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Abstract: In this article, we present a novel three-step with-memory iterative method for solving
nonlinear equations. We have improved the convergence order of a well-known optimal eighth-
order iterative method by converting it into a with-memory version. The Hermite interpolating
polynomial is utilized to compute a self-accelerating parameter that improves the convergence order.
The proposed uni-parametric with-memory iterative method improves its R-order of convergence
from 8 to 8.8989. Additionally, no more function evaluations are required to achieve this improvement
in convergence order. Furthermore, the efficiency index has increased from 1.6818 to 1.7272. The
proposed method is shown to be more effective than some well-known existing methods, as shown
by extensive numerical testing on a variety of problems.
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1. Introduction

Many complex problems in science and engineering involve nonlinear equations of the
form ζ(x) = 0, where ζ : D ⊂ R → R is a scalar function defined over an open interval D.
Solutions to these equations typically cannot be expressed in closed form. As traditional analyt-
ical methods are often insufficient for solving such equations, iterative numerical techniques
have become indispensable, especially with advancements in computational technology that
enable more efficient and accurate solutions. Newton’s method [1] is a widely used iterative
technique for approximating the simple root ξ of ζ(x) = 0. It follows the iterative formula:

xn+1 = xn −
ζ(xn)

ζ ′(xn)
, n = 0, 1, 2, . . . (1)

where ζ is the function and ζ ′ is its derivative. Newton’s method is known for its quadratic
convergence near the root and it requires the evaluation of both the function and its
derivative in each iteration. Researchers continue to refine Newton’s method to improve
convergence rates and enhance its practical applicability. Multipoint iterative methods
have emerged as the most efficient root-solvers, surpassing the theoretical limitations of
one-point methods in terms of convergence order and computational efficiency. These
advantages have led to a surge in interest in multipoint methods in the current era. The ad-
vancement of symbolic computation and multi-precision arithmetic has further accelerated
their development.

However, while improving the convergence rate is advantageous, it may also lead to a
higher number of function evaluations, which can ultimately decrease the efficiency index
of these methods. The efficiency index, as discussed in [2], measures the balance between
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the order of convergence and the number of functional evaluations per step, represented by
the formula E = ρ1/γ, where ρ is the order of convergence and γ is the number of functional
and derivative evaluations conducted per iteration. Researchers have a particular interest in
developing accelerated multipoint methods with memory due to their high computational
efficiency. They aim to enhance the order of these methods beyond the limits of optimal
methods, guided by Kung–Traub’s conjecture, which posits that n + 1 function evaluations
can achieve the optimal convergence order of 2n [2].

However, iterative methods that incorporate memory leverage the state of recent
and previous iterations to increase the efficiency index as well as the convergence order.
Significant efforts have been made recently in the field to expand without-memory meth-
ods to with-memory methods by employing self-accelerating parameters. Liu et al. [3]
upgraded a single-step without-memory method with a second order of convergence
to a with-memory method using one self-accelerating parameter and achieved a fourth
order of convergence. Sharma et al. [4] upgraded an eighth-order without-memory it-
erative method to a with-memory method using two self-accelerating parameters and
attained a tenth order of convergence. Additionally, Thangkhenpau et al. [5] developed
a derivative-free without-memory iterative method with an eighth order of convergence
and then expanded it to a with-memory method using four self-accelerating parameters,
which resulted in an increase in the convergence order from 8 to 15.5156. In recent years,
the development of with-memory iterative methods has garnered considerable interest
among researchers. Notable contributors to the development of with-memory methods
include Choubey et al. [6–8], Raziyeh Erfanifar [9], Howk et al. [10], Sharma et al. [11,12],
Wang and Zhang [13], Liu et al. [14], and Panday et al. [15].

In this article, we proposed a new three-step, uni-parametric, with-memory iterative
technique while involving complex error computations. It is designed for modular imple-
mentation to facilitate practical adoption in solving nonlinear equations efficiently and
it improves the R-order of convergence from 8 to 8.8989. An efficiency index of 1.7272 is
attained by this method. By adding a self-accelerating parameter to the third step of an
existing optimal eighth-order without-memory iterative technique [16] and conducting
a comprehensive convergence analysis, a new uni-parametric three-point with-memory
iterative method was developed, as described in Section 2. A detailed assessment using
numerical tests is presented in Section 3, which offers a thorough comparison of the sug-
gested method with other well-established methods. Section 4 provides a comprehensive
summary of the research findings and their implications.

2. Analysis of Convergence for With-Memory Method

In this section, we use a parameter α in the third step of the three-step optimal eighth-
order scheme proposed by Matthies et al. [16] in 2016, to increase its order of convergence
from eight to nine. After adding the parameter α in the third step of [16], we obtain

yn = xn −
ζ(xn)

ζ ′(xn)
,

zn = xn −
ζ(xn)

ζ ′(xn)

1 +
ζ(yn)

ζ(xn)
+

1 +
1

1 + ζ(xn)
ζ ′(xn)

(
ζ(yn)

ζ(xn)

)2
, (2)

xn+1 = zn −
ζ(zn)

ζ[zn, yn] + (zn − yn)ζ[zn, yn, xn] + (zn − yn)(zn − xn)ζ[zn, yn, xn, xn] + αζ(zn)
,

where ζ[zn, yn], ζ[zn, yn, xn], and ζ[zn, yn, xn, xn] represent the divided differences and are
defined by ζ[zn, yn] = ζ(zn)−ζ(yn)

zn−yn
, ζ[zn, yn, xn] = ζ[zn ,yn ]−ζ[yn ,xn ]

zn−xn
, and ζ[zn, yn, xn, xn] =

ζ[zn ,yn ,xn ]−ζ[yn ,xn ,xn ]
zn−xn

.
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Using Taylor-series approximation, the expressions for ζ(xn) and ζ ′(xn) can be
written as

