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Abstract: Wound rotor synchronous condensers (WRSCs) are DC-excited rotor machines that utilize
rotor winding instead of permanent magnets. Their voltage regulator controls the rotor field to
generate or absorb reactive power, thereby regulating grid voltage or improving power factor. A
key characteristic of a WRSC is the compounding curve, which shows the required rotor current
under specific stator current and voltage conditions. This paper presents an approach for quickly
calculating the electromagnetic parameters of a WRSC using a mathematical method. After deter-
mining magnetic flux density, induced voltage, and inductance through analytical methods, the Park
and Clarke transformations are applied to derive the dq-frame quantities, enabling prediction of
active and reactive powers and compounding curve characteristics. The 60 Hz model was evaluated
through comparison with finite element method (FEM) simulations. Results of flux density, induced
voltage, and the compounding curve under varying rotor and stator current conditions showed
that the proposed method achieved comparable performance to FEM simulation while reducing
computational time by half.

Keywords: compounding curve; finite element method; subdomain modeling; wound rotor
synchronous condenser

MSC: 35-04

1. Introduction

Growing environmental concerns and the impacts of climate change are driving the
shift from fossil-fuel-based power generation to renewable energy sources. Integrating
renewable energy into power systems worldwide helps reduce greenhouse gas emissions
and addresses the significant CO2 emissions of the energy sector, offering sustainable and
eco-friendly electricity to power electronic systems. Achieving net-zero emissions by 2050
is essential to limiting global temperature rise, prompting significant changes in the global
energy landscape. By 2050, variable renewable energy sources like wind and solar power
are expected to dominate the energy mix, with global electricity production projected
to increase by 70%. However, the intermittency of renewable energy requires innovative
solutions to maintain grid stability, including advanced energy storage and flexible demand
management. Consequently, increasing the installed capacity of renewable energy sources
in power systems has become a global priority [1–4].

Most renewable energy resources (RERs) connect to power systems through power
electronic converters, which lack the inertia provided by traditional fossil fuel generators.
The high penetration of RERs, coupled with the retirement of aging fossil-fuel-based
generators, has reduced power system inertia. Moreover, most RERs are located in rural
areas and connect to power systems via long transmission lines. These long lines have high
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impedance, which lowers the power system’s short circuit ratio [5]. As a result, transmitting
active power through the system consumes significant reactive power, reducing the AC
grid’s dynamic reactive power reserve and making voltage stability a critical issue [6].

A synchronous condenser is a machine used as a reactive power compensation device
to enhance AC power system performance. It provides two primary functions: load
compensation and voltage support. Load compensation improves power factor, balances
loads, and eliminates current harmonics in nonlinear industrial loads. Voltage support aims
to reduce voltage fluctuations at transmission line terminals [7,8], increase the maximum
transmittable active power, and enhance AC system stability [9].

Studies in [10,11] discuss converting existing or retired synchronous generators into
synchronous condensers. This conversion involves evaluating and modifying auxiliary
equipment, accelerating the generator slightly above synchronous speed, powering the
excitation system, and synchronizing the condenser with the transmission system. The
system maintains the desired terminal voltage of the condenser using automatic voltage
regulation controls.

In analyzing electrical machines, particularly synchronous condensers, air-gap flux
density is crucial for designers, as it enables determination of parameters such as voltage,
torque, and power. Previous studies have mainly relied on finite element method (FEM) sim-
ulations, which can be time-consuming, or on magnetic equivalent circuit approaches [12],
which often lack precision. Analytical methods offer faster computation with results that
align closely with FEM simulations, making them an attractive option for pre-design,
analysis, and optimization of wound rotor synchronous condensers (WRSCs). Two main
analytical approaches have been explored: subdomain modeling and harmonic modeling.

Subdomain modeling involves solving Maxwell’s equations and boundary/interface
conditions using Fourier series expansion. This approach has been applied to surface per-
manent magnet (SPM) motors [13]. The second approach, harmonic modeling, addresses
permeability issues using a complex Fourier series and a Cauchy product, allowing consid-
eration of nonlinear core characteristics. It was initially introduced in analyzing switched
reluctance motors (SRMs) [14]. Based on these analytical approaches, ref. [15] optimized
cogging torque by investigating the slot opening and magnet pitch ratio, while [16–18]
optimized output power in magnetically geared machines (MG) and SPMs. For multi-
physics analysis, ref. [19] applied the subdomain method to predict stress and deformation
in MGMs, and [20] solved for thermal distribution in the stator slot of SPMs.

To the best of our knowledge, analytical methods have not been applied to WRSCs.
Thus, this study extensively analyzes a WRSC using a subdomain approach to predict
air-gap flux density, voltage, and power-factor-related characteristics. Section 2 presents
the main content in four subsections. The Section 2.1 introduces the application of partial
differential equations (PDEs) to WRSCs. The Section 2.2 establishes an equation system
to solve for unknown coefficients based on boundary conditions. The Section 2.3 defines
WRSC parameters, and the fourth presents the compounding curve calculation. Finally,
Section 3 presents FEM simulation results validating the proposed method.

