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Abstract: Among the numerous strategies that an attacker can initiate to enhance its eavesdropping
capabilities is the Pilot Contamination Attack (PCA). Two promising methods, based on Phase-
Shift Keying (PSK) modulation of Nth order—2-N-PSK and Shifted 2-N-PSK, can detect an existing
PCA by means of analysis of the constellation that the correlation product of received pilot signals
belongs to. The overall efficiency of the methods can be studied by the most commonly used
probability metrics—detection probability and false alarm probability. However, this information
may be insufficient for comparison purposes; therefore, to acquire a more holistic perspective on the
methods’ performances, statistical evaluation metrics can be obtained. Depending on the particular
application of the system in which the PCA detection methods are incorporated and the distribution
of attack initiation among all samples, different classification parameters are of varying significance
in the efficiency assessment. In this paper, 2-N-PSK and Shifted 2-N-PSK are comprehensively studied
through their probability parameters. In addition, the methods are also compared by their most
informative statistical parameters, such as accuracy, precision and recall, F1-score, specificity, and fall-out.
A large number of simulations are carried out, the analyses of which indisputably prove the superior
behavior of the Shifted 2-N-PSK compared to the 2-N-PSK detection method. Since a method’s
performance is strongly related to the number of antenna elements at the base station, all simulations
are conducted for scenarios with different antennae numbers. The most promising realization of
Shifted 2-N-PSK improves the receiver operating characteristics results of the original 2-N-PSK by
7.38%, 4.33%, and 5.61%, and outperforms the precision recall analyses of 2-N-PSK by 10.02%, 4.82%
and 3.86%, for the respective number of 10, 100 and 300 antenna elements at the base station.

Keywords: pilot contamination attack; physical layer security; statistical evaluation; binary classification
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1. Introduction

With the evolution of next generation wireless systems, a large number of autonomous
devices are expected to be deployed and connected through heterogeneous technolo-
gies. Responsible for a variety of services, including manufacturing and transportation,
healthcare and road safety, these intelligent systems will collect a massive amount of
sensitive information and exchange the data through communication networks. Hence,
the ever-increasing need for reliable and secure operation is one of the key concepts for
sixth-generation (6G) wireless networks and beyond.

While cryptography-based solutions have been established as the fundamental ap-
proach to secure and private information exchange, lightweight physical layer security
(PLS) methods can be used as an alternative to afford information-theoretic protection
against unauthorized intervention. The pioneering work of Shannon [1] and Wyner [2]
lays the foundations of PLS principles to exploit the random nature of wireless channels
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and achieve secure transmission using only the properties of the communication medium.
Being independent of complex computational algorithms, such as those applied in cryp-
tosystems, PLS approaches are extremely suitable for small resource-constrained devices,
the widespread use of which is expected to increase with the evolution of next-generation
wireless networks that enable the incorporation of new technologies in a variety of sectors,
and the expansion of the concept of the Internet of Things into the Internet of Everything.
Furthermore, PLS techniques can be applied as a supplement to upper layers’ resources
in order to establish trustworthy and resilient security solutions. An exhaustive review of
the literature concerning how 6G technology is envisaged, together with an analysis of the
available research on PLS applications for 6G is provided in [3].

Being one of the key enablers of fifth-generation (5G) wireless networks, massive
multiple-input multiple-output (MIMO) is also envisioned to be an indispensable radio
antenna technology in the upcoming 6G. As foreseen, terahertz (THz) communications
will be introduced in 6G to achieve very high transmission rates over 100 Gbps and extend
the use of available spectrum bands [3,4]. However, the short wavelengths at such high
frequencies suffer from molecular absorption loss and severe path loss, and hence require
very precise directional beam steering with a narrow main lobe, which could be attained
through proper precoding and beamforming [4]. Fortunately, the small size of radio
components at this frequency range enables the construction of antenna arrays having tens
and even hundreds antenna elements, making it possible to benefit from the advantages of
massive MIMO technology. Three different massive MIMO precoding strategies for THz
communications are studied in [4], and their sustainability is evaluated through simulation
analysis of their energy and spectral efficiencies at different carrier frequency, bandwidth
and antenna gain scenarios.

Alongside spatial diversity gain and spatial multiplexing, massive MIMO offers the
opportunity for highly directional communication, lessening the probability of a passive
eavesdropper launching a successful attack. Nevertheless, in massive MIMO systems
with time division duplex (TDD) operation, a resourceful eavesdropper (ED) can initiate
an active attack aimed at the process of channel estimation in order to improve its own
downlink channel conditions. A main feature of TDD systems, providing the means of
one-way channel estimation, is the reciprocity between channels for uplink and downlink
transmission. Prior to the information exchange, an uplink training phase is accomplished
during which training signals, also called pilot signals, are sent to the base station (BS).
The BS processes the received pilot signal and obtains the corresponding channel state
information (CSI), which is used to extract the transfer function of the downlink channel
and construct the precoding matrix for downlink transmission to send the information
signal in the direction of the legitimate user (LU). The malicious intervention known
as a PCA, also referred to as a pilot spoofing attack (PSA), consists of the intentional
transmission of signals from the same publicly available alphabet as the legitimate pilots
by an ED [5]. This way, the signal received at the BS during the uplink training phase is a
combination of two correlated components—one from LU and another from the ED. Since
no prior knowledge of the channels is available at the BS, no identification of the channel
estimation procedure is applicable, and the BS is incapable of distinguishing between both
the components of the received signal. As a consequence, the BS obtains a CSI that falls
under the influence of the transfer function of the non-legitimate channel between ED
and BS, and the computed precoding matrix for the information exchange phase directs
the beam of the information signal not only to the intended LU, but also to the ED. The
impact of a PCA on system performance is double-edged: on one hand, less signal power
is allocated to LU, which deteriorates the quality of legitimate communication; on the other
hand, assigning more signal power in the direction of ED overcomes the natural resistance
of massive MIMO systems to passive eavesdropping and compromises the security and
privacy of information exchange. The PCA can be successfully initiated in every wireless
system with TDD operation, however resource-constrained networks, such as Internet
of Things, where upper layer authentication of the first training phase is not considered
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due to hardware and software limitations, are extremely vulnerable to those types of
malicious intervention.

1.1. Related Work

Since its first description in [5], PCAs have attracted significant research attention. The
resemblance between an intentional PCA and natural contamination, peculiar to multi-cell
massive MIMO systems and extensively studied in [6], makes its detection a challenge.
Up to now, numerous studies based on PLS approaches have focused on PCA detection.
The authors in [7] propose a likelihood ratio test (LRT) detector to discover PCA by the
separation of legitimate pilots into two parts and the multiplication of the second part by a
diagonal matrix of random numbers. Three other LRT detectors based on different metrics
from the channel estimate are proposed in [8]. A main drawback of the detectors in [8]
is that all the three schemes are dependent on a certain threshold value determined from
false alarm probability prior PCA detection, which is not always available. Instead of using
threshold values, another strategy in [9] consists in superimposing a random sequence of
scalars onto the original training signal and the detection of PCA by a minimum description
length (MDL) source enumeration algorithm.

In [10,11] the authors suggest two-way training channel estimation to detect PCA. In
both the papers, the decision for the presence or absence of attack is taken at the LU after
downlink training, and different operational principles are followed for the channel esti-
mate. In [10], during the downlink training phase the BS sends the computed CSI together
with the acknowledged pilot signal and a decision threshold is extracted from the probabil-
ity of a false alarm. Instead of re-transmission of the known pilot sequence in the down-
link direction, the authors in [11] transmit dedicated signals composed of two separate
parts—one containing information for the CSI and another intended for calculating the
decision threshold. While in [10], a decision threshold extracted from probability of false
alarm and a priori channel knowledge is again used, the authors in [11] criticize methods
that rely on test statistics from advanced large-scale fading knowledge and propose a
decision metric derived from the second component of the dedicated signal received at
the LU.