ζ(xn) = A(en + c2e2
n + c3e3

n + c4e4
n + c5e5

n + c6e6
n + c7e7

n + c8e8
n) + O

(
e9

n

)
, (3)

ζ ′(xn) = A(1 + 2c2en + 3c3e2
n + 4c4e3

n + 5c5e4
n + 6c6e5

n + 7c7e6
n + 8c8e7

n + 9c9e8
n) + O

(
e9

n

)
, (4)

where A = ζ ′(ξ), ξ is the simple root of ζ(x), en = xn − ξ, and cj = ζ(j)(ξ)
j!ζ ′(ξ) for j = 2, 3, . . . .

Now, the error expressions for the first two sub-steps of (2) is given by [16]:

en,y = c2e2
n +

(
−2c2

2 + 2c3

)
e3

n +
(

4c3
2 − 7c2c3 + 3c4

)
e4

n + O
(

e5
n

)
, (5)

en,z =c2

(
c2 + 5c2

2 − c3

)
e4

n

+
(
−8c3

2 − 36c4
2 − 2c2

3 + c2
2(−1 + 32c3) + c2(4c3 − 2c4)

)
e5

n + O
(

e6
n

)
, (6)

and we obtain the error expansion for the third sub-step of (2) as:

en+1 = c2
2

(
c2 + 5c2

2 − c3

)(
(α + c2)(c2 + 5c2

2 − c3) + c4

)
e8

n

− c2

(
8(19 + 45α)c6

2 + 360c7
2 + 2c5

2(13 + 76α − 196c3) + 4c2
3(−αc3 + c4)

+ c4
2
(
2 + 26α − 8(15 + 49α)c3 + 66c4

)
+ 2c3

2
(
α − 5(1 + 12α)c3 + 42c2

3

+ (7 + 10α)c4 − 5c5
)
+ c2

2
(
2c3(−5α + 6(1 + 7α)c3) + c4 + 4(α − 12c3)c4 − 2c5

)
+ 2c2

(
6αc2

3 − 2c3
3 + c2

4 + c3(−((3 + 2α)c4) + c5)
))

e9
n + O

(
e10

n

)
, (7)

where en,y = yn − ξ, en,z = zn − ξ, and α ∈ R. We obtain the following with-memory iterative
scheme by replacing α with a self-accelerating parameter αn in (2):

yn = xn −
ζ(xn)

ζ ′(xn)
,

zn = xn −
ζ(xn)

ζ ′(xn)

1 +
ζ(yn)

ζ(xn)
+

1 +
1

1 + ζ(xn)
ζ ′(xn)

(
ζ(yn)

ζ(xn)

)2
, (8)

xn+1 = zn −
ζ(zn)

ζ[zn, yn] + (zn − yn)ζ[zn, yn, xn] + (zn − yn)(zn − xn)ζ[zn, yn, xn, xn] + αnζ(zn)
.

The above scheme is represented by NWM9. Now, from (7), it is clear that the
convergence order of the algorithm (2) is eight when α ̸= − c4

c2+5c2
2−c3

− c2. Next, to

accelerate the order of convergence of the algorithm presented in (8) from eight to nine,

we can assume α = − c4
c2+5c2

2−c3
− c2 = − ζ(iv)(ξ)ζ ′(ξ)

12ζ ′′(ξ)ζ ′(ξ)+30(ζ ′′(ξ))2−4ζ ′′′(ξ)ζ ′(ξ)
− ζ ′′(ξ)

2ζ ′(ξ) , but in

reality, the exact values of ζ ′(ξ), ζ ′′(ξ), ζ ′′′(ξ), and ζ(iv)(ξ) are not attainable in practice.
So, we assume the parameter α as αn. The parameter αn can be calculated by using
the available data from the current and previous iterations and satisfies the condition

limn→∞ αn = − c4
c2+5c2

2−c3
− c2 = − ζ(iv)(ξ)ζ ′(ξ)

12ζ ′′(ξ)ζ ′(ξ)+30(ζ ′′(ξ))2−4ζ ′′′(ξ)ζ ′(ξ)
− ζ ′′(ξ)

2ζ ′(ξ) such that the

eighth-order asymptotic convergence constant should be zero in the error expression (7).
The formula for αn is as follows:

αn = −
H(iv)

7 (zn)ζ ′(xn)

12H′′
5 (xn)ζ ′(xn) + 30(H′′

5 (xn))2 − 4H′′′
6 (yn)ζ ′(xn)

−
H′′

5 (xn)

2ζ ′(xn)
, (9)
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where the Hermite interpolating polynomials Hm(x) for m = 5, 6, 7 are given by

H7(x) = ζ(zn) + (x − zn)ζ[zn, yn] + (x − zn)(x − yn)ζ[zn, yn, xn]

+ (x − zn)(x − yn)(x − xn)ζ[zn, yn, xn, xn] + (x − zn)(x − yn)(x − xn)
2

ζ[zn, yn, xn, xn, zn−1] + (x − zn)(x − yn)(x − xn)
2(x − zn−1)

ζ[zn, yn, xn, xn, zn−1, yn−1] + (x − zn)(x − yn)(x − xn)
2(x − zn−1)(x − yn−1)

ζ[zn, yn, xn, xn, zn−1, yn−1, xn−1] + (x − zn)(x − yn)(x − xn)
2(x − zn−1)

