
Citation: Erdős, P.L.; Kharel, S.R.;

Mezei, T.R.; Toroczkai, Z. New Results

on Graph Matching from

Degree-Preserving Growth.

Mathematics 2024, 12, 3518. https://

doi.org/10.3390/math12223518

Received: 8 October 2024

Revised: 28 October 2024

Accepted: 8 November 2024

Published: 11 November 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

mathematics

Article

New Results on Graph Matching from Degree-Preserving Growth
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Abstract: The recently introduced model in S. R. Kharel et al.’s study [Degree-preserving network
growth. Nature Physics 2022, 18, 100–106] uses matchings to insert new vertices of prescribed degrees
into the current graph of an ever-growing graph sequence. The process depends both on the size
of the largest available matching, which is the focus of this paper, as well as on the actual choice of
the matching. Here, we first show that the question of whether a graphic degree sequence, extended
with a new degree 2δ, remains graphic is equivalent to the existence of a realization of the original
degree sequence with a matching of size δ. Secondly, we present lower bounds for the size of the
maximum matchings in any realization of the degree sequence. We then study the bounds on the size
of maximal matchings in some realizations of the sequence, known as the potential matching number.
We also estimate the minimum size of both maximal and maximum matchings, as determined by
the degree sequence, independently of graphical realizations. Along this line we answer a question
raised by T. Biedl et al.: Tight bounds on maximal and maximum matchings. Discrete Mathematics
2004, 285, 7–15.

Keywords: degree sequence extension; matching number; degree-preserving growth (DPG); lower
bound on the matching number

MSC: 05C70; 05C82

1. Introduction

The recently introduced degree-preserving growth (DPG) network evolution dynamics
(see [1,2]) chooses k pairwise independent edges (a k-matching, where k may be chosen
dynamically), deletes those edges, and connects all the end points of the original edges
with a new vertex v. This operation is also called the pinching of edges by the incoming
vertex v. The degree of the new vertex is d(v) = 2k, and the process keeps the degrees of all
the original vertices unchanged, which is the reason for the name degree-preserving network
growth (DPG). This mechanism is in sharp contrast with previous network growth dynamic
models (such as the preferential attachment model, or the Chung-Lu model for generating
scale-free networks) where some of the existing nodes must increase their degrees whenever
a new node attaches to them. (Note, the incoming node’s degree can also be odd [2], but
we will not consider that here.)

Clearly, the process depends on the degree k of the incoming vertex, and also on
the actual choice of the matchings to be used. For example, the chosen matching may
always have the same size, thus generating a regular graph sequence, or the chosen
matchings can always be maximum ones, providing center–periphery-like networks
(see [1]). The choice of the matching of a given size can also vary (as there can be several
matchings of a given size, in general). Clearly, different strategies for these choices provide
different network evolution dynamics. The DPG mechanism defines a whole family of
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network growth models, proving useful in network modeling applications [1]. For exam-
ple, it was proved that it can simulate the outputs of several, previously known network
growth dynamics, including scale-free networks, and furthermore, it can generate most
real-world networks precisely, i.e., the exact graph, edge-by-edge [1]. Interestingly, the
latter, numerically observed property is in contrast with the fact (proven in [2]), that DPG
construction is NP-hard, in general. Finally, we mention that the DPG process has an
interesting application in number theory and to prime gaps, in particular [3].

In this paper, we focus on the study of the available matchings in the different realiza-
tions of a given degree sequence. The largest size of a matching in finite graphs is called
the graph’s matching number, denoted by ν(G), and it is a graph invariant. It is well-known
that there exist polynomial-time algorithms that find a maximum size matching in any
given simple graph G (for example, the “blossom” algorithm of Edmonds [4]). However, it
is difficult to estimate the matching number analytically on the basis of several commonly
used graph parameters. For example, two graphs with the same degree sequence may have
very different matching numbers (consider the disjoint union of 2k triangles and of the
cycle C6k of length 6k, i.e., ν = 2k vs. ν = 3k), even by orders of magnitude (see Section 4).
Furthermore, local operations (such as manipulating one vertex and its neighbors) on
the graph may change this number significantly. For example, in the friendship graph Fk
(which is formed by k copies of K3, overlapping in one vertex), the matching number is
ν(Fk) = k. However, after one DPG step [1] (using the edges of the maximum matching)
we obtain the complete bipartite graph K2,2k with ν(K2,2k) = 2.

The goal of this paper is twofold. First, it aims to study the maximal possible matching
number among all the possible graphical realizations of a degree sequence (potential
matching number), see Section 2. Second, (in Section 3), it aims to study the size of maximal
matchings of arbitrary graphs with given degree sequences (forcible matching number).
These quantities may help to design new graph growth dynamics to achieve networks
with predefined structural properties. We will also answer a question, first raised by Biedl,
Demaine et al. in [5] (see Theorem 8). Section 3.2 further improves on some of the results in
Section 3.

