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Abstract: Rockburst is a common dynamic geological disaster in underground mining and tunneling
engineering, characterized by randomness, abruptness, and impact. Short-term evaluation of rock-
burst potential plays an outsize role in ensuring the safety of workers, equipment, and projects. As is
well known, microseismic monitoring serves as a reliable short-term early-warning technique for
rockburst. However, the large amount of microseismic data brings many challenges to traditional
manual analysis, such as the timeliness of data processing and the accuracy of rockburst prediction.
To this end, this study integrates artificial intelligence with microseismic monitoring. On the basis
of a comprehensive consideration of class imbalance and multicollinearity, an innovative model-
ing framework that combines local outlier factor-guided synthetic minority oversampling and an
extremely randomized forest with C5.0 decision trees is proposed for the short-term evaluation of
rockburst potential. To determine the optimal hyperparameters, the whale optimization algorithm is
embedded. To prove the efficacy of the model, a total of 93 rockburst cases are collected from various
engineering projects. The results show that the proposed approach achieves an accuracy of 90.91%
and a macro F1-score of 0.9141. Additionally, the local F1-scores on low-intensity and high-intensity
rockburst are 0.9600 and 0.9474, respectively. Finally, the advantages of the proposed approach are
further validated through an extended comparative analysis. The insights derived from this research
provide a reference for microseismic data-based short-term rockburst prediction when faced with
class imbalance and multicollinearity.

Keywords: underground engineering; rockburst prediction; microseismic monitoring; strategic data
augmentation; extremely randomized forest

MSC: 74L10

1. Introduction

Rockburst is a typical dynamic geological disaster, frequently occurring in under-
ground mining and tunneling engineering [1–4]. Rockburst is caused by the sharp release
of elastic energy accumulated in rock mass due to the unloading effect and external distur-
bances, often accompanied by the violent ejection of rock fragments [5]. Rockburst brings
serious threats to the safety of operators and equipment and also results in the deformation
and even destruction of supporting structures and excavation systems. The world’s first
recorded rockburst occurred in 1738 at a tin mine in England [6], and, after that, rockburst
has been reported in many countries. Between 1936 and 1993, the United States experienced
172 rockburst incidents, followed by 78 fatalities [7]. From the early 1980s to the mid2000s,
Germany went through 42 recorded rockburst incidents with death and injuries [8]. In
addition, there were also many rockburst incidents in Australia, Canada, South Africa,
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and other mining countries [9–11]. The occurrence of rockburst is closely related to the
characteristics of minerals and rocks. In general, the higher the content of siliceous or other
hard minerals, the more prone to rockburst. In terms of rock types, highly brittle rocks such
as quartzite, granite, marble, and sandstone are prone to rockburst. Due to the randomness
in space and the suddenness in time, rockburst prediction is faced with great challenges.

The microseismic monitoring technique is developed based on acoustic emissions and
seismology [12–16]. When underground rocks fracture due to human or natural factors,
seismic waves will be generated and spread around. By arranging multiple detectors
in the three-dimensional space around the fracturing zone, the microseismic monitoring
technique can realize the real-time in situ observation of the fracturing process. Starting
from the initial deformation stage, the microseismic monitoring technique can capture the
full failure process of rock mass, including fracture initiation, fracture propagation, and
structure instability. This makes it so that the microseismic monitoring technique can detect
the precursor to rockburst and provide an important basis for its early warning [17–20].

However, as a real-time monitoring technique, massive microseismic data bring great
challenges to the timeliness and accuracy of rockburst early warning. To this end, many
researchers have combined artificial intelligence with microseismic monitoring, that is,
using machine learning to mine microseismic data and establish the mapping relationship
with rockburst. Jin et al. [21] extracted six parameters from microseismic data, including
cumulative number, cumulative energy, cumulative apparent volume, changing rate of
cumulative number, changing rate of cumulative energy, and changing rate of cumulative
apparent volume, and used a support vector machine to build the short-term rockburst
prediction model. Similarly, based on these six microseismic parameters, Liang et al. [22]
employed a gradient boosting decision tree and a random forest to build the short-term
rockburst prediction model, and Feng et al. [23] adopted a probabilistic neural network to
construct the short-term rockburst prediction model. Subsequently, Zhou et al. [24] and
Liang et al. [25] added a new factor, namely incubation time, to the above parameter system
and developed the ensemble learning-based short-term rockburst prediction model. In
practical applications, these models have made indelible contributions. Class unbalance
and multicollinearity are two common data defects, and their effects on model performance
cannot be ignored [26–31]. Consequently, this study, on the basis of the comprehensive
consideration of class imbalance and multicollinearity, proposes a novel hybrid intelligent
modeling approach for short-term assessment of rockburst potential.

