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Abstract: This paper proposes a long-memory model that includes multiple cycles in addition to the
long-run component. Specifically, instead of a single pole or singularity in the spectrum, it allows for
multiple poles and, thus, different cycles with different degrees of persistence. It also incorporates
non-linear deterministic structures in the form of Chebyshev polynomials in time. Simulations are
carried out to analyze the finite sample properties of the proposed test, which is shown to perform
well in the case of a relatively large sample with at least 1000 observations. The model is then
applied to weekly data on the S&P 500 from 1 January 1970 to 26 October 2023 as an illustration. The
estimation results based on the first differenced logged values (i.e., the returns) point to the existence
of three cyclical structures in the series, with lengths of approximately one month, one year, and four
years, respectively, and to orders of integration in the range (0, 0.20), which implies stationary long
memory in all cases.
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1. Introduction

It is common in economics and finance, as well as in other disciplines, to decompose a
time series into a trend, seasonal, and cyclical component [1,2]. For this purpose, various
statistical tools have been developed over the years, and, most recently, machine learning
and other big data techniques have also been used [3]. This paper proposes a new time
series model incorporating all these components, which is a special case of the very general
and flexible testing framework developed by Robinson (1994) [4]. More specifically, the
deterministic part of the model includes a constant, a linear time trend [5,6], and either a
cyclical structure or seasonal dummy variables [7]; it also allows for non-linearities in the
form of neural networks [8], Fourier functions [9], or Chebychev polynomials in time, as
in [10]. In the stochastic part, the spectral density function is allowed to have multiple poles
or singularities and, thus, multiple integers or fractional roots of arbitrary order anywhere
in the unit circle in the complex plane [11]. These are related to the previously mentioned
components. In particular, the trend component is associated with the long-run or zero
frequency, while the others (i.e., seasonal and cyclical) correspond to non-zero frequencies.
Simulations are carried out to analyze the finite sample properties of this model, which is
then applied to weekly data on the S&P 500 from 1 January 1970 to 26 October 2023 as an
illustration.

The purpose of the present paper is to propose a new time series model that incor-
porates both linear and non-linear structures of deterministic and stochastic nature in a
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unified framework, allowing for the possibility of fractional degrees of differentiation at
the zero frequency, as is standard in the (long memory) literature, as well as at non-zero
(cyclical) frequencies. Thus, it is very general because it allows to consider not only classi-
cal unit [12,13] or fractional [14,15] roots but also multiple cyclical structures that might
underlie many time series in economics and other fields. The remainder of the paper is
structured as follows: Section 2 describes the model; Section 3 presents the test statistic;
Section 4 reports on Monte Carlo evidence concerning the finite sample performance of the
proposed test; Section 5 provides information about the data and discusses the empirical
application; and Section 6 offers some concluding remarks.

2. The Econometric Model

Let y(t) be the observed time series from t = 1, 2, . . ., T. We consider the follow-
ing model:

y(t) = f(z(t);ψ) + x(t), t = 1, 2, . . . , (1)

where f can be a linear or a non-linear function of z(t), which is a (k × 1) vector of observable
deterministic variables, and γ is a (k × 1) vector of unknown parameters to be estimated.
Thus, if f is linear, it can include, for instance, an intercept and a linear time trend of the
form advocated by Bhargava (1986) [5], Schmidt and Phillips (1992) [6] and others in the
context of unit roots, i.e.,

f(z(t);ψ) = α+ bt (2)

and, if it is non-linear, it can include, for example, Chebyshev polynomials in time of
the form:

f(z(t);ψ) =
m

∑
i=0
θiPiT(t), (3)

where m indicates the number of coefficients of the Chebyshev polynomial in time Pi,T(t)
defined as:

P0,T(t) = 1, and Pi,T(t) =
√

2cos(iπ(t − 0.5)/T), (4)

as described in [16,17]. Bierens and Martins (2010) propose the use of such polynomials
in the case of time-varying cointegrating parameters [18]. There are several advantages
to using them. First, their orthogonality avoids the problem of near collinearity in the
regressor matrix, which arises with standard time polynomials. Second, according to
Bierens (1997) [19] and Tomasevic et al. (2009) [20], they can approximate highly non-linear
trends with rather low degree polynomials. Finally, they can approximate structural breaks
in a much smoother way than the classical structural change models.