The topic of potentially or forcibly P-graphic properties is widely studied, but as far
as we are aware, not in the context of matchings. For an early survey paper about the
general notions see Rao, [6]. These notions had most likely been inspired by the work
of C. Nash-Williams, who introduced the terms of potentially Hamiltonian and forcibly
Hamiltonian, already in 1969 (see [7]). However, this article has not been surveyed in [6].

Next, we fix the exact notion of a matching as it will be applied in this paper. Let
G be a simple graph. Consider a non-negative integer-valued function f (v), defined on
V(G). The subgraph F ⊆ G is an f -factor if degF(v) = f (v) for all v ∈ V(G). For vertices
with f (v) = 0, the vertex does not belong to F. A 1-factor is a spanning subgraph with
all degree-one vertices and thus it forms a perfect matching in G. When the f -values vary
between 0 and 1, then the f -factor is a (partial) matching or a (0, 1)-factor. For simplicity,
we will use the slightly ambiguous notion of δ-matching for (0, 1)-factors of 2δ ones in f .

For a given graph G, the existence of a 1-factor is fully determined by Tutte’s 1-
Factor theorem (see [8]). Deciding whether there exists an f -factor in G, in general, is also
relatively easy: the problem is equivalent to finding a 1-factor in a graph derived from G
using Tutte-gadgets (see [8]).

However, the potentially and forcibly f -factor problems in general are not well under-
stood. The forcibly 1-factor graphic problem has been solved for a long time, see Bondy and
Chvátal, [9]. Furthermore, J. Petersen proved in 1891 [10] that every even-degree regular
graph contains a 2-factor, and thus such degree sequences are forcibly 2-factor graphic. In
2012, Bauer, Broersma, van den Heuvel, Kahl, and Schmeichel [11] proved a necessary and
sufficient condition for degree sequences to be forcibly 2-factor graphic, but the conditions
are very complex. In this paper, we provide novel results on both the potentially and
forcibly (0, 1)-factor problems.
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2. Potentially (0,1)-Factor Graphical Degree Sequences

A sequence d of n positive integers (n-sequence) is graphic, if there is a graph with a
vertex labeling, such that the degree sequence of the graph is d. Such a graph is called a
realization of the graphic sequence d. Let us recall an algorithmic characterization of graphic
sequences, introduced independently by Havel and Hakimi:

Theorem 1 (Havel, 1955 [12] and Hakimi, 1962 [13]). There exists a simple graph with degree
sequence d1 > 0, d2 ≥ . . . ≥ dn ≥ 0 if and only if the degree sequence d′ = d2 − 1, . . . , dd1+1 −
1, dd1+2, . . . , dn is graphic.

Theorem 1 also provides the simple quadratic HH algorithm to generate an actual
graph with the given degree sequence (if there is any). At the same time it is interesting to
remark that the HH algorithm cannot construct all realizations of a graphic sequence (see,
for example ([14], Figure 1)). To be able to do so, further considerations are necessary, such
as the star-constrained graphicality theorem-based algorithm ([14], Theorem 6).

2.1. Extended Degree Sequences and Matchings

Next, we study the conditions under which we can extend a graphic degree sequence
with an even degree. Let us consider a non-increasing graphic sequence d and an integer
∆ > 0. We want to find necessary and sufficient conditions to ensure that the extended
degree sequence d ◦ ∆ = d1, . . . , dn, ∆ is graphic. (By the handshake lemma, ∆ should be
even.) It is also clear that Theorem 1 provides the following statement.

Lemma 1. Given a non-increasing graphic sequence d and a positive integer δ ≤ n/2, the
extended sequence D(2δ) = d ◦ (2δ) is graphic if and only if the sequence d′ := d1 − 1, . . . ,
d2δ − 1, d2δ+1, . . . , dn is also graphic.

Next, we show that the graphicality of the extended sequence is closely related to the
existence of large enough matchings in some realizations of the graphic sequence. To prove
that, we introduce several notions and notations.

The number of edges in G is denoted by m(G) = |E(G)| and the maximum degree in
G by ∆(G). When G is known from the context, we use only m or ∆. The degree sequence of
a graph G is denoted by d(G), while the degree of a vertex v in a degree sequence d = d(G)
is denoted by d(v). The ith element of a degree sequence d is denoted by di.

A matching is a set of pairwise independent edges, and a k-matching is a matching
comprising k edges. A matching is maximum if it has the greatest cardinality among all
matchings in G. We will use the notation ν(G) for this maximum cardinality matching
(recall, this is the matching number of G). In turn, a matching is maximal if it is not a proper
subset of another matching. Clearly, all maximum matchings are maximal, but not vice
versa. Let M be a matching in some graph G. As usual, we say that a vertex v ∈ V(G) is
matched if there exists an edge in M incident with v.