2. Subdomain Modeling
2.1. Governing Partial Differential Equations (PDEs)

Figure 1 describes the WRSC and its simplified models employed in the subdomain
modeling. Initially, the following assumptions were made:

• The end effects are ignored;
• The problem is two-dimensional (2-D) in polar coordinates;
• Magnetic vector potential A, current density J, and magnetic flux density vector B

have the following non-zero components: A = [0, 0, Az]; J = [0, 0, Jz]; B = [Br, Bθ , 0];
• The core materials have infinite permeability.
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Figure 1. (a) Wound rotor synchronous condenser and (b) a simplified model. 

The WRSC model, as illustrated in Figure 1b, is divided into five subdomains: rotor, 
rotor opening, air gap, stator opening, and stator slots. Each subdomain is represented by 
a vector potential of the form 𝐴௭, 𝐴௭, 𝐴௭ூ , 𝐴௭ , 𝐴௭ , with respective harmonic components ℎ, 𝑔, 𝑛, 𝑘, 𝑚. The model includes 𝑁 rotor and 𝑁௦ stator slots, where indices 𝑝, 𝑞, 𝑖, 
and 𝑗 denote specific rotor and stator slots with initial positions 𝜃, 𝜃, 𝜃, and 𝜃. A 2-
D analysis in polar coordinates is used to derive partial differential equations (PDEs) for 
each region: 𝜕ଶ𝐴௭𝜕𝑟ଶ + 𝜕𝐴௭𝑟𝜕𝑟 + 𝜕ଶ𝐴௭𝑟ଶ𝜕𝜃ଶ = −𝜇𝐽௭ (1) 

𝜕ଶ𝐴௭𝜕𝑟ଶ + 𝜕𝐴௭𝑟𝜕𝑟 + 𝜕ଶ𝐴௭𝑟ଶ𝜕𝜃ଶ = 0 (2) 

𝜕ଶ𝐴௭ூ𝜕𝑟ଶ + 𝜕𝐴௭ூ𝑟𝜕𝑟 + 𝜕ଶ𝐴௭ூ𝑟ଶ𝜕𝜃ଶ = 0 (3) 

𝜕ଶ𝐴௭𝜕𝑟ଶ + 𝜕𝐴௭𝑟𝜕𝑟 + 𝜕ଶ𝐴௭𝑟ଶ𝜕𝜃ଶ = 0 (4) 

𝜕ଶ𝐴௭𝜕𝑟ଶ + 𝜕𝐴௭𝑟𝜕𝑟 + 𝜕ଶ𝐴௭𝑟ଶ𝜕𝜃ଶ = −𝜇𝐽௭ (5) 

The air gap and slot-opening regions can be modeled using Laplace’s equation, while 
the rotor-stator slot subdomains can be represented by Poisson’s equation. To facilitate 
the Fourier series expansion of the vector potential, the right-hand side of Poisson’s equa-
tion must be reformulated in Fourier form. 

In the double-layer stator winding, the current density in the j-th slot is expressed as 

𝑱𝒛𝒋 = ൭𝐽 +  𝐽 cos ቆ𝑚𝜋𝛿 ൫𝜃 − 𝜃൯ቇஶ
ୀଵ,ଶ ൱ 𝒊𝒛 

where 𝐽 = 𝐽ି௬ଵ + 𝐽ି௬ଶ2  

𝐽 =  2𝑚𝜋 ൫𝐽_௬ଵ − 𝐽_௬ଶ൯ sin ቀ𝑚𝜋2 ቁ ↔ non overlapping0 ↔ overlapping  

(6) 

Figure 1. (a) Wound rotor synchronous condenser and (b) a simplified model.

The WRSC model, as illustrated in Figure 1b, is divided into five subdomains: rotor,
rotor opening, air gap, stator opening, and stator slots. Each subdomain is represented by a
vector potential of the form Ap

z , Aq
z, AI

z, Ai
z, Aj

z, with respective harmonic components h, g,
n, k, m. The model includes Nr rotor and Ns stator slots, where indices p, q, i, and j denote
specific rotor and stator slots with initial positions θp, θq, θi, and θj. A 2-D analysis in polar
coordinates is used to derive partial differential equations (PDEs) for each region:

∂2 Ap
z

∂r2 +
∂Ap

z
r∂r

+
∂2 Ap

z

r2∂θ2 = −µ0 Jp
z (1)

∂2 Aq
z

∂r2 +
∂Aq

z
r∂r

+
∂2 Aq

z

r2∂θ2 = 0 (2)

∂2 AI
z

∂r2 +
∂AI

z
r∂r

+
∂2 AI

z
r2∂θ2 = 0 (3)

∂2 Ai
z

∂r2 +
∂Ai

z
r∂r

+
∂2 Ai

z
r2∂θ2 = 0 (4)

∂2 Aj
z

∂r2 +
∂Aj

z
r∂r

+
∂2 Aj

z

r2∂θ2 = −µ0 J j
z (5)

The air gap and slot-opening regions can be modeled using Laplace’s equation, while
the rotor-stator slot subdomains can be represented by Poisson’s equation. To facilitate the
Fourier series expansion of the vector potential, the right-hand side of Poisson’s equation
must be reformulated in Fourier form.