As discussed in [3], the cell-free massive MIMO, in which a large number of distributed
access points are cooperatively serving the users in the cell, benefits from several advan-
tages compared to conventional massive MIMO, such as spectral efficiency improvement,
and throughput increase. Apart from the advantages, the authors in [3] draw attention to
the intensified vulnerabilities of cell-free massive MIMO to active attacks and comment
on appropriate PLS solutions. A promising PLS secure transmission method that success-
fully removes the PCA component from the channel estimate of cell-free massive MIMO
systems is introduced in [12]. The method is composed of two stages: in the first step, the
access points collect information about the positions of LU and ED through fingerprint
and K-means clustering. The second step involves channel estimation by discrete Fourier
transform and the choice of the most appropriate access point. Though the method demon-
strates improvement in secure transmission in the presence of PCA, a knowledge of the
imperfect CSI is needed in order to localize LU and ED at its first stage, which represents
the main drawback of the scheme. The PCA resistance of three other schemes based on
different estimation algorithms is studied in [13], all of them operative only in cases where
spatial information represented by angles of arrival is already available at the BS.

A random channel training scheme that is able to combat both jamming attacks
during the uplink training phase and PCAs is proposed in [14]. This scheme relies on
the estimation of legitimate and non-legitimate channels at the BS and the construction of
secure beamforming in the downlink direction in order to minimize information leakage
to ED. However, the assumption that the BS disposes of statistical information about its
channels to LU and ED in advance makes the scheme unattainable in scenarios where prior
channel knowledge is unavailable.
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Another strategy that also implies random uplink transmission from a set of pilots but
abstains from using threshold values to make its decision regarding PCA’s existence consists
of an analysis of the constellation diagram. This approach is at the basis of two distinct
detection methods—an original one, referred to as 2-N-PSK and firstly proposed in [15],
and an improved one called Shifted-2-N-PSK detection method, that we proposed in our
previous work in [16]. Common to both 2-N-PSK and Shifted 2-N-PSK is the main idea: both
the methods involve uplink transmission of a pair of pilot signals during the uplink training
phase. The legitimate pilot signals are randomly chosen from an N-PSK constellation
diagram, where N = 2k and k is an integer number. In order to distinguish between the
scenarios of presence or absence of attack, the methods require an analysis of two received
N-PSK pilot signals, hence their names—2-N-PSK and Shifted 2-N-PSK detection methods.
The correlation between the received pilots from the pair is computed at the BS. According
to the argument of the correlation result, which is compared to the angles of a reference
constellation, the BS detects intrusion if the correlation phase differs from the phases of the
symbols from the reference constellation or reports PCA absence when its phase coincides
with one of the referenced ones.

Though 2-N-PSK and Shifted 2-N-PSK share the same detection criteria, the essential
distinctions in the operation principles of the methods are shown in the constellation
diagrams used for legitimate pilot transmission as well as those for correlation reference.
While in the original 2-N-PSK detection method a single N-PSK alphabet is used for
uplink training and decision criterion, the improved method adopts pilots from shifted
constellations, subsequently leading to a necessity for altering the reference constellation
also. According to the general description of Shifted 2-N-PSK, each pilot is adjusted before
transmission so that a predefined angle is added to its argument. Different supplementary
angles are used for the pilots with odd numbers and those with even running numbers.
Hence, two separate reference constellations are obtained—the correlation result computed
between the first and the second pilot, forming the first pair of training signals, is compared
to a constellation diagram depicting the odd correlations, with another constellation for the
even correlations, such as the second one between the second and third received pilot. The
aforementioned modifications in the improved method successfully increase the detection
capabilities of the original method. However, depending on the choice of supplementary
angles to shift the training signals, three different realizations of Shifted 2-N-PSK are outlined
and, dependent on the choice of implementation scenario, the performance of the Shifted
2-N-PSK detection method varies.

1.2. Motivation

Although the detection probability of 2-N-PSK and Shifted 2-N-PSK is studied in
several research papers [15–17], there is still a lack of comprehensive investigation of the
performance of the methods for different attack types and implementation scenarios. In
conformity with their substance, both the methods can be considered as intrusion detection
systems (IDSs). Usually, the effective operation of IDSs is examined through two widely
used probability metrics, namely detection probability (DP) and false alarm probability
(FAP). The DP is a measure of the capability of an IDS to successfully discover existing
intrusions, while FAP provides information about the likelihood that the IDS reports an
attack, even if there is not one. A study of the DP of 2-N-PSK and the different realizations
of Shifted 2-N-PSK for a single-antenna BS is given in [16], but the problem of FAP is not
discussed there. Another study on both DP and FAP of 2-N-PSK and Shifted 2-N-PSK in [17]
includes massive MIMO with different numbers of antennae at the BS, but it is focused
only on the best implementation scenario of Shifted 2-N-PSK, ignoring its other realizations.
Moreover, an analysis of DP and FAP is not sufficient, since it does not give a complete
view of the overall methods’ performance.

To remedy this gap and give a holistic view of system performance, statistical evalu-
ation metrics can be explored. Being IDSs, 2-N-PSK and Shifted 2-N-PSK can be studied
as binary classification models that distinguish between two possible classes—positive,
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when the IDS detects intrusion, or negative, if the IDS does not register any malicious
intervention. In line with the relation of the predicted classes to the actual ones, different
statistical parameters can be obtained that give information about the capabilities of the
classification models to correctly predict the actual states or the different classification
errors that they allow. Among the numerous classification metrics, those that are most
commonly chosen for IDS performance evaluation are: accuracy, precision, recall, Fβ-score,
specificity, and fall-out [18–20]. Due to existing interdependence between some of the pa-
rameters, a geometrical representation of the relation between them is also a powerful
tool for IDS analysis, that is to say the receiver operation characteristic (ROC) curve and
the precision recall (PR) curve of an IDS give valuable information about the effectiveness
of the system. Since all of these classification metrics show different aspects of system
operation, processed jointly they give exhaustive information about the overall system
performance, therefore, for comparison purposes and to establish confidence in assessment
criteria, 2-N-PSK and Shifted 2-N-PSK can be best evaluated through such a study. The need
for an overall assessment of the methods’ operation, in order to be adequately analyzed
and compared, serves as a motivation for this study.

The rest of the paper is organized as follows: in Section 2 the system model is intro-
duced, the main issues concerning the performance of 2-N-PSK and Shifted 2-N-PSK are
outlined, and the statistical evaluation metrics used in the study are presented. In Section 3,
simulation results are presented. An algorithm for the secure distribution of legitimate
constellation shift values for Shifted 2-N-PSK is proposed in Section 4. A brief discussion
follows in Section 5, and Section 6 concludes the paper.

2. Methodology: Performance Evaluation Through Probability and Statistics Metrics
2.1. System Model

In this study, the system model considered represents a single-cell massive MIMO
system with TDD operation. Three nodes are incorporated in the communication process—
a BS with multiple antenna elements, M in number, serves a single-antenna LU, while
an ED, again equipped with a single antenna element, aims to disrupt the security of the
system. In the interests of simplicity, user mobility is not considered in the system.

The random uplink channels of LU and ED are analytically expressed by their cor-
responding large-scale fading variables, denoted dLU and dED, and small-scale fading
coefficients—hLU and hED. Apart from the relevant channel gains, the training signal re-
ceived at the BS is influenced by the transmit power of LU and ED, assigned by PLU and
PED, and is subject to additive white Gaussian noise (AWGN).