In this approach, the local outlier factor-guided synthetic minority oversampling
technique and extremely randomized forest with C5.0 decision trees are proposed from the
data and algorithm aspects, respectively. Additionally, the whale optimization algorithm is
embedded to synergistically optimize the critical hyperparameters of the data strategy and
algorithm strategy. The rest of the paper is organized as follows: Section 2 describes the
proposed modeling framework in detail; Section 3 depicts the collected database; Section 4
gives the modeling results and conducts some profound discussion; Section 5 summarizes
the main conclusions.

2. Proposed Modeling Framework

Class imbalance and multicollinearity are two common types of data defects in geotech-
nical and geological engineering. In order to remove their adverse effects on the prediction
performance of machine learning models, improvements are made at the data level and
algorithm level. At the data level, we propose local outlier factor-guided synthetic minority
oversampling (LOF-SMO). At the algorithm level, we propose an extremely randomized
forest with C5.0 decision trees (C5.0DT-ERF). To determine the optimal hyperparameters in
the LOF-SMO and C5.0DT-ERF, the whale optimization algorithm (WOA) is merged. As a
result, the WOA-LOF-SMO-C5.0DT-ERF modeling framework is devised (Figure 1).
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Figure 1. Proposed modeling framework.

2.1. Local Outlier Factor-Guided Synthetic Minority Oversampling
2.1.1. Local Outlier Factor

Local outlier factor (LOF) is a critical indicator to distinguish outliers and non-outliers
in the database [32]. An object is determined to be an outlier if its LOF exceeds the threshold
of 1.5. In order to capture the dominant topology of the data in subsequent oversampling,
synthetic minority oversampling is implemented in the database without outliers. The
calculation principle of the LOF is described as follows:

(1) Determine the k-distance neighborhood Nk(O) of the object O, consisting of the k
nearest neighbors of O in the database D.

(2) Calculate the k-distance distk(O) of O by:

distk(O) = max{dist(O, P)|P ∈ Nk(O)} (1)

where P is a neighbor from Nk(O); dist(O, P) is the Euclidean distance between O and P.

(3) Calculate the reachable distance distreach(O, P) between O and P by:

distreach(O, P) = max{distk(O), dist(O, P)} (2)

(4) Calculate the local reachable density lrd(O) of O by:

lrd(O) =
k

∑P∈Nk(O) distreach(O, P)
(3)

(5) Calculate the LOF lo f (O) of O by:
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lo f (O) =
∑P∈Nk(O)

lrd(P)
lrd(O)

k
(4)

where lrd(P) is the local reachable density of P.

2.1.2. Synthetic Minority Oversampling

Synthetic minority oversampling (SMO) is an oversampling method used to deal
with class imbalance and increased sample size, especially when the number of minority
samples is small [33]. Its basic principle is to generate new minority samples by linear
interpolation, as shown in Figure 2. The detailed flow of the SMO is described as follows:

(1) Select minority samples: each minority sample in turn is selected as the root sample
for synthesizing new samples.

(2) Find nearest neighbors: for each root sample, using Euclidean distance as the standard,
its distance to all other minority samples is calculated to obtain its K nearest neighbors.

(3) Select auxiliary samples: one sample is randomly selected from the K nearest neigh-
bors of each root sample as the auxiliary sample for synthesizing new samples.

(4) Synthesize new samples: between the root sample and the auxiliary sample, a new
sample is generated by linear interpolation. The interpolation formula is expressed as:

xne
i = xro

i + λi · (xau
i − xro

i ) (5)

where xne
i , xro

i and xau
i are the i-th feature of the new sample, the root sample, and the

auxiliary sample, respectively; λi is a random number in [0, 1].
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(5) Repeat generation: for each root sample, the above steps are repeated until the number
of new samples meets the requirements.