Consider the integer sequence k = (k1, k2, . . . , kn), where for all i we have k − 1 ≤ ki ≤ k
where k is a natural number. The following, lesser-known theorem was conjectured by
Grünbaum, [15] (Generalized k-factor Conjecture), and was first proven in [16]:

Theorem 2 (Kundu, 1973). Let d = (d1, d2, . . . , dn) and (d1 − k1, d2 − k2, . . . , dn − kn) be two
graphic sequences. Then, there exists a realization of d which contains a k-factor.

In the language introduced earlier, it gives a condition for a degree sequence for being
potentially k-factor graphic. In the following we will consider only (0, 1)-factors. In 1974,
Lovász, independently from [16], gave a simple proof for the case k = (1, . . . , 1) [17].

As far as we know, the following application of Kundu’s theorem is new.
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Theorem 3 (Weak extension condition). Given a graphic sequence d and a positive integer
δ ≤ n/2, the sequence D(2δ) = d ◦ (2δ) is graphic if and only if the sequence d has a realization
with a matching of size δ.

We remark that while technically the proof is quite simple, the statement itself is rather
surprising, and in the context of the DPG processes it is especially meaningful.

Proof. If a realization G of the graphic sequence d has a matching M of size δ, then
we construct G+ by pinching the edges of the matching M onto a new vertex v: let
V(G+) = V(G) ∪ {v}, and let

E(G+) = E(G)− M + {vu | u ∈ ∪M}.

It is easy to see that the degree sequence of G+ is d ◦ (2δ).
For the other direction, let G+ be a realization of d ◦ (2δ) on the vertex set V+ and

let v ∈ V+ be a vertex with degree d(v) = 2δ. Take the subgraph G = G+ − v (delete the
vertex v and its incident edges). Since both d and d(G) are graphic degree sequences on
the vertex set (V+ − v), and d = d(G) + k where k has 2δ ones and n − 2δ zeros, Kundu’s
theorem immediately implies that there is a realization of d on (V+ − v) which contains a
δ-matching on the neighbors of v in G+.

Let us recall the following well-known fact:

Lemma 2. Let d be a non-increasing positive integer sequence, and let d ◦ (2δ) be graphic. Let G
be a realization of d ◦ (2δ), where deg(u) = 2δ. If uvi ∈ E(G) and uvj ̸∈ E(G) for some j < i,
then there exists another realization G′ of d ◦ (2δ) where uvj ∈ E(G′) and uvi ̸∈ E(G′), but the
rest of the neighborhood of u is not changed.

This statement motivates introducing a partial ordering on all (0, 1) sequence k with
2δ ones:

(∗) k1 ⪯ k2 if and only if the ones in k1 can be produced from the ones in k2 by left-shifting.

Lemma 3. Let d be a non-increasing positive integer n-sequence, and let k be a (0, 1) sequence
with 2δ ones. If sequence d − k is graphic, then so is the sequence d − k′, for all k′ where k′ ⪯ k.

Note, we do not assume that d is graphic.

Proof. Let G be a realization of the graphic sequence d − k(. We construct a new graph
G′ by adding a new vertex u to G and connecting it to each vi where k(i) = 1. The degree
sequence of G′ is D(2δ) = d ◦ (2δ).

Next, we (iteratively) apply Lemma 2 to G′. Therefore, since k′ ⪯ k,

(∗∗) there exists another graphic realization G∗ of D(2δ) where the neighbors of u are
those vi, for which k′(i) are ones.

We remark that statement (∗∗) is similar to ([14] Lemma 4). Now deleting u and its
edges from G∗, we obtain a graph G+ whose degree sequence is d − k′.

Corollary 1. Let d be a non-increasing graphic degree sequence. The degree sequence d has a
realization with a matching of size δ if and only if the sequence d1 − 1, . . . , d2δ − 1, d2δ+1, . . . , dn
is graphic.

Proof. (⇒) Assume there is a realization G of d which contains a δ-matching. Delete this
matching, obtaining a graph with degree sequence d − k where k has 2δ ones. Since k0
with ones on the first 2δ positions is the minimal element in the poset, Lemma 3 proves
the statement.
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(⇐) Since, by assumption, d − k0 is graphic, Kundu’s Theorem 2 provides a realization
with a δ-matching.

Now, Lemma 1 and Corollary 1 lead immediately to a strengthening of Theorem 3:

Theorem 4 (Strong extension condition). Given a graphic sequence d and a positive even
integer δ ≤ n/2, the sequence D(2δ) = d ◦ (2δ) is graphic if and only if the sequence d has a
realization with a matching of size δ that covers the vertices with the largest 2δ degrees.

The special case of this result for perfect matchings was proven by Lovász and Plum-
mer in ([18] [Theorem 10.3.3]). The proof of Corollary 1 from Theorem 3 is not difficult.
However, one can argue that this statement can play a similar role as the (also simple)
Havel–Hakimi theorem.

Corollary 2. Let d be a non-increasing graphic sequence on n vertices. If the sequence
D(2δ) = d ◦ (2δ) is graphic, then the sequence D(2δ′) is also graphic for all positive integers δ′

less than δ.

