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Abstract: One of the most common diseases afflicting humans is knee osteoarthritis (KOA). KOA oc-
curs when the knee joint cartilage breaks down, and knee bones start rubbing together. The diagnosis
of KOA is a lengthy process, and missed diagnosis can have serious consequences. Therefore, the
diagnosis of KOA at an initial stage is crucial which prevents the patients from Severe complications.
KOA identification using deep learning (DL) algorithms has gained popularity during the past
few years. By applying knee X-ray images and the Kellgren–Lawrence (KL) grading system, the
objective of this study was to develop a DL model for detecting KOA. This study proposes a novel
model based on CNN called knee osteoarthritis classification network (KOC_Net). The KOC_Net
model contains 05 convolutional blocks, and each convolutional block has three components such
as Convlotuioanl2D, ReLU, and MaxPooling 2D. The KOC_Net model is evaluated on two publicly
available benchmark datasets which consist of X-ray images of KOA based on the KL grading system.
Additionally, we applied contrast-limited adaptive histogram equalization (CLAHE) methods to
enhance the contrast of the images and utilized SMOTE Tomek to deal with the problem of minority
classes. For the diagnosis of KOA, the classification performance of the proposed KOC_Net model is
compared with baseline deep networks, namely Dense Net-169, Vgg-19, Xception, and Inception-V3.
The proposed KOC_Net was able to classify KOA into 5 distinct groups (including Moderate, Mini-
mal, Severe, Doubtful, and Healthy), with an AUC of 96.71%, accuracy of 96.51%, recall of 91.95%,
precision of 90.25%, and F1-Score of 96.70%. Dense Net-169, Vgg-19, Xception, and Inception-V3 have
relative accuracy rates of 84.97%, 81.08%, 87.06%, and 83.62%. As demonstrated by the results, the
KOC_Net model provides great assistance to orthopedics in making diagnoses of KOA.

Keywords: image processing; deep learning; KOA; X-ray; Kellgren–Lawrence

JEL Classification: 68T07

1. Introduction

According to the World Health Organization (WHO), knee osteoarthritis (KOA) will
affect one out of every three people in their lives [1,2]. Over half of those over the age of
65 show symptoms of KOA, and it is not just in that one joint. By 2030, nearly one in four
Americans will be at least 65 years old, putting them at increased risk of getting KOA [3].
The existence of KOA impacts the quality of life of older people. No medication has yet
developed that can slow or prevent the progression of the degenerative structural changes
that define KOA.

Mathematics 2024, 12, 3534. https://doi.org/10.3390/math12223534 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math12223534
https://doi.org/10.3390/math12223534
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0009-0004-1849-9679
https://orcid.org/0000-0002-7473-8441
https://orcid.org/0000-0001-5632-5208
https://doi.org/10.3390/math12223534
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com/article/10.3390/math12223534?type=check_update&version=2


Mathematics 2024, 12, 3534 2 of 33

KOA early detection and treatment carry some risks, but it also can improve patients’
quality of life and delay the disease’s growth. The main symptoms of KOA are joint space
narrowing (JSN), subchondral sclerosis, and osteophyte formation. The MRI scans show
the 3D structure of the knee joint. WHO standards eventually resulted in the development
of the Kellgren and Lawrence (KL) severity grading system in 1961 [4]. According to the
KL system, the degree of KOA is ranked from 0 to 4.

It is impossible to make an accurate diagnosis without the experience and care of a
trained medical professional [5]. In addition to this, the KL grading system leaves a lot of
space for individual interpretation. Osteophyte lipping and minimal risk of JSN are two of
the criteria for KL Grade 1. The same doctor can assign multiple grades of knee flexibility
to the same knee joint at different times. According to the findings of the study [5], the
inter-rater reliability for KL falls somewhere in the range of 0.67 and 0.73. According to [6],
the KL grade standard introduces a lack of clarity, which makes physicians’ evaluations of
the knee joint less accurate than they could be.