(6) Add new samples: all generated new samples are added to the original dataset, thus
increasing the number of minority samples and making the dataset more balanced.

2.2. Extremely Randomized Forest with C5.0 Decision Trees
2.2.1. C5.0 Decision Tree

A decision tree is a group of procedures designed to classify the input data into more
homogenous subsets using generated rules [34]. In the training process, the decision tree
aims to maximize the information gain and minimize the entropy in the generated subsets.
Figure 3 demonstrates the basic components of a decision tree. Initially, all data are gathered
in a root node and then split into relatively more homogenous subsets by internal nodes
based on feature thresholds. The splitting process continues until the decision tree reaches
the leaf nodes. At this final stage, labels are assigned to the leaf nodes.
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A C5.0 decision tree (C5.0DT) [35] is a representative decision tree algorithm that uses
the information gain ratio to select split attributes and thresholds in nodes and finish tree
growth [36]. In this process, the decrease in the entropy is maximized, and consequently
the purity of leaf nodes reaches the highest. Referring to Equation (6), the calculation
principle of the information gain ratio is presented. In order to reduce the error when
processing new data after tree growth, a decision tree must be pruned. In the C5.0DT,
pruning automatically starts in reverse from the leaf node and extends upwards to the
entire tree based on the information gain ratio [37].

Gain_ratio(S, A) =
Gain(S, A)

−∑v
i=1

|Si|
|S| log2

|Si|
|S|

(6)

where Gain_ratio(S, A) is the information gain ratio obtained by splitting the node S using
the attribute A; Gain(S, A) is the information gain obtained by splitting the node S using
the attribute A, calculated as [38]; v is the number of child nodes generated by splitting
the node S; Si is the i-th child node generated by splitting the node S; | | is the number of
samples contained in the node.

2.2.2. Extremely Randomized Forest

An extremely randomized forest (ERF) is made up of a series of standalone trees, as
shown in Figure 4 [39]. Each tree generates the prediction results independently according
to the input data, and then on this basis, the prediction results of the ERF are determined
by voting on all trees, that is, majority rules. In this study, a C5.0 decision tree is used as the
basic tree unit of the ERF for the subsequent analysis. The modeling process of the ERF is
described as follows:

(1) Conduct bootstrap sampling: bootstrap sampling is performed on the balanced dataset
of Section 2.1 so as to generate L subdatasets, where the number of subdatasets is the
same as the number of tree models in the ERF.

(2) Build tree models: L tree models are built individually based on L subdatasets. To
determine the appropriate split attribute and split value during tree growth, the
information gain ratio is used as the metric.

(3) Increase the diversity: To increase the diversity of the tree models, the extremely
randomized strategy is implemented during modeling. Specifically, for each tree
model, the optimal split attribute is produced by winning from the attribute subset
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randomly selected in all candidate attributes, and the split value is from the value
subset randomly generated in the candidate range.

(4) Integrate tree models: to determine the output of the ERF, voting is carried out on the
basis of the prediction results of all tree models.
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2.3. Hyperparameter Optimization

The whale optimization algorithm (WOA) is a metaheuristic optimization algorithm
that simulates the hunting behavior of humpback whales [40]. In the exploration phase,
the mathematical model is described as:

Xi(t + 1) = Xrand(t)− A|C · Xrand(t)− Xi(t)| (7)

where Xi(t) and Xi(t + 1) are the position of the i-th whale at the t-th and (t + 1)-th iterations,
respectively; Xrand(t) is the position of a whale randomly selected from the population;
and A and C are changeable coefficients, defined as:

A = 2a · r − a (8)

C = 2r (9)

where a decreases linearly from 2 to 0 with iteration; r is a random number in [0, 1].
In the exploitation phase, the mathematical model is described as:

Xi(t + 1) = Xbest(t)− A|C · Xbest(t)− X(t)| when p < 0.5 (10)

Xi(t + 1) = ebl |Xbest(t)− X(t)| cos(2πl) + Xbest(t) when p ≥ 0.5 (11)

where Xbest(t) is the optimal position searched by the population; b is the constant that
defines the logarithmic spiral shape; l is the random number in [−1, 1]; p is a random
number in [0, 1].