In the double-layer stator winding, the current density in the j-th slot is expressed as

Jj
z =

(
J j
0 +

∞
∑

m=1,2
J j
mcos

(mπ
δ

(
θ − θj

)))
iz

where

J j
0 =

J j−layer1
0 +J j−layer2

0
2

J j
m =

[
2

mπ

(
J j_layer1
0 − J j_layer2

0

)
sin
(mπ

2
)
↔ non overlapping

0 ↔ overlapping

(6)

In the single-layer rotor winding, the current sheet is simply described as Jp
z = Jp

0 iz.
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2.2. General Solutions

The infinite permeability assumption in the core leads to tangential-direction
boundary conditions.

∂Ap
z

∂θ

∣∣∣∣∣
θ=θp

=
∂Ap

z
∂θ

∣∣∣∣∣
θ=θp+α

(7)

∂Aq
z

∂θ

∣∣∣∣∣
θ=θq

=
∂Aq

z
∂θ

∣∣∣∣∣
θ=θq+γ

(8)

∂Ai
z

∂θ

∣∣∣∣
θ=θi

=
∂Ai

z
∂θ

∣∣∣∣
θ=θi+β

(9)

∂Aj
z

∂θ

∣∣∣∣∣
θ=θj

=
∂Aj

z
∂θ

∣∣∣∣∣
θ=θj+δ

(10)

Applying these four boundary conditions to Equations (1)–(5), general solutions of
PDEs are expressed as a sum of homogeneous and particular solutions.

Ap
z = Ap

0+ ln(r) Bp
0 −

µ0

4
r2 Jp

0 +
∞

∑
h=1,2

(
rh π

α Cp
h + r−h π

α Dp
h

)
cos
(

h
π

α

(
θ − θp

))
(11)

Aq
z = Aq

0+ ln(r) Bq
0 +

∞

∑
g=1,2

(
rg π

γ Cq
g + r−g π

γ Dq
g

)
cos
(

g
π

γ

(
θ − θq

))
(12)

AI
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∞

∑
n=1,2

(
rnAI

n + r−nBI
n

)
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(
rnCI
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n

)
cos(nθ) (13)

Ai
z = Ai

0+ ln(r) Bi
0 +

∞

∑
k=1,2

(
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β Ci
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β Di
k

)
cos
(

k
π

β
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)
(14)
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4 r2 J j

0+
∞
∑
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(
rm π

δ Cj
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δ Dj
m + µ0r2 J j

m

(m π
δ )

2−4

)
cos
(
m π

δ

(
θ − θj

)) (15)

In total, there are 20 coefficients in (11)–(15). Thus, to determine a unique solution
requires us to derive 20 corresponding equations. The continuity of the vector potential
radial components results in the following boundary conditions:

r = R1 → ∂Ap
z

∂r
= 0 (16)

r = R2 →
{

∂Ap
z

∂r = ∂Aq
z

∂r
Aq

z = Ap
z

(17)

r = R3 →
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z = AI
z
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z

∂r
=

Nr
∑

p=1,2

∂Ap
z

∂r
(18)

r = R4 →


∂AI

z
∂r

=
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∑

i=1,2

∂Ai
z

∂r
Ai

z = AI
z

(19)

r = R5 →
{

Ai
z = Aj

z
∂Aj

z
∂r = ∂Ai

z
∂r

(20)
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r = R6 → ∂Aj
z

∂r
= 0 (21)

By employing integrals sni(n, θi, β), rni(n, θi, β), gkni(k, n, θi, β), f kni(k, n, θi, β), and
Fmk(m, k, β, δ) in [19] to shorten equations, 20 equations are given in Appendices A and B.

2.3. Matrix Representation and Solving Electromagnetic Quantities

Reformulating the above equations into matrix and vector forms makes it possible to
obtain analytical solutions using MATLAB R2022b. For instance, in a WRSM model with
Nr = 32 rotor and Ns = 42 stator slots and harmonic order numbers G = H = K = M = 5
and N = 100, the result is a column matrix X with 4(N + NrG + Nr H + NsK + Ns M) =
3360 elements.

X =
[
AI

nBI
nCI

nDI
nAp

0Bp
0Cp

hDp
hAq

0Bq
0Cq

gDq
gAi

0Bi
0Ci

kDi
kAj

0Bj
0Cj

mDj
m

]T
(22)

After solving the coefficients, flux density at the air gap (radius is Re) is derived as:

Bθ = −∂AI

∂r
= − 1

Re

∞

∑
n=1,2

(
Re

nAI
n − Re

−nBI
n

)
sin(nθ)n +

(
Re

nCI
n − Re

−nDI
n

)
cos(nθ)n

(23)

Br =
1

Re

∂AI

∂θ
=

1
Re

∞

∑
n=1,2

(
Re

nAI
n + Re

−nBI
n

)
cos(nθ)n −

(
Re

nCI
n + Re

−nDI
n

)
sin(nθ)n (24)

To compute the induced voltage in a three-phase motor with stack length Lstk, the
flux through each slot cross-section at a given rotor position θ0 was calculated. Uniform
current density across the slot area was assumed, allowing for the flux in the j-th slot to be
determined by integrating the vector potential across the slot area, as given in Equation (15).