As for the stochastic part of the model, x(t) is specified as:

m

∏
j=1

(
1 − 2cos wr

j L + L2
)dj

x(t) = u(t), t = 1, 2, . . . , (5)

where wr
j = 2πr/T, r = T/j is a real scalar value, L is the lag operator, (i.e., Lx(t) = x(t − 1)), dj

is another real value corresponding to the order of integration of the cycle that explodes (i.e.,
it goes to infinity) in the spectrum at λ = j; m stands for the number of cyclical structures,
and u(t) is a short-memory process integrated of order 0 or I(0). Such a process is defined as
a covariance stationary one with a spectral density function that is positive and finite across
all frequencies in the spectrum. Thus, it could be a white noise process but also display
weak autocorrelation, as in a stationary and invertible Auto Regressive Moving Average
(ARMA) model. In the present study, in order to avoid overparameterization, we follow
the exponential spectral approach of Bloomfield (1973) to model u(t) [21]. This is a non-
parametric framework that is implicitly defined in terms of its spectral density function:

f(λ; τ) =

[
σ2
2π

]
exp

[
2 ∑n

i=0 τi cos(λi)
]
, (6)
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where σ2 is the variance of the error term, and n denotes the number of short-run dynamic
terms. Its logged form approximates autoregressive processes fairly well. Bloomfield (1973)
showed that for a stationary and invertible ARMA (p, q) process of the form [21]:

u(t) =
p

∑
r=1
φru(t − r) + εt +

q

∑
s=1
θsε(t − s), (7)

where εt is a white noise process, the spectral density function is given by:

f(λ; τ) =
σ2

2π

∣∣∣∣∣ 1 + ∑
q
s=1 θseiλs

1 − ∑
p
r=1φreiλr

∣∣∣∣∣
2

. (8)

According to Bloomfield (1973) [21], the log of the above expression can be well ap-
proximated by Equation (6) when p and q are small values, and thus it does not require the
estimation of as many parameters as in the case of ARMA models. In addition, Bloomfield’s
(1973) [21] model is stationary across all values (see Gil-Alana, 2004 [22]).

In the empirical application carried out below, we assume that p = 4 and that w(r;1) = 0,
so the first cyclical component corresponds to the long run or zero frequency. In this case, the
summand

(
1 − 2 cos w(r; j)L + L2)dj becomes

(
1 − 2 L + L2)d1 , which can be expressed

as (1 − L)2d1 , with the pole or singularity in the spectrum going to infinity at the zero
frequency [23–25]. For the other two cyclical structures, we choose the frequencies on
the basis of the values of the periodogram, which is an estimator of the spectral density
function.

3. The Test Statistic

The test statistic can be easily derived from Robinson (1994) [4] extending the function
f in Equation (1) to the non-linear case and specifying the errors to follow Bloomfield’s
(1973) model [21].

Specifically, we test the null hypothesis:

Ho:d = do, (9)

where do is a vector of real numbers and dimension m, with each element corresponding
to the order of integration at a given frequency. Given this null hypothesis, the residuals in
(1) and (5) are

r(t) =
m

∏
j=1

(
1 − 2cos wr

j L + L2
)djo

xx(t) (10)

where xx(t) are the residuals of the linear or non-linear model in (1), and the periodogram
of r(t) is computed as:

P(λj) = | 1

(2πT)
1
2

T

∑
t=1

r(t)eiλjt
2

|. (11)

The test statistic takes the form:

NLROB =
T
σ̂4 â′Â−1â, (12)

where T is the sample size, and

â =
−2π

T

∗
∑

f
ψ
(
λj
)
gu

(
λj; tau)−1P

(
λj
)

,

σ̂2 = σ2(tau) =
2π
T ∑T−1

f=1 gu

(
λjtau)−1P

(
λj
)

,



Mathematics 2024, 12, 3487 4 of 12

Â =
2
T

 ∗
∑

f
ψ
(
λj
)
ψ
(
λj
)′− ∗

∑
f
ψ
(
λj
)
ξ̂
(
λj
)′[ ∗

∑
f
ξ̂
(
λj
)
ξ̂
(
λj
)′]−1 ∗

∑
f
ξ̂
(
λj
)
ψ
(
λj
)′;

ψ(λf) = log
∣∣∣∣2sin

λf
2

∣∣∣∣; ξ̂(λj
)
=

∂

∂tau
log gxx

(
λj; tau

)
, (13)

where λj = 2πj/T, and * indicates that the sums are taken over all frequencies bounded in
the spectrum, namely removing those that explode or go to infinity. Also, tau is definted as
arg minτ∈T∗σ2(τ), where T* is a subset of the Rq Euclidean space.

