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Abstract: Autism Spectrum Disorder (ASD) is a complex developmental condition marked by
challenges in social interaction, communication, and behavior, often involving restricted interests and
repetitive actions. The diversity in symptoms and skill profiles across individuals creates a diagnostic
landscape that requires a multifaceted approach for accurate understanding and intervention. This
study employed advanced machine-learning techniques to enhance the accuracy and reliability of
ASD diagnosis. We used a standard dataset comprising 1054 patient samples and 20 variables. The
research methodology involved rigorous preprocessing, including selecting key variables through
data mining (DM) visualization techniques including Chi-Square tests, analysis of variance, and
correlation analysis, along with outlier removal to ensure robust model performance. The proposed
DM and logistic regression (LR) with Shapley Additive exPlanations (DMLRS) model achieved the
highest accuracy at 99%, outperforming state-of-the-art methods. eXplainable artificial intelligence
was incorporated using Shapley Additive exPlanations to enhance interpretability. The model was
compared with other approaches, including XGBoost, Deep Models with Residual Connections and
Ensemble (DMRCE), and fast lightweight automated machine learning systems. Each method was
fine-tuned, and performance was verified using k-fold cross-validation. In addition, a real-time web
application was developed that integrates the DMLRS model with the Django framework for ASD
diagnosis. This app represents a significant advancement in medical informatics, offering a practical,
user-friendly, and innovative solution for early detection and diagnosis.

Keywords: autism; data mining; machine learning; ANOVA; logistics regression; web app

MSC: 68T01; 62J10; 68U35; 68T07

1. Introduction

Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder that inhibits the
typical maturation of essential communication and social functions [1]. This collection
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of mental health conditions disrupts normal brain development, resulting in challenges
in social and communication skills [2]. The term “autism spectrum” reflects the wide
range of autism manifestations among individuals, as each person with autism experiences
it uniquely. Consequently, ASD is described as a “spectrum disorder”, with varying
support needs among individuals to achieve their desired quality of life [3]. Genetic and
neurological factors are also associated with ASD. Although ASD has genetic foundations, it
is primarily diagnosed based on behavioral markers including social interaction, creativity,
repetitive behaviors, and communication. Co-occurring conditions, such as epilepsy,
depression, anxiety, attention-deficit hyperactivity disorder, sleep disturbances, and self-
injurious behaviors, are commonly observed in individuals with autism.

Intellectual function in people with autism varies significantly, ranging from severe
disability to exceptional intellectual abilities [4]. Research suggests that both environmental
and genetic factors may increase a child’s susceptibility to autism. For instance, if an older
sibling is on the spectrum, a child’s likelihood of having autism increases by approximately
19% [5]. Emerging evidence points to maternal infections, certain medications, and parental
age (particularly advanced paternal age) as potential risk factors [5]. When one child in a
family is diagnosed with ASD, the risk for subsequent children increases by 20%, and the
chance of ASD rises by approximately 32% if the first child has ASD [6].

Genetic causes are identifiable in approximately 10–20% of ASD cases. Autism is
considered a “spectrum” disorder because the type and severity of symptoms vary widely
across affected individuals [7]. Although autism can be diagnosed at any age, it is classified
as a “developmental disorder” since symptoms often appear within the first two years of life.
Individuals with autism have complicated healthcare requirements that require integrated
treatments encompassing health promotion, medical care, and rehabilitation. Collaboration
across healthcare, education, employment, and social services is essential. According to
one study, approximately 33% of children with other developmental conditions show some
ASD symptoms but do not meet the full diagnostic criteria [8].

There are several clinical and nonclinical methods for diagnosing ASD. Clinical diag-
nostic techniques include the Autism Diagnostic Observation Schedule-Revised and the
Autism Diagnostic Interview [9]. Most current ASD diagnostic methods require significant
time to complete. Recently, researchers have begun to integrate machine learning (ML)
technologies to streamline ASD diagnosis. The primary objectives of ML studies on ASD
are to reduce the dimensionality of input datasets for identifying the most relevant ASD
features, improve diagnostic accuracy, and decrease the time needed for diagnosis, thereby
facilitating faster access to healthcare services. DM is a field that integrates mathematics,
artificial intelligence (AI), search algorithms, and other scientific disciplines to develop
reliable predictive models from autism datasets [10].

Early identification of autism can be beneficial for children by providing targeted
assistance to meet their unique needs [3]. This project used ML techniques to analyze ASD
across diverse populations globally. Additionally, the Quantitative Checklist for Autism
(Q-Chat) and other variables were included in the ASD test application. We developed a
simple model to estimate the probability of ASD traits, allowing parents to take early action.
Exploratory data analysis helped identify essential factors related to autism. Moreover,
identifying trends and patterns through statistical DM significantly impacts ASD detection.
The growing prevalence of ASD worldwide, along with its social and economic implications,
underscores the significance of developing efficient and practical screening procedures.

ASD affects approximately 1% of the global population (about 62.2 million as of
2015) [11], with a higher diagnosis rate in males than females [12]. Although medications
can aid in managing symptoms, they offer limited long-term benefits. Thus, early ASD
detection is crucial. Early diagnosis enables timely intervention, fostering improved so-
cial, cognitive, and communication skills. Addressing developmental needs early in life
contributes to better long-term outcomes by mitigating symptoms and improving overall
development in individuals with ASD.

The primary contributions of this research work are as follows:
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• Despite extensive research on ASD, this study is the first to identify relevant features
through ANOVA and Chi-Square analyses and to examine possible correlations before
fitting the proposed DMLRS model, enhancing prediction accuracy.

• Secondary data were collected using a mobile application for research, incorporating
ten research questions (A1–A10) and information on variables including age, jaundice
history, ethnicity, sex, prior app usage, family relationships, ASD presence in family
members, and the dependent variable: autism classification.

• We developed an innovative autism prediction model integrating XAI with ML and
DM algorithms, achieving higher predictive performance. A comparative analysis
with state-of-the-art models is also provided.

• Finally, this study implemented the proposed model in a web application featuring
a user-friendly interface to support individuals and healthcare providers in assess-
ing autism.

This study is organized as follows: Section 2 presents an analysis of the related litera-
ture. In Section 3, we describe the proposed model for ASD detection. Section 4 compares
the results obtained from implementing various techniques. Section 4.6 details the web
application system, and finally, Section 5 summarizes the findings of this research study.