Φj = Tpole
lstk

Aslot

s
Aj

r(θ, z)rdrdθ

= Lstk
R2

6−R2
5

2

(
Aj

0
R2

6−R2
5

2 + Bj
0

(
ln(R6)

R2
6

2 − ln(R5)
R2

5
2 +

R2
6−R2

5
4

)
− J j

0
µ0(R4

6−R4
5)

16

)
(25)

The phase flux is calculated as the sum of fluxes in slots associated with each phase. A
connecting matrix [C] with the dimensions 3 × Ns was used to present the stator winding
distribution in the slots, as shown in [13], where indices 1 and −1 denote positive and
negative, and 0 denotes a phase absence in the slot. Tslot represents the phase-winding
turns per slot, and the phase fluxes are expressed as:ΦA

ΦB
ΦC


3×1

= Tslot[C]3×Ns

[
Φj
]

Ns×1 (26)

The induced voltage can be defined at a given rotor speed ωm as follows:UA
UB
UC


3×1

=
Nr

2
ωm

d
dθ0

ΦA
ΦB
ΦC


3×1

(27)

Notably, without stator current contribution in the no-load condition, the induced
voltage becomes BEMF.

2.4. Compounding Curve

Figure 2 illustrates three compounding curves, where the red, blue, and orange lines
represent power factors of 1 and 0.95 leading (WRSC generates reactive power), and
0.95 lagging (WRSC absorbs reactive power), respectively. For instance, at a stator load
of 105 A, the rotor generates 86 A to achieve a power factor of 1. If the rotor current
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exceeds 86 A, the machine becomes overexcited, and excess reactive power flows to the
grid. Conversely, if the rotor current is below 86 A, the machine becomes under-excited,
lowering its operating voltage below the grid voltage, prompting the grid to supply reactive
power to compensate for the power deficit in the machine.
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The compounding curve is essential for assessing WRSC performance, allowing de-
signers to estimate the field current necessary for a given stator load to achieve a desired
electrical system power factor. This section presents the procedure for deriving the unity
power factor line and applies it to salient and non-salient rotors. The procedure involves:

• Transforming phase quantities (flux, voltage, and current) obtained from subdomain
modeling into the dq-frame under current excitation.

• Deriving and transforming self- and mutual inductances into the dq-frame.
• Building and solving a d-axis current function with a reactive power of zero from the

voltage and power equations in the dq-frame.

By aligning the rotor pole with phase A in the initial position, the quantities of voltage,
current, flux, and inductance can be transferred to the dq-frame using Park and Clarke
transformations [21]. By assuming that machine saturation is neglected, Park and Clarke
transformations are given as follows:

UIλdqz =
2
3

 cos(θ0) cos
(
θ0 − 2π

3
)

cos
(
θ0 +

2π
3
)

−sin(θ0) −sin
(
θ0 − 2π

3
)

−sin
(
θ0 +

2π
3
)

1/2
1/2

1/2

UIλa
UIλb
UIλc

 (28)

 Ld Mdq Mdz
Mqd Lq Mqz
Mzd Mzq Lz

 =

√
2
3


1 cos

( 2π
3
)

cos
(

4π
3

)
0 sin

( 2π
3
)

sin
(

4π
3

)
1/√2

1/√2
1/√2


 Laa Mab Mac

Mba Lbb Mbc
Mca Mcb Lcc

√2
3

(29)

To calculate the winding self-inductance and mutual inductances in (29), the authors
apply an excitation current of 1 A to the first winding, while setting the currents in all other
windings to zero, excluding rotor current effects from the analysis. For example, phase
A is set to 1 A, while phases B and C and the rotor current are set to zero. The obtained
flux linkages of phases A, B, and C (ψa, ψb, ψc) are then used to calculate the inductance
as follows:

[Laa Lab Lac] =
[ψa ψb ψc]

1A
(30)

Additionally, rotor flux linkage (ψ f ), used to derive rotor inductance, Md f = ψ f /I f , is
calculated by setting all stator winding currents to zero and applying only a 1 A current to
the rotor. The flux linkage of phase A is considered the rotor flux linkage.
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In high-power machines, reactance is dominant, and stator resistance can be neglected;
therefore, the voltage equation is given by:[

Ud
Uq

]
≈ ωe

[
−Lqiq

Ldid + Md f i f

]
(31)

Consequently, the active and reactive powers are defined as:

P = 1.5
(
Udid + Uqiq

)
Q = 1.5

(
Uqid − Udiq

) (32)

Table 1 shows the operating modes of the machine’s power. To operate as a capacitor
bank, the machine generates reactive power (negative Q). This is achieved by applying a
sufficiently large negative d-axis current along with a specific rotor current. For a constant
stator current, this capacitor-like operation can also be achieved by applying a sufficient
rotor current.

Table 1. Machine mode definition.