It can be easily proven that, extending the conditions in Robinson (1994) [4] to the
non-linear structure in (1), which is satisfied by Condition (*) in his paper,

NLROB →
d

χ2
m as T → ∞, (14)

where T indicates the sample size, and “→d” stands for convergence in distribution.
Thus, unlike in the case of other procedures, the present one is a classical large-sample
testing situation. Moreover, this test is the most efficient in the Pitman sense against
local departures from the null, i.e., if it is implemented against local departures, the limit
distribution is χ2

m (v) with a non-centrality parameter v which is optimal under Gaussianity
of the error term. The latter is not necessary for the implementation of this procedure; a
moment condition of only order 2 is required.

4. Finite Sample Properties

This section reports on the finite sample performance of the test described above.
Specifically, we carry out Monte Carlo simulations to analyze the size and the power of
this test against various alternatives. A similar experiment was conducted by Gil-Alana
(2001) [26]; however, in that case, m = 1, allowing only a single cyclical structure. By
contrast, in the present study, we assume that m = 3 and that the Data Generating Process
(DGP) is characterized by the following orders of integration: d1 = 0.75, d2 = 0.50, and
d3 = 0.25; this implies that the first cyclical structure is highly persistent and non-stationary,
the second one is on the borderline between the stationary and non-stationary case, and
the third one is stationary. For the length of the cycles, we impose j = 10, 100, and 250 with
different sample sizes. These values are arbitrary, though the results were found to be
robust to choose other values. For the alternative hypotheses, we consider values for the
three orders of integration of 0.25, 0.50, and 0.75. For j, we choose the same values as in the
true model; therefore, the size of the test is reported in the tables for d = (0.75, 0.50, 0.25)T.

Table 1 reports the results based on T = 1000. It can be seen that the size of the test
is too large, with a rejection frequency of 0.119 for a nominal size of 0.050 and very large
(above 0.700) in all cases. Table 2 shows that with a bigger sample size, i.e., T = 2000, the
power becomes closer to the nominal size, 0.094, and the rejection probabilities are now
higher than 0.800 in all cases, reaching 1 in 7 out of the 27 cases. Finally, Table 3 displays the
results for T = 3000; in this case, the nominal size is 0.066, with 12 cases when the rejection
probabilities are equal to 1 and values higher than 0.900 in all cases.

Table 1. Rejection frequencies of the test for a sample size T = 1000.

d1 d2 d3 Rejection Freq.

0.25 0.25 0.25 0.889

0.25 0.25 0.50 0.947

0.25 0.25 0.75 1.000

0.25 0.50 0.25 0.799
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Table 1. Cont.

d1 d2 d3 Rejection Freq.

0.25 0.50 0.50 0.845

0.25 0.50 0.75 0.945

0.25 0.75 0.25 0.904

0.25 0.75 0.50 0.967

0.25 0.75 0.75 1.000

0.50 0.25 0.25 0.866

0.50 0.25 0.50 0.923

0.50 0.25 0.75 0.988

0.50 0.50 0.25 0.777

0.50 0.50 0.50 0.814

0.50 0.50 0.75 0.908

0.50 0.75 0.25 0.890

0.50 0.75 0.50 0.923

0.50 0.75 0.75 0.998

0.75 0.25 0.25 0.815

0.75 0.25 0.50 0.901

0.75 0.25 0.75 0.945

0.75 0.50 0.25 0.119

0.75 0.50 0.50 0.807

0.75 0.50 0.75 0.833

0.75 0.75 0.25 0.812

0.75 0.75 0.50 0.865

0.75 0.75 0.75 0.939
In bold, the value corresponds to the size of the test. Nominal size: 5%.