2. Literature Review

The literature analysis section establishes the contextual framework for ML appli-
cations in pediatric ASD diagnosis. Direct interactions with medical professionals are
essential in managing ASD in children, involving a comprehensive evaluation of the child’s
developmental history, responsiveness, behavioral patterns, attention capabilities, and
Intelligence Quotient. Typically, children with ASD begin to exhibit specific symptoms
around the age of three, such as sensory sensitivity, speech and communication challenges,
coordination difficulties, and notable changes in emotional and social well-being. This
section offers a detailed review of ML and deep learning (DL) methodologies employed
for diagnosing ASD from images or numerical datasets, complemented by a comparative
analysis provided in with a comparative analysis summarized in Table 1.

Table 1. Summary of literature on ASD detection and analysis.

Ref. Problem Statement Research Objective Main Contribution Experimental Result

[13] Analysis and identifica-
tion of ASD. Early diagnosis of ASD. Detecting ASD and analyz-

ing ASD issues.

The Neural Network-based
model may identify ASD in-
stead of a typical DM classifier.

[14] Behavioral research on
ASDs.

Incorporate an intelligent DM
algorithm into an existing diag-
nostic tool.

Surpasses the majority of pre-
vious studies.

SVM (Support Vector Machine)
is used to generate ASD classi-
fication models.

[10] Autism detection based
on rule induction.

To increase the efficiency of
ASD identification.

Rule-based representations
of automatic classifica-
tion systems.

Rule-based superior algorithms
that offer higher sensitivity
rates.

[15] Evaluation of ASD DM
classification.

Create a different model with
a greater capacity for early pre-
dicted ASD.

Using Autism Questions
(AQs) to create models.

LR achieved the maximum ac-
curacy using the Chi-Square ap-
proach.

[16] ASD diagnosis employ-
ing optimal techniques. Expedite autism diagnosis.

Predict a person’s ASD symp-
toms and identify the most
effective model.

Provide good experimental re-
sults.

[17] Examine Q-Chat for
early autism screening.

Investigation of the accuracy
and reliability of the quantita-
tive autism screening tool for
toddlers, called Q-Chat.

Demonstrates exceptional
accuracy, showcasing the
tool’s robust performance
and cross-cultural reliability.

SVM proved to be an effective
classification method.
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Table 1. Cont.

Ref. Problem Statement Research Objective Main Contribution Experimental Result

[18]
Screening for ASD us-
ing machine learning
models.

Prediction of ASD to facilitate
diagnosis and subsequent treat-
ment.

Prediction of ASDs.
On the adult autism dataset, a
neural network has the highest
accuracy.

[19]
Models that are based
on DM for the early de-
tection of ASD.

Early detection of ASD.
Introduced a DM-based
model that may be applied to
the early detection of ASD.

SVM gives a better result.

[20] Applying DM tech-
niques to predict ASD.

Develop and use a model for
the early prediction of autism.

Proposed a DM approach to
conducting early prediction
of ASD.

Greatest accuracy among other
study disciplines.

[21]

Predicting autistic fea-
tures by replacing con-
ventional scoring sys-
tems.

Designing an accurate screen-
ing system for autism.

Increasing the screening pro-
cess’s accuracy.

CNN is the best algorithm for
detecting ASD features com-
pared to DM methods.

[22] ASD detection.

Identify the most important
characteristics and automate
the diagnostic process aim of
improving diagnosis.

Analyzing the features of
ASD datasets and finding cor-
relations.

Neural network classifier beats
all other benchmark DM algo-
rithms.

[23] Identification of ASD in
children.

Assess if a child is prone
to ASD in its earliest stages,
streamlining the process of di-
agnosis.

Proposed a predictive model
with the highest accuracy to
identify ASD in children.

LR provides the greatest accu-
racy.

ASD is a complex neurodevelopmental disorder characterized by persistent challenges
in social communication and interaction, as well as restrictive and repetitive behaviors,
interests, and activities. Early detection and intervention are crucial to optimize outcomes
for individuals with ASD, enabling tailored support to address unique needs. Recent
advancements in technology and data analysis have spurred catalyzed research focused on
improving the detection and analysis of ASD, with studies employing various methodolo-
gies and innovative approaches.

A notable contribution to the field is presented by Raj [13], who proposed a neural-
network-based model for early ASD diagnosis. Leveraging ML techniques, Raj’s model
demonstrated strong performance in identifying ASD cases, offering potential advantages
over traditional diagnostic methods. This novel approach shows significant promise for
improving the accuracy and efficiency of ASD diagnosis, particularly in early childhood
when timely intervention is most beneficial.

In a similar vein, Hriti [24] conducted research on ASD diagnosis by integrating
visual and behavioral data from ASD patients and neurotypical individuals. By combining
multiple data modalities—including visual cues and behavioral patterns—Hriti’s study
highlighted the superiority of multi-modal data integration in enhancing ASD detection
accuracy. This approach provides a more comprehensive understanding of ASD and
highlights the importance of incorporating diverse data sources in the diagnostic process.

Thabtah et al. [14] made significant contributions to ASD classification by incorpo-
rating Support Vector Machines (SVMs) and rule-based algorithms, demonstrating the
effectiveness of DM algorithms in surpassing previous performance benchmarks. Their re-
search highlighted how advanced computational techniques could enhance ASD diagnosis,
particularly in clinical settings where early detection is essential for intervention planning.

In related advancements, Abdullah [15] proposed using Autism Questions to improve
early ASD prediction models. Logistic regression (LR) emerged as the most accurate model
in Abdullah’s study, achieving maximum accuracy through the Chi-Square approach. This
highlights the importance of feature selection and model optimization in refining ASD
detection algorithms.
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Similarly, Alteneiji [16], Tartarisco [17], and Baranwal [18] developed predictive models
and screening tools to facilitate early ASD detection and treatment. Their studies aimed
to bridge the gap between diagnosis and intervention, ultimately enhancing outcomes for
individuals with ASD.

Furthermore, Akter [19], Musa [20], and Shahamiri [21] proposed DM-based models
for early ASD detection, with Convolutional Neural Networks (CNNs) exhibiting superior
performance in detecting ASD features compared to traditional DM techniques. Their
research underscores the potential of DL in improving diagnostic accuracy.

Hossain [22] analyzed ASD dataset features across age groups, identifying correlations
between specific traits and ASD diagnoses. This work deepens understanding of ASD’s
fundamental mechanisms and contributes to the development of precise diagnostic tools.

Vakadkar [23] introduced a predictive model tailored to identify ASD in children,
with LR achieving the highest accuracy among classification algorithms. This research is
significant for early intervention programs, as the accurate, timely identification of ASD in
children is crucial for accessing targeted support services.