(x − yn−1)(x − xn−1)ζ[zn, yn, xn, xn, zn−1, yn−1, xn−1, xn−1],

H6(x) = ζ(yn) + (x − yn)ζ[yn, xn] + (x − yn)(x − xn)ζ[yn, xn, xn]

+ (x − yn)(x − xn)
2ζ[yn, xn, xn, zn−1] + (x − yn)(x − xn)

2(x − zn−1)

ζ[yn, xn, xn, zn−1, yn−1] + (x − yn)(x − xn)
2(x − zn−1)(x − yn−1)

ζ[yn, xn, xn, zn−1, yn−1, xn−1] + (x − yn)(x − xn)
2(x − zn−1)(x − yn−1)

(x − xn−1)ζ[yn, xn, xn, zn−1, yn−1, xn−1, xn−1],

H5(x) = ζ(xn) + (x − xn)ζ[xn, xn] + (x − xn)
2ζ[xn, xn, zn−1]

+ (x − xn)
2(x − zn−1)ζ[xn, xn, zn−1, yn−1] + (x − xn)

2(x − zn−1)(x − yn−1)

ζ[xn, xn, zn−1, yn−1, xn−1] + (x − xn)
2(x − zn−1)(x − yn−1)(x − xn−1)

ζ[xn, xn, zn−1, yn−1, xn−1, xn−1],

Note: The condition H′
m(xn) = ζ ′(xn) is satisfied by the Hermite interpolation polyno-

mial Hm(x) for m = 5, 6, 7. So, αn = − H(iv)
7 (zn)ζ ′(xn)

12H′′
5 (xn)ζ ′(xn)+30(H′′

5 (xn))2−4H′′′
6 (yn)ζ ′(xn)

− H′′
5 (xn)

2ζ ′(xn)
can

be expressed as αn = − H(iv)
7 (zn)H′

m(xn)

12H′′
5 (xn)H′

m(xn)+30(H′′
5 (xn))2−4H′′′

6 (yn)H′
m(xn)

− H′′
5 (xn)

2H′
m(xn)

for m = 5, 6, 7.

Theorem 1. Let Hm be the Hermite polynomial of degree m, interpolating the function ζ at inter-
polation nodes zn, yn, xn, xn, zn−1, yn−1, xn−1, xn−1 within an interval D ⊂ R and the derivative
ζ(m+1) is continuous in D with Hm(xn) = ζ(xn) and H′

m(xn) = ζ ′(xn). Suppose that all nodes
zn, yn, xn, xn, zn−1, yn−1, xn−1, xn−1 are in the neighborhood of the root ξ. Then,

H(iv)
7 (zn) = 24ζ ′(ξ)(c4 − c8en−1,zen−1,ye2

n−1), (10)

H′′′
6 (yn) = 6ζ ′(ξ)(c3 − c7en−1,zen−1,ye2

n−1), (11)

H′′
5 (xn) = 2ζ ′(ξ)(c2 − c6en−1,zen−1,ye2

n−1), (12)

and

αn =−
H(iv)

7 (zn)ζ ′(xn)

12H′′
5 (xn)ζ ′(xn) + 30(H′′

5 (xn))2 − 4H′′′
6 (yn)ζ ′(xn)

−
H′′

5 (xn)

2ζ ′(xn)

∼ − c4

c2 + 5c2
2 − c3

− c2 +
c2

c2 + 5c2
2 − c3

en−1,zen−1,ye2
n−1 −

c6c8

c2 + 5c2
2 − c3

e2
n−1,ze2

n−1,ye4
n−1

+
5c2

2c8

c2 + 5c2
2 − c3

en−1,zen−1,ye2
n−1 +

5c2
6c8

c2 + 5c2
2 − c3

e3
n−1,ze3

n−1,ye6
n−1

− 10c2c6c8

c2 + 5c2
2 − c3

en−1,zen−1,ye2
n−1 −

c3c8

c2 + 5c2
2 − c3

en−1,zen−1,ye2
n−1

+
c7c8

c2 + 5c2
2 − c3

e2
n−1,ze2

n−1,ye4
n−1. (13)

Again, after simplification, we have
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αn +
c4

c2 + 5c2
2 − c3

+ c2 = (αn + c2)(c2 + 5c2
2 − c3) + c4

∼
( c2

c2 + 5c2
2 − c3

− c6c8

c2 + 5c2
2 − c3

en−1,zen−1,ye2
n−1 +

5c2
2c8

c2 + 5c2
2 − c3

+
5c2

6c8

c2 + 5c2
2 − c3

e2
n−1,ze2

n−1,ye4
n−1 −

10c2c6c8

c2 + 5c2
2 − c3

− c3c8

c2 + 5c2
2 − c3

+
c7c8

c2 + 5c2
2 − c3

en−1,zen−1,ye2
n−1

)
en−1,zen−1,ye2

n−1. (14)

Proof. We can calculate the expression of the seventh-degree, sixth-degree, and fifth-degree
Hermite interpolation polynomial as

ζ(x)− H7(x) =
ζ(8)(δ)

8!
(x − zn)(x − yn)(x − xn)

2(x − zn−1)(x − yn−1)(x − xn−1)
2, (15)

ζ(x)− H6(x) =
ζ(7)(δ)

7!
(x − yn)(x − xn)

2(x − zn−1)(x − yn−1)(x − xn−1)
2, (16)

ζ(x)− H5(x) =
ζ(6)(δ)

6!
(x − xn)

2(x − zn−1)(x − yn−1)(x − xn−1)
2. (17)

Now, we obtain the below-mentioned equations by rearranging and differentiating
Equation (15) four times at the point x = zn, Equation (16) three times at the point x = yn,
and Equation (17) two times at the point x = xn, respectively.

