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Abstract: Several sugar mills operate as waste-to-energy plants. The shredder is the initial high-
energy machine in the production chain and prepares sugarcane. Its hammers, essential spare
parts, require continuous replacement. Then, the search for intelligent strategies to extend the
lifetime of these hammers is fundamental. This paper presents (a) a dynamic data-driven model for
estimating the deterioration and predicting remaining life of the sugarcane shredder hammers during
operation, for which the real data of the entering sugarcane flow and the power required to prepare
the sugarcane are analyzed, and (b) a management architecture intended for online decision-making
assistance to extend the hammers’ life by making a trade-off between the desired lifetime, along with
a nominal shredder work satisfaction criterion. The deterioration model is validated with real data
achieving an accuracy of 84.41%. The remaining life prognostic is within a confidence zone calculated
from the historical sugarcane flow, with a probability close to 99%, fitting a lognormal probability
distribution. A numerical example is also provided to illustrate a closed loop control, where the
proposed architecture is used to extend the useful life of the hammers during operation, adjusting
the incoming sugarcane flow while maintaining the nominal work satisfaction of the shredder.

Keywords: data-driven method; deterioration model; extension of lifetime; maintenance; management of
lifetime; prognostics and health management (PHM); reliability; reliability adaptive system (RAS);
RUL prognostics; sugarcane shredder

MSC: 60K10; 62N05; 90B25; 93-10; 93C95; 70Q05

1. Introduction

Sugarcane exposed to physical–chemical and biological processes can be transformed
into white sugar, alcohol, energy, and other byproducts such as organic fertilizers. In
addition, several sugar mills generate electricity from the combustion of sugarcane waste.
Therefore, the transformation process involves technical issues related to product quality
management, energy consumption and energy production. One of the most significant
issues is how to perform the maintenance of the machinery involved in production during
its life. For example, extending the lifetime of its spare parts is useful for reducing energy,
maintenance, and consumables costs. In this context, intelligent maintenance aims to
extend the lifetime of spare parts, while maintaining a trade-off between sustainability,
quality and process efficiency. Beyond the corrective, scheduled and predictive maintenance
approaches, which are based on reaction to failure, precaution, and a prediction of faults
(or failure), respectively, the proactive maintenance focus seeks to generate changes, during
the lifetime of assets (or system), by making intelligent decisions that may involve one or
several optimal objectives.

The sugar cane shredding machine, or shredder, is in charge of preparing the harvested
sugarcane stalks and consists of an electric motor coupled to a longitudinal shaft on which
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a set of tilting hammers are located. These tilting hammers impact the cane stalks at high
speed to break the cane bark and facilitate the extraction of juice in the mills. Figure 1
depicts the process performed by a shredder. Hammers are the most critical spare parts of a
shredder, as they are the ones that perform the main work and, at the same time, deteriorate
the most. In this paper, the deterioration of hammers of a shredder is studied as a process
characterized by the progressive loss of the ability of the hammers to perform their task
properly within a given range.

Shredder

Incoming cane stalks

Motor

Computer

Conveyor belt

Prepared sugarcane

Hammers Motor

PowerSugarcane Flow

To sugarcane

milling stage

Operator

Φc Pc

Figure 1. Schematic diagram of sugarcane preparation stage and the shredder. The sugarcane flow
is handled by a conveyor belt. The shredder uses an electric motor and hammers to prepare the
incoming sugarcane flow. The power required by the motor is measured. The prepared cane is
conveyed to the milling stage.

The lifetime of the hammers of the studied shredder is typically between 8 and
25 days (192 h and 600 h) of continuous duty. The more the hammers deteriorate, the
higher the electrical power, and the lower the quality of cane stalk preparation. Over
time, this could eventually lead to operating faults or a failure. The reduction in the the
quality of the prepared cane is detrimental to the subsequent juice extraction process in the
mills. Furthermore, the energy consumption of the preparation stage is significantly high
compared to other machines involved in the sugarcane factory. This is why the shredder
must be constantly monitored. Moreover, there is a limited availability of hammers, mainly
because their cost is high. Once a defective set is removed, it must be repaired. In the
meantime, a new set of hammers is installed.

Therefore, one of the goals of shredder management is to extend the lifetime of the
hammers, thereby extending the service time of the shredder while respecting the machine’s
nominal performance. To achieve this goal, it is convenient to continuously estimate the
Remaining Useful Life (RUL) of the hammers. The RUL is defined as the time remaining
from a current moment until spare parts or devices, i.e., the hammers, no longer perform
their intended function. Therefore, to predict the RUL of hammers, it is important to
perform accurate, precise, online (in-operation), and non-invasive diagnostics of their
current state of deterioration. In turn, this type of RUL prognosis can facilitate decision-
making regarding the health state of the machine, aimed at extending the mean time to
failure, improving maintenance towards proactive focus, reducing energy costs, reducing
downtime, managing assets more effectively, and increasing profitability and the efficiency
of production. These tasks are particularly valuable within the framework of intelligent
and sustainable resource management.

The prognostics of RUL of assets for industrial machinery and its relation with the
reliability of systems is a widely studied topic in the Prognostics and Health Management
(PHM) area. The general goal of PHM is getting systems which can autonomously manage
their state of health (variable of reliable behavior) according to its current condition and
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by considering the influence of the system input over them. This could also be called
health-aware or RUL-aware management.

Here, so-called self-optimizing mechatronic systems offer the possibility of adapting
the system behavior in terms of deterioration, lifetime or reliability, to the current situation.
In [1], the concept of remaining useful life (RUL) control is discussed and analogously
in [2], the focus is on system reliability control. In both cases, a closed-loop control is
performed that takes estimates of the deterioration, and generates pre-calculated working
points to modify the system behavior and act on the RUL or reliability, respectively. In past
years [3], these systems have been called Reliability Adaptive Systems (RASs). To obtain a
more effective RAS, it is necessary to look for better applications that develop an online
estimation of the internal and external operating conditions of the system.

RUL estimation is generally studied as a mainly stochastic problem. Even if a given
mechanical system model is well known, there are several sources of exogenous and
endogenous uncertainties that affect the precision of the RUL prediction. Moreover, this
estimation is subject to the influence of several random variables. Conventional model-
based methods are hampered by limitations or the inability to handle the nonlinear nature,
measurement uncertainty, fault coupling, and other application problems. For example,
successful models can be highly complex and others are too dependent on historical
calculations rather than the current system [4]. However, new similar approaches seek to
analyze how few degradation parameters can absorb all possible sources of degradation;
see, for instance, [5]. Other methods seek to utilize the data-driven technologies of recent
years, aimed at reducing the complexity in the prognosis of the RUL as in [6]. In this
work, we intend to address the uncertainties in the framework of a sufficiently agile model
focused on online prediction, considering the current condition of the deterioration and its
dynamic behavior, as well as the current and future operating conditions.