Joudar et al. [25] addressed the need for advanced AI-based diagnostic methods for
ASD due to its complexity and widespread public concern. Their study systematically
reviews AI applications in early ASD diagnosis and triage, analyzing 46 recent studies that
enhance diagnostic accuracy and identify areas for future research. This work underscores
AI’s expanding role in ASD healthcare, proposing the use of AI and fuzzy Multi-Criteria
Decision Making (MCDM) methods to improve patient triage and prioritization. The
proposed methodology is structured into five distinct phases, bridging theoretical concepts
with practical applications.

Similarly, Albahri et al. [26] proposed an explainable AI framework for ASD triage
using fuzzy MCDM, aimed at efficiently categorizing ASD severity based on diverse data
inputs. This framework encompasses five phases and introduces four novel algorithms to
classify patients into three severity levels. Experimental results, obtained from balanced
ASD datasets and two AI models, demonstrated the framework’s efficacy in balancing and
interpreting data, suggesting its potential for clinical utility.

Building on these advancements, Joudar et al. [27] developed a new triage method
for ASD using Fuzzy-MCDM (fMCDM), focusing on varying symptom presentations and
severity levels. The methodology involved preprocessing an ASD dataset of 988 patients
and implementing two fMCDM methods to prioritize influential criteria, resulting in pro-
cesses for triaging patients with autism (PTAP). This method accurately triaged 538 patients
into the minor, moderate, and urgent categories, demonstrating its effectiveness through
sensitivity and specificity analyses. This approach supports early ASD diagnosis and
treatment, significantly outperforming previous methods in comparative assessments, and
provides a basis for future enhancements.

Finally, Joudar et al. [28] introduced a taxonomy for ASD triage and prioritization,
using AI to construct a framework that simplifies the diagnostic process and identifies
five major open issues in ASD triage. This research involved a systematic review of AI
methodologies, examining 363 articles from sources such as ScienceDirect and PubMed,
with a focus on diagnostic approaches, risky genes, and e-triage. The findings suggest a
conceptual framework employing MCDM techniques to prioritize ASD patients by severity,
aimed at enhancing diagnostic accuracy and patient care.

In summary, recent advancements in ASD detection and analysis have led to the de-
velopment of innovative methodologies and tools designed to improve diagnostic accuracy
and facilitate early intervention. Utilizing ML techniques, multi-modal data integration,
and algorithmic innovations, researchers are addressing the complexities of ASD diagnosis
and treatment. Collectively, these studies significantly advance the field of ASD detection
and analysis by providing critical insights and novel approaches that enhance outcomes
for individuals with ASD.



Mathematics 2024, 12, 3515 6 of 27

Research Gap and Questions

In the field of early ASD detection, the literature review identified a significant research
gap, particularly in achieving accuracy, scalability, adaptability, computational efficiency,
and real-time applicability in autism-detection methods. Our study specifically addresses
two primary research questions arising from these gaps:

• Does employing a novel DMLRS technique—one that integrates prominent ML algo-
rithms with DM techniques—improve the accuracy of ASD detection compared to
existing methods?

• What are the most effective methodologies in ML, data mining, and web application
development for accurately identifying autism?

To bridge these questions, we introduced an advanced technique aimed at improving
the accuracy and efficiency of ASD detection. By integrating diverse ML and DM techniques,
the proposed DMLRS offers a novel and robust solution for the evolving landscape of
ASD detection.

3. Proposed Methodology

In Figure 1, the research methodology is presented in distinct subsections, covering key
components such as an overview of the dataset, data preprocessing techniques, statistical
analyses, logistic regression, and tree-based algorithms. Furthermore, Figure 1 provides
a comprehensive illustration of the methodology, detailing the data preprocessing steps,
which include missing value analysis and outlier removal via boxplot methods, as well as
exploratory visualizations. It also showcases an array of XAI-based DM and ML algorithms
assessed with different evaluation metrics. This project leverages RStudio and Python for
their strengths in statistical computing, ML, and visualization within an open-source IDE.
The final phase of the project involves developing a web application using the Django
framework and performing a comparative analysis with related studies in ASD detection.

Figure 1. Proposed DMLRS methodology for ASD detection.
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Algorithm 1 provides each step of our proposed method. The algorithm starts working
from data preprocessing to model training, feature selection, and performance validation
for ASD detection.

Algorithm 1 DMLRS Model

1: Input: Cleaned dataset
2: Output: Trained DMLRS Model
3: procedure DMLRS MODEL
4: Load the cleaned trained dataset
5: Perform feature selection using Chi-Square and ANOVA tests
6: a. Select significant features (p-value < 0.05)
7: Initialize LR model
8: Train LR model using the selected features
9: a. Split data into training and validation sets (e.g., 80:20)

10: b. Use k-fold cross-validation (e.g., k = 10) for training
11: c. Evaluate model performance using accuracy, precision, recall, and F1-score
12: if model performance is satisfactory (e.g., accuracy > 99%) then
13: a. Save the trained LR model
14: Initialize SHAP (Shapley Additive Explanations) for model interpretability
15: Calculate SHAP values for the trained LR model
16: a. Identify important features contributing to the model’s predictions
17: Return the trained LR model and SHAP values

3.1. Autism Spectrum Dataset and Preprocessing

The dataset of 1054 patient samples captures key demographic and clinical character-
istics relevant to ASD, including age, gender, ethnicity, and core behavioral markers [29].
Although it does not represent all global variations, this dataset provides a broad and
diverse sample that closely reflects commonly observed ASD features, thereby supporting
reliable model generalization.

There were no missing data. However, age outliers were identified and subsequently
removed using boxplot analysis. Table 2 summarizes the ASD dataset, while Table 3
lists five representative data samples. The experiment utilized publicly available autism
data [30] previously employed in research aimed at enhancing autism prediction. The 20 se-
lected variables focus on key behavioral and clinical indicators relevant to ASD diagnosis.

Table 2. Variables and their descriptions.

No Variable Name Variable Type Variable Description

Independent Variables

1 Case No Numeric The participant’s ID number.

2 A1 Binary (0, 1) Is your child responsive when you call their name?

3 A2 Binary How comfortable are you in establishing eye contact with
your child?

4 A3 Binary Does your child use pointing gestures to express their
desires or needs?

5 A4 Binary Does your child engage in pointing gestures to express
shared interests with you?

6 A5 Binary Does your child engage in pretend play, such as taking
care of dolls or pretending to talk on a toy phone?
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Table 2. Cont.