Mode Power Factor P Q

Motor Lagging >0 >0
Motor Leading >0 <0

Generator Lagging <0 >0
Generator Leading <0 <0

To achieve a unity power factor (PF = 1), commutation in WRSC is defined by a zero
reactive power, Q = 0. This condition, combined with the voltage constraint v2

d + v2
q = V2

smax,
allows the d-axis stator current to be modeled as a function of rotor current.(

L2
d − LdLq

)
i2d + Md f i f

(
2Ld − Lq

)
id + Md f i f

2 − V2
smax
ω2

e
= 0 (33)

By adjusting the rotor current i f , the d-axis current can be solved using Equation (33),
and the q-axis current can be obtained from Equation (32). These computations form a
compounding curve that maps the current relationship between the rotor and stator. In
salient-pole rotor machines, where dq-frame inductances are nearly identical, Equation (33)
reduces to a first-order equation, simplifying analysis.

3. FEM Simulation Comparison

To validate these principles, specifications for a one-pole-pair WRSC, as listed in
Table 2, were simulated using a 2-D finite element method (FEM) model with the mesh
setting depicted in Figure 3a. Due to mechanical constraints in MW-class WRSC, the air
gap was intentionally designed to be large (up to 100 mm). The FEM simulation took 66 s
to compute flux density, flux at the air gap, and induced voltage (see Figures 3b and 4). By
contrast, the subdomain modeling approach achieved these calculations in 33 s, showcasing
the computational efficiency of the proposed method in WRSC pre-design.

Figure 3b illustrates the flux density distribution at current conditions i f = 1 kA;
id = iq = −0.5 kA. The salient-pole rotor caused flux linkage to concentrate in the rotor
pole and teeth near the pole, inducing mild saturation in the teeth. Under typical conditions,
machines avoid saturation, making the assumption of infinite permeability in subdomain
modeling suitable. However, when the field current or stator current is increased, saturation
intensifies, resulting in accuracy discrepancies in the subdomain method (see Figure 4e,f).

The compounding curves derived from the subdomain method were closely aligned
with the FEM results, as seen in Figure 5. To maintain a unity power factor while increasing
stator current, the field current must also rise. Additionally, rotor current must increase at
higher stator voltages. Calculations for these curves, derived from Equation (33), involve
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computing the dq-axis currents for each rotor current, then determining the stator current.
The analysis covered phase peak voltages of 10, 15, 18, and 22 kV, revealing that the
machine can support stator currents up to 5 kA with a maximum field current of 1.3 kA.
The mathematical method obtained these results in under 1 s, which represents a significant
time advantage in deriving compounding curves.

Table 2. WRSC parameters.

Quantity Symbol Unit Value

Inner rotor slot radius R1 mm 269.50
Outer rotor radius R2 mm 425.25

Inner stator slot radius R3 mm 525.25
Outer stator slot radius R4 mm 700.50

Outer stator radius R5 mm 1119.50
Stack length Lstk mm 6402.40

Vacuum permeability µ0 kg·m·s−2·A−2 4π × 10−7

Rotor slot number Nr - 32
Stator slot number Ns - 42

Rotor slot pitch ratio α π/180 rad 4.64
Rotor opening slot pitch ratio γ π/180 rad 4.64
Stator opening slot pitch ratio β 2π/Ns rad 0.46

Stator slot pitch ratio δ 2π/Ns rad 0.46
Rotor slot winding turn Tr

slot - 5/7 *
Stator slot winding turn Ts

slot - 2
* The 1st, 16th, 17th, and 32nd slots each contain five turns. The remaining slots accommodate seven turns.
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4. Conclusions

Overall, the proposed mathematical method offers a fast and effective approach for
characterizing WRSC properties, including flux density, induced voltage, inductance, and
compounding curves. Under low rotor and stator current conditions, the subdomain
method aligns well with 2-D FEM results. However, as rotor and stator currents increase,
saturation can induce errors of up to 10% in the flux density and induced voltage results.
The unity-power-factor compounding curves were accurate across varying conditions.
These results were obtained because of the unity power factor and suppression of demag-
netization by the d-axis stator current, which weakens flux linkage and limits saturation.

Compared to 2-D FEM simulations, the mathematical method cut computation time
from 66 to 33 s, facilitating faster optimizations in the WRSC design process. The reduced
time can lead to exponential efficiency gains, enabling designers to employ optimization
techniques more effectively.

Future research based on these findings could explore:

• Nonlinear magnetic material characteristics;
• Deriving leading and lagging compounding curves for power factor;
• Optimization techniques for a more efficient WRSC design;
• Experimental verification of the subdomain method on a test bench.
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Appendix A

The following integrals are presented to shorten equations in Appendix B:

sni(n, θi, β) =

θi+β∫
θi

sin(nθ)dθ =
1
n
(cos(nθi)− cos(n(θi + β) )) (A1)

rni(n, θi, β) =

θi+β∫
θi

cos(nθ)dθ =
1
n
( sin(n(θi + β) )− sin(nθi)) (A2)

gkni(k, n, θi, β) =
θi+β∫
θi

sin(nθ)cos
(

k π
β (θ − θi)