Some contributions like [7,8] show the importance of focusing on the RUL analysis
of the actuator as a critical component, and manage a more dynamic relationship with
the current state of deterioration and the environment, focusing on the advantages for
the maintenance of the system. In [9], a solution is proposed for the online control of
the remaining useful life of a mechanical system, based on a model conceived for the
forecasting task, which allows online estimation of the deterioration, taking the uncertainty
of the calculation to generate the respective forecast and, by means of a closed-loop action,
control the RUL of the system. Hence, there is a need for agile diagnostic and prognostic
models that enable intelligent decisions to be made during the work more efficiently. A
compilation of new intelligent fault detection methods can be found in [10]. For example,
in [11], the concept of forecasting based on learning on the relationship between the input
and output of a deteriorating system is used to calculate in real-time the distribution of
its RUL.

To the authors’ knowledge, there is no similar solution that is focused on the spare
parts of the sugarcane shredder under the framework of the described scenario. There,
the consumption per ton of cane is understood as an indicator of machine deterioration;
however, the corrective maintenance decision is made according to its increase and not
according to the preventive satisfaction of the nominal work. Moreover, for the charac-
teristics of the system input as described, there are no studies on the type of probabilistic
distribution that the RUL would have.

In this context, this paper describes an agile data-driven model of the hammer de-
terioration process using the power required to prepare the cane and the sugarcane flow
entering the shredder. This model is aimed to perform agile prognostics of hammers’ RUL
for subsequent decision-making, such as feedback and manipulation of sugarcane flow to
eventually extend the hammers’ lifetime. The model is used within an architecture that
estimates deterioration and prognosticates the RUL during the daily work of the shredder,
based on the input signal (sugarcane flow) and the output signal (required power). Addi-
tionally, the architecture allows for estimating the input-dependent operating conditions
useful for RUL prognosis. The RUL estimation is used to weigh a trade-off between a
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desired RUL and nominal work satisfaction using a controller. Finally, the parameter
provided by the controller can then be the feedback to the system input to generate the
final effect, e.g., extension of the hammers’ lifetime.

In this work, the sugarcane flow is considered the input of the system. The motion
control actions and the characteristics of the input are seen as a source of stress that deterio-
rates the actuator; see for instance [2,3,8]. Complementarily, in [12,13], the authors assume
a relationship between the degradation and the control input of the system. Therefore,
we assume that managing the RUL of a component could be achieved by modifying in a
suitable way the input, including also a feedback action. Note that this approach is based
on the component level because in this case, hammer deterioration is clearly the cause of
decreased service time. For systems where it is necessary to be able to first identify the
critical component, and regarding how to identify it in a complex dynamic system, recent
developments can be found, for instance, in [11].

This paper is organized as follows: Section 2, System Description, includes the prepa-
ration stage, the shredder general characteristics for the case of study, the analysis of the
phenomena of deterioration of hammers, and considerations and definitions for the general
problem. Section 3, Problem Statement, describes in a general and systematic way the
architecture proposed as a solution. Section 4, Data-Driven for Deterioration Modeling,
describes the data sources for the case study (sugarcane flow and power) and they are
analyzed. A model to estimate the deterioration and subsequently the RUL of hammers is
performed, tested, and validated from real data. Finally, in Section 5, Numerical Example,
the integration of prognostics on the extension of the RUL of hammers during work is
simulated and evaluated using the validated model.

2. System Description

The function of a sugar factory is to produce sugar crystals from the sugar cane. Sugar
cane is a combination of juice and fiber. The mixture of soluble solids (sucrose and others)
and water constitutes the juice of the sugar cane [14]. Sugar cane is harvested in the field
mechanically and taken to the factory for global processing. After the cane arrives, it is
transported on belt conveyors to the cane preparation stage, where a shredding machine
or shredder opens the cane cells to facilitate the extraction process in the subsequent cane
milling stage. The goal of the milling stage is to extract the greatest amount of sugar
cane juice, and this process depends on how well prepared the sugar cane is in the cane
preparation stage; in other words, good cane preparation is a prerequisite for good cane
juice extraction.

2.1. Cane Preparation Stage

The cane preparation stage is composed of a sugar cane belt conveyor and a shredding
machine or shredder. Figure 1 depicts the incoming cane, the preparation process and the
outgoing cane. The incoming sugarcane stalks are conveyed through a chute that eliminates
the excess and ensures a certain regularity in the cane flow just before entering the shredder.
The sugarcane flow entering the shredder is adjusted by changing the speed of the motor
that drives the belt conveyor.

From the mechanical point of view, the shredder essentially consists of an electric
motor that provides mechanical power through a shaft to a set of rotational hammers that
impact the cane. In shredding, sugarcane stalks are subjected to successive and strong
impacts to open the cane cells and thus facilitate the extraction of sugarcane juice. To do
this, the shredder transfers its kinetic energy from the hammers to the cane stems through
impact forces. As a result, the sucrose cells of the sugarcane are exposed and the outgoing
product is sent to the milling stage.

The studied sugar shredder consists of a set of 8 axes on which 164 tilting hammers
are disposed. The weight of each new hammer is approximately 26 kg (the total weight of
new hammers is 4264 kg approximately). The shredder is driven by two electric motors
with a power of 1305 kW each and rotates at a constant speed of 900 RPM. In the shredding
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process, the hammers lose material due to wear caused by the sliding of the sugarcane stalks
on the surface of the hammers, which changes their shape. When hammers deteriorate to a
tolerable maximum, the total hammer set is repaired. After the deterioration process, the
final weight of each hammer is approximately 25 kg. The lifetime of a set of hammers is
8 to 25 days of continuous work. The lifetime depends on the type of cane fiber that enters,
the type of soil in which the cane was harvested, the environmental conditions, and the
material of the hammers, among others.

There is only one set of spare hammers, which means limited availability. The process
of changing the hammer set takes approximately 4–8 h, and during this time, the prepara-
tion process stops completely. The hammers are repaired by applying special welding. This
welding is expensive and requires additional work by operators. The cost of repairing the
hammers is considerably high, and since their lifetime is relatively short, the accumulated
cost is a motivating criterion for extending the lifetime. If the lifetime of the hammers is
increased, the total time for changing hammers per year is reduced, generating a reduction
in maintenance costs.