No Variable Name Variable Type Variable Description

7 A6 Binary Does your child track or follow your gaze direction?

8 A7 Binary
When you or someone else in the family is visibly upset,
does your child display signs of wanting to offer comfort
or consolation?

9 A8 Binary Would you describe your child’s first words as typical?

10 A9 Binary Does your child use simple gestures?

11 A10 Binary Does your child stare blankly or without reason?

12 Q-Chat Score Numeric

The Q-CHAT score is a screening measure based
on a 10-item (A1–A10) screening tool for autism in
toddlers (18–24 months). Higher scores indicate a
greater likelihood of autism, suggesting the need for
further evaluation.

13 Age Number Age in months.

14 Sex String Gender.

15 Ethnicity String Ethnicities.

16 Jaundice Boolean (Yes or No) Jaundiced at birth.

17 Family member with ASD Boolean A family member has an ASD.

18 Relation String Relation to the child (e.g., Parent, Self, etc.).

19 Used app before Boolean Whether the participant has used this app before.
Dependent Variables

20 Class Boolean Participant classification as ASD or not ASD.

Table 3. Snapshot of 5 sample data.

Variable Case_No 1 Case_No 2 Case_No 3 Case_No 4 Case_No 5

A1 0 1 1 1 1

A2 0 1 0 1 1

A3 0 0 0 1 0

A4 0 0 0 1 1

A5 0 0 0 1 1

A6 0 1 0 1 1

A7 1 1 1 1 1

A8 1 0 1 1 1

A9 0 0 0 1 1

A10 1 0 1 1 1

Q-Chat_score 3 4 4 10 9

Age (month) 18.605 13.829 14.679 61.035 14.256

Sex f m m m f
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Table 3. Cont.

Variable Case_No 1 Case_No 2 Case_No 3 Case_No 4 Case_No 5

Ethnicity Middle Eastern (ME) White (WE) European ME Hispanic WE

Jaundice yes yes yes no no

Family mem ASD. no no no no yes

Relation family member (FM) FM FM FM FM

Used app before no no no no no

Class No Yes Yes Yes Yes

3.2. Autism Mobile App for Data Collection

The mobile application used for data collection is available on the Play Store [31].
Figure 2 illustrates the architecture of an AI-driven autism-detection system. This system
comprises a mobile app, an intelligent web service that facilitates communication between
the Autism AI app and ML models, a database to store user responses and test outcomes,
and a screening algorithm designed for autism detection. The Autism AI application
interacts with web services to utilize and deploy models. Its primary function is to offer
a user-friendly interface for caregivers and family members, offering quick assessments
of autistic traits. In addition, the app collects and validates critical user data, including
behavioral patterns and demographic information.

Figure 2. Architecture of the AI-driven autism-detection application.

3.3. Exploratory Data Analysis

Exploratory Data Analysis (EDA) uses data visualization techniques to systematically
explore and reveal essential dataset characteristics, allowing researchers to identify critical
patterns and insights [32]. Serving as a foundational step in data analysis, EDA not only
enhances understanding of the dataset’s inherent traits but also informs the choice of
suitable statistical methods [33].
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Figure 3 presents a bar chart that highlights several key findings from the dataset. A
notable portion of the sample population shows a high risk for autism, with most partici-
pants originating from North America. Additionally, a substantial number of participants
have a history of jaundice. Ethnic analysis reveals a predominance of South Asian, Middle
Eastern, and White European individuals, with an approximately equal gender distribution
(male/female) across the sample.
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Figure 3. Bar chart of categorical variables.

Figure 4 presents a bar plot in which each rectangular bar displays statistical infor-
mation proportional to the frequency of responses in the autism dataset. The plot visually
represents the values of the A1–A10 variables, where the length of each bar corresponds to
the number of responses. Notably, for each variable, a “Yes” response is associated with a
higher likelihood of an autism diagnosis.

As shown in Table 4, the p-value is below the significance level for variables including
sex, ethnicity, jaundice, and questions A1–A8. This result leads to the rejection of the null
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hypothesis, indicating that these variables have a statistically significant relationship with
the dependent variable class. Thus, these variables should be prioritized in subsequent
analyses. Conversely, variables such as family members with ASD, relation, previous app
use, and questions A9 and A10 did not show significance and are therefore excluded from
further analysis.

Figure 4. Representation of Q-Chat (A1–A10) variables.

Table 4. Chi-Square test for categorical variables.

Categorical Variables p Value

Sex 0.0003848 ***

Ethnicity 1.834 × 10−6 ***

Jaundice 0.0224 ***

Family_mem_with_ASD 1

Relation 0.526

A1 2.2 × 10−16 ***

A2 2.2 × 10−16 ***

A3 2.2 × 10−16 ***

A4 2.2 × 10−16 ***

A5 2.2 × 10−16 ***
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Table 4. Cont.

Categorical Variables p Value

A6 2.2 × 10−16 ***

A7 2.2 × 10−16 ***

A8 2.2 × 10−16 ***

A9 0.89932

A10 0.73447

Note: *** denotes statistical significance.

Table 5 rejects the null hypothesis when the p-value is less than the significance level
of 0.05. Therefore, the type of autism used has no impact on the Q-Chat score. Therefore,
Q-Chat score columns were removed from the dataset for further analysis.

Table 5. ANOVA test for continuous variables.

Continuous Variables p Value

Age 0.03165 ***

Q-Chat-score 0.34444
Note: *** denotes statistical significance.

Figure 5 presents a boxplot of the age attribute, which reveals the presence of outliers.
To improve model accuracy, these outliers need to be removed before fitting the models.
The “Age With Outliers” plot includes all data points, highlighting potential anomalies,
whereas the “Age Without Outliers” plot provides a refined view by excluding these
extreme values. This refinement allows for a clearer analysis of the typical age distribution
within the dataset.

Figure 5. Identification and removal of outliers in the age variable using boxplot analysis.

The correlation plot in Figure 6 shows the relationship among the Q-Chat questions
(A1–A10). Notably, variable A10 shows minimal correlation with the other variables,
justifying its exclusion from further analysis. The plot highlights a positive correlation
between most variables, with A1 displaying correlations of 0.46, 0.24, 0.25, 0.28, 0.37, 0.33,
0.21, 0.32, 0.13, and 0.61 with A2 through A10, respectively. However, the weak correlation
of A10 with other variables supports its exclusion prior to model fitting.
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Figure 6. Correlation analysis of Q-Chat scores (A1 to A10) for autism-detection variables.