)
dθ

=


β
2

(
sin(nθi)− 1

2kπ (cos(n(θi + 2β))− cos(nθi))
)
↔ kπ = nβ

nβ2

(kπ)2−(nβ)2

(
(−1)k(n(θi + 2β))− cos(nθi)

)
↔ kπ ̸= nβ

(A3)

f kni(k, n, θi, β) =
θi+β∫
θi

cos(nθ)cos
(

k π
β (θ − θi)

)
dθ

=


β
2

(
cos(nθi) +

1
2kπ (sin(n(θi + 2β))− sin(nθi))

)
↔ kπ = nβ

−nβ2

(kπ)2−(nβ)2

(
(−1)ksin(n(θi + 2β))− sin(nθi)

)
↔ kπ ̸= nβ

(A4)

Fmk(m, k, β, δ) =
θi+β∫
θi

cos
(

k π
β (θ − θi)

)
cos
(
m π

δ

(
θ − θj

))
dθ

=


β
2 cos

(
kπ
2β (β − δ)

)
↔ m

δ = k
β

m π
δ

(m π
δ )

2−
(

k π
β

)2

(
(−1)ksin

(mπ
2δ (β + δ)

)
+ sin

(mπ
2δ (β − δ)

))
↔ m

δ ̸= k
β

(A5)

Appendix B

Twenty respective equations to determine a unique solution are rewritten as:

1
R1

Bp
0 −

µ0

2
R1 Jp

0 = 0 (A6)

R1
h π

α −1h
π

α
Cp

h + R1
−h π

α −1(−h
π

α
)Dp

h = 0 (A7)

1
R2

Bp
0 −

µ0

2
R2 Jp

0 =
γ

α

1
R2

Bq
0 (A8)

R2
h π

α −1h π
α Cp

h + R2
−h π

α −1(−h π
α

)
Dp

h = 2
α

1
R2

Bq
0

α
hπ 2cos

(
hπ
2

)
sin
(

hπ
2

γ
α

)
+

∞
∑

g=1,2

(
R2

g π
γ −1g π

γ Cq
g + R2

−g π
γ −1

(
−g π

γ

)
Dq

g

)
2
α Fmk(h, g, γ, α)

(A9)

Aq
0+ ln(R2) Bq

0 = Ap
0+ ln(R2) Bp

0 −
µ0
4 R2

2 Jp
0

+
∞
∑

h=1,2

(
R2

h π
α Cp

h + R2
−h π

α Dp
h

)
1
γ

α
hπ 2cos

(
hπ
2

)
sin
(

hπ
2

γ
α

) (A10)

R2
g π

γ Cq
g + R2

−g π
γ Dq

g =
∞

∑
h=1,2

(
R2

h π
α Cp

h + R2
−h π

α Dp
h

) 2
γ

Fmk(h, g, γ, α) (A11)

R3
n−1nAI

n + R3
−n−1(−n)BI

n =
Nr
∑

p=1,2

1
R3

Bq
0

2
2π sni

(
n, θq, γ

)
+

Nr
∑

q=1,2

∞
∑

g=1,2

(
R3

g π
γ −1g π

γ Cq
g + R3

−g π
γ −1

(
−g π

γ

)
Dq

g

)
2

2π gkni
(

g, n, θq, γ
) (A12)
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R3
n−1nCI

n + R3
−n−1(−n)DI

n =
Nr
∑

q=1,2

1
R3

Bq
0

2
2π rni

(
n, θq, γ

)
+

Nr
∑

q=1,2

∞
∑

g=1,2

(
R3

g π
γ −1g π

γ Cq
g + R3

−g π
γ −1

(
−g π

γ

)
Dq

g

)
2

2π f kni
(

g, n, θq, γ
) (A13)

Aq
0+ ln(R3) Bq

0 =
(

R3
nAI

n + R3
−nBI

n

) 1
γ

sni
(
n, θq, γ

)
+
(

R3
nCI

n + R3
−nDI

n

) 1
γ

rni
(
n, θq, γ

)
(A14)

R3
g π

γ Cq
g + R3

−g π
γ Dq

g

=
(

R3
nAI

n + R3
−nBI

n
) 2

γ gkni
(

g, n, θq, γ
)
+
(

R3
nCI

n + R3
−nDI

n

)
2
γ f kni

(
g, n, θq, γ

) (A15)

R4
n−1nAI

n + R4
−n−1(−n)BI

n =
Ns
∑

i=1,2

1
R4

Bi
0

2
2π sni(n, θi, β)

+
Ns
∑

i=1,2

∞
∑

k=1,2

(
R4

k π
β −1k π

β Ci
k + R4

−k π
β −1
(
−k π

β

)
Di

k

)
2

2π gkni(k, n, θi, β)

(A16)

R4
n−1nCI

n + R4
−n−1(−n)DI

n =
Ns
∑

i=1,2

1
R4

Bi
0

2
2π rni(n, θi, β)

+
Ns
∑

i=1,2

∞
∑

k=1,2

(
R4

k π
β −1k π

β Ci
k + R4

−k π
β −1
(
−k π

β

)
Di

k

)
2

2π f kni(k, n, θi, β)

(A17)