H(iv)
7 (zn) = ζ(iv)(zn)− 24

ζ(8)(δ)

8!
(zn − zn−1)(zn − yn−1)(zn − xn−1)

2, (18)

H′′′
6 (yn) = ζ ′′′(yn)− 6

ζ(7)(δ)

7!
(yn − zn−1)(yn − yn−1)(yn − xn−1)

2, (19)

H′′
5 (xn) = ζ ′′(xn)− 2

ζ(6)(δ)

6!
(xn − zn−1)(xn − yn−1)(xn − xn−1)

2. (20)

Next, Taylor’s series expansion of ζ ′ at the points zn, yn, and xn in D and δ ∈ D about
the zero ξ of ζ provides

ζ ′(xn) = ζ ′(ξ)
(

1 + 2c2en + 3c3e2
n + O(e3

n)
)

, (21)

ζ ′′(xn) = ζ ′(ξ)
(

2c2 + 6c3en + O(e2
n)
)

, (22)

ζ ′′′(yn) = ζ ′(ξ)
(

6c3 + 24c4en,y + O(e2
n,y)

)
. (23)

Similarly,
ζ(iv)(zn) = ζ ′(ξ)

(
24c4 + 120c5en,z + O(e2

n,z)
)

, (24)

ζ(6)(δ) = ζ ′(ξ)
(

6!c6 + 7!c7eδ + O(e2
δ)
)

, (25)

ζ(7)(δ) = ζ ′(ξ)
(

7!c7 + 8!c8eδ + O(e2
δ)
)

, (26)

ζ(8)(δ) = ζ ′(ξ)
(

8!c8 + 9!c9eδ + O(e2
δ)
)

, (27)

where eδ = δ − ξ. Putting (24) and (27) in (18), (23) and (26) in (19), and (22) and (25) in (20),
we obtain
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H(iv)
7 (zn) = 24ζ ′(ξ)(c4 − c8en−1,zen−1,ye2

n−1), (28)

H′′′
6 (yn) = 6ζ ′(ξ)(c3 − c7en−1,zen−1,ye2

n−1), (29)

and
H′′

5 (xn) = 2ζ ′(ξ)(c2 − c6en−1,zen−1,ye2
n−1), (30)

Using Equations (21), (28), (29) and (30), we have

−
H(iv)

7 (zn)ζ ′(xn)

12H′′
5 (xn)ζ ′(xn) + 30(H′′

5 (xn))2 − 4H′′′
6 (yn)ζ ′(xn)

−
H′′

5 (xn)

2ζ ′(xn)

∼ − c4

c2 + 5c2
2 − c3

− c2 +
c2

c2 + 5c2
2 − c3

en−1,zen−1,ye2
n−1 −

c6c8

c2 + 5c2
2 − c3

e2
n−1,ze2

n−1,ye4
n−1

+
5c2

2c8

c2 + 5c2
2 − c3

en−1,zen−1,ye2
n−1 +

5c2
6c8

c2 + 5c2
2 − c3

e3
n−1,ze3

n−1,ye6
n−1

− 10c2c6c8

c2 + 5c2
2 − c3

en−1,zen−1,ye2
n−1 −

c3c8

c2 + 5c2
2 − c3

en−1,zen−1,ye2
n−1

+
c7c8

c2 + 5c2
2 − c3

e2
n−1,ze2

n−1,ye4
n−1. (31)

And hence,

αn ∼− c4

c2 + 5c2
2 − c3

− c2 +
( c2

c2 + 5c2
2 − c3

− c6c8

c2 + 5c2
2 − c3

en−1,zen−1,ye2
n−1

+
5c2

2c8

c2 + 5c2
2 − c3

+
5c2

6c8

c2 + 5c2
2 − c3

e2
n−1,ze2

n−1,ye4
n−1 −

10c2c6c8

c2 + 5c2
2 − c3

− c3c8

c2 + 5c2
2 − c3

+
c7c8

c2 + 5c2
2 − c3

en−1,zen−1,ye2
n−1

)
en−1,zen−1,ye2

n−1. (32)

or

αn +
c4

c2 + 5c2
2 − c3

+ c2 = (αn + c2)(c2 + 5c2
2 − c3) + c4

∼
( c2

c2 + 5c2
2 − c3

− c6c8

c2 + 5c2
2 − c3

en−1,zen−1,ye2
n−1 +

5c2
2c8

c2 + 5c2
2 − c3

+
5c2

6c8

c2 + 5c2
2 − c3

e2
n−1,ze2

n−1,ye4
n−1 −

10c2c6c8

c2 + 5c2
2 − c3

− c3c8

c2 + 5c2
2 − c3

+
c7c8

c2 + 5c2
2 − c3

en−1,zen−1,ye2
n−1

)
en−1,zen−1,ye2

n−1. (33)

This completes the proof of Theorem 1.

The definition of R-order of convergence [17] and the statement in [18] can be used to
estimate the order of convergence of the iterative scheme (8).

Theorem 2. If the errors ej = xj − ξ evaluated by an iterative root-finding method IM fulfill

ek+1 ∼
m−2

∏
i=0

(ek−i)
mi , k ≥ k({ek}) (34)

then the R-order of convergence of IM, denoted with OR(IM, ξ), satisfies the inequality OR(IM, ξ) ≥ s∗,
where s∗ is the unique positive solution of the equation sn+1 − ∑n

i=0 misn−i = 0 [18].

Proof. The proof of the above Theorem 2 can be found in [18].
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Presently, for the new iterative scheme with memory (8), we can state the subsequent
convergence theorem.