3.4. Data-Mining Techniques—Feature Selection

DM techniques encompass a diverse array of methods aimed at obtaining valuable
insights from large datasets. These techniques include EDA, correlation analysis, anomaly
detection through Boxplot, Chi-Square tests, and ANOVA. They are essential across various
domains, from business intelligence to healthcare, enabling organizations to make data-
driven decisions and extract actionable insights from complex datasets. The data-mining
techniques applied in this study are summarized as follows.

3.4.1. Bivariate Analysis

After conducting a single-variable analysis, the subsequent stage involved a bivariate
analysis to compare the two variables. This research strategy employs statistical methods
to generate quantitative findings related to the dependent variable class, further supported
by graphical representations. In this study, the following two types of bivariate analyses
were performed:

1. Chi-Squared Test: This assessment examines categorical values to determine if a
significant correlation exists between two categorical variables [34]. The Chi-Square
test, a statistical method, evaluates the presence of a meaningful relationship between
these variables [35]. The Chi-Square formula is as follows:

χ2 = ∑
(O − E)2

E
(1)

Here, χ2 denotes the Chi-Square statistic, O signifies the observed value, and E
denotes the expected value.
Data for Chi-Square tests are typically presented in a cross-tabulation format, with
each row representing a category of one variable and each column representing
a category of another. It is essential that both variables originate from the same
population and are categorical, such as class (Yes/No), sex (Male/Female), jaundice
(Yes/No), ethnicity, and relation (Yes/No).
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2. ANOVA: The Analysis of Variance (ANOVA) technique is used to evaluate mean
differences between two groups for numerical variables. In this section, the ANOVA
test was applied to continuous columns (age, Q-Chat square). The ANOVA test shows
that the response variable varied according to the level of the categorical variable (or
class). This hypothesis was as follows:

H0: The two variables are independent.

H1: The two variables relate to each other.

F =
MST
MSE

(2)

where F is the ANOVA coefficient, MST is the mean sum of all squares owing to
treatment, and MSE is the mean sum of squares owing to error.

3.4.2. Correlation Analysis

The correlation analysis explored the interrelationships among multiple statistical
variables, quantifying the degree of linear association between pairs of variables [36].
This approach measures how closely related the variables are and whether they tend to
change systematically in relation to one another. Correlation analysis is widely applied
in fields such as finance, medicine, and social sciences to understand interdependencies
between variables.

3.4.3. Outlier Detection

An outlier refers to a data point that significantly deviates from the majority of values
in a dataset [37]. In the context of a boxplot analysis, an outlier is identified as any data
point that falls outside the interquartile range. For this study, we examined the numerical
variable “age” to assess its distribution, utilizing a boxplot to identify potential outliers.

3.5. Applied ML Methods

To improve ASD detection, various ML and DL algorithms [38–41] are applied to
meticulously analyze data collected through mobile applications. The collected data were
then fed into sophisticated algorithms designed to identify distinct patterns in children’s
behaviors. In this novel approach, we employed autism data that underwent an advanced
preprocessing phase to enhance the dataset’s representativeness. This sophisticated integra-
tion of mobile app technology and computational algorithms represents a comprehensive
approach to understanding and analyzing children’s behavioral dynamics.

3.5.1. LR with SHAP Analysis

LR, a statistical methodology, is adept at constructing regression models for response
variables [42]. In logistic regression, p(X) represents the probability that the response
variable equals 1, given a set of predictor variables X1, X2, . . . , Xp. This model estimates
probabilities using the logistic function, ensuring that the output values always fall between
0 and 1, making it suitable for modeling binary outcomes. The logistic model is expressed
as follows:

log
[

p(X)

1 − p(X)

]
= β0 + β1X1 + β2X2 + . . . + βpXp (3)

Here

• Xj: Represents the jth predictor variable;
• β j: Denotes the coefficient corresponding to the jth predictor variable.
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On the right-hand side, the equation forecasts the log odds ratio of the response
variable, assuming a value of 1. Hence, an LR model was established using the follow-
ing equation:

p(X) =
eβ0+β1X1+β2X2+...+βpXp

1 + eβ0+β1X1+β2X2+...+βpXp
(4)

In this study, to explain the performance of the best-performing classifier, we used
explainable AI through a method called SHAP, which interprets the output of ML models.
SHAP is based on game theory and estimates the contribution of each feature in generating
a model’s output. After the classification process, a SHAP analysis was performed to
identify the most essential features for achieving more accurate results. According to this
analysis, A3 emerged as a key feature for producing the best outcomes with XGBoost [43].
The SHAP value formula is given by

Φi(v) = ∑
S⊆N\{i}

|S|!(|N| − |S| − 1)!
|N|! [v(S ∪ {i})− v(S)] (5)

where N denotes all feature sets and S represents a subset. Then, S ∪ {i} is the union of
subset S of feature i. In this case, v(S ∪ {i}) is trained on feature S ∪ {i}, and v(S) is trained
with feature i left out.

3.5.2. Extreme Gradient Boosting

XGBoost, or Extreme Gradient Boosting, extends decision trees by incorporating
multiple trees that work together to determine the final output, rather than relying on
individual trees alone. XGBoost is a powerful ML algorithm known for its efficiency and
accuracy in supervised learning tasks, particularly in classification and regression problems.
It belongs to the ensemble learning family and is based on gradient boosting. The equation
representing the objective function of XGBoost is

Obj =
n

∑
i=1

L(yi, ŷi) +
K

∑
k=1

Ω( fk) (6)

where

• Obj is the overall objective function;
• n is the number of training instances;
• L(yi, ŷi) is the loss function that measures the difference between the actual target yi

and the predicted target ŷi;
• K is the number of weak learners (trees) in the ensemble;
• Ω( fk) is the regularization term that penalizes complex models.

XGBoost iteratively adds new trees to minimize the objective function by using tech-
niques such as gradient descent and exact or approximate algorithms for tree construction.
This iterative process efficiently optimized the model for predictive accuracy.