Table 2. Rejection frequencies of the test for a sample size T = 2000.

d1 d2 d3 Rejection Freq.

0.25 0.25 0.25 0.911

0.25 0.25 0.50 1.000

0.25 0.25 0.75 1.000

0.25 0.50 0.25 0.801

0.25 0.50 0.50 0.906

0.25 0.50 0.75 1.000

0.25 0.75 0.25 0.998

0.25 0.75 0.50 1.000

0.25 0.75 0.75 1.000

0.50 0.25 0.25 0.899

0.50 0.25 0.50 0.978

0.50 0.25 0.75 1.000
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Table 2. Cont.

d1 d2 d3 Rejection Freq.

0.50 0.50 0.25 0.839

0.50 0.50 0.50 0.848

0.50 0.50 0.75 0.922

0.50 0.75 0.25 0.955

0.50 0.75 0.50 0.988

0.50 0.75 0.75 1.000

0.75 0.25 0.25 0.890

0.75 0.25 0.50 0.977

0.75 0.25 0.75 0.994

0.75 0.50 0.25 0.094

0.75 0.50 0.50 0.883

0.75 0.50 0.75 0.847

0.75 0.75 0.25 0.890

0.75 0.75 0.50 0.914

0.75 0.75 0.75 0.978
In bold, the value corresponds to the size of the test. Nominal size: 5%.

Table 3. Rejection frequencies of the test for a sample size T = 3000.

d1 d2 d3 Rejection Freq.

0.25 0.25 0.25 0.989

0.25 0.25 0.50 1.000

0.25 0.25 0.75 1.000

0.25 0.50 0.25 0.991

0.25 0.50 0.50 0.911

0.25 0.50 0.75 1.000

0.25 0.75 0.25 1.000

0.25 0.75 0.50 1.000

0.25 0.75 0.75 1.000

0.50 0.25 0.25 0.939

0.50 0.25 0.50 1.000

0.50 0.25 0.75 1.000

0.50 0.50 0.25 0.965

0.50 0.50 0.50 0.934

0.50 0.50 0.75 0.980

0.50 0.75 0.25 0.999

0.50 0.75 0.50 1.000

0.50 0.75 0.75 1.000

0.75 0.25 0.25 0.956
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Table 3. Cont.

d1 d2 d3 Rejection Freq.

0.75 0.25 0.50 1.000

0.75 0.25 0.75 0.999

0.75 0.50 0.25 0.066

0.75 0.50 0.50 0.909

0.75 0.50 0.75 0.917

0.75 0.75 0.25 0.943

0.75 0.75 0.50 0.993

0.75 0.75 0.75 1.000
In bold, the value corresponds to the size of the test. Nominal size: 5%.

5. An Empirical Application

We use weekly data on the S&P 500 closing prices from 1 January 1970 to 26 October
2023. The source of the data is Yahoo Finance (https://finance.yahoo.com/quote/%5
EGSPC/history/, accessed on 28 October 2024). Figure 1 displays plots of the original data,
their log transformation in the upper panel, and their corresponding periodograms in the
lower one. Both exhibit a very large value at the smallest (zero) frequency, which might
indicate the need for (fractional or non-fractional) differentiation of the data. Note that
short memory (or d = 0) implies that the spectral density is positive and bounded at the
zero frequency, and one should expect a small value at this frequency in the periodograms
of the series.

Figure 2 displays the plots of the first differenced data. Much higher volatility is
observed in the second half of the sample when using the original data, but not in the case
of the logged ones. Therefore, we use the latter series for the empirical application below.
The periodograms display some peaks at non-zero frequencies, which may suggest the
existence of multiple cyclical structures in the data.

Initially, we set m = 5 and obtained j1 = 1, as one would have expected in view of the
periodograms displayed in Figure 1. The estimated value of d1 is then 1, which is consistent
with the results of standard unit root tests ([12,13,27–29]. We also allowed for fractional
integration by estimating the equation (1 − L) × (t) = u(t) instead of imposing (4). The
results support the unit root null hypothesis, with values of d equal to 0.981 and 0.992 for
the original and log transformed data, respectively, with the corresponding 5% confidence
intervals being (0.972, 1.009) and (0.983, 1.017). Next, we focus on the first differenced
log values, in this case setting m = 4 and finding an order of integration not significantly
different from zero; finally, we set m = 3.