Changing the surface of the hammers modifies the nominal rotational behavior of
the machine, which is reflected in a progressive increase in the power required to prepare
the same amount of cane. Therefore, as the sugar cane preparation process progresses,
the hammers deteriorate, and the power required to prepare the sugar cane increases
consistently during the lifetime of hammers, i.e., a power demand that tends to grow. The
energy consumption of a shredder is around 12% of the global industrial process, which is
considered relatively high.

The energy consumption of a shredder is significantly high in absolute value, i.e.,
between 24 MWh and 40 MWh daily, which is equivalent to approximately 640 MWh
on average for the useful life of the hammers. Hence, any improvement in hammer life
management could significantly improve the energy consumption profile.

The shredder machine is equipped with electronic instrumentation to measure the
power, and an angular speed sensor for the rotation axis. It also has a vibration monitoring
system on three axes, and a speed sensor for the sugarcane conveyor belt. The measured
signals are sent to a computer that processes the information and stores the data. Operators
use this information for monitoring, support maintenance, and production decisions.

2.2. Initial Considerations

In the sugarcane preparation process, the deterioration D of the hammers can be
considered a measure of the loss of their ability to perform shredding adequately within
a given range. The deterioration D can then be also considered an image of the heat
and the worn material at the contact surface of the hammers during their lifetime. In
this process, the deterioration of the materials is assumed to increase monotonically, i.e.,
always increasing.

As proposed in [15], the deterioration D can be modeled as a function of the energy
dissipated by the shredder machine and transferred through the hammers to the sugarcane
stalks. This assumption is consistent with the Archard equation that is commonly used in
the railway industry to predict wear (see, for example, [16,17]).

Abbreviations at the end of the paper shows the nomenclature (acronyms, symbols for
variables, parameters, units, and their meaning) used in the paper.

Consider Pc(t) to be the power required by the sugarcane preparation process when
the hammers of the shredder machine perform work, in other words, when they impact
the cane. Consider D(t) to be proportional to the energy consumption of the sugarcane
preparation process for a given interval from time 0 to time t, namely,

D(t) = c
∫ t

0
Pc(t)dt, (1)

where c is a constant.
The sugarcane flow is the input of the system according to Definition 1.
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Definition 1. The sugarcane flow Φc is defined as the mass of sugarcane per unit of time, a random
and bounded exogenous input, which is assumed to be continuously measured and manipulable at
each time step through the change in the speed of the conveyor belt.

In this paper, the unit for Φc is tonnes (metric tons) per hour, i.e., [t/h] for convenience
within the field of application. Moreover, according to Section 2.1, the initial considerations,
and the definition of Φc, it can be assumed that Pc(t) is a function of the sugarcane flow
Φc as

Pc(t) = f (Φc(t)). (2)

Therefore, from Equation (1), it is possible to find a function f that links the derivative
Ḋ(t) with Φc as follows:

Ḋ(t) = f (Φc(t)). (3)

Equation (3) indicates that the rate of deterioration of the hammers is a function of the
sugarcane flow, i.e., by manipulating the sugarcane flow, the rate of deterioration of the
hammers can be increased or decreased.

Section 3 describes the general problem and sets out the definitions for the study of
the deterioration of hammers of the shredder.

3. Problem Statement

This work describes a method to estimate the deterioration of hammers, their RUL
during their lifetime, and how to extend their useful life. For this purpose, the source
of information is the sugarcane flow as the input signal and the power required in the
sugarcane preparation process as the output signal. The hammers’ lifetime extension should
satisfy as much as possible the normal operation of the machine (short-term requirements)
while seeking to obtain the desired lifetime objective (long-term requirements). Figure 2
shows the global architecture in which this research is framed. Note that this architecture is
similar to the work presented in [18], this time modified and adapted to the particular case
of the shredder.

System Estimator

Operating 
conditions 
estimator

Actuating 
principle

RUL
controller

RUL
Predictor

ˆRUL
Sre f

RULre f

θ

Φi
c Φc Pc D̂c

d̂

Figure 2. Architecture for management of the hammers RUL. The architecture is used to estimate
during work the current deterioration of the hammers and their lifetime. It also allows to establish a
compromise between a desired RULre f and the nominal satisfaction of the process Sre f .

The RUL control architecture includes an actuation principle, a RUL predictor, and a
RUL controller. The objective of the actuation principle is to modify the input (the sugarcane
flow) to generate a change in the system behavior (increase or decrease the hammer wear)
to modify its RUL. The RUL modification is based on the online prediction of the RUL, a
desired reference RULre f , and a desired satisfaction criteria Sre f . The RUL predictor uses
information from the deterioration estimator and an operating condition estimator to make
a prognostic of the current RUL. The RUL controller determines an actuation modifier
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scheduling parameter by solving an online optimization problem according to the dual
criteria on RULre f and Sre f .

In the following, each block of the architecture proposed in this paper is described
under the framework of the global problem.

3.1. The Actuating Principle

The actuating principle H(θ) is intended to modify the incoming sugarcane flow Φi
c

for generating a change in the behavior of the system. Here, θ is a time-varying parameter,
generated by the RUL controller, that in turn generates Φc from Φi

c. The modifier can be
represented as Φc = H(θ) Φi

c.
Figure 3 depicts two possible scenarios of deterioration with respect to the action of

H(θ) for a constant input Φi
c. The first case concerns an input Φc = Φi

c, and the second case
when Φc is a modified Φi

c. Remark that higher values of Φc produce more deterioration, and
then the RUL is shortened. On the other hand, lower values of Φc result in less deterioration
and, therefore, the RUL is extended. This example shows that properly attenuating the
incoming flow Φi

c by H(θ) decreases the progress of deterioration, and in turn, the lifetime
of the hammers is extended.

Note that in practice, one way to implement H(θ) can be performed, for instance, by
modifying the conveyor belt speed either automatically or with a human in the loop (see
Figure 1).

Section 3.2 describes the considerations on the RUL predictor. Note that the value of θ
is calculated and finally given by the RUL controller, which is described in Section 3.3.

 

Φc = Φi
c

Φi
c

Φc= Attenuated Φi
c

D

D
tc

tc

t f

t f

RUL

RUL

t

t

Figure 3. Illustration of the obtained RUL for two different levels of applied input. The obtained RUL
increases in cases where the input is a filtered (or attenuated) signal of Φi

c.

3.2. The RUL Predictor

Generally, the RUL is a random variable, which can be characterized, for example, by
a probability distribution or confidence metrics. Variables such as the type of cane fiber, the
climate, the type of cane crop terrain, and the humidity of the cane, among others, could
influence wear. Consequently, there are several sources of uncertainty in the estimation of
deterioration and RUL.