In order to balance the global and local search, the exploration and exploitation phases
alternate, as demonstrated in Figure 5. In the proposed short-term evaluation framework
for rockburst potential, there are five critical hyperparameters that need to be optimized,
including the size of the k-distance neighborhood in the LOF (referred to as x1), the number
of used nearest neighbors in the SMO (referred to as x2), the minimum number of split
samples in the C5.0DT (referred to as x3), the maximum number of leaf nodes in the
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C5.0DT (referred to as x4), and the number of C5.0 decision trees in the ERF (referred
to as x5). Therefore, the position of the whale is a five-dimensional vector, denoted as
X = [x1, x2, x3, x4, x5].
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3. Database Description
3.1. Case Collection

To demonstrate the validity of the proposed approach, 93 rockburst cases in total
are collected from Feng et al. [41] (see Supplementary Material). According to Table 1,
rockburst intensity is split into four grades: none, slight, moderate, and strong. Among
these 93 rockburst cases, 34 cases (accounting for 36.56%) belong to none rockburst, 21 cases
(accounting for 22.58%) belong to slight rockburst, 25 cases (accounting for 26.88%) belong
to moderate rockburst, and 13 cases (accounting for 13.98%) belong to strong rockburst. As
observed in Figure 6, the class imbalance is prominent.

Table 1. Classification criteria of rockburst intensity [22,41].

Rockburst Intensity Failure Characteristics

None No rockburst occurs. No abnormality in surrounding rock.
Normal construction.

Slight
The depth of rockburst crater is <0.5 m. Slight spalling or
slabbing. The size of ejected rock fragment is 10~30 cm.

Slight cracking sound.

Moderate
The depth of rockburst crater is 0.5~1.0 m. Severe spalling

and slabbing. The size of ejected rock fragment is
30~80 cm. Detonator blasting-like sound.

Strong
The depth of rockburst crater is >1.0m. Extensive spalling
and slabbing. The size of ejected rock fragment is >80 cm.

Explosion-like sound with an impact wave.



Mathematics 2024, 12, 3502 8 of 19

Mathematics 2024, 12, x FOR PEER REVIEW 8 of 19 
 

 

Table 1. Classification criteria of rockburst intensity [22,41]. 

Rockburst Intensity Failure Characteristics 

None 
No rockburst occurs. No abnormality in surrounding rock. Normal 

construction. 

Slight 
The depth of rockburst crater is <0.5m. Slight spalling or slabbing. The 

size of ejected rock fragment is 10~30cm. Slight cracking sound. 

Moderate 

The depth of rockburst crater is 0.5~1.0m. Severe spalling and 

slabbing. The size of ejected rock fragment is 30~80cm. Detonator 

blasting-like sound. 

Strong 

The depth of rockburst crater is >1.0m. Extensive spalling and 

slabbing. The size of ejected rock fragment is >80cm. Explosion-like 

sound with an impact wave. 

 

Figure 6. Proportion of different intensities of rockburst. 

In order to predict rockburst intensity, six microseismic source parameters are used 

as the input parameters of the model, including cumulative number (unit), cumulative 

energy (J), cumulative apparent volume (m3), changing rate of cumulative number 

(unit/day), changing rate of cumulative energy (J/day), and changing rate of cumulative 

apparent volume (m3/day). During the rock fracturing process, the microseismic monitor-

ing technique captures the stress wave emitted by the source in real time and records it as 

the microseismic event [42,43]. The cumulative number of microseismic events indicates 

the microseismic activity, the cumulative energy represents the microseismic strength, 

and the cumulative apparent volume reflects the damage degree of rock mass [24]. On the 

whole, these three microseismic source parameters jointly characterize the frequency, 

strength, and scale of rock fracture and are able to comprehensively describe the fracture 

situation inside the rock mass. Considering that rockburst incubation is a dynamic pro-

cess, three microseismic source parameters with the time effect are also taken into account 

in the input system, namely the changing rate of cumulative number, changing rate of 

cumulative energy, and changing rate of cumulative apparent volume [21]. 