3.5.3. Deep Models with Residual Connections and Ensemble (DMRCE)

Ensemble models are well-suited for ML because they combine the results of multiple
models, offering a more robust prediction. While a single decision tree may provide a
specific answer, a collection of trees or forests with different types of trees can deliver a more
accurate and reliable result. In this project, we explore a combination of ensemble methods
and DL by integrating a neural network architecture that incorporates residual networks
(ResNet). ResNet introduces the concept of residual connections, or skip connections, which
help to address the vanishing gradient problem in very deep networks. During the training
of deep networks, error gradients tend to diminish as they propagate back through each
layer, causing the gradients to approach zero in deeper layers. To counteract this, residual
connections allow gradients to bypass layers with small gradients and propagate effectively
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to subsequent layers. This helps maintain the flow of information and improves overall
model performance. In this project, we aim to combine ensemble models with the ResNet
approach to create a neural network that leverages both concepts, maximizing accuracy.
The model architecture features a three-headed ensemble-type neural network followed by
a deep dense layer with residual connections. This approach demonstrates how to build
such models using TensorFlow and Keras.

In Figure 7, skip connections are shown as the fundamental mechanism behind resid-
ual networks. The skip connection links layer activations to subsequent layers by by-
passing intermediate layers, thus forming a block structure. The omitted intermediate
blocks are aggregated to generate residuals, enabling the network to focus on learning the
residual mapping instead of each individual layer trying to learn the entire underlying
mapping independently.

F(x) := H(x)− x which gives H(x) = F(x) + x (7)

The derivative of the error with respect to x is expressed as

δE
δx

=
δE
δy

· δy
δx

(8)

=
δE
δy

· (1 + F′(x)) =
δE
δy

· δE
δy

F′(x) (9)

Figure 7. Residual networks.

3.5.4. FAST and Lightweight Automated ML (FLAML)

Automated ML (AutoML) refers to the process of automating various tasks involved
in applying ML to real-world challenges. These tasks encompass everything from handling
raw datasets to constructing ML models that are ready for deployment. In this study,
AutoML is primarily employed to determine the most effective ML algorithm and corre-
sponding parameters for the model. Using FLAML, this project automates common ML
tasks from start to finish, with a variety of customization options. Furthermore, this study
also performs comprehensive tuning of defined functions. The equation for AutoML can
be expressed as

AutoML = arg min
model∈models

loss(model(Dtrain), Dval) (10)

where
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• AutoML represents the automated ML process.
• Model denotes the ML model selected from a pool of potential models.
• Models refer to the set of potential models that can be considered during the Au-

toML process.
• Dtrain represents the training dataset.
• Dval represents the validation dataset.
• loss(·) represents the loss function used to evaluate the performance of the model on

the validation dataset.

In this equation, the goal of AutoML is to determine the model (from a set of potential
models) that minimizes the loss function when applied to the training data, while also being
evaluated on the validation data. The model selection process includes hyperparameter
tuning, feature selection, and engineering.

3.6. Hyperparameter Tuning

As part of this study’s comprehensive research, we focused on fine-tuning the hy-
perparameters of various ML models. This objective was to identify sentence indicators
and enhance the models’ overall performance and generalization abilities. This process
aimed to strike a balance between bias and variance, preventing overfitting. Ultimately, the
goal was to determine the most precise and reliable hyperparameter settings for accurate
sentence detection. In Table 6, we describe the model architecture and parameter settings
for the different methods. To optimize model performance, we employed several strategies.
Grid Search was used for a systematic evaluation of all possible hyperparameter combina-
tions, while Random Search offered a quicker, randomized testing approach. FLAML was
utilized for automated tuning within specific constraints, such _budget. Cross-validation
was employed to ensure robustness, which is especially important in settings like logistic
regression’s split ratio. Additionally, Bayesian Optimization was used, which leverages
probabilistic models to efficiently navigate complex parameter spaces. This technique
proved particularly useful for intricate models, such as XGBoost. Together, these methods
enhance model performance by optimizing parameter settings to achieve higher accuracy
and generalizability.

Table 6. Parameter settings of different applied methods.

Classifier Model Architecture and Parameters

LR family = binomial, split ratio = 80:20, list = FALSE,
probabilities > 0.5

FLAML estimator_list = XGBoost, log_file_name = autism.log,
time_budget = 600

DMRCE verbose = 1, min_lr = 0.00001, batch_size = 20, epochs = 100,
activation = relu

XGBoost

learning_rate = 0.002, objective = binary:logistic,
eval_metric = auc, max_depth = 10, alpha = 0.51, gamma = 1.92,
reg_lambda = 11.40, colsample_bytree = 0.70, subsample = 0.83,
min_child_weight = 2.55

4. Results and Discussions

This section describes the results of the ML methods applied to autism detection using
the proposed real-time framework.

4.1. Software and Hardware Configuration

The experimental setup used to develop and assess the applied ML and DL techniques
is discussed here. Python 3.6 was used for building and evaluating the applied approaches.
A network attack dataset was imported using the pandas module, and the models were
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trained and tested with the scikit-learn module. For DL models, the TensorFlow API was
employed. All experiments were conducted on Google Colab with a GPU backend, 13 GB
of RAM, and 90 GB of disk space.

4.2. Results of Applied Evaluation Methods

The ML model determines the likelihood that each instance belongs to a specific
class [44]. A confusion matrix was used to evaluate model performance, with other per-
formance metrics derived from this matrix. Table 7 presents the confusion matrix for this
autism-detection project, where TP represents true positives, FP indicates false positives,
FN refers to False Negative, and TN denotes True Negative.

Table 7. Confusion matrix of predicted and actual autism.

Predict\Actual Have Autism Not Autism

ASD predicted True Positive (TP) False Negative (FN)

ASD not predicted False Positive (FP) True Negative (TN)

The bar charts in Figures 3 and 4 provide insights into the dataset, while the boxplot
in Figure 5 reveals outliers in the continuous variable “age”. ANOVA and Chi-Square
bivariate analyses were conducted to identify significant variables for the model based
on p-values. According to the Chi-Square test results in Table 4, variables such as family
members with ASD, relation, A9, A10, and prior app usage were excluded from the dataset.
Similarly, based on the ANOVA test in Table 5, Q-Chat score variables were also excluded.
Figure 3 indicates that most individuals in the dataset have a higher likelihood of being
diagnosed with autism, with a demographic predominantly from North America and
composed largely of South Asian, Middle Eastern, and White European ethnicities. The
gender distribution appears balanced, and healthcare professionals represent a significant
portion of the dataset. Additionally, the variables A1 through A10, particularly at the “yes”
response level, show a higher likelihood of autism. Based on the Chi-Square and ANOVA
tests, variables A1, A2, A3, A4, A5, A6, A7, A8, age, sex, and ethnicity were found to be
significant for the model.