There is a potential for deliberately increasing the grade of a knee joint in four levels
(Grade 1 to Grade 4). Mean absolute error (MAE) was used in evaluating the accuracy of
age predictions and was an additional measure that can be used to categorize the degree of
knee KL [7]. The growing incidence of KOA makes accurate diagnosis and assessment of
its severity all the more important.

Automatic knee severity assessment maintains accuracy over time and may provide
more objective and trustworthy estimates than human experts. The severity of KOA can be
predicted using knee joint X-rays alone, but only if the knee joint is first recognized and
then classified into one of five KL groups. KL grade classification and knee joint recognition
algorithms have been developed in recent years. For the most accurate identification of
knee joints, the study [8] utilizes a sliding window strategy in conjunction with a template-
matching technique. After being overlaid on the existing X-ray image, a total of 20 images of
the knee joint, each consisting of 15 × 15 pixels, are measured for their Euclidean distances
from one another. When one looks out the window, the Euclidean distance to the knee joint
that is the shortest that is possible found [9,10] uses a linear support vector machine (SVM)
to identify knee joints by looking at features found in Sobel vertical image gradients. These
gradients are made by the horizontal edges in images of knee joints [11].

First, the identification of the knee joint region is offered in a study [12]. They experi-
ence a peak intensity at the patella, followed by a sharp drop down at the femur and tibia. A
linear SVM classifier employing a Histogram of Oriented Gradients (HOG) features [13] is
given the knee joint predictions. An innovative deep neural network (DNN)-based method
for knee joint identification is described by [14]. The method achieves state-of-the-art
standards in terms of performance [8,15]. According to the findings presented in [15], the
assignment of KL grades is observed as a challenging regression task. The BVLC_Net has
been optimized for knee KL grade categorization using the mean squared loss. Moreover, a
novel CNN model with improved accuracy by including cross-entropy and mean-squared
losses [16], they designed a CNN technique known as deep siamese. This tool was designed
to isolate certain areas around the knee and combine their predictions.

Deep learning (DL) algorithms are capable of obtaining a wide variety of visual tasks,
including object detection, segmentation, and classification [17]. DL models have been
utilized for a wide range of medical image analysis. These tasks include cell detection and
segmentation [18], mitosis detection [19], white matter lesion detection [17–19], and retinal
blood vessel recognition and segmentation [20].

The Severe complications of KOA are on the rise, patients have an approx. 95% chance
of recovering if they are recognized and treated quickly. This motivates us to develop an
automatic KOA identification model at an initial stage. Therefore, this study introduces
a novel CNN model for the classification of KOA using a knee severity grading system
named the knee osteoarthritis classification network (KOC_Net). This KOC_Net classifies
cases of KOA according to the KL severity grading system, which includes five grades
(ranging from Healthy, Doubtful, Minimal, Moderate, and Severe): 0, 1, 2, 3, and 4. Several
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studies [8,15] used artificial intelligence approaches for the identification of KOA. However,
no study has been found that identifies the subtypes of KOA based on the X-rays of the
KL severity grading system. Four baseline classifiers, including Vgg-19, Dens-Net 169,
Xception, and Inception-V3, were also compared to KOC_Net. The primary contributions
of this study are given below:

1. The novel KOC_Net model is developed to classify the five different types of KOA,
i.e., Healthy, Doubtful, Minimal, Moderate, and Severe using X-rays of the KL severity
grading system. Additionally, the KOC_Net extracts the dominant features from the
X-rays of KOA which makes the model significant in classifying the KOA based on
knee severity.

2. The proposed KOC_Net model reduces the complexity of the model by limiting the
number of trainable parameters.

3. For this work, the SMOTE Tomek method is used to resolve the problem of the
imbalance number of KOA images.

4. The proposed model also highlights the part of the knee affected by KOA using
Grad-CAM heat-map methodology.

5. The performance of the KOC_Net model was compared with four baseline classifiers
such as Vgg-19, DenseNet 169, Xception, and Inception-V3. The proposed model
achieves the highest classification accuracy of 96.51% which is superior to the other
four baseline models.