Specifically, the microseismic energy and apparent volume are calculated by Equa-

tions (12) and (13), respectively [21,44,45]. The time interval for the calculation of the cu-

mulative value is the incubation time of rockburst [24]. Assuming that the incubation time 

is N   days, the cumulative value 
vC   is the sum of the value ( )1,2, ,nc n N=   of 

each day in these N  days, calculated as Equation (14). Correspondingly, the changing 

rate 
rC  is the ratio of the cumulative value 

vC  to the incubation time N , calculated 

as Equation (15) [21]. Taking the strong rockburst that occurred at milestone SK8+709 of 

the Jinping Ⅱ hydropower station on January 11, 2011 as an example, Figure 7 shows the 

evolution of the cumulative number of microseismic events from January 06 to 10, where 

49vC =  and 12.25rC =  according to Equations (14) and (15), respectively [41]. 

Figure 6. Proportion of different intensities of rockburst.

In order to predict rockburst intensity, six microseismic source parameters are used as
the input parameters of the model, including cumulative number (unit), cumulative energy
(J), cumulative apparent volume (m3), changing rate of cumulative number (unit/day),
changing rate of cumulative energy (J/day), and changing rate of cumulative apparent
volume (m3/day). During the rock fracturing process, the microseismic monitoring tech-
nique captures the stress wave emitted by the source in real time and records it as the
microseismic event [42,43]. The cumulative number of microseismic events indicates the
microseismic activity, the cumulative energy represents the microseismic strength, and the
cumulative apparent volume reflects the damage degree of rock mass [24]. On the whole,
these three microseismic source parameters jointly characterize the frequency, strength,
and scale of rock fracture and are able to comprehensively describe the fracture situation
inside the rock mass. Considering that rockburst incubation is a dynamic process, three
microseismic source parameters with the time effect are also taken into account in the
input system, namely the changing rate of cumulative number, changing rate of cumulative
energy, and changing rate of cumulative apparent volume [21].

Specifically, the microseismic energy and apparent volume are calculated by
Equations (12) and (13), respectively [21,44,45]. The time interval for the calculation of the
cumulative value is the incubation time of rockburst [24]. Assuming that the incubation
time is N days, the cumulative value Cv is the sum of the value cn (n = 1, 2, · · · , N) of
each day in these N days, calculated as Equation (14). Correspondingly, the changing
rate Cr is the ratio of the cumulative value Cv to the incubation time N, calculated as
Equation (15) [21]. Taking the strong rockburst that occurred at milestone SK8+709 of
the Jinping II hydropower station on 11 January 2011 as an example, Figure 7 shows the
evolution of the cumulative number of microseismic events from 6–10 January, where
Cv = 49 and Cr = 12.25 according to Equations (14) and (15), respectively [41].

E = 8πρv
∫ ∞

0
s2( f )d f (12)

VA = µP2/E (13)

where E is the microseismic energy; VA is the apparent volume; ρ is the density of rock
mass; v is the wave velocity; s2( f ) is the velocity power spectrum; f is the frequency; µ is
the shear modulus of rock mass; P is the seismic potency.

Cv = c1 + c2 + · · ·+ cN (14)

Cr = Cv/N (15)

where Cv is the cumulative value; Cr is the changing rate; cn (n = 1, 2, · · · , N) is the indi-
vidual value of each day during rockburst incubation; N is the incubation time of rockburst.
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Figure 7. Evolution of cumulative number of microseismic events (taking strong rockburst occurring
at milestone SK8+709 of Jinping II hydropower station on 11 January 2011 as example) [41].

Table 2 shows the statistical description of input parameters for various rockburst
intensities, and the visual distribution of input parameters is presented in Figure 8.

Table 2. Statistical description of input parameters.