Again, from the LR analysis in Table 8, the variables A1, A4, A5, A6, A7, A8, and
jaundice (yes) show significant results based on the p-value with a 95% confidence interval.
The odds ratio indicates the changes in the unit concerning the dependent variable. The
coefficients indicate the beta coefficient estimates and their significance levels. For every
one-unit change in A1, A2, A4, A6, A7, A8, age, and jaundice (yes), the log odds of
autism decrease by −0.061, −0.037, −0.056, −0.081, −0.122, −0.034, −0.0006, and −0.058,
respectively. In contrast, for a one-unit increase in A3, A5, and sex (male), the odds of
autism increased by 0.043, 0.0887948, and 0.0105284, respectively.

Additionally, we observe significant and insignificant variables for predicting autism
class (yes or no). A1, A4, A5, A6, A7, and jaundice (yes) yielded significant results, with
p-values less than 0.05. In contrast, A2, A3, A8, age, and sex showed insignificant results.

Subsequently, in Table 9, the four ML models are compared based on the accuracy,
precision, recall, and F1-score described in the appropriate evaluation with the ASD pre-
processed dataset and confusion matrix based on correctly and incorrectly categorized
dependent variables (classes).

In Table 9 and Figure 8, the results show that the DMLRS model outperformed other
state-of-the-art methods, achieving 99% accuracy, 99% precision, 98% recall, and an im-
pressive 97% F1-score, which is very close to 1, indicating it is a well-balanced model for
this dataset. In comparison, the FLAML model achieved 94% accuracy, 94% precision, 93%
recall, and a substantial 93% DMRCE, while the other models reported 88% accuracy, 64%
precision, 73% recall, and a notable 68% F1-score. Finally, the XGBoost model provides 85%
accuracy, 76% precision, 80% recall, and a substantial 78% F1-score.
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Table 8. LR analysis to extract key predictive patterns.

Variable Name Estimate Odds Ratio (95% CI) p Value Relationship

Intercept 0.9593803 2.610079 2 × 10−16 *** Significant

A1 −0.0611398 0.9406917 0.022261 * Significant

A2 −0.0372514 0.9634339 0.166254 Insignificant

A3 0.0436941 1.044663 0.097515 Insignificant

A4 −0.0562393 0.9453129 0.033022 * Significant

A5 0.0887948 1.092856 0.000686 *** Significant

A6 −0.0815689 0.9216692 0.001979 ** Significant

A7 −0.1228839 0.8843663 1.33 × 10−5 *** Significant

A8 −0.0343828 0.9662016 0.173490 Insignificant

Age −0.0006173 0.9993829 0.322985 Insignificant

Sex (m) 0.0105284 1.010584 0.562028 Insignificant

Jaundice (yes) −0.0584768 0.9432001 0.001709 ** Significant
Note: *, **, *** denotes statistical significance.

Table 9. Comparison of model performances.

Model Accuracy (%) Precision (%) Recall (%) F1 (%)

DMLRS 99 99 98 97

FLAML 94 94 93 93

DMRCE 88 64 73 68

XGBoost 85 76 80 78
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Figure 8. Heatmap for comparison of applied models.

Figure 9 shows a SHAP analysis of the important features used by the DMLRS tech-
nique. Based on the SHAP values of each feature in LR classifiers, the most significant
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outcome include “A3_score”, “A9_score”, result, “A6_score” , and others. In addition,
while most features improved the classification results of the classifiers, some features had a
more substantial impact on the model’s performance. SHAP analysis identifies key features
influencing predictions, assisting clinicians in prioritizing factors that are crucial for patient
care decisions.

Figure 9. Unlocking DMLRS model’s inner workings via SHAP.

Despite these findings, an LR approach is recommended, as it offers specific functions
that can help predict autism. Combining multiple techniques will integrate all processes
across the variables, allowing for a more comprehensive approach to predicting autism and
enhancing the performance of various DM techniques in this context.

The confusion metrics for DMLRS, FLAML, DMRCE, and XGBoost are presented in
Figure 10.

Again, in Figure 11, model accuracy and loss plot show for DMRCE as accuracy plot
can be seen for the DL model of DMRCE. The accuracy plot shows the DMRCE model’s
learning progression over the training epochs. Rapid initial gains indicated fast learning,
with a plateau suggesting convergence. The stability at high accuracy in later epochs
reflects strong generalization, whereas fluctuations might indicate overfitting.
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Figure 10. Confusion matrix of all applied models (a) DMLRS, (b) FLAML, (c) DMRCE, and
(d) XGBoost.

Figure 11. DMRCE model accuracy and loss to track the trends.

4.3. K-Fold Cross-Validation

K-fold cross-validation (K-fold CV) is crucial for assessing model generalization and
robustness by providing a more reliable estimate of performance across different data splits,
thus reducing the risk of overfitting compared with the single evaluation in the previous
subsection. The k-fold CV process is mathematically represented as follows:

CV(k) =
1
k

k

∑
i=1

E
(

Mi, D(i)
test

)
(11)
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where Mi is the model trained on all but the i-th fold, D(i)
test is the i-th fold used for validation,

and E(Mi) is the evaluation of model Mi on D(i)
test. Table 10 displays the results of the 10-fold

cv for each method. The DMLRS method has an impressive accuracy of 0.98 and a low
standard deviation of 0.0049, indicating consistent performance across different subsets.
The FLAML model showed a moderate accuracy of 0.91 with a standard deviation of
0.0042. The DMRCE and XGBoost models show accuracies of 0.85 and 0.89, with standard
deviations of 0.0081 and 0.0037, respectively, indicating a reasonable level of consistency.

Table 10. CV of performance analysis.

Method K-Fold Accuracy Standard Deviation

DMLRS 10 0.98 0.0049

FLAML 10 0.91 0.0042

DMRCE 10 0.85 0.89

XGBoost 10 0.0081 0.0037

4.4. Computational Complexity by Runtime

In Table 11, computational complexity is represented by the runtime(s) required
to complete the computation. The DMLRS method is relatively fast, taking only 0.41 s.
FLAML, DMRCE, and XGBoost were also efficient, with a runtime of 0.50, 0.65, and 0.62 s,
respectively. The data suggest that there is a trade-off between accuracy and runtime and
that the choice of method may depend on the specific requirements of the application in
terms of speed and performance.

Table 11. Runtime computations.