During the uplink training phase, both LU and ED send their pilot signals to the
BS, where the CSI is obtained. In order to detect malicious intervention, the BS processes
the received pilot signals in pairs and computes their correlation, z12, in accordance with
Equation (1) [15]:

z12 = 1
M
(√

PLUdLUhLU pLU
1 +

√
PEDdEDhED pED

1
)H×(√

PLUdLUhLU pLU
2 +

√
PEDdEDhED pED

2
)
+ n12

, (1)

where the LU training signals from the first and the second pilot intervals are p1
LU and

p2
LU, those of ED—p1

ED and p2
ED, n12 describes the resultant noise and the notation ( · )H

represents the Hermitian conjugate of a matrix.
After obtaining the correlation result, the BS analyses its argument, φ(z12). When it

coincides with the angles from the reference constellation, no PCA is reported. Otherwise,
an attack is detected. A flow chart of the algorithm involved in 2-N-PSK and Shifted 2-N-PSK
is given in Figure 1.



Mathematics 2024, 12, 3524 6 of 29Mathematics 2024, 12, x FOR PEER REVIEW 6 of 30 
 

 

 
Figure 1. Flow chart of the algorithm involved in 2-N-PSK and Shifted 2-N-PSK [16]. 

Considering the 2-N-PSK detection method, the LU sends pilot signals from a 
publicly known N-PSK constellation. Thus, the reference constellation used to compare 
the correlation result coincides with the original N-PSK constellation, whose angles are 
denoted φx(N-PSK). When the Shifted 2-N-PSK detection method is studied, it should be 
noted that it operates with pilots from shifted constellations. An offset angle of x1 degrees 
is used to alter every pilot with an odd sequential number, and the even pilots are shifted 
by x2 degrees. Consequently, the reference constellation diagram also changes in 
accordance with the offset values. The angle of every correlation that is odd in number—
such as the first one, z12—computed between the first and the second received pilots, must 
be compared with the angles of an odd reference constellation. The odd reference diagram 
is obtained by the addition of (x2 − x1) to the original N-PSK angles. Likewise, the even 
correlation result angles, for instance the second one, z23, between the second and the third 
received pilots, should match the phases of an even reference correlation, obtained by the 
addition of (x1 − x2) to the original N-PSK angles. 

Since the system is under the influence of noise, even if no PCA exists the correlation 
result angle may differ from the angles of the reference constellation. Therefore, to acquire 
authentic results the effect of noise must be taken into account. In an effort to achieve this, 
the authors of [15] propose a formula that describes the size of the area around each 
symbol from the reference constellation, where the angle fluctuations are presumed to be 
caused by noise. This area forms a tunnel around the reference points, whose width in 
either the positive or negative direction, denoted r, is defined in Equation (2). If the 
correlation result falls into the tunnel, also referred to as a detection region, it is assumed 
that its deviation from the reference symbol is a consequence of noise rather than a PCA. 

M

M
hdP

MNN

cr

LULULU














+

=

22

00
2

. (2) 

In the equation above, N0 is the noise power; c is a constant, used for scaling purposes; 
and ‖·‖ stands for Euclidean norm. 

Figure 1. Flow chart of the algorithm involved in 2-N-PSK and Shifted 2-N-PSK [16].

Considering the 2-N-PSK detection method, the LU sends pilot signals from a publicly
known N-PSK constellation. Thus, the reference constellation used to compare the corre-
lation result coincides with the original N-PSK constellation, whose angles are denoted
φx(N-PSK). When the Shifted 2-N-PSK detection method is studied, it should be noted that
it operates with pilots from shifted constellations. An offset angle of x1 degrees is used
to alter every pilot with an odd sequential number, and the even pilots are shifted by x2
degrees. Consequently, the reference constellation diagram also changes in accordance with
the offset values. The angle of every correlation that is odd in number—such as the first
one, z12—computed between the first and the second received pilots, must be compared
with the angles of an odd reference constellation. The odd reference diagram is obtained
by the addition of (x2 − x1) to the original N-PSK angles. Likewise, the even correlation
result angles, for instance the second one, z23, between the second and the third received
pilots, should match the phases of an even reference correlation, obtained by the addition of
(x1 − x2) to the original N-PSK angles.

Since the system is under the influence of noise, even if no PCA exists the correlation
result angle may differ from the angles of the reference constellation. Therefore, to acquire
authentic results the effect of noise must be taken into account. In an effort to achieve this,
the authors of [15] propose a formula that describes the size of the area around each symbol
from the reference constellation, where the angle fluctuations are presumed to be caused
by noise. This area forms a tunnel around the reference points, whose width in either the
positive or negative direction, denoted r, is defined in Equation (2). If the correlation result
falls into the tunnel, also referred to as a detection region, it is assumed that its deviation
from the reference symbol is a consequence of noise rather than a PCA.

r = c

√
N0

(
MN0 +

2PLU d2
LU∥hLU∥2

M

)
M

. (2)

In the equation above, N0 is the noise power; c is a constant, used for scaling purposes;
and ∥·∥ stands for Euclidean norm.
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2.2. Main Issues Concerning the Performance of 2-N-PSK and Shifted 2-N-PSK Detection Methods

Up to the present, the DP of 2-N-PSK and Shifted 2-N-PSK has been thoroughly
studied in different attack scenarios [15,16]. In these studies, several types of PCAs stand
out as being undetectable by the original 2-N-PSK detection method, as the argument
of the correlation result computed at the BS equals an angle from the reference N-PSK
constellation. This situation occurs when any of the following conditions is present [16]:

1. The phase of each non-legitimate pilot from the pair coincides with the one of its
corresponding legitimate pilot;

2. One of the non-legitimate pilots of the pair has a phase that is reciprocal to the phase
of its corresponding legitimate pilot, and at the same time, the phase of the other
non-legitimate pilot coincides with the one of its corresponding legitimate pilot or
the phase of each non-legitimate pilot from the pair is reciprocal to the one of its
corresponding legitimate pilot;

3. ED joins the training procedure during the transmission of the second legitimate pilot
from the pair and the phases of the pilots of LU and ED coincide or are reciprocal;

4. The phases of both non-legitimate pilots of the pair differ from those of their corre-
sponding legitimate pilots with the same angle.

Considering the operation principle of Shifted 2-N-PSK and the fact that ED does not
have any knowledge about the shift values of legitimate constellations, the conditions for
undetectable PCAs are modified. In order to initiate a successful attack, which results in
a correlation angle that equals an angle from the corresponding reference constellation,
for scenarios 1, 2, and 3. the arguments of ED have to be the arguments from the N-
PSK constellation that are the closest to the arguments of the shifted pilots of LU or their
reciprocals. In scenario 4. ED has to send the N-PSK angles whose arguments are the
closest to those of the corresponding shifted pilots of LU plus the identical angle.

The effective performance of Shifted 2-N-PSK is strongly related to the offset values
selected to change the legitimate N-PSK constellation, i.e., to the values of x1 and x2. The
different realizations of the method and their detection capabilities are briefly described
next [16,17]:

A. Neither the legitimate nor the reference constellations coincide with the original
N-PSK constellation, i.e., |x1 − x2| ̸= φx (N-PSK) and x1 ̸= x2 ̸= φx (N-PSK);

B. The legitimate constellation of one of the pilots from the pair, either the odd or the
even, coincides with the original N-PSK constellation, while the other is shifted, i.e.,
x1 = φx (N-PSK) or x2 = φx (N-PSK);

C. The reference constellation used for the odd and the even correlation results coin-
cides with the original N-PSK constellation, i.e., the offset values of both legitimate
constellations differ from each other by an N-PSK angle, |x1 − x2| = φx (N-PSK).

When Shifted 2-N-PSK is implemented conforming to A, in the absence of noise all
PCA scenarios, undetectable for 2-N-PSK and listed above are successfully revealed by
Shifted 2-N-PSK. Case B is capable of coping with attack types 1, 2, 4, and 3 in most cases,
except for the situation where the PCA is initiated during the transmission of the second
legitimate pilot from the pair and this pilot is from the N-PSK constellation. When the
realization in C is implemented, Shifted 2-N-PSK manages to discover PCAs of types 2
and 3. However, 1 and 4 are still undetectable. It is worth noting that these observations
correspond to scenarios with an absence of noise. In real environments, where the noise
power affects communication, its influence must be evaluated according to Equation (2)
and taken into consideration.