Proof. Since sequence D(2δ) is graphic, by Theorem 4, the graphic sequence d has a
graphic realization with δ independent edges, and thus it also has δ′ independent edges.
The graphicality of D(2δ′) follows from Theorem 4.

In view of Corollary 2, one can easily find the largest integer δ∗ for which D(2δ∗) is
graphic, by running a binary search on the interval δ ∈ [2, ⌊n/2⌋].

2.2. Potentially Maximum Matchings—Analytically

In this subsection, we derive the exact size (Theorem 6) and a lower bound (Theorem 7)
of the potentially maximum matching of a given degree sequence from the Erdős–Gallai
inequalities.

Definition 1. Denote by G(d) the set of all labeled simple graph realizations of a graphic degree
sequence d and let

ν∗(d) = max
G∈G(d)

ν(G) (1)

denote the largest matching number among all of its realizations. (Of course ν∗ = δ∗, where the
latter was determined at end of the previous subsection.)

Here, we are looking for an analytical formula for ν∗ involving as few inequalities as
possible. The basis of our study is the well-known Erdős–Gallai theorem:

Theorem 5 (Erdős–Gallai, 1961, [19]). A non-increasing degree sequence d on n vertices is
graphic if and only if ∑n

i=1 di is even and

k

∑
i=1

di ≤ k(k − 1) +
n

∑
i=k+1

min{di, k} (2)

holds for any 1 ≤ k ≤ n. The equivalence is true even if (2) is required to hold only for k = n and
those k that satisfy dk > dk+1.

This theorem can be also derived from Tutte’s factor theorem (see [20]). Theorem 3
implies that ν∗(d) can be determined in polynomial time by finding the largest integer δ for
which d ◦ (2δ) is graphical, which can easily be checked via the Erdős–Gallai inequalities.
However, a number of these inequalities need not be checked in this scenario, as we will
prove in Theorem 6.
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Definition 2. For any non-increasing degree sequence d, let

td(δ) =
∣∣{i > δ | di = dδ}

∣∣− ∣∣{i < δ | di = dδ}
∣∣.

Theorem 6. For any graphic (non-zero) non-increasing degree sequence d

ν∗(d) = max

{
1
2

δ ∈ N
∣∣∣ k

∑
i=1

di ≤ k2 +
n

∑
i=k+1

min{di − Ii≤δ, k} ∀1 ≤ k <
1
2

δ and

k

∑
i=1

di + |{i > δ | di = dδ}| ≤ k2+

+
n

∑
i=k+1

min{di − Idi=dδ
, k} for k = δ + td(δ)

} (3)

where IX = 1 if X is true, otherwise IX = 0.

The proof of this complicated formula is based on algebraic manipulations of the Erdős–
Gallai’s theorem, and it is shown in the Appendix A. Note, the remaining inequalities in
Equation (3) can be quite complex from an analytical point of view. As the last result in this
section, we provide a simple lower bound for ν∗(d).

Theorem 7. The size of the potentially maximum matching in a graphic sequence d is

ν∗(d) ≥ min
k=1,...,n

⌊
k − 1 +

1
2

∣∣{i | k ≤ di ≤ dk}
∣∣⌋ (4)

Proof. For convenience, let

m∗ = min
k=0,...,n−1

⌊
k +

1
2
|{i | k + 1 ≤ di ≤ dk+1}|

⌋
.

By Theorem 3, to deduce Equation (4), it is sufficient to prove that d ◦ (2m∗) is graphic.
Note, that

m∗ ≤ 0 +
1
2
|{i | 1 ≤ di ≤ d1}| ≤

1
2

n,

and m∗ is a clearly a positive integer. Since d is graphical, Theorem 5 applies. First, we
distinguish three cases.

• For k = n, we have

n

∑
i=1

di ≤ n(n − 1),

n

∑
i=1

di + 2m∗ <
n

∑
i=1

di + 2n ≤ (n + 1)n,

i.e., the (n + 1)th Erdős–Gallai inequality holds for d ◦ (2m∗).
• If 2m∗ ≤ dk, then

k

∑
i=1

di ≤ k(k − 1) +
n

∑
i=k+1

min{di, k},

k

∑
i=1

di ≤ k(k − 1) + min{2m∗, k}+
n

∑
i=k+1

min{di, k}.
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The last inequality means that the kth Erdős–Gallai inequality holds for d ◦ (2m∗) if
2m∗ ≤ dk and k ≤ n.

• If 2m∗ > dk+1 and k < n is a jump locus of d then

k

∑
i=1

di ≤ k(k − 1) +
n

∑
i=k+1

min{di, k},

k

∑
i=1

di + 2k ≤ k(k + 1) +
n

∑
i=k+1

min{di, k},

k

∑
i=1

di + 2k + |{i | k + 1 ≤ di ≤ dk+1}| ≤ k(k + 1) +
n

∑
i=k+1

min{di, k + 1},

k

∑
i=1

di + 2m∗ ≤ k(k + 1) +
n

∑
i=k+1

min{di, k + 1}.

