to the future, our
research will continue to refine the comprehensive evaluation system of PPRL technologies
for different audiences and diverse scenarios within the framework of integrating subjective
and objective methods, and strive to find more suitable PPRL solutions.
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