2.3. Statistical Evaluation Metrics

Statistical evaluation metrics can be used as a means of comprehensively studying
and comparing different classification models, as they provide a broad view on different
parameters that can be variously weighted according to the particular application. In order
to introduce the most widely used metrics, the confusion matrix must first be explained.
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2.3.1. Confusion Matrix

The confusion matrix, as illustrated in Table 1, represents a table whose rows, two in
number, contain the results of the actual classes—positive and negative—while the two
columns stand for the test outcomes. Thus, the element of the matrix with indexes (1, 1)
represents the number of test results correctly labeled as positive, i.e., this is the so-called
true positive (TP) state. Matrix element (1, 2) holds the number of false negatives (FN),
which counts the cases of positive actual states improperly classified as not having the
condition. Element (2, 1) of the confusion matrix holds the actual negative samples that are
erroneously labeled as positives, namely the false positives (FP). The last element of the
matrix, with indexes (2, 2), is known as true negative (TN) state and relates to the number
of samples that the classification model accurately evaluates as negatives.

Table 1. The confusion matrix—a basic representation.

Test Outcome

Positive Negative

Actual Class
Positive TP FN
Negative FP TN

With the particular number of successful and failing predictions, the confusion matrix
gives a clear view of the effective performance of classification models and the types
of generated errors. Errors of the first kind, also known as Type I errors, are the FP
examples, while an error of the second kind or Type II error corresponds to the FN state.
According to the particular use of the classification model, one of the error types may
have a severe influence on the application results, while the other may not have such a
harmful impact. When considering attack detection, usually the cost of Type II error is
higher since unrevealed attacks, for the most part, lead to much more detrimental results
than the misleading detection of nonexistent intrusion. Thus, in this case, the weight of
Type II error is higher.

Apart from giving an overview of correct predictions being made and the error types
respectively, the data in the confusion matrix can be very useful when crucial statistical
parameters for IDS assessment have to be computed. In the following subsections, the
most frequently used classification metrics that provide exhaustive information on different
aspects of classification model performance are explained. Then, in Section 3, both PCA
detection methods—2-N-PSK and Shifted 2-N-PSK, will be evaluated through the obtained
classification metrics from the conducted simulation study.

2.3.2. Accuracy

Accuracy is the parameter that shows the ability of the classification model to suc-
cessfully recognize the actual state of a sample [21]. Thus, it accounts for the true test
predictions from all classification outcomes. Having the results of the confusion matrix,
accuracy can be computed according to Equation (3) [22]:

Accuracy =
TP + TN

TP + FP + TN + FN
. (3)

High accuracy testifies to satisfactory classification model performance. However,
relying solely on accuracy results could be specious if imbalanced distribution of classes is
observed [23].

When the test outcome classes—positive and negative—are not equally present in the
training set, the class with fewer examples is referred to as the minority class, while the
other is known as the majority class. On the one hand, in the case of a large gap between
the majority and minority class, notwithstanding the high accuracy value, a classification
model may still demonstrate poor capabilities in correct recognition and labeling TP, since
they belong to the minority class, which may be characterized with a very few examples in
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the training set. Hence, for imbalanced classification, accuracy could not be a trustworthy
metric and others that study the minority class must be observed. Such metrics are recall
and precision.

On the other hand, as accuracy does not study the erroneously labeled samples, it gives
proportional rates of Type I error and Type II error, making it an impractical metric if one
of the error types is with higher cost in the specific scenario of use. Using a metric that
focuses on the error type of interest could be more useful.

2.3.3. Precision or Positive Predictive Value (PPV)

One of the metrics that is appropriate for imbalanced distribution of classes, is precision,
also called PPV and calculated according to Equation (4). It is concentrated on the minority
class and gives the part of positive test results that are actually positive, i.e., it measures
the accuracy of the minority class, showing the reliability of positive predictions and
quantifying FP [24].

PPV =
TP

TP + FP
. (4)

Though a high PPV value testifies to accurate positive predictions and low Type I
error, it does not contain any information about the error of Type II, and it permits the
possibility of having a large number of actual positive samples that the classification model
is incapable of labeling correctly. In case of robust imbalance between classes, a very low
number of samples from the minority class exists, so even correct classification of the
positive predictions does not ensure a low number of FN [23]. Consequently, when in
the specific utilization scenario, the value of FN is with high cost, together with PPV it is
appropriate to study another classification metric that gives information for Type II error.

2.3.4. Recall or Sensitivity

While precision gives information about the part of positive test results that are indeed
positive, recall, sensitivity, or True Positive Rate (TPR) shows the accurate predictions from the
minority class as a fraction of all real positive samples. With the results from the confusion
matrix, recall can be computed by Equation (5) [24]:

TPR =
TP

TP + FN
. (5)

In addition to focusing on the minority class, recall contains information about the error
from the majority class, since the value of FN can easily be subtracted from recall as the sum
of its rate and TPR equals 1. Analyzing sensitivity on its own does not reveal the amount
of FP. Hence, the large sensitivity can be related to many errors from the minority class,
lowering the precision value. As both the metrics are in inverse-proportional conjunction,
they must be studied together in order to find their most suitable interconnection according
to the cost of errors in the particular application.

2.3.5. Fβ-Score

The parameter that distinguishes the impact of precision and recall by assessing the
cost of the errors of the first and second kind, is the Fβ-score [23]. It is computed from PPV
and TPR as in Equation (6)

Fβ =
(

1 + β2
)
× precision × recall

(β2 × precision) + recall
=

(
1 + β2)× TP

(1 + β2)× TP + β2 × FN + FP
, (6)

where β denotes a scaling factor for balancing the weight of both metrics in the final result.
If β = 1, the equation in (6) takes the form of the harmonic mean of precision and recall giving
equal weight to both parameters, as shown in Equation (7). The larger the value of β is, the
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more emphasis is put on recall by limiting the Type II error at the expense of Type I error,
causing loss of precision.

F1 = 2 × precision × recall
precision + recall

=
TP

TP + FP+FN
2

. (7)

The value of Fβ-score varies in the interval [0, 1], and the higher it is, the better the
performance, such that the ideal operation of the classification model corresponds to no
errors of either kind, resulting in Fβ-score = 1 [25].

2.3.6. Specificity or True Negative Rate (TNR)

Another statistical metric that can be analyzed to study the performance of a classi-
fication model concerning the majority class is the specificity, also known as TNR. While
sensitivity measures the portion of all actual positive samples that are accurately labeled,
specificity relates to the confidence in the classification model to properly define the samples
that do not have the condition under study [24]. Calculated according to Equation (8), the
TNR contains information for the negative class and can be used to subtract the number of
Type I errors as well.

TNR =
TN

TN + FP
. (8)

2.3.7. Fall-Out or False Positive Rate (FPR)

The parameter known as fall-out or FPR complements specificity as it shows what
number of all actual negative samples are mislabeled and are thus Type I errors:

FPR =
FP

FP + TN
(9)

Having the same denominator as specificity, the fall-out is an assessment of the error
from the minority class with respect to actual negatives.

2.3.8. ROC Curve and ROC AUC

A separate study of the abovementioned metrics can be beneficial to a narrow analysis
focusing on the specific element to consider. However, each of them shows a limited aspect
of the system operation, neglecting either the majority or minority class and focusing on
either the true test outcomes or the classification errors. An assessment of the overall
performance of the classification model requires a more exhaustive investigation of the
different statistical parameters, showing the system operation from various points of view.
Meanwhile, the parameters that are in certain relation to each other, such that the increase
in one of them leads to an increase or a loss in the other, and vice versa, must be evaluated
in pairs in an attempt to find an acceptable trade-off that optimizes the overall performance
for the specific application. Such pairs of interdependent metrics are sensitivity–fall-out
and precision–recall. An elegant solution for the concurrent analyses of both metrics in the
couple is provided by the graphical representation of one of the parameters as a function of
the other [26]. Considering the relationship between sensitivity and fall-out, the illustrative
graph is called the ROC curve.