The last inequality is the (k + 1)th Erdős–Gallai inequality associated with d ◦ (2m∗).

Note, that if 2m∗ ≥ dk and k + 1 is a jump locus of the non-increasing version of
d ◦ (2m∗), then k is a jump locus of d. Therefore we have shown that the kth Erdős–Gallai
inequality holds for d ◦ (2m∗) when

• k = n + 1,
• 1 ≤ k ≤ n and 2m∗ ≤ dk,
• 2 ≤ k ≤ n and 2m∗ > dk and k is a jump locus of the non-increasing version of

d ◦ (2m∗).

It remains to be shown that Equation (2) holds for d ◦ (2m∗) with k = 1 only when
2m∗ > d1. By taking k = 0 in the equation defining m∗, we obtain

m∗ ≤ 0 +
1
2
|{i | 1 ≤ di ≤ d1}|

2m∗ ≤
n

∑
i=1

min{di, 1}.

Via Theorem 5, this concludes the proof that d ◦ (2m∗) is graphic.

3. Forcibly (0,1)-Factor Graphic Degree Sequences

In this section, we are looking for conditions on the degree sequence d which make it
forcibly δ-matching graphic (i.e., each realization of d should contain a δ-matching).

3.1. How Big Must the Maximal Matching Be in Any Realization of a General Degree Sequence?

In this subsection, we will study the maximal forcible matching graphic property for
general degree sequences. Recall that a matching is maximal if it is not fully contained by
another matching.

For any matching M in a graph G(V, E), let VM ⊆ V denote the set of matched
vertices and let UM be the set of unmatched vertices. Clearly, VM ∪ UM = V. Note that
|VM| = 2|M|.

Proposition 1. For any maximal matching M in graph G with no isolated vertices we have
the following:

(i)
∑

v∈VM

d(v) ≥ ∑
u∈UM

d(u) + 2|M|. (5)

(ii)
∑

v∈VM

d(v) ≥ m(G) + |M|. (6)
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Proof. (i) The vertices in UM are clearly independent. Furthermore, each edge in-
cident with u ∈ UM must be incident with an v ∈ VM. Finally M is completely
within VM.

(ii) The next part follows immediately from (5) after adding to both sides ∑v∈VM
d(v)

and observing that ∑v∈VM
d(v) + ∑v∈UM

d(v) = ∑v∈V d(v) = 2m(G).

We can now use this to obtain more concrete lower bounds on the LHS of (6). The
simplest of these is the following:

Corollary 3 (First observed by Biedl, Demaine et. al. [5]). For any maximal matching M of a
graph G:

|M| ≥ m(G)

2∆(G)− 1
. (7)

Proof. This follows immediately from (6) after noting that 2|M|∆ ≥ ∑
v∈VM

d(v).

This statement means that if a matching is smaller than the RHS of (7), then the match-
ing can be greedily extended to a bigger one. We remark that this proof is different from the
proof in Biedl et al.’s work ([5] Theorem 7). The authors of that paper raised the following
question (Section 5, Problem 2): “What can be said about the size of maximum matchings
in graphs? Can we improve on bound (7)?” We offer answers in Theorems 8 and 12 below.

Theorem 8 (Maximality-bound). Let G be a graph without isolated vertices and with the non-
increasing degree sequence d. For any maximal matching M in G, we have

|M| ≥ k∗ = min

{
k ∈ N

∣∣∣ 2k

∑
i=1

di − m(G)− k ≥ 0

}
. (8)

The degree sequence is forcibly k∗-matching graphic.

Proof. Let r(k) = ∑2k
i=1 di − m(G)− k. Since every di ≥ 1 and the degree sequence d is

non-increasing, r(k) is strictly monotone increasing. From Equation (6) it follows that for
any maximal matching M of size k, we have

r(k) ≥ ∑
v∈∪M

d(v)− m(G)− |M| ≥ 0. (9)

In other words, if r(k) < 0, then there exists a matching of size at least k + 1, which is
equivalent to the statement.

As we will see soon by Lemma 4, this affirmatively answers the question of the authors
of [5], since this bound is stronger than the one in (7).

We also want to compare the strength of Theorem 8 with other known lower bounds.
However, there are not many such results on the value of ν(d) (without additional special
structural requirements on G, like, e.g., being bipartite). We are aware of only two such
results. The first one is based on Vizing’s seminal result on the chromatic index:

Theorem 9 (Vizing, 1964, [21]). For any simple graph G, the edge-chromatic number satisfies
χ′(G) ≤ ∆(G) + 1.

The following lower bound then follows easily.

Corollary 4 (Vizing-bound).