Theorem 3. In the iterative method (8), let αn be a varying parameter, calculated by Equation (9).
If an initial guess x0 is sufficiently near to a simple zero ξ of ζ(x), then the R-order of convergence
of the iterative method (8) with memory is at least 8.8989.

Proof. Let the iterative method (IM) generate the sequence of {xn} which converges to the
root ξ of ζ(x). By means of R-order OR(IM, ξ) ≥ r, we express

en+1 ∼Dn,rer
n, (35)

and

en ∼Dn−1,rer
n−1. (36)

Next, Dn,r will tend to the asymptotic error constant Dr of IM by taking n → ∞; then,

en+1 ∼ Dn,r(Dn−1,rer
n−1)

r = Dn,rDr
n−1,rer2

n−1. (37)

The resulting error expression of the with-memory scheme (8) can be obtained
using (5)–(7) and the varying parameter αn.

en,y = yn − ξ ∼ c2e2
n, (38)

en,z = zn − ξ ∼ c2(c2 + 5c2
2 − c3)e4

n, (39)

and

en+1 = xn+1 − ξ ∼ c2
2

(
c2 + 5c2

2 − c3

)(
(α + c2)(c2 + 5c2

2 − c3) + c4

)
e8

n. (40)

Here, the higher-order terms in Equations (38)–(40) are excluded.
Now, let the R-order convergence of the iterative sequences {yn} and {zn} be p and q,

respectively; then,

en,y ∼ Dn,pep
n ∼ Dn,p(Dn−1,rer

n−1)
p = Dn,pDp

n−1,rerp
n−1, (41)

and
en,z ∼ Dn,qeq

n ∼ Dn,q(Dn−1,rer
n−1)

q = Dn,qDq
n−1,rerq

n−1. (42)

Now, by Equations (36) and (38), we obtain

en,y ∼ c2e2
n ∼ c2(Dn−1,rer

n−1)
2 ∼ c2D2

n−1,re2r
n−1. (43)

Also, by Equations (36) and (39), we obtain

en,z ∼ c2(c2 + 5c2
2 − c3)e4

n

∼ c2(c2 + 5c2
2 − c3)(Dn−1,rer

n−1)
4

∼ c2(c2 + 5c2
2 − c3)D4

n−1,re4r
n−1. (44)

Again, by Equations (33), (36) and (40), we have
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en+1 ∼ c2
2

(
c2 + 5c2

2 − c3

)(
(α + c2)(c2 + 5c2

2 − c3) + c4

)
e8

n

∼ c2
2

(
c2 + 5c2

2 − c3

)( c2

c2 + 5c2
2 − c3

− c6c8

c2 + 5c2
2 − c3

en−1,zen−1,ye2
n−1 +

5c2
2c8

c2 + 5c2
2 − c3

+
5c2

6c8

c2 + 5c2
2 − c3

e2
n−1,ze2

n−1,ye4
n−1 −

10c2c6c8

c2 + 5c2
2 − c3

− c3c8

c2 + 5c2
2 − c3

+
c7c8

c2 + 5c2
2 − c3

en−1,zen−1,ye2
n−1

)
en−1,zen−1,ye2

n−1(Dn−1,rer
n−1)

8

∼ c2
2

(
c2 + 5c2

2 − c3

)( c2

c2 + 5c2
2 − c3

− c6c8

c2 + 5c2
2 − c3

en−1,zen−1,ye2
n−1 +

5c2
2c8

c2 + 5c2
2 − c3

+
5c2

6c8

c2 + 5c2
2 − c3

e2
n−1,ze2

n−1,ye4
n−1 −

10c2c6c8

c2 + 5c2
2 − c3

− c3c8

c2 + 5c2
2 − c3

+
c7c8

c2 + 5c2
2 − c3

en−1,zen−1,ye2
n−1

)
Dn−1,qeq

n−1Dn−1,pep
n−1e2

n−1(Dn−1,rer
n−1)

8

∼ c2
2

(
c2 + 5c2

2 − c3

)( c2

c2 + 5c2
2 − c3

− c6c8

c2 + 5c2
2 − c3

en−1,zen−1,ye2
n−1 +

5c2
2c8

c2 + 5c2
2 − c3

+
5c2

6c8

c2 + 5c2
2 − c3

e2
n−1,ze2

n−1,ye4
n−1 −

10c2c6c8

c2 + 5c2
2 − c3

− c3c8

c2 + 5c2
2 − c3

+
c7c8

c2 + 5c2
2 − c3

en−1,zen−1,ye2
n−1

)
Dn−1,qDn−1,pD8

n−1,re8r+p+q+2
n−1 . (45)

since r > q > p. By equating the exponents of en−1 present in the set of
relations (41)–(43), (42)–(44), and (37)–(45), we attain the resulting system of equations:

rp = 2r

rq = 4r

r2 = 8r + p + q + 2 (46)

The solution of the system of Equation (46) is specified by r = 8.8989, q = 4, and
p = 2. As a result, the R-order of convergence of the with-memory iterative method (8) is
at least 8.8989.