Ai
0+ ln(R4) Bi

0

=
∞
∑

n=1,2

(
R4

nAI
n + R4

−nBI
n
) 1

β sni(n, θi, β) +
(

R4
nCI

n + R4
−nDI

n

)
1
β rni(n, θi, β)

(A18)

R4
k π

β Ci
k + R4

−k π
β Di

k

=
∞
∑

n=1,2

(
R4

nAI
n + R4

−nBI
n
) 2

β gkni(k, n, θi, β) +
(

R4
nCI

n + R4
−nDI

n

)
2
β f kni(k, n, θi, β)

(A19)

Ai
0+ ln(R5) Bi

0 = Aj
0+ ln(R5) Bj

0 −
µ0
4 R5

2 J j
0

+
∞
∑

m=1,2

(
R5

m π
δ Cj

m + R5
−m π

δ Dj
m + µ0

(m π
δ )

2−4
R5

2 J j
m

)
2

mπ
δ
β cos

(mπ
2
)
sin
(

mπ
2

β
δ

) (A20)

R5
k π

β Ci
k + R5

−k π
β Di

k

= 2
β

∞
∑

m=1,2

(
R5

m π
δ Cj

m + R5
−m π

δ Dj
m + µ0

(m π
δ )

2−4
R5

2 J j
m

)
Fmk(m, k, β, δ)

(A21)

1
R5

Bj
0 −

µ0

2
R5 J j

0 =
β

δ

1
R5

Bi
0 (A22)

R5
m π

δ m π
δ Cj

m + R5
−m π

δ
(
−m π

δ

)
Dj

m + µ02R5 J j
m

(m π
δ )

2−4
= 1

R5
Bi

0
4

mπ cos
(mπ

2
)
sin
(

mπ
2

β
δ

)
+

∞
∑

k=1,2

(
R5

k π
β −1k π

β Ci
k + R5

−k π
β −1
(
−k π

β

)
Di

k

)
2
δ Fmk(m, k, β, δ)

(A23)

1
R6

Bj
0 −

µ0

2
R6 J j

0 = 0 (A24)

R
m π

δ
6 m

π

δ
Cj

m + R
−m π

δ
6

(
−m

π

δ

)
Dj

m +
µ02R6 J j

m(
m π

δ

)2 − 4
= 0 (A25)

References
1. Sajjad, H.; Si, M.; Majid, F.; Aaron, Z.; Behrooz, B. Virtual Synchronous Generator Versus Synchronous Condensers: An

Electromagnetic Transient Simulation based Comparison. CIGRE Sci. Eng. 2022, 24, 2022.
2. Cho, H.W.; Bang, T.K.; Lee, J.I.; Shin, K.H.; Lee, H.S.; Hur, J.S.; Haran, K.S. Design and Preliminary Experiments of a Rotating

Armature Partial Superconducting Air-Core Generator. IEEE Trans. Appl. Supercond. 2022, 32, 5202505. [CrossRef]
3. Soleimani, H.; Habibi, D.; Ghahramani, M.; Strengthening, A.A. Power Systems for Net Zero: A Review of the Role of Synchronous

Condensers and Emerging Challenges. Energies 2024, 17, 3291. [CrossRef]

https://doi.org/10.1109/TASC.2022.3180309
https://doi.org/10.3390/en17133291


Mathematics 2024, 12, 3526 13 of 13

4. Nedd, M.; Booth, C.; Bell, K. Potential Solutions to the Challenges of Low Inertia Power Systems with a Case Study Concerning
Synchronous Condensers. In Proceedings of the 2017 52nd International Universities Power Engineering Conference (UPEC),
Heraklion, Greece, 28–31 August 2017.

5. Hadavi, S.; Saunderson, J.; Sani, A.M.; Bahrani, B. A Planning Method for Synchronous Condensers in Weak Grids Using
Semi-Definite Optimization. IEEE Trans. Power Syst. 2023, 38, 1632–1641. [CrossRef]

6. Nguyen, H.T.; Yang, G.; Nielsen, A.H.; Jensen, P.H. Combination of Synchronous Condenser and Synthetic Inertia for Frequency
Stability Enhancement in Low-Inertia Systems. IEEE Trans. Sustain. Energy 2019, 10, 997–1005. [CrossRef]

7. Xu, G.; Yuan, Z.; Zhu, X.; Hu, P.; Liu, W.; Li, W.; Zhan, Y.; Zhao, H. Influence of Rotor Damping Bars on Rotor Temperature Rise of
Synchronous Condenser After Single-Phase Short-Circuit Fault. IEEE Trans. Ind. Appl. 2023, 59, 5832–5841. [CrossRef]

8. Tao, Z.; Wang, T.; Cai, D.; Chen, R. Research on Reactive Power Optimization of Synchronous Condensers in HVDC Transmission
Based on Reactive Power Conversion Factor. Energies 2024, 17, 4294. [CrossRef]

9. Teleke, S.; Abdulahovic, T.; Thiringer, T.; Svensson, J. Dynamic Performance Comparison of Synchronous Condenser and SVC.
IEEE Trans. Power Deliv. 2008, 23, 1606–1612. [CrossRef]