Rockburst
Intensity

Input
Parameter

Statistical Index

Number Minimum Maximum Mean Median Skewness Kurtosis

None

CN 34 1 17 3.94 3 2.04 5.22

CE 34 0.78 5.82 3.16 3.55 −0.14 −1.30

CAV 34 2.51 4.86 3.62 3.58 0.27 −0.87

CNR 34 0.11 2.50 0.85 0.76 1.21 0.94

CER 34 0.18 4.78 2.51 2.81 −0.14 −1.20

CAVR 34 1.67 4.31 2.97 2.96 −0.19 −0.40

Slight

CN 21 3 29 10.14 8 1.48 2.02

CE 21 3.54 5.56 4.54 4.53 0.05 −0.13

CAV 21 3.50 4.94 4.18 4.13 0.12 −0.57

CNR 21 0.54 4.00 1.48 1.11 1.29 1.23

CER 21 2.84 4.80 3.71 3.67 0.46 −0.36

CAVR 21 2.39 3.99 3.35 3.50 −0.64 −0.54

Moderate

CN 25 3 36 15.12 14 0.80 1.61

CE 25 3.54 5.98 5.13 5.10 −0.93 0.96

CAV 25 3.52 4.87 4.48 4.57 −1.41 3.32

CNR 25 0.43 4.00 1.70 1.71 0.88 1.92

CER 25 2.29 5.08 4.12 4.25 −1.01 0.60

CAVR 25 2.67 4.02 3.51 3.55 −0.58 0.61
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Table 2. Cont.

Rockburst
Intensity

Input
Parameter

Statistical Index

Number Minimum Maximum Mean Median Skewness Kurtosis

Strong

CN 13 10 70 37.31 42 −0.09 −0.80

CE 13 4.11 7.09 5.94 6.15 −1.02 1.02

CAV 13 3.62 5.17 4.87 4.98 −2.76 8.72

CNR 13 1.25 12.25 4.53 3.73 1.48 2.88

CER 13 3.41 5.89 5.01 5.15 −0.92 −0.03

CAVR 13 2.93 4.39 3.94 4.08 −1.52 3.07

Note: The CN, CE, CAV, CNR, CER, and CAVR denote cumulative number, cumulative energy, cumulative
apparent volume, changing rate of cumulative number, changing rate of cumulative energy, and changing rate of
cumulative apparent volume, respectively. Particularly, the values of the CE, CAV, CER, and CAVR are expressed
in logarithmic form with base 10.
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3.2. Correlation Analysis

Generally, input parameters should be independent of each other, and the stronger
the parameter correlation, the higher the information redundancy. The Pearson correlation
coefficient is adopted to analyze the correlation of the six input parameters selected in
Section 3.1, calculated by Equation (16) [46]. Based on the magnitude of the Pearson
correlation coefficient, the correlation strength is divided into five levels, among which
0.0~0.2, 0.2~0.4, 0.4~0.6, 0.6~0.8, and 0.8~1.0 indicate extremely weak, weak, moderate,
strong, and extremely strong correlation, respectively. In particular, a positive Pearson
correlation coefficient represents positive correlation, and a negative Pearson correlation
coefficient stands for negative correlation.

ρX,Y =
∑
(
X − X

)(
Y − Y

)√
∑
(
X − X

)2
∑
(
Y − Y

)2
(16)

where ρX,Y is the Pearson correlation coefficient between input parameters X and Y; X and
Y are the mean of input parameters X and Y, respectively.

Referring to Figure 9, there exists a strong correlation between cumulative number
and its changing rate, with the Pearson correlation coefficient reaching 0.7866. Similarly, a
strong correlation can also be found between cumulative energy and its changing rate, as
well as cumulative apparent volume and its changing rate, with the Pearson correlation
coefficient reaching 0.9747 and 0.8891, respectively. Regarding other parameter pairs, no
obvious correlation appears. In essence, cumulative number, cumulative energy, and
cumulative apparent volume are static indicators, while their changing rate, as a dynamic
indicator, reflects the evolution trend of static indicators during rockburst development.
Therefore, static and dynamic indicators have an inevitable physical correlation. Since
both static and dynamic metrics have clear physical meaning, no additional measures,
such as dimensionality reduction, are taken to eliminate correlations herein. Moreover,
the dimension of the current input combination is 6, which does not cause a dimensional
disaster in modeling.
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3.3. Multicollinearity Analysis

When there is multicollinearity between input parameters, small changes in the data
can lead to significant changes in the parameter estimates, resulting in a decrease in the
stability of the model. Variance inflation factor (VIF) is a common measure of multi-
collinearity severity, and VIF greater than 10 is generally considered to indicate strong
multicollinearity [47]. VIF is calculated by:

VIFi =
1

1 − Ri
2 (17)

where Ri is the determination coefficient of the linear fit of the input parameter Xi with
respect to other input parameters.