According to the nature of TPR and FPR, though a classification model demonstrates
satisfactory performance when low fall-out together with high sensitivity are observed, both
metrics are connected in a direct ratio to one another. Hence, a rise in TPR is followed by
an increase in the value of FPR [23]. For that reason, a good analysis of the ROC curve for
the whole threshold range can be a helpful tool to choose the decision threshold whose
values of sensitivity and fall-out best suit the application scenario. Best effectiveness of the
classification method is achieved when all actual positive samples are labeled TP and at the
same time no FP exists, which corresponds to the point in the upper left corner of the ROC
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area with coordinates (0, 1). Classification performance can be evaluated as high when its
ROC curve comes close to that point.

Comparing the behavior of different ROC curves is difficult, since for some thresholds,
one of the classification models may dominate over the other, while for other decision
values this tendency may change. A parameter that is computed like the area under
the ROC curve—accordingly named ROC AUC and having a value in the range [0, 1]—
can be used instead [25]. The higher the ROC AUC value, the greater the assessment of
classification model.

2.3.9. PR Curve and PR AUC

The PR curve is ordinarily used as a representation of the inversely proportional rela-
tion between the precision and the value of recall. The dependency from one another of PPV
and TPR consists of the growth in one of them leading to a fall-off in the other. Meanwhile,
a reliable classification model is expected to demonstrate trustworthy predictions about
positives of the minority class together with strong abilities to discover the actual positive
samples. In other words, perfect performance is achieved when no FP or FN exist, setting
the precision and recall to their maximal values—i.e., both PPV and TPR equal one, which
is the upper right corner of the PR graph. The closer the PR curve is to the point with
coordinates (1, 1), the more powerful the classification model [23]. Another option to
analyze the overall relation between precision and recall is by the PR AUC, which, as with
the ROC AUC, measures the area under the PR curve and summarizes the PR results for all
decision thresholds into a single value. The PR AUC could range between [0, 1] with its
most advantageous significance at its maximum.

When considering whether to apply either PR or ROC analysis, the following obser-
vations must be taken into account: although both the curves can be used for imbalanced
datasets, in the case of a large gap between classes, the PR curve that lays emphasis on
the minority class through precision is more appropriate than the ROC curve, which gives
equal attention to both classes; furthermore, in ROC analyses, the same weight is given to
both Type I and Type II errors, making the PR curve more informative in case of significant
importance of the error of the first kind.

3. Simulation Results

In this study, the performance of 2-N-PSK and Shifted 2-N-PSK detection methods
is evaluated by conducting a large number of computer simulations with the following
conditions. In all simulations, the fading coefficients of the legitimate and non-legitimate
channels are generated as independent complex Gaussians with zero mean and unit vari-
ance. The pilot signals of LU and ED are also randomly selected from the corresponding
constellation diagram—8-PSK alphabet is used for the pilots of both the users in 2-N-PSK,
while in Shifted 2-N-PSK, the LU shifts the 8-PSK angles to obtain the legitimate constella-
tion. The shift values adopted for the experiments of realization A of Shifted 2-N-PSK are
x1 = 11◦ and x2 = 18◦; case B is implemented with x1 = 19◦ and x2 = 0◦; and for case C,
x1 = x2 = 7◦ is used.

Since the correlation result as well as the detection region are both computed according
to the size of the BS antenna array, most of the experiments are conducted in antenna
numbers M = 10, M = 100, and M = 300 in order to investigate the influence of the increment
on system performance.

For the purposes of the ROC and PR analyses, the curves are plotted when changing
the decision criterion, referred to as a threshold value. When the 2-N-PSK and the different
implementations of Shifted 2-N-PSK are investigated, the decision threshold is actually
the size of the detection region, which determines whether the test outcomes are positive
or negative. In this study, the threshold values are chosen to vary between 0 and 0.2
in increments of 0.001. When the ROC and PR curves are evaluated in varying SNRs,
the results of 10,000 computer simulations are averaged for each threshold, while for the
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investigation of the curves with different antennae, the mean value of 200,000 simulation
results is taken.

3.1. Evaluation of 2-N-PSK and Shifted 2-N-PSK Detection Methods Through Probability Metrics

The DP and FAP of 2-N-PSK and the three different realizations of Shifted 2-N-PSK are
investigated in scenarios with different number of antenna elements at the BS. For each
signal to noise ratio (SNR) and antenna implementation, the results of 200,000 computer
simulations are analyzed. An important consideration in such a study is that the detection
region must be fine-tuned for the different antenna arrays. This could be achieved by
the proper selection of the scaling factor c, used in Equation (2), where the detection
region r is defined. The larger the antenna number, the higher the value of the scaling
coefficient needed.

The DP results as a function of the SNR for three different massive MIMO systems with
M = 10, M = 100 and M = 300 antennae at BS are illustrated in Figures 2 and 3. While Figure 2
shows the DP of all method realizations in separate antenna array scenarios, Figure 3 gives
individual representations of each method realization for the differing antenna values. The
corresponding FAPs are represented in Figure 4, where each antenna case is studied for all
the methods, and Figure 5, where the methods are separately studied for all values of M.
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Most of the results illustrated in Figure 2 confirm the observations in [16] that the
Shifted 2-N-PSK method is superior to the original 2-N-PSK, and its realization A demon-
strates the best DP among the other realizations, followed by case B and scenario C, which
relates to the weakest Shifted 2-N-PSK implementation with respect to DP. However, the
system model in [16] incorporates a single antenna BS. As a consequence of increasing
the antenna array size, a rearrangement is observed in the results of Figure 2 in the lower
SNR region. The change concerns mostly the behavior of realization B, whose results in
SNR = 10 dB deteriorate compared to the other methods. Surprisingly, when SNR = 20 dB,
especially in the scenarios of M = 100 and M = 300, the DP of case B outnumbers that of A.
Regardless of the antennae number, in the higher SNR region, the DP results of the different
methods improve in the order: 2-N-PSK, Shifted 2-N-PSK, realization C; Shifted 2-N-PSK,
realization B; Shifted 2-N-PSK, realization A.
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Summarizing the simulation results in Figure 2, several very significant observations
can be emphasized. While in most SNR scenarios, the DP of all Shifted 2-N-PSK realizations
improve over the one of 2-N-PSK, an exception is the scenario with SNR = 10 dB, in which
for all antenna numbers the original 2-N-PSK demonstrates improved results compared to
the realizations of Shifted 2-N-PSK. More specifically, for M = 100 and SNR = 10 dB, the DP
of 2-N-PSK is 3.86% more than the DP of realizations A and B and is 6.12% more than the DP
of realization C. When SNR = 20 dB, the reverse tendency is observed, where realization B
leads, outperforming A, C, and 2-N-PSK by 3.26%, 4.98% and 6.94%, respectively. Increasing
the SNR to 30 dB results in the highest DP of realization A, which approaches 96.81% and
improves the results of B, C and 2-N-PSK by 1.04%, 9.47%, and 11.86%, respectively.

The results in Figure 3 show the influence of M on the DP of each of the methods
studied. When SNR = 20 dB, the DP of realization B improves by 15.19% when increasing
the antenna number from M = 10 to M = 100. However, only 3.46% improvement in the DP
is observed with the increase in M from 100 to 300. When realization A is considered, the
increase in M from 10 to 100 improves the DP by 11.93%, while raising the antennae from
100 to 300 shows a DP reduction of 0.98%. On the one hand, indisputable improvement in
the detection capabilities of the methods is observed when the antenna number increases
from 10 to 100. On the other hand, the small difference between the PCA DP obtained with
M = 100 and M = 300, being in some SNR cases in favor of M = 100, brings up the question
whether it is reasonable to expand the antenna array up to several hundred elements,
leading to higher system complexity and energy consumption.