Note that standard unit roots are a special case of (5) with m = 1 and w = 0, so that the
model becomes: (

1 − 2L + L2
)dj

x(t) = u(t), t = 1, 2, . . . , (15)

and, denoting 2dj = d, this corresponds to the standard I(d) model at the long-run or zero
frequency and a unit root if d = 1:

(1 − L)dx(t) = u(t), t = 1, 2, . . . . (16)

To allow for some degree of generality, we assume that x(t) represents the errors in a
regression model with an intercept and a time trend, i.e.,

y(t) = α+ βt + x(t), (17)

and make two alternative assumptions for u(t), namely that it is a white noise process or
that it follows the exponential spectral model of Bloomfield (1973) in turn [21].

https://finance.yahoo.com/quote/%5EGSPC/history/
https://finance.yahoo.com/quote/%5EGSPC/history/
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Figure 1. Data in levels and periodograms.

We start with the linear case. Table 4 displays the estimates of d along with their
associated 95% confidence bands, under the three standard specifications with: (i) no
deterministic terms (α = β = 0 in (17)); (ii) an intercept only (β = 0); and (iii) a constant and a
linear time trend. Our preferred model is selected on the basis of the statistical significance
of the estimated coefficients (shown in bold in the table). We report the results for both the
original and log-transformed data. The coefficient on the linear trend is significant in three
out of the four cases (the exception is represented by the original data with Bloomfield
disturbances), and although d is smaller than 1 in all four cases, the unit root null hypothesis
cannot be rejected for any of them.

Table 4. Estimates of d in the linear model are given by Equation (1).

(i) Results Based on White Noise Errors

No Terms With an Intercept With a Time Trend

Original 0.97 (0.94, 1.00) 0.97 (0.94, 1.00) 0.97 (0.94, 1.00)

Logged values 0.99 (0.96, 1.02) 0.98 (0.96, 1.01) 0.98 (0.96, 1.01)

(ii) Results Based on Autocorrelated (Bloomfield) Errors

No Terms With an Intercept With a Time Trend

Original 0.95 (0.92, 0.99) 0.95 (0.92, 1.00) 0.95 (0.92, 1.00)

Logged values 0.97 (0.93, 1.02) 0.99 (0.95, 1.04) 0.99 (0.95, 1.04)
The values in parentheses are the 95% confidence intervals. Those in bold correspond to the models selected on
the basis of the statistical significance of the deterministic terms.

Table 5 concerns the non-linear model. One can see that the non-linear terms are
significant in some cases (especially with white noise errors), and again, the estimates of d
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are within the unit root interval, which implies that first differencing is required for both
the linear and the non-linear terms.

Table 5. Estimates of d in the non-linear model are given by Equation (2).

(i) Results Based on White Noise Errors

D θ1 θ2 θ3 θ4

Original 0.97
(0.93, 1.01)

1811.38
(1.92)

−1381.76
(−2.44)

484.63
(1.67)

−335.25
(−1.72)

Logged 1.01
(0.98, 1.04)

5.400
(6.81)

−0.058
(−0.12)

−0.575
(−2.39)

1.167
(7.30)

(ii) Results Based on Autocorrelated (Bloomfield) Errors

D θ1 θ2 θ3 θ4

Original 0.96
(0.94, 1.02)

1043.07
(1.59)

−702.52
(−1.93)

307.28
(1.48)

−185.24
(−1.32)

Logged 1.00
(0.97, 1.04)

0.915
(6.81)

−3.429
(−4.32)

1.096
(2.77)

0.047
(0.17)

The values in parentheses in column 2 are the 95% confidence intervals. Those in bold correspond to the significant
Chebyshev polynomials.

As mentioned before, we estimate the model given by Equations (1) and (4) for the
return series, initially setting m = 4. In this case, the order of integration of one of the
cyclical structures is found to be equal to zero. Next, we set m = 3. The results are very
similar for the linear (Table 6) and non-linear (Table 7) models; in both cases, the orders
of integration of all three components are significant. Performing Box–Ljung statistics on
the estimated residuals across the models presented in the paper, we do not find evidence
requiring additional autocorrelation in the data (Tables 8 and 9).