However, in this paper, RUL is studied from the point of view of the control systems
theory, and therefore, a deterministic analysis of RUL is carried out first. In this sense, the
knowledge and manipulation of the RUL are assumed, avoiding the analysis of another
stochastic process.

Definition 2. At a given current time tc, the predicted RUL, denoted by ˆRUL, is the predicted
remaining period of time from the current time instant tc until a threshold time t f , before the system
can no longer perform its intended function.

It is assumed that ˆRUL can be estimated at any time tc from the estimation of the
current D̂c and its simulated trajectory within a horizon until an acceptable threshold before
failure. For this simulation, D̂c (current deterioration) and a prediction model are needed.
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From this point, the model can be run with a regular input such as a step input. This
regular input must be a representation of a feature extracted from the data. For example,
the amplitude of the step can be the average of the past data, or the minimum value, or
the maximum value, or all three values. It is also assumed that in the prediction of the
trajectory of D(t), operation conditions remain unvarying along the given horizon from tc
until t̂ f (the estimated threshold time).

The time t̂ f is estimated, and finally, ˆRUL is calculated as

ˆRUL = t̂ f − tc. (4)

The RUL predictor also uses an operating condition estimator. The operating con-
ditions represent all those circumstances that are not taken into account explicitly in the
model but that can be parameterized and introduced systematically in the prediction. For
instance, additional information (vibration, temperature, etc.) about the current operating
conditions d could be defined in a parametric form through a vector of quantized operating
states as d = [d1, d2, . . . , di]. Note that the operating condition estimator could be useful to
support the current machine safety system.

The current value of θ (the output of the RUL controller) is necessary for the estimation.
This is known because is the only tunable parameter which allows the modification of the
predicted ˆRUL. It is seen also as a decision-making parameter.

Note also that it is assumed that the power required for the cane preparation process
and the cane flow are measured. This allows to predict Dc online from measured data.

3.3. The RUL Controller

The RUL controller determines the scheduling parameter θ of the actuating principle
described in Section 3.1 by solving an online optimization problem according to twofold
criteria on the desired RUL RULre f and the demanded satisfaction Sre f . They are defined as
follows: at a given time tc, the desired RUL, denoted RULre f , is the desired remaining pe-
riod of time before the system can no longer perform its intended function, i.e., transmitting
mechanical power from the motor to the hammers and thus to the preparation process.

The demanded satisfaction denoted Sre f is a value that quantifies the closeness of
the generated Φc from a given reference Φi

c. Let us consider Sre f ∈ [0, 1], where Sre f = 1
means that it is desired to obtain Φc = Φi

c. A value of Sre f close to zero means that the
applied input Φc is moving away from Φi

c.
Work satisfaction can be linked, for instance, to the quality of cane preparation by the

shredder, which can be verified by periodic measurements on the outgoing cane. It has
been proven that as the hammers deteriorate, cane preparation becomes worse.

The solution adopted here can be seen as a particular realization of a Model Predictive
Controller (MPC). In the global architecture, other possible short-time state and/or control
constraints could be admitted.

Now, the problem of controlling the RUL can be formulated as follows.

Problem 1. Given the system described by Equations (1)–(3), at every time instant, the sugarcane
flow Φc that guarantees that the predicted ˆRUL follows a desired one RULre f , respecting, in
turn, Sre f .

This controller considers a trade-off between the desired RULre f and the demanded
motion satisfaction Sre f (a double-objective criteria) from the predicted ˆRUL. The controller
continuously decides the values of the vector θ minimizing a given cost function J by
solving, at every time-instant, the following optimization problem:

minimize
θ

J
(

RULre f , ˆRUL(θ), Sre f , S(θ)
)

,

subject to fi(ϵc, u) ≤ 0, i = 1, . . . , n,
(5)
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where ˆRUL(θ) and S(θ) represent the predicted RUL and the obtained motion satisfaction
as a function of θ, respectively. In this paper, it is assumed that the cost function J includes
also scalar values. The functions fi(x, u) allow the inclusion of other constraints on the
system control input u. Remark that the optimization problem could be solved in real-time
or by using an a priori calculated look-up table.

Since the shredder machine has to follow possible short-time work demands, Problem 1
has to be reformulated in order to include these work constraints. Thus, Problem 1 is
reformulated as Problem 2 as follows.

Problem 2. Given a system described by Equations (1)–(3), find at any time instant the parameters
of the modifier H(θ) such that the obtained sugarcane flow Φc guarantees that system follows
RULre f and respects as much as possible the demanded Φi

c and the demanded motion satisfaction
Sre f from the estimation of ˆRUL, which in turn is calculated from the D of the system and the
operation conditions quantified as d.

Once the problem has been defined, let us note that it is firstly necessary to model the
deterioration of the system in order to estimate its RUL. Section 4 describes the data-driven
modeling for the system. Both the RUL controller and the actuating principle are defined
and tuned for the particular case. The operation condition estimator can be assumed to
be known.

4. Data-Driven for Deterioration Modeling

This section describes the data sources for the case study and the resulting deterioration
model. In this context, the real production data of sugarcane flow Φc and the power
required in the cane preparation process Pc are analyzed as input and output signals,
respectively. Figure 4 shows the real pre-processed data Φc and Pc (gray lines) for a lifetime
of hammers. A moving average of 6 h is used for processing all raw datasets (blue lines).
According to the assumptions to define Equation (1), power data corresponding to moments
where there is no cane flow are removed. The lifetime is defined as the period between
the change of shredder hammers. Note that in this case, the life cycle of the hammers is
approximately 580 h, which is equivalent to approximately 24 duty days.

As seen in Figure 4, the sugarcane flow Φc is a random variable bounded between
200 t/h and 350 t/h, approximately.

Pc is measured directly using the instrumentation of the shredder motor. The energy
ϵc consumed by the process is computed every 1 h. Therefore, 1 h is taken as the step
time for data analysis. The cumulative energy consumed by the preparation process stage
for the lifetime is approximately 805.51 MWh. This value is useful to provide an energy
deterioration threshold reference (see Section 4.2). Remark that, according to Section 2.1,
the total weight of the 164 hammers will decrease from approximately 4264 kg (26 kg each)
to 4100 kg (25 kg each).