When referring to Figure 4, small variations in the FAP of the different PCA detection
methods can be observed for each of the antenna scenarios. Although these variations
are mostly in favor of 2-N-PSK, the fluctuations between the FAP of all the methods
are less than 1%, a difference that could be a consequence of the random nature of the
channels and the influence of complex Gaussian random noise in the simulations and hence
may be ignored. More specifically, comparing the FAP values, again for M = 100, when
SNR = 10 dB, all methods have a false alarm rate that approaches 0%. When SNR = 20 dB,
a negligible difference of several centesimal in FAP results is observed. In the case of
SNR = 30 dB, the best FAP of 2.105% is demonstrated by 2-N-PSK. However, the value
of the worst result, given by realization B, raises the FAP by only 0.33%, while C and A
worsen the FAP of 2-N-PSK by 0.08% and 0.07%, respectively. Therefore, compared to the
difference in the DPs of the methods, the FAPs variations are relatively small and may
be disregarded.
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As opposed to the faltering DP results in Figure 3, where in some SNRs the DP of
M = 100 improves on the one obtained with M = 300, Figure 5 proves the expectations that
the higher the antenna number, the better the FAP. Even though increasing the antennae
from 10 to 100 provides a several percent decrease in the FAP value, around 3% for each
method realization in SNR = 20 dB scenario, only a slight increase of approximately 0.2% is
observed when M grows from 100 to 300.

Since it is difficult to evaluate the overall performance of PCA detection methods by
two distinct parameters that are mutually bounded to a certain extent—DP and FAP, a
more exhaustive assessment of the methods’ performance that facilitates their comparison
is needed. One promising approach is to study the binary classification metrics commonly
used for the assessment of IDSs.

3.2. Evaluation of 2-N-PSK and Shifted 2-N-PSK Detection Methods Through Binary
Classification Metrics

In order to obtain the binary classification metrics of 2-N-PSK and Shifted 2-N-PSK
together with the different realizations of the latter, their confusion matrices are firstly
needed. In this study, the confusion matrices are retrieved from the execution of ten
independent experiments, each with a large number of computer simulations, 200,000.
The original 2-N-PSK detection method shows TP results that fluctuate in a wide range
between 49% and 75% of all actually positive values. In order to present objective results,
the outcomes of the different experiments are averaged. The experimental results whose
2-N-PSK TP value is closest to the averaged one are chosen to be given next. It is worth
noting that all implementation scenarios—A, B, and C—of the Shifted 2-N-PSK detection
method demonstrate stable operation with only slight variations in the predicted results.
In this attempt, all simulations are executed with the number of antenna elements at the BS
M = 100, and a fixed SNR value of 20 dB applied.

The confusion matrices of 2-N-PSK and realizations A, B, and C of Shifted 2-N-PSK can
be correspondingly observed in Tables 2–5.

Table 2. Confusion matrix of 2-N-PSK detection method.

Total Number of Simulations = 200,000
Test Outcome

Positive Negative

Actual Class
Positive TP = 57,628 FN = 42,372
Negative FP = 557 TN = 99,443

Table 3. Confusion matrix of Shifted 2-N-PSK detection method in realization A.

Total Number of Simulations = 200,000
Test Outcome

Positive Negative

Actual Class
Positive TP = 77,613 FN = 22,387
Negative FP = 559 TN = 99,441

Table 4. Confusion matrix of Shifted 2-N-PSK detection method in realization B.

Total Number of Simulations = 200,000
Test Outcome

Positive Negative

Actual Class
Positive TP = 82,992 FN = 17,008
Negative FP = 600 TN = 99,400
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Table 5. Confusion matrix of Shifted 2-N-PSK detection method in realization C.

Total Number of Simulations = 200,000
Test Outcome

Positive Negative

Actual Class
Positive TP = 64,180 FN = 35,820
Negative FP = 557 TN = 99,443

According to the results in the confusion matrices, all the methods demonstrate similar
prediction capabilities with respect to the negative class. This can be related to the values
of FAP, which are almost equal for all the methods, as stated above. Though the methods
result in an identical number of Type I errors, they exhibit diverse capabilities to predict
the samples of the positive class, and the corresponding Type II error varies. The largest
gap of around 25,000 successfully revealed attacks is observed between the TP values of
the original 2-N-PSK and Shifted 2-N-PSK in case B.

Having the confusion matrices of the PCA detection methods, the other crucial pa-
rameters for statistical evaluation of IDSs are easy to acquire. The computed classification
metrics—namely the accuracy, precision and recall, F1-score, specificity, and fall-out—of 2-N-
PSK and Shifted 2-N-PSK are illustrated in Figure 6.

An overview of the parameters included in Figure 6 gives a very informative insight
into the methods’ performance. Undoubtedly, scenarios A and B of Shifted 2-N-PSK surpass
the other methods in accuracy. Their dominating behavior is additionally proved by the
values of precision, recall and their balanced joint representation F1-score. While scenarios
A and B demonstrate equal precision, a slight superiority can be observed in the accuracy,
recall, and F1-score of Shifted 2-N-PSK in realization B. Despite the smallest specificity and
largest fall-out of the method in case B, the difference in these metrics between B and the
other methods is only of the order of 0.0004, which is negligible compared to the excellence
of scenario B to the other methods when the rest of the metrics are considered.

Following next is another important study of the joint evaluation of interconnected
classification metrics. As discussed in Section 2, finding an appropriate balance between
sensitivity and fall-out and between precision and recall is a challenge. To solve this problem
and find a suitable trade-off between these pairs of metrics, their relationship can be
graphically presented by the ROC and PR curves. Figure 7 illustrates the ROC curves of the
methods for SNR scenarios varying from 0 to 40 dB.

The ROC curves in Figure 7 show that only if the power of noise equals that of the
signal does 2-N-PSK compete with the method with shifted constellations. For all SNRs,
the ROC curve of the original method is commensurate with implementation C of Shifted
2-N-PSK, and the ROC results of realizations A and B go together with a small superiority
of B over A when SNR = 10 dB and a reverse tendency in the other SNR cases.

In Figure 8, the ROC curves for the different SNR values are separately given for each
of the methods. Not surprisingly, the higher the SNR, the better the ROC.

For comparison purposes, it may be difficult to follow the behavior of the curves as
their tendency can vary with the distinguishing decision criteria used to plot the curves.
For that reason, the ROC AUC values for the different SNRs are given in Table 6. In spite of
the similarity in the ROC curves of cases A and B of Shifted 2-N-PSK, the ROC AUC results
in the table confirm that SNR = 10 dB is the only scenario in which B outperforms A by
0.85%. The ROC evaluation over all SNR cases is in favor of realization A. The results of
SNR = 20 dB could serve as an example—in this case, realization A improves the ROC AUC
of realizations B and C and the original 2-N-PSK by 0.36%, 4.57%, and 4.44%, respectively.
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Table 6. ROC AUC of 2-N-PSK and the different realizations of Shifted 2-N-PSK in different
SNR scenarios.

ROC AUC
Signal-to-Noise-Ratio

SNR = 0 dB SNR = 10 dB SNR = 20 dB SNR = 30 dB SNR = 40 dB

2-N-PSK 0.6499 0.8318 0.9075 0.9257 0.9230

Shifted 2-N-PSK, realization A 0.6368 0.8586 0.9519 0.9829 0.9924

Shifted 2-N-PSK, realization B 0.6298 0.8673 0.9483 0.9721 0.9786

Shifted 2-N-PSK, realization C 0.6517 0.8333 0.9062 0.9305 0.9464

A similar study is conducted for the PR curves of the methods in varying SNRs. The
resultant curves for each SNR case are given in Figure 9, with their corresponding PR AUCs
in Table 7. In this examination, the curves of 2-N-PSK and Shifted 2-N-PSK in scenario C
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go together with a small PR AUC increase in C over 2-N-PSK that increments between
0.32% and 3.74% depending on the SNR value. Similarly to their ROC curves, the PR
curves of implementations A and B again show close proximity, however in the PR analyses
realization B shows the best AUC results. Thus, for SNR = 20 dB, B surpasses the PR AUC
of A, C and 2-N-PSK respectively by 5.51%, 9.05% and 10.15%.
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Table 7. PR AUC of 2-N-PSK and the different realizations of Shifted 2-N-PSK in different
SNR scenarios.