Referring to Figure 10, cumulative energy, cumulative apparent volume, changing rate
of cumulative energy, and changing rate of cumulative apparent volume behave with strong
multicollinearity, with VIF reaching 153, 35, 130, and 29, respectively. And, cumulative
number and changing rate of cumulative number behave with weak multicollinearity, with
VIF reaching 6 and 5, respectively.
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4. Results and Discussion
4.1. Evaluation Metrics

In order to quantitatively evaluate the generalization performance of the proposed
model, two evaluation metrics are selected, including the accuracy and macro F1-score. The
accuracy is calculated by:

accuracy =
∑K

k=1 uk,k

∑K
i=1 ∑K

j=1 ui,j
(18)

where K is the number of sample classes; ui,j is the number of samples belonging to the i-th
class but predicted as the j-th class.

The macro F1-score is defined as the mean of the F1-score in each class, calculated by
Equation (19). Unlike the accuracy, the macro F1-score comprehensively considers the local
generalization performance of the model in each class.

macro F1 − score =
1
K ∑K

k=1 F1 − scorek (19)

where F1 − scorek is the F1-score in the k-th class, calculated by:

F1 − scorek =
2 · Prek · Reck
Prek + Reck

(20)
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where Prek and Reck are the precision and recall in the k-th class, respectively, calculated by:

Prek =
uk,k

∑K
i=1 ui,k

(21)

Reck =
uk,k

∑K
j=1 uk,j

(22)

4.2. Evaluation Results

Out of 93 collected rockburst cases, 71 cases (accounting for 75%) were used as the
training set to construct the model, and the rest 22 cases (accounting for 25%) were used
as the test set to evaluate the model. In order to ensure the representativeness of the
training set and the test set, stratified sampling was used to split the database. After that,
the LOF-SMO was performed on the training set, as described in Section 2.1. On the
one hand, class imbalance was eliminated. On the other hand, the number of training
samples was increased from 71 to 104. Based on the balanced and extended training
set, the C5.0DT-ERF was established for subsequent rockburst prediction, as described in
Section 2.2. Particularly, the data were standardized by Min-Max standardization before
modeling, described in Equation (23). In order to determine the optimal hyperparameters
in the LOF-SMO and C5.0DT-ERF, including the size of the k-distance neighborhood in
the LOF, the number of used nearest neighbors in the SMO, the minimum number of split
samples in the C5.0DT, the maximum number of leaf nodes in the C5.0DT, and the number
of C5.0 decision trees in the ERF, the WOA was implemented combined with a 10-fold
cross-validation on the augmented training set, more technical information of which can be
found in Section 2.3.

x∗ =
x − xmin

xmax − xmin
(23)

where x∗ is the standardized value; x is the original value; xmax and xmin is the maximum
and minimum, respectively.

Figure 11a shows the confusion matrix on the test set, which describes the predictive
behavior of the model in detail. For six moderate rockburst cases and three strong rockburst
cases, there were no wrong predictions. For eight none rockburst cases and five slight rock-
burst cases, one out of them was wrongly predicted in each. Based on the confusion matrix,
the accuracy and macro F1-score of the model were calculated by Equations (18) and (19),
reaching 90.91% and 0.9141, respectively (Figure 11b).
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Further, the local generalization performance of the model on low-intensity (none + slight)
and high-intensity (moderate + strong) rockburst was dissected, as illustrated in Figure 12.
For the former, the model achieved the F1-score of 0.9600. For the latter, the model achieved
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the F1-score of 0.9474. The results show that the model has a high prediction reliability for
both low-intensity and high-intensity rockburst, with an F1-score of more than 0.9.
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In addition, referring to Figures 11a and 12a, misjudged samples are generally from
the low intensity category and predicted as high intensity. Compared to low-intensity
rockburst, the model has superior sensitivity to high-intensity rockburst. From the per-
spective of engineering safety and risk management, this misjudgment is conducive to
rockburst prevention, but at the same time, it may also cause an unnecessary increase in
prevention costs.