3. Numerical Discussion

This section examines the convergence behavior of the newly developed with-memory
technique NWM9 introduced in (8). Our goal is to evaluate the effectiveness of a recently
developed iterative method by applying it to a variety of nonlinear problems. The nonlinear
test functions, along with their roots and initial guesses for our numerical analysis, are
described below:

Example 1: ζ1(x) = 1 + x2 · ecos x/2 − (x + 1)esin x/2, x0 = 0.9, ξ ≈ 0.8475
Example 2: ζ2(x) = ex3+cos x+1 − x2 + x + 1, x0 = −0.8, ξ ≈ −1.0787
Example 3: ζ3(x) = x · ex2 − sin2 x + 3 cos x + 5, x0 = −1.2, ξ ≈ −1.2076
Example 4: ζ4(x) = e−x2

(1 + x3 + x6)(x − 2), x0 = 1.95, ξ ≈ 2.0000
Example 5: ζ5(x) = x7 − 4x4 + x − 1, x0 = 1.58, ξ ≈ 1.5749
Example 6: ζ6(x) = ex2−4 + sin(x − 2)− x4 + 15, x0 = 2.1, ξ ≈ 2.0000
Example 7: ζ7(x) = e−x2+x+2 − 1, x0 = 2.01, ξ ≈ 2.0000
Example 8 [19,20]: In civil engineering, beams in mathematical models are horizontal
elements that support loads and span openings, sometimes called lintels if made of stone or
brick. “Floor joist” or “roof joist” designates beams supporting floors or roofs, respectively.
Stringers support lighter bridge deck loads, while floor beams handle heavier transverse
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loads. Girders, constructed from metal plates or concrete, bear terminal loads of smaller
beams, enhancing rigidity and extending spans. Various nonlinear mathematical models
have been developed to specify the precise beam location. The model below is an example
which was taken from [19,20]:

ζ8(x) = x4 + 4x3 − 24x2 + 16x + 16 = 0. (47)

The roots of the above fourth-order polynomial are 2, 2 and −4 ± 2
√

3 and the initial
guess for ζ8(x) is taken as x0 = −0.55”.

We compare our method NWM9 (8) to various well-established methods published in
the literature, including MSSV8 (48), ACD8 (49), LE8 (50), SH8 (51), BAC8 (52), and TKM9
(53), which are discussed below:

In 2016, Matthies et al. (MSSV8) [16] developed an optimal eighth-order iterative
method which is defined as

yn = xn −
ζ(xn)

ζ ′(xn)
,

zn = xn −
ζ(xn)

ζ ′(xn)

1 +
ζ(yn)

ζ(xn)
+

1 +
1

1 + ζ(xn)
ζ ′(xn)

(
ζ(yn)

ζ(xn)

)2
,

xn+1 = zn −
ζ(zn)

ζ[zn, yn] + (zn − yn)ζ[zn, yn, xn] + (zn − yn)(zn − xn)ζ[zn, yn, xn, xn]
. (48)

In 2024, Abdullah et al. (ACD8) [21] developed an optimal eighth-order iterative
method which is defined as

yn = xn −
ζ(xn)

ζ ′(xn)
,

zn = xn −
ζ(xn)(ζ(xn)3 + 2ζ(xn)ζ(yn)2)

ζ ′(xn)(ζ(xn)− ζ(yn))(ζ(xn)2 + ζ(yn)2)
,

xn+1 = zn −
ζ(zn)(zn − yn)

ζ(zn)− ζ(yn)
(A(un) + B(vn) + H(wn)), (49)

where un = ζ(zn)
ζ(yn)

, vn = ζ(zn)
ζ(xn)

, and wn = ζ(yn)
ζ(xn)

.
In 2014, Lotfi and Eftekhari (LE8) [22] developed an optimal eighth-order iterative

method which is defined as

yn = xn −
ζ(xn)

ζ ′(xn)
,

zn = yn −
ζ(xn)

ζ(xn)− 2ζ(yn)

ζ(yn)

ζ ′(xn)
,

xn+1 = zn − (K(t1)× L(t2)× P(t3))
ζ(zn)ζ[xn, yn]

ζ[xn, zn]ζ[yn, zn]
, (50)

where t1 = ζ(zn)
ζ(xn)

, t2 = ζ(yn)
ζ(xn)

, and t3 = ζ(zn)
ζ(yn)

.

In 2020, Solaiman and Hashim (SH8) [23] developed an optimal eighth-order iterative
method which is defined as
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yn = xn −
ζ(xn)

ζ ′(xn)
,

zn = yn −
ζ(yn)

ζ ′(yn)
− 2(ζ(yn))2ζ ′(yn)R(xn, yn)

4(ζ ′(yn))4 − 4ζ(yn)(ζ ′(yn))2R(xn, yn) + (ζ ′(yn))2(R(xn, yn))2 ,

xn+1 = zn −
ζ(zn)

ζ ′(zn)
, (51)

where ζ ′(yn), ζ ′(zn), and R(xn, yn) are approximated as

ζ ′(yn) ≈ 2ζ[yn, xn]− ζ ′(xn).

ζ ′(zn) ≈ ζ[zn, xn](2 + xn−zn
yn−zn

)− (xn−zn)2

(xn−yn)(yn−zn)
ζ[xn, yn] + ζ ′(xn)

yn−zn
xn−yn

.

R(xn, yn) ≈
[
3 ζ(yn)−ζ(xn)

yn−xn
− 2ζ ′(yn)− ζ ′(xn)

]
2

xn−yn
.