ν(G) ≥ m(G)

∆(G) + 1
. (10)
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This approximation can be close to the actual value if the degree distribution is
concentrated, but in case of heterogeneous degree sequences this can be vary far from being
sharp. The Vizing-bound is better than inequality (7), but it only applies to maximum
cardinality matchings, and not necessarily to all maximal matchings.

To describe the other known lower bound we will use the following notation: let tG(q) be
the number of nodes in G whose degree does not exceed q.

Theorem 10 ([2], Theorem 4.4). Let G be a simple graph on n nodes. Let

r(G) := min

{
ℓ ∈ Z+ : max

0≤q< n−ℓ
2

(tG(q)− q + 1) ≤ ℓ

}
. (11)

Then, G has a matching of size:
⌈

n−r(G)
2

⌉
≤ ν(G).

We will call this result Pósa-bound, since in [2] it was proven using Pósa’s seminal
Hamiltonian cycle result [22]. A slightly different form of this result was proven by Chvátal
and Bondy already in ([9] Theorem 5.1) (using, essentially, Chvátal’s Hamiltonian cycle
theorem). Inequality (11) has proven to be very useful for several DPG dynamics (such as
the so-called linear DPG and MaxDPG) models. In a wide range of cases it provides much
better estimates than the Vizing-bound, Equation (10).

Next, we give four toy degree sequence examples, illustrating the strengths of these
three results (Theorem 8, Lemma 4 and Theorem 10), in comparison with previous bounds.

Example 1. For ℓ-regular graphic degree sequence d on n nodes. (Clearly, there are a big many
not isomorphic ℓ-regular graphs.) The maximality-bound (Theorem 8) yields

ν(G) ≥ 1
2

ℓ

2ℓ− 1
n , (12)

while the Vizing-bound (Corollary 4) is almost sharp, since a “typical” (uni-
formly random) regular graph has ν(G) = n/2 − O(log n) with high proba-
bility [23].

Example 2. The well-known (non-bipartite) half-graph is defined as follows for every even
n: let the set of vertices be the integers 1, . . . , n, and two distinct vertices
i and j are joined by an edge ij if and only if i, j ≤ n/2 or i + n/2 ≤ j.
(Clearly, this graph is unique.) The Pósa-bound (Theorem 10) gives the
correct ν = n/2, while the estimate given by the Vizing-bound is only ∼ n/4,
and the maximality-bound is also not any better either (∼ 2−

√
2

4 n).
Example 3. In the well-known windmill graph Wd(t, ℓ), we have t copies of Kℓ cliques,

sharing one central vertex. The special case ℓ = 3: Wd(t, 3) is called the friend-
ship graph. Clearly, the matching number is ν(Wd(t, 3)) = t = (n − 1)/2 (near
perfect matching, with one unmatched vertex). The maximality-bound im-
plies that ν(Wd(t, 3)) ≥

⌈ n+3
6

⌉
. The Vizing and Pósa estimates are constants.

Example 4. For a general windmill graph Wd(t, ℓ) the Vizing-bound yields ν(Wd(t, ℓ)) ≥ ℓ−1
2 ,

the Pósa-bound gives ν ≥ ℓ, and the maximality-bound implies
ν ≥ n−t+1

4 .

In Example 1, the Vizing-bound is a factor of 2 better than the maximality-bound
k∗ in Equation (8). However, this is a worst case scenario, as the next lemma shows.
Moreover, the next lemma also shows that the maximality-bound is better than the bound
of Corollary 3, i.e., that we positively answer the question raised by the authors in [5].

Lemma 4.
1
2

m
∆ + 1

<
m

2∆ − 1
≤ k∗
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Proof. Recall from the proof of Theorem 8 the following notation: let r(k) = ∑2k
i=1 di −

m(G)− k for a non-increasing degree sequence d.

r
(⌊

m
2∆ − 1

⌋)
=

2⌊ m
2∆−1 ⌋

∑
i=1

di − m −
⌊

m
2∆ − 1

⌋
≤

≤ 2
⌊

m
2∆ − 1

⌋
· (∆ − 1/2)− m ≤ 0.

If any of the inequalities are strict, then it follows from the definition that ⌊ m
2∆−1⌋ < k∗.

If every inequality holds with equality, then m
2∆−1 is an integer and r

( m
2∆−1 − 1

)
= 1− 2∆ < 0,

which also implies the statement.

3.2. Strengthening the Maximality-Bound

In the remaining part of this paper, we will strengthen our maximality-bound for both
maximal and maximum size matchings. Let us begin with maximal matchings.

In addition to inequality (8), we can study the derived subgraph G[U, V], obtaining
the following inequality system. This leads to a slightly stronger, but a computationally
more complicated result than Theorem 8.