PR AUC
Signal-to-Noise Ratio

SNR = 0 dB SNR = 10 dB SNR = 20 dB SNR = 30 dB SNR = 40 dB

2-N-PSK 0.5535 0.7133 0.7890 0.7766 0.7861

Shifted 2-N-PSK, realization A 0.5543 0.7476 0.8354 0.8277 0.8413

Shifted 2-N-PSK, realization B 0.5695 0.7981 0.8905 0.8947 0.8995

Shifted 2-N-PSK, realization C 0.5567 0.7211 0.8000 0.8047 0.8235

Figure 10 represents the PR curves of each method individually for all SNR cases. An
increase in the SNR results in improved PR relation and curve that comes nearer to the
upper-left corner of the plot.
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ROC and PR analyses are also carried out for differing number of antennae at the
BS. The ROC and PR curves of all the methods under research for M = 10, M = 100, and
M = 300 are illustrated in Figures 11 and 12, respectively, and their relevant AUC values
follow in Tables 8 and 9.
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Table 8. ROC AUC of 2-N-PSK and the different realizations of Shifted 2-N-PSK with different numbers
of antenna elements at the BS.

ROC AUC
Antennae Number

M = 10 M = 100 M = 300

2-N-PSK 0.8112 0.9115 0.9006
Shifted 2-N-PSK, realization A 0.8850 0.9548 0.9567
Shifted 2-N-PSK, realization B 0.8830 0.9506 0.9756
Shifted 2-N-PSK, realization C 0.8234 0.9161 0.9167

Table 9. PR AUC of 2-N-PSK and the different realizations of Shifted 2-N-PSK with different numbers
of antenna elements at the BS.

PR AUC
Antennae Number

M = 10 M = 100 M = 300

2-N-PSK 0.5603 0.7775 0.7649
Shifted 2-N-PSK, realization A 0.6605 0.8257 0.8035
Shifted 2-N-PSK, realization B 0.5981 0.8818 0.9128
Shifted 2-N-PSK, realization C 0.5890 0.7800 0.7662

Both the ROC and PR results of each method show improvement when the antenna
number rises from 10 to 100. A strange trend, however, can be observed in the ROC AUC
of 2-N-PSK and most of the PR AUC results when the value of M increases from 100 to
300. Not only does the improvement vanish but also the PR AUC lessens in most methods’
implementations. Only realization B of Shifted 2-N-PSK keeps improving its PR results
to a certain extent when expanding the antenna number from 100 to 300. For instance,
realization A demonstrates ROC AUC and PR AUC improvements of 6.98% and 16.52%
respectively with the increase in M from 10 to 100, while only 0.19% growth in ROC AUC is
noted when the number of M changes from 100 to 300, and a decrease in the PR AUC result
by 2.22% is observed. These considerations once more raise the question of the benefits in
growing the size of the antenna array up to several hundred. Comparing the ROC AUC of
realization A to the ROC AUC of the original 2-N-PSK detection method, improvements
of 7.38%, 4.33%, and 5.61% are observed for M = 10, M = 100, and M = 300, respectively.
The same comparison between PR AUC of realization A and PR AUC of 2-N-PSK for 10,
100, and 300 antennae at the BS gives difference of 10.02%, 4.82%, and 3.86%, respectively,
always in favor of realization A of the Shifted 2-N-PSK detection method.

4. Distribution of the Legitimate Constellations Shift Values Problem

The improved performance of Shifted 2-N-PSK compared to the original 2-N-PSK from
a DP point of view is due to the strategy involved of shifting the legitimate constellations.
This way, repetition of the signal of LU or sending its reciprocal is avoided as the malicious
user contaminates the training phase with pilots from the N-PSK constellation. However,
as stated above, undetectable attacks are still possible in a modified manner, if ED aims at
the N-PSK angle that is closest to the related legitimate pilot after the offset. Assuming the
different realizations of Shifted 2-N-PSK and their aforementioned detection capabilities,
in the absence of noise, a modified attack of type 2 is always revealed by the method,
regardless of the realization scenario, i.e., no matter whether A, B, or C is implemented,
the method successfully discovers attacks of type 2. The other types of PCAs that are
undiscoverable by 2-N-PSK—that is, the modified types 1, 3, and 4—can be detected by
Shifted 2-N-PSK depending on the choice of offset values. The most effective scenario of
Shifted 2-N-PSK from a DP point of view is observed when the requirements in realization
A are covered and neither the legitimate nor the reference constellations coincide with the
original N-PSK constellation.
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If ED obtains information about the offset values used to shift the pilots of legitimate
constellations, it can initiate its PCA sending signals from the same alphabet as the LU. This
action degrades the detection probability of Shifted 2-N-PSK and makes system operation
similar to that of the original 2-N-PSK method. Thus, a need to secure the shift values and
their exchange follows. In order to ensure the privacy of the information concerning the
offset values, they can be changed dynamically so that for each pilot signal a different legit-
imate constellation is used. However, such a strategy increases the need for an algorithm
for secure key exchange at the physical layer, where the offset values can be treated as keys.
For the proper operation of existing algorithms that generate keys from the properties of
the physical layer, a priori CSI is required, making them unsuitable for the purposes of
Shifted 2-N-PSK, which must be applied during the channel estimation procedure.

In this paper, an algorithm that solves the problem of secure distribution of the
legitimate constellations shift values is proposed. By simple mathematical operations
applied simultaneously at both the BS and LU, the offset angles for the next training
phase can be extracted only from physical layer parameters. Namely, the shift values
from the current training phase and the currently obtained channel transfer function serve
as input parameters for the calculation of the shift values intended for the next training
phase. Therefore, the algorithm can be employed only after the transmission of the first
pair of pilots and assumes that the values of x1 and x2, used for the first training phase
are negotiated in advance through a cryptography approach on the upper layers of the
protocol stack.

Following next is the description of the steps involved in the whole training process,
including the algorithm proposed to compute the legitimate constellations shift values.

Step 1: Using a random number generator, the LU sets up the values x1 and x2 used to
shift the legitimate constellations of the first and the second pilot signals. The generated
values are sent to the BS through a secure channel and upper layers approach. In order to
achieve the best performance, the values of x1 and x2 have to meet the requirements in A,
i.e., |x1 − x2| ̸= φx (N-PSK) and x1 ̸= x2 ̸= φx (N-PSK).

Step 2: The i-th training phase takes place. LU sends to the BS two uplink pilot signals
from shifted constellations—p2i−1

LU belongs to a constellation shifted from the original
N-PSK symbols by x2i−1 degrees and the constellation of p2i

LU is shifted by x2i degrees.
Step 3: The BS estimates the channel and shares with LU the computed channel

transfer function from the i-th training phase, Ki, via a protocol from the upper layers of
the reference model. Meanwhile, the Shifted 2-N-PSK method is applied. In cases where
PCA is detected, the communication process is interrupted.

Step 4: The LU and the BS simultaneously compute the values used to shift the
legitimate constellations for the next pair of pilots, i.e., x2i+1 and x2i, in accordance with the
algorithm proposed below.

Steps 2, 3, and 4 are repeated for each subsequent estimate of the channel Ki+1, Ki+2,
Ki+3 and so on.