In 2020, Behl et al. (BAC8) [24] developed an optimal eighth-order iterative method
which is defined as

wn = xn + βζ(xn); β ∈ R,

yn = xn −
ζ(xn)

ζ[wn, xn]
,

zn = yn −
ζ(wn)ζ(yn)(yn − xn)

(ζ(wn)− ζ(yn))(ζ(yn)− ζ(xn))
,

xn+1 = zn −
ζ(zn)(wn − xn)(wn − yn)(xn − yn)

ζ[yn, zn](wn − xn)(wn − zn)(xn − zn)− a(yn − zn)
, (52)

where a = ζ[xn, zn](wn − yn)(wn − zn)− ζ[wn, zn](xn − yn)(xn − zn).
In 2021, Torkashvand et al. (TKM9) [25] proposed a family of with-memory iterative

methods with a ninth order of convergence which is defined as

wn = xn + βnζ(xn),

yn = xn −
ζ(xn)

ζ[xn, wn]
,

zn = yn −
ζ[xn, yn]− ζ[yn, wn] + ζ[xn, wn]

ζ[xn, yn]2
ζ(yn),

xn+1 = zn −
ζ(zn)

ζ[xn, zn] + (ζ[wn, xn, yn]− ζ[wn, xn, zn]− ζ[yn, xn, zn])(xn − zn)
, (53)

where βn is a self-accelerating parameter and can be calculated as βn = − 1
ζ ′(ξ) and approx-

imated by equation (3.11) of [25] with β0 = 0.001.
Tables 1–8 summarize the comparative results of all the methods. In these tables, we

present the absolute differences between the last two consecutive iterations (|xn − xn−1|)
and the absolute residual error (|ζ(xn)|) of up to three iterations for each function, along
with the COC for the proposed methods in comparison to some well-known existing
methods. The following equation is used to determine the COC [26]:

COC =
log|ζ(xn)/ζ(xn−1)|

log|ζ(xn−1)/ζ(xn−2)|
(54)

All numerical computations were performed using the programming software Math-
ematica 12.2. To begin the initial iteration of our newly proposed with-memory method
NWM9, we set the parameter value α0 to 0.01.
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Table 1. Comparisons of without-memory and with-memory methods after first three (n = 3) iterations
for ζ1(x).

Method |(x1 − x0)| |(x2 − x1)| |(x3 − x2)| |ζ1(x3)| COC

MSSV8 0.05252 3.7900 × 10−11 7.6785 × 10−84 2.3346 × 10−665 8.0000
ACD8 0.05252 3.4318 × 10−11 2.1348 × 10−84 5.1265 × 10−670 8.0000
LE8 0.05252 3.9805 × 10−12 3.7451 × 10−95 2.4628 × 10−759 8.0000
SH8 0.05252 4.5810 × 10−12 2.2774 × 10−92 9.1021 × 10−735 8.0000
BAC8 0.05252 1.4930 × 10−10 1.8619 × 10−78 1.1669 × 10−621 8.0000
TKM9 0.05252 1.1405 × 10−11 3.6015 × 10−96 7.2790 × 10−817 8.5292
NWM9 0.05784 4.1302 × 10−11 1.9899 × 10−93 3.8586 × 10−831 8.9618

Table 2. Comparisons of without-memory and with-memory methods after first three (n = 3) iterations
for ζ2(x).

Method |(x1 − x0)| |(x2 − x1)| |(x3 − x2)| |ζ2(x3)| COC

MSSV8 0.27875 1.4921 × 10−7 8.9745 × 10−55 1.3200 × 10−431 8.0000
ACD8 0.27875 2.5147 × 10−6 1.7019 × 10−45 6.4324 × 10−358 8.0000
LE8 0.27875 4.6097 × 10−6 4.9934 × 10−44 8.1313 × 10−347 8.0000
SH8 0.27875 1.7169 × 10−6 2.8891 × 10−48 1.5956 × 10−381 8.0000
BAC8 0.26044 1.8314 × 10−2 1.8518 × 10−11 1.7828 × 10−82 7.9934
TKM9 0.27875 1.5174 × 10−6 1.6804 × 10−51 5.9549 × 10−434 8.5281
NWM9 0.27875 7.3581 × 10−8 7.2640 × 10−62 1.5269 × 10−544 8.9548

Table 3. Comparisons of without-memory and with-memory methods after first three (n = 3) iterations
for ζ3(x).

Method |(x1 − x0)| |(x2 − x1)| |(x3 − x2)| |ζ3(x3)| COC

MSSV8 0.00765 2.9645 × 10−15 1.4589 × 10−114 1.0193 × 10−907 8.0000
ACD8 0.00765 1.3767 × 10−15 1.3565 × 10−117 2.4483 × 10−932 8.0000
LE8 0.00765 2.1364 × 10−17 7.5667 × 10−134 3.8042× 10−1064 8.0000
SH8 0.00765 3.8290 × 10−17 1.5719 × 10−131 2.5750× 10−1045 8.0000
BAC8 0.00765 8.0553 × 10−11 1.2473 × 10−74 8.3702 × 10−584 8.0000
TKM9 0.00765 4.2164 × 10−16 3.1405 × 10−130 9.7191× 10−1103 8.5327
NWM9 0.00765 2.9645 × 10−15 4.6276 × 10−129 6.0799× 10−1139 8.8852

Table 4. Comparisons of without-memory and with-memory methods after first three (n = 3) iterations
for ζ4(x).

Method |(x1 − x0)| |(x2 − x1)| |(x3 − x2)| |ζ4(x3)| COC

MSSV8 0.05000 7.8095 × 10−10 9.1958 × 10−72 4.5442 × 10−567 8.0000
ACD8 0.05000 7.5624 × 10−10 1.8286 × 10−72 2.8568 × 10−573 8.0000
LE8 0.05000 1.0812 × 10−10 9.4320 × 10−80 4.2313 × 10−632 8.0000
SH8 0.05000 1.6034 × 10−11 3.3188 × 10−87 1.4946 × 10−692 8.0000
BAC8 0.05000 4.5664 × 10−9 8.6966 × 10−65 2.0124 × 10−510 8.0000
TKM9 0.05000 2.4915 × 10−10 4.9782 × 10−82 1.3669 × 10−693 8.5313
NWM9 0.05000 7.7203 × 10−10 3.6473 × 10−80 5.5446 × 10−706 8.9007
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Table 5. Comparisons of without-memory and with-memory methods after first three (n = 3) iterations
for ζ5(x).