10. Stein, J. Turbine-Generator Topics for Power Plant Engineers; EPRI: Palo Alto, CA, USA, 2014.
11. Marken, P.E.; Depoian, A.C.; Skliutas, J.; Verrier, M. Modern Synchronous Condenser Performance Considerations. In Proceedings

of the 2011 IEEE Power and Energy Society General Meeting, Detroit, MI, USA, 24–28 July 2011.
12. Kim, S.-M.; Kim, T.-S.; Jung, W.-S.; Nguyen, M.-D.; Kim, Y.-J.; Shin, K.-H.; Choi, J.-Y. Electromagnetic analysis of permanent

magnet-assisted synchronous reluctance motor based on magnetic equivalent circuit. AIP Adv. 2024, 14, 025229. [CrossRef]
13. Lubin, T.; Mezani, S.; Rezzoug, A. 2-D Exact Analytical Model for Surface-Mounted Permanent-Magnet Motors with Semi-Closed

Slots. Magnetics. IEEE Trans. Magn. 2011, 47, 479–492. [CrossRef]
14. Sprangers, R.L.J.; Paulides, J.J.H.; Gysen, B.L.J.; Lomonova, E.A. Magnetic Saturation in Semi-Analytical Harmonic Modeling for

Electric Machine Analysis. IEEE Trans. Magn. 2016, 52, 1–10. [CrossRef]
15. Shin, K.-H.; Park, H.-I.; Cho, H.-W.; Choi, J.-Y. Analytical Calculation and Experimental Verification of Cogging Torque and

Optimal Point in Permanent Magnet Synchronous Motors. IEEE Trans. Magn. 2017, 53, 1–4. [CrossRef]
16. Nguyen, M.-D.; Kim, S.-M.; Shin, H.-S.; Shin, K.-H.; Phung, A.-T.; Choi, J.-Y. Maximizing the output power of magnetically geared

generator in low-speed applications using subdomain modeling and particle swarm optimization. AIP Adv. 2024, 14, 025117.
[CrossRef]

17. Nguyen, M.-D.; Jung, W.-S.; Hoang, D.-T.; Kim, Y.-J.; Shin, K.-H.; Choi, J.-Y. Fast Analysis and Optimization of a Magnetic Gear
Based on Subdomain Modeling. Mathematics 2024, 12, 2922. [CrossRef]

18. Hoang, D.-T.; Nguyen, M.-D.; Woo, J.-H.; Shin, H.-S.; Shin, K.-H.; Phung, A.-T.; Choi, J.-Y. Volume optimization of high-speed
surface-mounted permanent magnet synchronous motor based on sequential quadratic programming technique and analytical
solution. AIP Adv. 2024, 14, 025319. [CrossRef]

19. Nguyen, M.-D.; Kim, S.-M.; Lee, J.-I.; Shin, H.-S.; Lee, Y.-K.; Lee, H.-K.; Shin, K.-H.; Kim, Y.-J.; Phung, A.-T.; Choi, J.-Y. Prediction
of Stress and Deformation Caused by Magnetic Attraction Force in Modulation Elements in a Magnetically Geared Machine
Using Subdomain Modeling. Machines 2023, 11, 887. [CrossRef]

20. Nguyen, M.-D.; Woo, J.-H.; Shin, H.-S.; Lee, Y.-K.; Lee, H.-K.; Shin, K.-H.; Phung, A.-T.; Choi, J.-Y. Thermal analysis and
experimental verification of permanent magnet synchronous motor by combining lumped-parameter thermal networks with
analytical method. AIP Adv. 2023, 13, 025140. [CrossRef]

21. Nguyen, M.-D.; Hoang, D.-T.; Kim, S.-M.; Jung, W.-S.; Shin, K.-H.; Kim, Y.-J.; Choi, J.-Y. Nonlinear Modeling and Analysis
Considering Coupling Stator Flux of Wound-Rotor Synchronous Motors. In Proceedings of the 2024 International Conference on
Electrical Machines (ICEM), Torino, Italy, 1–4 September 2024; pp. 1–7. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/TPWRS.2022.3174922
https://doi.org/10.1109/TSTE.2018.2856938
https://doi.org/10.1109/TIA.2023.3275131
https://doi.org/10.3390/en17174294
https://doi.org/10.1109/TPWRD.2007.916109
https://doi.org/10.1063/9.0000711
https://doi.org/10.1109/TMAG.2010.2095874
https://doi.org/10.1109/TMAG.2015.2480708
https://doi.org/10.1109/TMAG.2017.2667643
https://doi.org/10.1063/9.0000690
https://doi.org/10.3390/math12182922
https://doi.org/10.1063/9.0000705
https://doi.org/10.3390/machines11090887
https://doi.org/10.1063/9.0000464
https://doi.org/10.1109/ICEM60801.2024.10700445

	Introduction 
	Subdomain Modeling 
	Governing Partial Differential Equations (PDEs) 
	General Solutions 
	Matrix Representation and Solving Electromagnetic Quantities 
	Compounding Curve 

	FEM Simulation Comparison 
	Conclusions 
	Appendix A
	Appendix B
	References