Method Runtime Computations (Seconds)

DMLRS 0.41

FLAML 0.50

DMRCE 0.65

XGBoost 0.62

4.5. Comparison with Previous Studies

To ensure a robust evaluation, we benchmarked the performance of our novel proposal
against state-of-the-art techniques. This review is of a broad spectrum of cutting-edge
methods developed over the past year.Notably, the performance scores of the various
current approaches displayed differences, with the lowest accuracy recorded at 98.10%,
indicating room for improvement. The proposed DMLRS approach stood out significantly,
achieving a maximum accuracy of 99%. From Table 12, our proposed DMLRS work
achieved a higher accuracy than the other papers. Therefore, the proposed model can be
applied to other autistic prediction studies. Table 12 was reproduced by us following the
same protocol (training and test data) but with a different dataset. We used the autism
dataset from a secondary source and adhered to the same methodology to ensure the
consistency and comparability of the results.
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Table 12. State-of-the-art of existing research studies on ASD prediction.

Ref Methods Tools Dataset Accuracy Sensitivity Specificity

[43] SVM, LG, Tree Weka 29 attributes, 627 samples 97.70% 99% 94%

[45]

Naive Bayes, S.O.M., Neural
Fuzzy, LVQ, Neural
Network, K-means, Fuzzy C
Mean

Developed 16 attributes, 100 samples 98% 95.26% 96.16%

[46] SVM, LR, DT, Probabilistic
variations R, Weka 28 attributes, 4540 samples 97.27% 98% 89.39%

[47] SVM, LR, DT Scikit-Learn 65 attributes, 2925 samples 97.16% 97.22% 97.40%

[48] SVM Weka 65 attributes, 1726 samples 95.17% 87.95% 96.20%

[2] NB, BG, CART, C4.5, KS,
SVM, RT Weka

4 datasets, 18, 23, 23, 23
attributes (1054, 509, 248,
1118 samples, respectively)

97.77% 97.66% 97.16%

[49] Decision Tree, Random
Forest R 20 attributes, 1054 samples 91.74% 99% 92.39%

[50] NB, SVM, KNN Weka 20 attributes, 1054 samples 98% 92.39% 92.11%

Our work LR, Auto ML, DMRCE,
XGBoost R, Python 20 attributes, 1054 samples 99% 98% 99%

4.6. Web-Based Autism Application System

Autism detection is a critical area of contemporary research. Traditional medical
approaches to diagnosing autism can be prohibitively expensive, presenting challenges
for the general population in accessing healthcare services. To address this issue, this
study introduces a cost-effective and user-friendly solution: a web application for autism
detection, developed using the Django framework, as illustrated in Figure 12. This web-
based Autism Prediction System is designed to be accessible and easy to use. To utilize
this service, individuals must register on the platform and create an account using their
names, emails, and passwords. Once logged in, the system prompts users to input specific
information aligned with autism dataset parameters to facilitate the prediction of autism.
Upon submission of the required data, the web application analyzed the information
and provided an immediate assessment. If indicators of autism are detected, the system
displays the message “You have Autism”; otherwise, it confirms “You have no Autism”.
This intuitive interface simplified the autism screening process, making it accessible to a
wider audience. Many users tested the app for usability, providing feedback to improve
the interface and functionality for practical clinical use.

4.7. Limitations of Study

While this research introduces innovative ML methodologies for autism detection,
it is important to acknowledge certain limitations. First, autism cannot be definitively
diagnosed through the ten research questions (A1–A10) used in this application; thus, the
system was designed to merely suggest the likelihood of autistic traits rather than provide
a conclusive diagnosis. The reliance on self-reported data introduces potential biases, as the
accuracy of the input directly affects the reliability of the predictions. Additionally, there
is a need for more diverse data encompassing various regions and cultures to enhance
prediction accuracy. The limited range of characteristics considered for ASD diagnosis
in this model may not comprehensively cover all aspects of ASD, potentially affecting its
efficacy. Finally, the current model’s performance could be challenged as the sample size
and number of variables increase, indicating a potential need for further refinement to
maintain accuracy and reliability in more complex scenarios.
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Autism Disease Prediction

Age in Month 

Does your child look at you when you call his/her name?

Gender(Male or Female)

Does your child point to indicate that s/he wants something?

Common Ethnicites

Does your child pretend? e.g. care for dolls , talk on a toy phone?

How easy is it for you to get eye contact with your child?

Does your child point to share an interest with you?

Would you describe your child’s first word?

Does your child follow where you are looking?

Predict

If you or someone else in the family is visible upset, does your child show
signs of wanning?

Figure 12. Newly developed Autism app screenshot and comparison of all models.

5. Conclusions and Future Directions

In the current era, the early detection of ASD presents a significant challenge in the
fields of medical science, particularly in DM and ML. This study endeavored to construct a
system capable of accurately predicting ASD. Initially, various DM, ML, and DL techniques
were employed to identify pertinent variables for the model, with the aim of achieving
the highest possible prediction accuracy. This study explored and evaluated four ML
techniques combined with DL approaches and diverse statistical DM methods at different
stages of research. The primary objective of this study was to accurately classify ASD cases
(identifying whether an individual has ASD) to provide early intervention opportunities
for individuals with ASD. The proposed DMLRS model obtained the highest accuracy of
99%, which not only demonstrates credibility but also highlights its significant efficiency.
The proposed approach outperformed previous studies on autism detection, achieving
remarkable accuracy and making a noteworthy contribution to the field. Additionally,
a comparative analysis was conducted to identify the most reliable DM method for the
model and web application system. In summary, this study proposes a model combining
DM and ML techniques to analyze ASD datasets and facilitate early autism detection.
The model utilized feature importance methods like ANOVA and Chi-Square to identify
significant features. Subsequently, DMLRS, Auto ML, DMRCE, and XGBoost have been
used for early-stage autism classification. Furthermore, the SHAP interpretation method
was applied for the in-depth evaluation of DMLRS’s outcomes. Notably, unlike most ASD
datasets that are genetic, this study focused on behavioral variables, a unique approach
that is not commonly used in existing ML research.

Future Work

In future research, scholars may leverage advanced data-mining techniques to further
enhance the robustness and reliability of our model. The scope of this work can be expanded
to address real-world challenges in autism by integrating additional data-mining models,
streamlining the analysis process. Moreover, future studies should focus on expanding



Mathematics 2024, 12, 3515 25 of 27

datasets and gaining deeper insights into the characteristics associated with ASD, with an
emphasis on utilizing primary data to improve outcomes.

Exploring the possibility of constructing hybrid classifiers by combining diverse
methodologies is a promising approach. Moreover, enhancing the proposed framework
could lead to the development of a more sophisticated system, benefiting both individuals
and advanced healthcare systems for autism.
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