4.3. Comparative Analysis

For ease of expression, the model proposed in this study is denoted as the LOF-SMO-
C5.0DT-ERF. As the data-level improvement strategy, the LOF-SMO aims to eliminate
class imbalance and overcome multicollinearity by increasing the data size. To probe
the effectiveness of the LOF-SMO, a comparative analysis was conducted with the single
C5.0DT-ERF, in which the LOF-SMO was not integrated. Referring to Figure 13, it can be
found that the accuracy of the LOF-SMO-C5.0DT-ERF increased by 18.18% compared with
the single C5.0DT-ERF, and, meanwhile, the macro F1-score improved by 0.2105.
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As the algorithm-level improvement strategy, the C5.0DT-ERF aggregates multiple
standalone C5.0 decision trees through the extremely randomized strategy to accomplish
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the complicated prediction task. To verify the strength of the C5.0DT-ERF, a comparative
analysis between the LOF-SMO-C5.0DT-ERF, LOF-SMO-MLP (multi-layer perceptron),
and LOF-SMO--SVM (support vector machine) was conducted, as presented in Figure 14.
Particularly for the MLP, a hidden layer was set, and the optimized hyperparameters
included the number of neurons in the hidden layer and learning rate. And, for the
SVM, the radial basis function was used, and the optimized hyperparameters included
the penalty factor and kernel function width. Compared to the LOF-SMO-MLP and
LOF-SMO-SVM, the LOF-SMO-C5.0DT-ERF showed an increase of 22.73% and 18.18% in
accuracy, respectively. Regarding the macro F1-score, the LOF-SMO-C5.0DT-ERF achieved
an increase of 0.2442 and 0.2082, respectively.
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4.4. Sensitivity Analysis

In this section, we analyzed the sensitivity of the model performance for each in-
put parameter. This was achieved by removing each input parameter individually from
the input system and then observing the change in model performance, as described in
Equation (24). The more significant the performance change, the more sensitive the input
parameter. The results showed that the LOF-SMO-C5.0DT-ERF is the most sensitive to
cumulative energy, and the accuracy of the model decreased by 13.64% when cumulative
energy was removed, followed by cumulative number, cumulative apparent volume, and
changing rate of cumulative energy, which caused a 9.09% decrease in accuracy when
they were removed. In contrast, the least sensitive input parameters are changing rate of
cumulative number and changing rate of cumulative apparent volume, which each reduced
the model’s accuracy by 4.55% when removed. Figure 15 summarizes the results of the
sensitivity analysis.

∆Accu = AccS − Accu/∈S (24)

where ∆Accu is the change in model accuracy when the input parameter u is removed from
the input system; AccS is the accuracy of the model using the entire input system; Accu/∈S
is the accuracy of the model using the input system without the input parameter u.
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5. Conclusions

Rockburst is a common dynamic geological disaster in underground engineering that
seriously threatens the safety of workers and equipment and leads to damage to the excava-
tion. As an in situ real-time monitoring technology, microseismic monitoring is widely used
to analyze the fracturing behavior of rock mass. This study aims to utilize machine learning
to establish the quantitative mapping relationship between microseismic parameters and
rockburst intensity so as to achieve the short-term evaluation of rockburst potential.

Class imbalance and multicollinearity are two common types of data defects in geotech-
nical and geological engineering. To eliminate their adverse effects on rockburst prediction,
this study makes some improvements from two levels of data and algorithm. Corre-
spondingly, a WOA-LOF-SMO-C5.0DT-ERF modeling framework is proposed. The results
indicate that this model achieves an accuracy of 90.91% and a macro F1-score of 0.9141.
Additionally, the local F1-scores on low-intensity and high-intensity rockburst are 0.9600
and 0.9474, respectively. Finally, through a comparative analysis with the single C5.0DT-
ERF, LOF-SMO-MLP, and LOF-SMO-SVM models, the advantages of the proposed model
were validated.

However, this study still has some limitations. First, the size of the used database is
limited. It is well known that the generalization performance of machine learning models
is closely related to database size. In general, the larger the database size, the better the
generalization performance. Second, there is a reverse data structure in the used database.
Normally, non-rockburst cases are more than rockburst cases, but here non-rockburst cases
are fewer than rockburst cases. This may result in the application of the model producing
more false predictions of non-rockburst cases. Third, this study only utilizes microseismic
data to predict rockburst, neglecting the geological data (e.g., rock types, stress level,
and the orientation of the fault and structural plane) and construction data (e.g., support
conditions and the distance to the working face). Fourth, the rockburst type discussed here
is dominated by stress rockburst, and there is a lack of in-depth analysis of fault rockburst
and stroke rockburst. In future research, we will pay more attention to the establishment of
the comprehensive database from the above four aspects, so as to further strengthen the
performance of the model by improving the database quality.
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