Let us consider the index η as the ratio of power Pc per sugarcane flow Φc, which is
equivalent to the energy consumed ϵc to prepare the total mass of sugar cane Qc that passes
through the shredder per hour. Then, the index η can be defined as

η = Pc/Φc ≡ ϵc/Qc. (6)

where the units of η are [kWh/t], the units of ϵc are [kWh].
Here, it is assumed that Qc is always available, and there are no delays in the weighing

process. In this process, it is assumed that the cane is weighted before entering the conveyor
as in real life. For this life cycle, the cumulative sum of the mass of cane processed is 175,210 t
(tonnes or metric tonne).

Figure 4 shows also a clearer upward trend of η within the interval between the change
of hammers. Values start close to and below 4 kWh/t and end up around 5.5 kWh/t.
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Figure 4. Pre-processed data. Moving average of sugarcane flow, and power of motor is used to
model the process.

4.1. Identification

In terms of identification, the objective of this work is to propose a model that is fitted,
fast, and simple enough to be used within the control architecture. An acceptable physical
representation of the process is sought, and low-order models are preferred.

The ARX model structure (autoregressive model with exogenous inputs) is chosen
because it is one of the simplest and most effective structures that allows an agile and
dynamic inclusion of the current and past states of the output information (power), which
is the variable of interest, with the current and past states of the exogenous input (sugar-
cane flow) to perform the identification for the system, i.e., for finding the future values
of the output. This is particularly useful since the system is progressively changing as
it deteriorates.

Remark that for the case study, we are more interested in the dynamic analysis of the
data. In the initial analysis of the data, it is concluded that there is a direct relationship
between the output and the input; however, it is known from expert judgment in several
previous experiments that the relationship changes over time as the system deteriorates.
This means that it is possible to model the system like an LPV system (linear parameter
variant model). This approach is widely known in the control systems field. This type
of model states that there are linear relationships that have slowly varying parameters
(much slower than other important quick dynamics within the system). In this case, we are
looking for a time-varying parameter linked to the deterioration that affects the variation
in the output. Hence, we can use the ARX model, assuming that a deterioration parameter
that changes slowly over time will give acceptable enough results.

In this section, the parameters of an ARX model, using the relationship expressed
by Equation (2), are estimated. The ARX model is performed, tested, and validated from
real data.

The ARX model structure is given by

A(q) Pc(k) = B(q) Φc(k) + e(k), (7)

where k represents the discrete current time instant; q is the delay operator; A is the
autoregressive polynomial, the part of the model that captures the dependence of the
current output Pc(k) on its past values; B is the input polynomial, the part of the model
that captures the dependence of the current output Pc(k) on past values of the input
Φc(k); and term e(k) represents the part of the current output that cannot be explained
by the autoregressive and input relationship of the model, and represents a white-noise
disturbance value. Dead time in the system, the number of time steps by which the input
affects the output, is here assumed to be equal to 0.
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Then, polynomials A and B are defined as

A(q) = 1 + a1q−1 + . . . + anaq−na (8)

B(q) = b1 + b2q−1 + . . . + bnbq−nb+1

where na and nb are the orders of the autoregressive polynomial and the order of the input
polynomial, respectively; na stands for the number of past output terms used to predict the
current output; nb represents the number of past input terms used to predict the current
output; and [a1 . . . ana] and [b1 . . . bnb] represent the coefficients of the polynomials.

The identification process is performed using real data, namely, the first half of the
pre-processed data for Φc and Pc of the studied period. This is performed to validate the
model with the second half of the data. The identification process is carried out using the
software MATLAB 2020, with the toolbox System Identification. This toolbox is useful for
comparing various values for the orders na and nb.

Table 1 shows the best pairs of values na and nb along with their corresponding
quantitative metrics NRMSE fitness value (Normalized Root Mean Squared Error), FPE
(Final Prediction Error) and Mean Squared Error (MSE). NRMSE is a measure of how well
the predicted model output fits the estimation data. Several na and nb pairs are tested
starting with the least complex orders. The table shows five pairs, for which the best values
are obtained. An ARX model with na = 3, nb = 4 is chosen. We remark that this pair sets a
high NRMSE. Also, the FPE metric is analyzed because the lower its value, the better the
quantitative measure of the predictive capability of each model. Moreover, its FPE has a
low value, which reflects a good compromise between good predictive capability and low
complexity. Finally, the lower MSE indicates a better fit of the model to the data; here, the
MSE is a low value among the contiguous pairs, which confirms the choice.

Table 1. Best pairs of values na, nb for the ARX model with the corresponding NRMSE, FPE and
MSE values.

na nb NRMSE (%) FPE MSE

2 2 83.35 166.0 159.3
2 3 84.20 156.3 148.9
3 2 83.40 167.2 158.2
3 3 84.16 155.2 145.8
3 4 84.41 151.2 141.1 *
4 3 84.19 156.8 145.4
4 4 84.43 153.0 140.9
4 5 84.42 154.0 140.8

* Best pair na, nb.

The resultant model equations for A(q) and B(q) are, respectively,

A(q) = 1 − 1.157q−1 − 0.05919q−2 + 0.2258q−3 (9)

B(q) = 3.015 − 3.83q−1 + 0.1712q−2 + 0.6851q−3. (10)

then, the ARX model structure is given as

Pc(k) = 1.157 Pc(k − 1) + 0.05919 Pc(k − 2) . . .

. . . − 0.2258 Pc(k − 3) + 3.015 Φc(k)− 3.83 Φc(k − 1) . . . (11)

. . . + 0.1712 Φc(k − 2) + 0.6851 Φc(k − 3) + e(k),

The p-values found for the coefficients of A(z) are 0, 0.5151, and 0.0001, and the p-
values for coefficients of B(z) are 0, 0, 0, 0.6448, and 0.0022. Coefficients that are significant
(p < 0.05) and are crucial to the model and have a statistically relevant impact include coef-
ficients 1 and 3 of A(z) and coefficients 1, 2, and 4 of B(z). The non-significant coefficients
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(p > 0.05), which have a minor impact and could be reconsidered in the model, include
coefficient 2 of A(z) and coefficient 3 of B(z). One could consider eliminating or revising
the non-significant coefficients but since the current model reproduces the phenomenon
well, it is chosen to leave them. It is emphasized here that the model fits the needs within
the framework of control systems theory. Furthermore, according to the suggested method-
ology, each new dataset could be modeled with the same structure and order, which would
help to make a comparison between models.

4.2. Validation

Validation is performed with the second half of the pre-processed data for Φc and Pc
of the studied interval. Note that in practice, this kind of validation can mimic developing
a model within the first few days of use and applying the model to predict future behavior
from the current date until a failure threshold is reached. This process is also close to a
prognosis in a real scenario.