Lemma 5. Let M be a maximal matching in G and let its degree sequence be d. Then

∀U ⊆ UM ∑
v∈VM

min{d(v)− 1, |U|} ≥ ∑
u∈U

d(u). (13)

Proof. Since M is a maximal matching in G, UM must induce an empty graph in G. The
number of edges incident on U is counted on the RHS of Equation (13). The set of edges
incident on a vertex of U must be also incident on VM. A vertex v ∈ VM is joined to at
most d(v)− 1 vertices of U, because the edge of M which is incident on v is not incident
on UM. Also, v is joined to at most |U| vertices of U. Therefore, the RHS of Equation (13)
is bounded by the sum of min{d(v)− 1, |U|} for all v ∈ VM. (This inequality system is
very similar to the one that appears in the well-known Gale–Ryser theorem, which fully
describes the graphic bipartite degree sequences ([24,25]).

We have the following result on the forcibly k-matching graphic problem.

Theorem 11. The size of every maximal matching M in any realization of a non-increasing degree
sequence d is at least

|M| ≥ ℓ∗ = min

{
ℓ
∣∣∣ 2ℓ

∑
i=1

min{di − 1, k} ≥
2ℓ+k

∑
i=2ℓ+1

di, ∀k = 1, . . . , n − 2ℓ

}
. (14)

Proof. By Lemma 5, Equation (13) holds. If d(v) ≤ d(u) for v ∈ VM, u ∈ UM, then we can
swap them between the LHS and RHS of (13) and the inequality will still hold. Thus, we
have shown that |M| ≥ ℓ∗ must hold.

For r-regular graphs |M| ≥ ℓ∗ = max
( r

2 , r
2r−1 · n

2
)
.

Now, we turn our attention to maximum matchings. Let one of them be M.

Lemma 6. Let M be a maximum size matching in a graph G with degree sequence d. Then

∑
uv∈M

max(d(u)− 1, d(v)− 1) + |{uv ∈ M | d(u) = d(v) = 2}| ≥ ∑
w∈UM

d(w) (15)

Proof. For any uv ∈ M, if there exist two disjoint edges e, f connecting VM to UM that both
intersect uv, then we may take M − uv + e + f to obtain a larger matching, contradicting
that M is a maximum matching. Therefore if both u and v have neighbors in UM, then there



Mathematics 2024, 12, 3518 11 of 14

is exactly 1 such neighbor in UM. In other words, the number of edges induced between
{u, v} and UM is

e(G[{u, v}, UM]) ≤ max
{

d(u)− 1, d(v)− 1, min{2, d(u) + d(v)− 2}
}

. (16)

The max on the right-hand side takes its value from the third argument exclusively
only if d(u) = d(v) = 2. Summing inequality (16) over every uv ∈ M, we obtain
inequality (15).

Using inequality (15), we can strengthen Theorem 8 as follows:

Theorem 12 (Lower bound on the matching number). For any graph G with non-increasing
degree sequence d we have

ν(G) ≥ min

{
k ≥ 0

∣∣∣ k

∑
i=1

2di +
2k

∑
i=k+1

di ≥ 2m(G)

}
. (17)

Proof. Let M be a maximum matching in G, and let k = |M|. Adding ∑w∈VM
d(w) to both

sides of inequality (15) and performing usual algebraic manipulations we obtain:

k

∑
i=1

2di +
2k

∑
i=k+1

di ≥ 2m(G). (18)

Note, inequality (17) is not always better than the maximality-bound (8). For example,
for the friendship graph we have k ≥ (t + 2)/3. However, for the general windmill graph
Wd(t, ℓ) we have

k ≥ t(ℓ− 2) + 2
3

=
n − t + 1

3

This is a factor of 4
3 larger than the maximality-bound on the same degree sequence.

For the half-graph for an even n, we have

6kn − 5k2 − 3k ≥ n2 ⇒ min k ≃ n
5

.

Finally, for an ℓ-regular graph G, we have ν(G) ≥ 1
3 n. The lower bound is sharp

for disjoint union of triangles, and it is a factor of 4
3 better than what we obtained from

Theorem 8. In comparison, ([26], Theorem B) proves ν(G) ≥ 4n−1
9 for any connected

3-regular graph G on n vertices. Of course, for disconnected graphs, the matching number
can be lower: for any 5-divisible n, we have ν

( n
5 × K5

)
= 2n

5 .

4. Conclusions and an Open Problem: Minimum Maximum Matching

In summary, we presented novel results that explore the connections between the
matching number of a simple graph and its degree sequence. We provided lower bounds
for the size of the largest possible matching number among all the realizations of a given
degree sequence and provided estimates for the minimum size of both the maximal and the
maximum matchings, as constrained by the degree sequence, independently of graphical
realizations, answering a question that was open since 2004 [5]. Understanding the connec-
tions between matchings and degree sequence is important in at least two areas in network
science: 1. in network growth models where the incoming vertex that joins the graph
may pinch together several independent edges to form its connections, for example in
degree-preserving network growth [1,2] and 2. in network control [27]. Additionally, it has
potential applications in connections between graph theory and the theory of primes [3].