Method |(x1 − x0)| |(x2 − x1)| |(x3 − x2)| |ζ5(x3)| COC

MSSV8 0.00506 2.8919 × 10−14 3.9009 × 10−104 1.9376 × 10−821 8.0000
ACD8 0.00506 3.5871 × 10−15 3.6316 × 10−112 1.8167 × 10−886 8.0000
LE8 0.00506 1.3336 × 10−16 1.6545 × 10−125 4.2086 × 10−995 8.0000
SH8 0.00506 1.8393 × 10−16 5.7646 × 10−124 2.4321 × 10−982 8.0000
BAC8 0.00506 2.5941 × 10−9 8.1745 × 10−59 3.6057 × 10−453 8.0000
TKM9 0.00506 3.8227 × 10−15 1.0436 × 10−119 3.1705× 10−1010 8.5323
NWM9 0.00506 2.9141 × 10−14 3.1787 × 10−117 7.0560× 10−1033 8.9092

Table 6. Comparisons of without-memory and with-memory methods after first three (n = 3) iterations
for ζ6(x).

Method |(x1 − x0)| |(x2 − x1)| |(x3 − x2)| |ζ6(x3)| COC

MSSV8 0.10000 2.1291 × 10−10 1.9115 × 10−78 2.1784 × 10−621 8.0000
ACD8 0.10000 2.7671 × 10−10 1.7064 × 10−78 9.6367 × 10−623 8.0000
LE8 0.10000 7.6557 × 10−10 6.7672 × 10−75 6.8097 × 10−594 8.0000
SH8 0.10000 4.9364 × 10−10 1.4124 × 10−76 1.7126 × 10−607 8.0000
BAC8 0.05633 4.3659 × 10−2 9.7679 × 10−6 5.3083 × 10−35 8.3857
TKM9 0.10000 5.6142 × 10−10 9.0560 × 10−82 1.0615 × 10−692 8.5296
NWM9 0.10000 2.6493 × 10−10 2.3101 × 10−85 9.8138 × 10−753 8.9103

Table 7. Comparisons of without-memory and with-memory methods after first three (n = 3) iterations
for ζ7(x).

Method |(x1 − x0)| |(x2 − x1)| |(x3 − x2)| |ζ7(x3)| COC

MSSV8 0.01000 4.6629 × 10−15 9.0468 × 10−114 5.4488 × 10−903 8.0000
ACD8 0.01000 1.6809 × 10−15 7.8996 × 10−118 5.6400 × 10−936 8.0000
LE8 0.01000 1.5489 × 10−17 5.1353 × 10−138 2.2496× 10−1101 8.0000
SH8 0.01000 5.5733 × 10−17 5.0151 × 10−131 6.4674× 10−1043 8.0000
BAC8 0.01000 1.0436 × 10−14 1.6235 × 10−110 1.6709 × 10−876 8.0000
TKM9 0.01000 7.7009 × 10−16 6.9025 × 10−129 5.6202× 10−1093 8.5324
NWM9 0.01000 4.6629 × 10−15 3.3257 × 10−128 2.3441× 10−1133 8.8878

Table 8. Comparisons of without-memory and with-memory methods after first three (n = 3) iterations
for ζ8(x).

Method |(x1 − x0)| |(x2 − x1)| |(x3 − x2)| |ζ8(x3)| COC

MSSV8 0.01410 6.4479 × 10−16 1.5052 × 10−122 5.9152 × 10−974 8.0000
ACD8 0.01410 3.2077 × 10−17 7.2736 × 10−134 2.2649× 10−1065 8.0000
LE8 0.01410 4.6217 × 10−17 6.0900 × 10−133 2.4665× 10−1058 8.0000
SH8 0.01410 1.2569 × 10−18 5.3125 × 10−147 2.4104× 10−1172 8.0000
BAC8 0.01410 2.1035 × 10−10 2.6249 × 10−72 6.8772 × 10−566 8.0000
TKM9 0.01410 2.6040 × 10−16 7.0174 × 10−135 6.8920× 10−1145 8.5322
NWM9 0.01410 6.4479 × 10−16 1.0519 × 10−137 3.8029× 10−1232 9.0000

The numerical results in Tables 1–8 and Figure 1 show that the newly proposed with-
memory method NWM9 is highly competitive and possesses fast convergence towards
the roots with minimal absolute residual error and a minimum error value in consecutive
iteration as compared to the other existing methods. Furthermore, the numerical findings
show that the computational order of convergence aligns with the theoretical convergence
order of the newly proposed method in the test functions.
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Figure 1. Comparison of the methods based on the error in consecutive iterations, |xn − xn−1|, after
the first three iterations.
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4. Conclusions

In this article, we present a three-point with-memory iterative method using a self-
accelerating parameter, elevating its convergence to the ninth order for nonlinear equations.
We improve the efficiency index of an existing eighth-order method from EI = 1.6818 to
EI = 1.7272 and raise its R-order of convergence from 8 to 8.8989 by adding this parameter,
which is calculated using the Hermite interpolating polynomial, without the need for
extra function evaluation. Though it has a greater convergence order than other known
approaches, this approach not only speeds up convergence but also needs fewer function
evaluations. Our results show that the recently proposed approach NWM9 is a very
efficient option for solving nonlinear equations, providing better performance with faster
convergence and smaller asymptotic constants.
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