This section includes includes a probabilistic certification of the model based on Monte
Carlo simulations. Monte Carlo simulations are mathematical modeling techniques that
allow understanding the impact of uncertainty and risk in predictions and forecasts. They
are based on running a large number of simulations to model the distribution of possible
outcomes. The steps in this section are the fitting validation of the ARX model (shown in
Section 4.1), analysis of the residual errors, test scenario generation, multiple trajectories
simulation, and inference about the results. These simulations help to better understand
the robustness of the model and how it might perform under different conditions.

4.2.1. Fitting Validation

Figure 5 shows the real output data (gray line) in comparison to the output of the
ARX model (blue line). Here, NRMSE = 84.41%, indicating that the model fits the data
appropriately. Note that there is a discrepancy in the capturing of the peaks, which
suggests areas where model refinement could improve the overall accuracy. However,
according to the methodological criteria, the model has a satisfactory fit, good predictive
capability according to the metrics mentioned in the paper, and is low order. Hence, it is
considered that the model fits sufficiently well to the needs of inclusion in the architecture
in the framework of control systems.
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Figure 5. Comparison between the model ARX response (1-step predicted) and the original data. The
model follows the real data with a NRMSE of 84.41%.

The model was also validated with several parts of the dataset (initial, middle, and
final parts) and minimal differences in the NRMSE were found. Moreover, note also that
each change in the hammers is a new experiment of the system. We validate the model with



Mathematics 2024, 12, 3507 13 of 22

some of these extra datasets, where the differences are slightly larger but not significant,
and the fits are still good enough. Moreover, since the latter tests refer to other experiments,
the results are not included in the paper.

4.2.2. Analysis of Residual Errors

Figure 6 shows the model residuals for output Pc. Note that the output of the model
has mainly a residual zero-mean and Gaussian noise. A slight deviation and amplitude
increase is observed at the end of the frame, which is expected for a deteriorating system.
This deviation is not considered significant.

Figure 7 shows the autocorrelation of the residuals, and the cross-correlation of the
residuals with the input signal. The correlations are generated for lags from −25 to 25. As
it is shown in the left sub-figure, the residuals are mostly white noise, i.e., independent and
almost identically distributed with a mean that is close to zero. The autocorrelation of the
residuals is mostly within the confidence bands (the shaded areas with 99% confidence
region, marking statistically insignificant correlations) for most lags, except for lag zero,
where it is one. The amplitude peaks outside the confidence bands indicate that there is
some information in the residuals that the model has not captured; however, this is minimal.
The right sub-figure shows the cross-correlation (the correlation between residuals and
past inputs). The cross-correlation is within the confidence bands (the shaded areas) for all
lags. These results show that the model fits the data and that its performance is sufficiently
appropriate with respect to autocorrelation.
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Figure 6. Model residuals of the output Pc for validation. Note that the output has mainly a residual
zero-mean and Gaussian noise.
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Figure 7. Residual correlation. The residuals are mostly white noise. The autocorrelation and cross-
correlation of the residuals are mostly within the confidence bands (shaded areas), which means
appropriate performance.

Figure 8 shows the impulse response of the model. The impulse response shows that
the model is stable, as it converges to zero without leaving the confidence region. The slight
peak at 4 s indicates a mild transient response, suggesting that the system has a minor
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feedback component that slightly amplifies the initial response before damping out. The
progressive convergence to zero in 30 s with slow and stable damping, without negative
oscillations, suggests that there are no significant delays in the system, as the response is
smooth and controlled.
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Figure 8. Impulse response. The response merges to zero progressively without significant feedback
effects and delays.

4.2.3. Test Scenario Generation

Figure 9 shows the cumulative energy which is calculated as the sum of all ϵc of
each sample time (1 h). According to Equation (1), it can be considered an image of D
which is monotonically increasing. The value reached at the end of this dataset (at the
time for hammers change) is 805 MW. This value is considered the maximum value for D
normalization purposes.
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Figure 9. Cumulative energy for the interval of duration. The value reached at the time of the
hammers’ change is 805 MW.

Figure 10 shows the response of the model to three-step inputs with values of am-
plitude of Φc, here called Qc−min (minimum sugarcane flow data), Qc−max (maximum
sugarcane flow data), and Qc−mean (mean sugarcane flow data). As can be seen, the re-
sponse is stable in a steady state. The response is considered slow considering that the
settling time is approximately 190 h. To calculate Qc−min, Qc−max, and Qc−mean, we propose
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to use either historical sugarcane flow data or a moving average for a given past time or
both. Here, historical data are used for this first prognosis.

As can be seen, at the beginning the curves are increasing, which means that a system
with a constant input tends to dissipate more power as it deteriorates. Similarly, the higher
the value of the step amplitude, the higher the settling value of the response. Finally,
the higher the value of the step amplitude, the greater the difference between the initial
and final values of the response, indicating a greater growth in energy consumption and
therefore a greater deterioration.
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Figure 10. Power of shredder. Response to step input Φc with 3 amplitude values Qc−mean, Qc−min,
and Qc−max.

Figure 11 shows the resulting deterioration D corresponding to the step inputs in
Figure 10. Note that in this case, the deterioration is calculated in normalized form, taking
the maximum value of the optimistic path Dmax as D̄ = D/Dmax. As the amplitude Qc
becomes higher, the system deteriorates with a higher slope, which means that the RUL
from the current time tc will be shorter. Note that with Qc−mean, Qc−min, and Qc−max,
amplitudes of the flow Φc, the resulting deterioration trajectories will be, respectively,
the mean trajectory Dmean (blue line), the optimistic trajectory Dopt (green line), and the
pessimistic trajectory Dpes (black line). Note that Dmean will be within the area between
Dopt and Dpes if the operating conditions are the same. Then, the resulting ˆRULmean= 613 h,

ˆRULopt = 835 h, and ˆRULpes = 519 h are reached.
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Figure 11. Deterioration. Response to step input Φc with 3 amplitude values Qc−mean , Qc−min ,
and Qc−max.
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Note that in Figure 11, tc = 0, which means in that particular case, D = 0, and
consequently, the entire useful life of the parts is being predicted. If tc > 0, the current
deterioration could be calculated taking a metric of the precision of the estimation giving
three main values: [D̂mean

c , D̂min
c , D̂max

c ].
Remark that the prognosis of the trajectory is agile for a basic computer system, so it

can be updated quickly. In practice, the updating of the prognosis would be performed
when the operating conditions change, or at the discretion of the operator.