We finish this paper with an open problem. A graph G can have several maximal
matchings. Let us denote the smallest size among the maximal matchings with ν̄(G) and
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thus ν̄(G) ≤ |M| ≤ ν(G) for any maximal matching M. In general, it was showed in [28]
that to determine the value ν̄(G) is NP-hard. The same is true for several restricted graph
classes. Since 2ν̄(G) ≥ ν(G) therefore a 2-approximation is trivial. However, Chlebík and
Chlebíková showed ([29]), that a 7/6 approximation algorithm for the value ν̄(G) is also
NP-hard. Let ν̄(d) denote the minimum possible ν̄(G) for all possible realizations of the
graphic degree sequence d. It seems to be an interesting question is whether ν̄(d) = ℓ∗(d)
(see inequality 14).

For any positive integer t, let us consider the following degree sequence:
h = ((2t − 1)2t, 12t(2t−1)) (the number of vertices is n = 4t2). Then (14) gives

ν̄(h) ≥ ℓ∗(h) = 2t

Let G1 = K2t + t(2t − 1)× K2 and G2 = 2t × K1,2t−1, both realizations of h. We have
ν(G1) = 2t2 and ν(G2) = 2t, so ℓ∗(h) is indeed equal to ν̄(h), even though h is potentially
perfectly matchable. We also conjecture that

ν∗(d) ≤ 1
2

ν̄(d)2 (19)

holds for any degree sequence d. The degree sequence h shows that (19) is potentially sharp.
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Appendix A

In this section, for sake of completeness, we provide the proof of Theorem 6.

Theorem A1. For any graphic (non-zero) non-increasing degree sequence d

ν∗(d) = max

{
1
2

δ ∈ N
∣∣∣ k

∑
i=1

di ≤ k2 +
n

∑
i=k+1

min{di − Ii≤δ, k} ∀1 ≤ k <
1
2

δ and

k

∑
i=1

di + |{i > δ | di = dδ}| ≤ k2+

+
n

∑
i=k+1

min{di − Idi=dδ
, k} fork = δ + td(δ)

} (A1)

where IX = 1 if X is true, otherwise IX = 0.

Proof. By Corollary 1, ν∗(d) is equal to one half of the largest even number δ for which the
reduced degree sequence d′ = (d1 − 1, . . . , dδ − 1, dδ+1, . . . , dn) is graphic. Let d′′ denote
the non-increasing version of d′.

Observe that if dδ > dδ+1, then d′′ = d′ and any jump locus of d′′ is a jump locus of d.
If dδ = dδ+1, then d′δ = d′δ+1 − 1 and d′′ can be obtained from d′ by transposing two

contiguous blocks of degrees equal to dδ and dδ − 1, respectively. Let k1 be the largest
integer such that dk1+1 = dδ. Let k2 be the largest integer such that dk2 = dδ. Then
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k1 + (k2 − δ) is a possible jump locus of d′′. However, any other jump locus of d′′ is also a
jump locus of d. Note, that

δ + td(δ) = δ + (k2 − δ)− (δ − k1) = k1 + k2 − δ.

Restating our previous observation, if d′′k > d′′k+1 and dk = dk+1, then we must have
k = δ + td(δ).

From Theorem 5 it follows that d′′ (and d′) is graphic if and only if d′′ satisfies the
Erdős–Gallai inequalities for k = n, k = δ + td(δ), and whenever dk > dk+1.

For k = δ + td(δ), the Erdős–Gallai inequality for d′′ requires the following:

k

∑
i=1

di − k + (k2 − δ) ≤ k(k − 1) +
n

∑
i=k+1

min{di − Ii≤k2 , k} (for k = δ + td(δ)). (A2)

For k ̸= δ + td(δ), if k is a jump locus of d′′ (and d) or k = n, we have to ensure that

k

∑
i=1

di − k ≤ k(k − 1) +
δ

∑
i=k+1

min{di − 1, k}+
n

∑
i=δ+1

min{di, k} if 1 ≤ k < δ + td(δ),

(A3)
k

∑
i=1

di − δ ≤ k(k − 1) +
n

∑
i=k+1

min{di, k} if δ + td(δ) < k ≤ n.

(A4)

Equation (A4) automatically follows from the Erdős–Gallai inequality for d and k.
Thus, the reduced degree sequence d′ is graphic if and only if Equations (A2) and (A3) are
satisfied. Inequality (A3) follows from the graphicality of d if

k ≥
δ

∑
i=k+1

min{di − 1, k} −
δ

∑
i=k+1

min{di, k} ≥ |{i ∈ N | k + 1 ≤ i ≤ δ and di ≤ k}|. (A5)

In particular, if k ≥ 1
2 δ, then Equation (A5) holds. In turn, Equation (A3) is automati-

cally satisfied if k ≥ 1
2 δ, which leads to Equation (A1).
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13. Hakimi, S.L. On the realizability of a set of integers as degrees of the vertices of a simple graph. J. SIAM Appl. Math. 1962, 10,

496–506. [CrossRef]
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