Table 6. Frequencies with the highest values at periodograms, with j = 1, . . ., 1000.

(1 − L) Data (1 − L) Log Data

j T/j Value at Periodogram J T/j Value at Periodogram

794 3.53 1448.09 871 3.22 0.000642

998 2.81 1082.75 607 4.62 0.000520

274 10.24 1076.58 242 11.60 0.000493

170 16.51 1013.94 920 3.05 0.000458

814 3.45 990.76 679 4.13 0.000454

608 4.61 916.17 170 16.51 0.000639
J indicates the discrete frequency in the periodogram, T/j indicates the number of periods per cycle, and the third
and sixth columns indicate the corresponding value in the periodogram.

Table 7. Frequencies with the highest values at periodograms, with j = 1, . . ., 120.

(1 − L) Data (1 − L) Log Data

j T/j Value at Periodogram J T/j Value at Periodogram

75 37.44 575.65 110 25.52 0.000248

15 187.20 485.48 16 175.50 0.000247

107 26.25 469.23 50 56.16 0.000239

110 25.52 465.70 70 40.11 0.000226
J indicates the discrete frequency in the periodogram, T/j indicates the number of periods per cycle, and the third
and sixth columns indicate the corresponding value of the periodogram.
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Table 8. Frequencies and orders of integration in a linear model.

j1 j2 j3 d1 d2 d3

White
noise

602
(4.66)

240
(11.70)

14
(200.57)

0.09
(0.02, 1.17)

0.06
(0.01, 0.09)

0.13
(0.11, 0.14)

Bloomfield 601
(4.67)

241
(11.65)

14
(200.57)

0.06
(−0.01, 1.17)

0.07
(0.02, 0.10)

0.05
(−0.02, 0.10)

The values in parentheses in columns 2, 3, and 4 are the number of periods per cycle. Those in parentheses in
columns 5, 6, and 7 are the 95% confidence bands for the orders of integration at the respective frequencies.

Figure 2. Data in first differences and periodograms.
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Table 9. Frequencies and orders of integration in a non-linear model.

j1 j2 j3 d1 d2 d3

White
noise

600
(4.69)

236
(11.89)

13
(216.00)

0.07
(−0.01, 0.14)

0.04
(−0.05, 0.08)

0.12
(0.05, 0.16)

Bloomfield 609
(4.61)

238
(11.78)

14
(200.57)

0.05
(−0.02, 0.19)

0.03
(−0.03, 0.07)

0.11
(0.04, 0.17)

The values in parentheses in columns 2, 3, and 4 are the number of periods per cycle. Those in parentheses in
columns 5, 6, and 7 are the 95% confidence bands for the orders of integration at the respective frequencies.

6. Conclusions

This paper proposes a long-range dependence framework allowing for multiple cycles,
which is then applied to analyze the behavior of the weekly S&P 500. Specifically, instead
of a single pole or singularity in the spectrum, as in standard models, our model allows
for multiple poles, resulting in different cycles with different degrees of persistence. It also
incorporates non-linear deterministic structures in the form of Chebyshev polynomials over
time. Monte Carlo simulations show that in finite samples, the proposed test behaves well
if the sample size is relatively large, namely if the number of observations is at least 1000.

The empirical application using weekly data on the S&P 500 provides evidence of a
large value in the periodogram at zero frequency. Unit and fractional root tests also suggest
the need to take first differences. The estimation results based on the first differenced
logged values (i.e., the returns) point to the existence of three cyclical structures in the
series with lengths of approximately one month, one year, and four years, respectively, and
to orders of integration in the range (0, 0.20), which implies stationary long memory in
all cases.

Future research could develop the framework presented in this paper in several ways.
For instance, the number of structures m could be endogenized; estimation methods such
as those proposed by Giraitis and Leipus (1995), Woodward et al. (1998), Ferrara and
Guegan (2001), and Sadek and Khotanzad (2004) could be extended to allow for non-linear
trends, and breaks in the data could also be modeled [30–33]. Moreover, these methods
could also be used to examine the stochastic behavior of a wide range of macro variables,
such as GDP, inflation, or unemployment.
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