4.2.4. Multiple Trajectories Simulations and Inferences

Figure 12 shows the data distribution of the incoming sugarcane flow Φc. A mean
value µ = 301.56 and a standard deviation σ = 29.6501 are found. A fitting with a normal
distribution seems to correctly represent the incoming Φc data. A kurtosis value of 2.3046
is obtained. This means that the data have lighter tails than a normal distribution. This is
known as a platykurtic distribution. This means that there are fewer extreme values than
would be expected in a normal distribution.

As suggested in [19,20], the number of simulations N which guarantee a confidence
parameter δ = 0.001 (i.e., 99.9% of the reliability of the estimation procedure) can be
computed as

N ≥ (1/γ) · (1 + n(1/δ) + (2ln(1/δ))1/2), (12)

where γ, in this case chosen equal to 95 %, represents the percentage of population
that fails to meet the condition (e.g., 5% of the population will deteriorate outside the
predicted range).
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Figure 12. Distribution fitting for the incoming sugarcane flow Φc data. A normal distribution fitting
is used.

Figure 13 shows the resulting deterioration corresponding to 233 randomly generated
amplitude step inputs, with a normal distribution function, with mean value µ = 301.56
and a standard deviation σ = 29.6501. From this simulation, it can be observed that the
simulated deterioration trajectories at tc = 0, assuming invariant conditions over the
prediction horizon, are within the limits defined in Figure 11. In addition, the distribution
of the RUL values (equivalent in this case to the total useful life) obtained is shown at
the top.
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Figure 13. Deterioration. Response to step input Φc of 233 normally distributed amplitude amplitude
Qc random values. Most of values are inside the zone given by bounds. A lognormal distribution fits
the RUL results.

A lognormal distribution fit is used given the non-symmetrical characteristic of the
resulting values and their heavier tails. The estimated parameter values are mean = 615.73 h,
variance = 2979.44, loglocation = 6.42 and logscale = 0.09. This means that it is possible to
make a probabilistic prediction of the deterioration trajectory of the hammers, for instance,
with lognormal function, for a normally distributed amplitude of sugarcane flow Φc.
According to Figure 11, this is equivalent to 613 h, showing a difference of 5.5% (32.2 h)
with respect to 580.8 h (the real value) with a procedure reliability of 99.9%.

This also means that it is expected that the real trajectory is more likely to be closer to
the predicted one with the main value of Dmean. As shown in Figure 13, the real trajectory
can be expected with a high probability to be within the zone delimited by the simulated
pessimistic and optimistic trajectories. Similarly, it is possible to deterministically take
R̂ULmean as the estimate corresponding to the mean value of the Φc amplitude.

5. Numerical Example

In this numerical example, the initial purpose is to evaluate and describe how the
system system described by Equation (2) would work with respect to the modification
of the RULre f and S. Then, the following descriptions, assumptions and conditions are
defined for the scenario.

5.1. Chosen Scenario

• The cane flow Φre f is a step input, whose amplitude Qc can vary and is measured
during the process.

• The operation conditions estimator provides the exact value of Qc as a moving average
of the last 6 h.

• D̂ is calculated from Pc.
• The reference RULre f of the hammers can be set in this example as a failure time

measured in hours [h]. Changes in RULre f will be aimed at extending the lifetime of
the hammers.

• Satisfaction S is set once at the beginning of the hammers’ lifetime.
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5.2. Chosen Actuating Principle

In this example, we use θ ∈ [0.5, 1], where θ = 1 means that Φc = Φi
c. A value of θ that

tends to zero attenuates Φi
c for applying Φc to the system. This is oriented to attenuate the

deterioration D and, in turn, the extension of the lifetime of hammers.
According to the definition of S, a value of the demanded motion satisfaction Sre f

tending to one favors the nominal operation of the system rather than the RULre f (t). In the
opposite sense, a Sre f value tending to zero is more permissive to changes in performance.
Here, we use Sre f ∈ [0.5, 1].

Note that we can define the current value of S as a function of the current value of θ as
S(θ) = θ.

5.3. Used RUL Predictor

According to Section 4.2, and for a given a current time tc, the RUL prediction can
be predicted by simulating the model with Equation (11) from a set of initial conditions
[D̂mean

c , D̂min
c , D̂max

c ]. However, for this example, only the value of D̂mean
c is taken as the

initial condition at t = tc, according to the probabilistic observations. This is equivalent to
simulating in tc the trajectories of deterioration Dmean, Dopt, and Dpes, from D̂mean

c until an
acceptable threshold. We run the simulation with the Φc amplitude values Qc−mean, Qc−min,
and Qc−max. In this case, it is possible to obtain these values from historical information
or by letting the system work to obtain the initial moving averages. For this numerical
example, we choose the historical information used to test the model. Of course, the more
real datasets we have, the better the model can be fitted. Historical sugarcane flow values
from the same experiment (same set of hammers) can be used to calculate the moving
average of the above values, as well as the maximum and minimum values. Similarly, with
more datasets from other experiments, inferences, comparisons and predictions on the
current experiment could be also improved.

The prediction is stopped once the maximal deterioration is achieved, i.e., D(t f ) = sup{D}.
To define sup{D}, it is recommended to take a historical parameter on the total energy
consumption of another total cycle of the hammers’ life. For this paper, the value of
sup{D}= 805 MW is used according to real data analyzed for modeling. Once the simu-
lation is stopped, the corresponding time t f for which the threshold would be reached is
registered. Thus, the predicted RUL is computed as ˆRUL = t f − tc (Equation (4)).

According to Section 3.2, in this paper, it is assumed that the states of operation are
d = [d1, d2, . . . , dn] for the health states, from “good” to “alarm”. The operating conditions
estimator calculates di = ηi ∈ [ηm, ηM], where ηm and ηM are the minimum and the
maximum nominal values of η, respectively. Here, for instance ηm = 3.5, ηM = 6, and
n = 25 are chosen by convenience. Remember that the η value is increasing over the
lifetime of the hammers. A moving average of η is calculated. Then, the RUL predictor
updates its prognosis each time that η exceeds a value di. Once its maximum value ηM is
reached, the forecast stops updating because the end of life is reached. In this sense, the η
index is a trigger for a new update of the RUL prognostic. This procedure also makes it
possible to monitor the consistency of the model and incipient faults and improving the
current safety system of shredder.