The algorithm used in Step 4, whose block diagram is illustrated in Figure 13, is based
on the following considerations: due to the random nature of wireless channels and the
positioning of ED at a different location from the LU, the malicious user explores channel
conditions that are not identical to those of LU. Consequently, no information about the
legitimate channel transfer function Ki is available at ED and it is reasonable to use the
phase of the currently estimated legitimate channel, denoted φ(Ki), for computing the
legitimate constellations shift values for the next training interval, with running number
i + 1, i.e., x2i+1 and x2i+2. In order to reduce the digital processing, which would make
the algorithm applicable in resource-constrained devices, x2i+1 and x2i+2 are computed as
the sum of the shift values from the current training phase, x2i−1 and x2i, and the current
legitimate channel argument, φ(Ki). Despite its simplicity, even if the algorithm is publicly
available, it is secure due to the random nature of the channel and the securely shared offset
values for the first training interval.
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and x2i+2 [17].

As discussed before, and as is proven from the experimental results presented in this
paper, Shifted 2-N-PSK demonstrates the most advantageous operation when the conditions
of realization A are met. Thus, in the ith training phase the algorithm aims to compute
the shift values for the next training interval, x2i+1 and x2i+2, so as to correspond to the
following criteria: |x2i+1 − x2i+2| ̸= φx (N-PSK) and x2i+1 ̸= x2i+2 ̸= φx (N-PSK). In case the
condition |x2i−1 − x2i| ̸= φx (N-PSK) is fulfilled for the current legitimate pilots and the
next ones are calculated through x2i+1 = x2i−1 + φ(Ki) and x2i+2 = x2i + φ(Ki), for certain x2i+1
and x2i+2 comply with the condition |x2i+1 − x2i+2| ̸= φx (N-PSK). However, the newly
computed values must be checked to determine whether they meet the criterion not to
equal an N-PSK phase. If a calculated shift value coincides with an N-PSK argument, its
value is incremented by one. In an effort to ensure the conditions x2i+1 ̸= φx (N-PSK) and
x2i+2 ̸= φx (N-PSK) it is possible to increment the shift values in such a way that the result
no longer fulfils the criterion for a reference constellation that differs from the N-PSK, i.e.,
|x2i+1 − x2i+2| ̸= φx (N-PSK) can be violated. Hence, a corresponding check is made, and
if needed, the shift value of the even pilot is incremented by one. Then, another verification
determines whether the new value of x2i+2 differing from the N-PSK angles is needed. Only
after all the criteria are met can it proceed to the execution of Steps 2, 3, and 4 for the next
training phase, the one with running number i + 1.

5. Discussion

The vulnerability of channel estimation procedures to PCAs represents a major secu-
rity concern in contemporary wireless systems, especially those incorporating small-scale
sensors and devices that suffer from hardware and software limitations. In such sys-
tems, cryptography-based approaches, traditionally implemented on the upper layers of
the reference model, are non-applicable due to their complex computational algorithms
and the subsequent requirements for large memory, high processing capabilities and en-
ergy supply [27,28]. In networks with resource-constrained devices, PLS solutions are
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extremely suitable for strong and reliable system protection established thoroughly on
information theory.

An attractive PLS approach, called 2-N-PSK, that is able to detect PCAs by studying
the constellation diagram and analyzing the correlation of received pilot signals was first
proposed in [15]. As discussed in Section 2, several attack scenarios exist, which the 2-N-
PSK detection method is not able to correctly detect as being present. These observations
motivated our previous studies in [16,17], where we proposed and studied a method,
called Shifted 2-N-PSK, to improve the performance efficiency of 2-N-PSK. Though Shifted
2-N-PSK successfully reveals most parts of the attacks that are undetectable by 2-N-PSK,
the operation of the method with shifted constellations is highly related to the choice of
offset angles to change the original N-PSK diagram. In Section 2, the three different imple-
mentation scenarios of Shifted 2-N-PSK are described as realizations A, B, and C. Despite
studying the probability metrics of 2-N-PSK and realization A of Shifted 2-N-PSK in our
previous work [17], until now, realizations B and C have not been investigated in scenarios
with different antenna numbers. Moreover, except for our recent work in [26] where ROC
analysis of realization A and 2-N-PSK for different SNRs is made, there is still a lack of
research on the statistical classification metrics of 2-N-PSK and all the implementations of
Shifted 2-N-PSK. All these considerations motivated this study.

The main contributions of the paper are summarized as follows:

• The major probability measures, namely DP and FAP of 2-N-PSK and Shifted 2-N-PSK
are examined in scenarios with different numbers of antenna elements at the BS. In this
study, all three of the different realizations of the method with shifted constellations
are considered.

• A holistic view of the overall performance of 2-N-PSK and Shifted 2-N-PSK is accom-
plished through statistical evaluation parameters, such as accuracy, precision, recall,
F1-score, specificity, and fall-out. Moreover, ROC and PR curves together with their
corresponding area under curve (AUR) are also included in this analysis. Both the
curves are obtained for different sizes of the antenna array at the BS.

• Using probability and classification metrics, the 2-N-PSK and Shifted 2-N-PSK methods
for PCA detection are exhaustively studied and their performance is compared.

• A lightweight PLS algorithm that can be used to compute the shift values of legitimate
pilots for Shifted 2-N-PSK detection method is proposed. The algorithm is applicable
at the LU and BS simultaneously, hence eliminating the need for secure exchange of
the offset values.

Summarizing the behavior of the probability metrics, it can be concluded that all the
realizations of Shifted 2-N-PSK outperform the DP results of 2-N-PSK at the expense of
a small worsening of FAP results. Increasing the size of the antenna array to a certain
extent improves the DP in most SNR scenarios and successfully reduces the value of FAP.
However, only small benefits in probability metrics are observed when increasing the
antenna number above one hundred.

Considering the classification metrics, realizations A and B of the Shifted 2-N-PSK
detection method surpass the others and which of them is superior depends on the SNR
scenario. As the decision criterion of the methods is connected with the noise power, the
results of both ROC and PR analysis confirm significant improvement in the methods’
performance in enhanced SNR conditions. The study of ROC and PR curves in different
numbers of antenna elements at the BS proves the conclusion of the research on the
probability metrics that more effective performance of detection methods is demonstrated
when raising the size of the antenna array. However, in cases of as many as 300 antennae,
the PR analysis does not show the desired improvement and even a small reverse effect
is observed. Therefore, a study of to what extent it is reasonable to increase the antenna
number at the BS may be considered as a future research direction.
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6. Conclusions

In this paper, two PCA detection methods that distinguish between the presence or
absence of an attack based on a constellation diagram analysis are exhaustively studied.
First, the DP and FAP of both the methods are investigated. Then, large varieties of
classification metrics, that provide a broad-spectrum view on the different aspects of
effective operation, are explored. Summarizing the simulation results, it should be noted
that realization A of Shifted 2-N-PSK improves the efficiency of 2-N-PSK according to ROC
AUC and PR AUC analyses, as follows: for M = 10, 7.38% and 10.02% a respective increase
in ROC AUC and PR AUC; for M = 100, 4.33% and 4.82% a respective increase in ROC AUC
and PR AUC; for M = 300, 5.61% and 3.86% a respective increase in ROC AUC and PR AUC.
These results show that the larger the antenna array at the BS, the narrower the difference
in both methods’ operation. At the end of this research, an algorithm is proposed that
can be used at the LU and the BS simultaneously to compute the shift values of legitimate
constellations in Shifted 2-N-PSK, thus eliminating the need for key exchange at the upper
layers of the reference model.

As mentioned in Section 5, a possible future line of research can investigate the
precise upper bounds of the antenna number that gives a significant improvement of
the methods’ efficiency. Another subject of future analyses can be the evaluation of the
detection capabilities of the methods with an extended system model. This can include
user mobility, a more complex distribution of the noise variables, and a change in the
modulation diagram from the originally used N-PSK constellation.
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