The described algorithm can be summarized as

ˆRUL = SIM(D̂, Φc, t)|θ |di
. (13)

5.4. Implemented RUL Controller

We propose to use an optimal controller to solve Problem 2, which minimizes a cost
function including the double objective (i.e., Sre f , and RULre f ). The problem can be
reformulated as follows.
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Problem 3. Given D̂ and d̂ at a time tc, find the value of θ which minimizes the cost function:

J(θ) =

(
RULre f − ˆRUL(θ)

RULre f

)
+ ρ
(

Sre f − S(θ)
)

, (14)

subject to
0 ≤ θ ≤ θ̄, (15)

where ρ > 0 is a real value which allows considering a trade-off between satisfying desired RULre f

and/or the satisfaction S. In this example, it is chosen as ρ = 0.5. The chosen weighting scalar
ρ suggests that we put more focus on the desired RULre f rather than on the desired satisfaction
Sre f . Here, we assume also that the desired RULre f will be higher than the estimated ˆRUL(θ) to
maintain the positivity of this cost function.

Figure 14 shows the evolution of the hammers RUL for the example. The solid
line shows the real value at each time instant from the beginning of the life to the end,
corresponding to the machine shutdown due to reaching the threshold. This curve is
taken with the value reached in the real lifetime of the hammers used to obtain the model,
corresponding to 580.8 h.
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Figure 14. RUL along the time: (1) the real trajectory of RUL (solid line), (2) the estimated ˆRUL
(dashed line), and (3) the real trajectory of RUL after the change in RULre f (dotted line). The symbol
∗ represents the desired RUL at the beginning, and the diamond symbol represents the RULre f after
the change.

The scenario shows that in the first instance, a RULre f = 640 h is defined as the a priori
expected target. This is marked with an asterisk at the corresponding point. The dashed
green line represents the predicted ˆRUL value at each time instant. It shows that this
prediction starts at ˆRUL = 613 h ± 5.5 %. The uncertainty is described in Section 4.2; it
is used for all estimates from now on and is not explicitly written, for practicality. This
shows an optimistic prediction at the beginning, but it is adjusted with respect to the real
values as they become known. From the beginning, a difference between the a priori set
value RULre f and the real value (580.8 h) is shown. This means that the initial target of the
example is very optimistic. Of course, during the work, it is not possible to know the real
value but only the estimated one.

Figure 14 shows also the scenario where RULre f changes during the lifetime of the ham-
mers with respect to the time. At t = 200 h of use, a change in the setting of RULre f = 430 h
is simulated, which is equivalent to 630 h of lifetime. A diamond mark is placed at the
corresponding point. This is simulated as a more realistic target since measurements show
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that the lifetime would be around 613 h and not 640 h as originally intended. At this point,
it is still intended to achieve a higher total lifetime than the one predicted initially equal to
613 h. Once the change in RULre f is detected, the decision problem is solved to find the
value of θ that minimizes J according to Equation (14). The dotted red line represents the
real trajectory after the change in RULre f . It can be seen that the achieved lifetime is finally
620 h.

Note that although the initial target (set a priori as 640 h) is not reached, the value
achieved is 39 h (1.6 days) higher than the value that would have been achieved without
modification (580.8 h). This is equivalent to an increase of 6.8% in the useful life with
respect to the trajectory without management.

Hence, this example simulates a successful case in which the RULre f of the hammers is
extended during its lifetime. An increase in the total lifetime of the hammers is obtained by
making a trade-off between the RUL requirements and satisfaction of the nominal operation.

As can be seen, the implementation of the life extension architecture is feasible for
the case study. Summarizing, this is feasible in practice because there is a high-quality
instrumentation system currently implemented, there is technical data collection, and the
flow can be controlled by means of the conveyor belt. In addition, there is an electrical
safety system in cases such as overloading. On the other hand, the current main limitation
is the longitudinal validation of the architecture for several hammer changes since long
times and high-cost power systems are involved and in continuous production. Other
main limitations to implement the architecture in other similar industrial systems would
be given by the shortcomings or absence of the mentioned features. Also, other limitations
would include low control and communication capabilities (e.g., delays) of the information
management systems. For the latter, it would be necessary to quantify them and take them
into account in data management. The implementation may also be limited by the need to
include a human in the loop (due to safety regulations or administration).

6. Conclusions and Future Work

A data-driven model for the deterioration of hammers was developed, tested, and
validated from real data. Real data on the sugarcane flow shredded per hour and elec-
trical power were analyzed for a period between maintenance for the replacement of the
hammers. An architecture aimed at extending the residual lifetime of hammers and using
the deterioration model was presented. The lifetime extension was realized through an
effective trade-off between the desired lifetime and nominal work satisfaction. It was
observed that there is an increasing trend in the index of electrical consumption per ton
of cane as the hammers deteriorate. The work shows that this index can be integrated
within the architecture as an indicator of the machine’s health state and as a prognosis
updating parameter. The development of the model was oriented to be used within a global
architecture intended to extend the RUL of the hammers of the shredder. The used specific
RUL estimation method works online, offering agile updating estimations. Nevertheless,
the complexity of this method is dependent on the variation in the operating conditions.
The prognostic of the RUL is probabilistically certified. It was demonstrated that it is
possible to make a probabilistic prediction of the deterioration trajectory of the hammers.
The uncertainty in the prediction of RUL was around 5.5%, assuming the knowledge of the
current state, with around 99% procedure reliability, according to a lognormal distribution
fitting, for a normally distributed amplitude of sugarcane flow. A numerical example
was used to show that it is possible to use the architecture to increase the lifetime of the
hammers by around 6.8%, which is equivalent to extending the service time of the shredder.
This value is slightly larger than the estimation error, but tends to be smaller the closer
we are to the end of the hammer’s life. Future work concerns the evaluation of the model
within an architecture of extension of useful life with automatic control over the conveyor
or with a human in the loop. This is also useful to prove the reduction or increase in lifetime
with real tests and from a statistical point of view. It is also intended to work with the
evaluation of other model structures in an optimal way.
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Abbreviations

The following abbreviations are used in this manuscript:

Symbol Units Physical Meaning
A – Autoregressive polynomial
B – Input polynomial
d – Parameter of operating conditions
D – Deterioration
Pc kW * Power of motor, Output of system
Qc t ** Mass of cane
t h *** Time
Φc t/h sugarcane flow, Input of system
ϵc kWh Energy
η kWh/t Energy consumption per tonne of cane
S - Satisfaction index
e(t) – Error of model
θ – Parameter of actuating principle
ˆ – Superscript for estimations
˙ – Superscript for derivative
re f – Superscript for reference

FPE – Final Prediction Error
MSE – Mean Squared Error
NRMSE – Root Mean Squared Error
PHM – Prognostics and Health Management
RAS – Reliability Adaptive System
RUL h Remaining Useful Life
Note: * kilowatt, ** tonne (metric ton), *** hour.
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