6. In addition, the outcomes of the KOC_Net model surpassed modern state-of-the-
art classifiers.

This study is broken down into the following sections: The literature review is pre-
sented in Section 2. In Section 3, we discuss the dataset description, SMOTE Tomek,
proposed model, and performance evaluation metrics. The results obtained by using the
proposed model and four baseline models are comprehensively discussed in Section 4. The
conclusion and future work of the study is presented in Section 5.

2. Related Work

The goal of the significant study on KOA diagnosis help doctors in the early iden-
tification of the disease [21,22]. Meanwhile, current research is focused on improving
the diagnosis procedure for multiple stages of KOA through the use of intelligent algo-
rithms [23,24]. Table 1 provides an overview of the recent literature on KOA diagnosis
using DL models.

Jiang et al. [25] designed a CNN-based model for the classification of KOA using
X-rays. They compared the classification performance of their proposed CNN model with
musculoskeletal radiologists. They used data augmentation methods before training the
proposed CNN model. The Osteoarthritis Initiative (OAI) dataset was used in their work,
which contains a total of 40,000 images. Their proposed model achieved an F1 score and
accuracy of 70.00% and 71.00%, respectively.

Thomas et al. [11] proposed an ordinal regression module (ORM) with neural networks,
to classify the KOA by using the KL grading system. They compared the outcomes of
their proposed model with neural network approaches. The OAI dataset used included
8260 knee radiographs total, with this number being split evenly between validation, test,
and training sets. It was stated that DenseNet-161 had an accuracy of 88.09% after being
trained on ORM, with a Quadratic Weighted Kappa of 0.8609. Despite the positive results of
their method, the model occasionally failed to correctly label KOA images with KL ratings
of 0 and 1.

Overfitting has been a problem in the KOA datasets. This issue was resolved by Yong
et al. [26] by combining the GCN with the concept of decreasing intrinsic dimension, which
was driven by the non-Euclidean structure of form space. They compared the output
of the classifier to the results obtained from an additional extrinsic technique. The OAI
was responsible for the construction of the dataset that was utilized, which consisted
of 201 general representations. Images received a score of 0 if they did not contain any
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osteophytes, 1 if they contained some osteophytes, and 2 if they contained numerous
osteophytes. When contrasted with the result obtained by the Euclidean technique, which
had an accuracy of 58.62%, the accuracy that was achieved using their internal model
was 64.64%.

Von et al. [27] developed a model with the combination of InceptionNet-v2 with SVM
for the categorization of KOA. In their study, 728 knee scans in total, including images of
364 distinct patients, were taken from a Seoul hospital’s database with permission from
the Institutional Review Board (IRB) of the university. The outcome of this attempt was
an F1 score of 0.71, along with sensitivity and accuracy values of 0.70 and 0.76. The gait
characteristics that were recovered in this investigation were shown to be substantially
correlated with the severity of the radiological KOA photos. The study’s findings suggest
that the restored features have been related to the degree of radiological KOA images.

Kwon et al. [28] were able to detect knee osteoarthritis (KOA) in its early stages by
analyzing the geometric anomalies found in knee X-rays and applying Hu’s invariant
moments to the analysis. The suggested approach started with gathering images for classi-
fication, which were subsequently classified using K-NN and decision tree models after
superimposing irrelevant sections, isolating the cartilage area, and computing Hu’s invari-
ant moments. To create their dataset, two medical professionals assessed two thousand
images manually using the KL grading method. All of these experts’ predictions were
almost exactly right—99.23% of the time.

Gornale et al. [29] used ML techniques for KOA diagnosis and prognosis. Nu-
merous specialized domains were examined, including segmentation, best practices for
post-treatment planning, classification, regression analysis, and predictions. Based on
the data, most diagnostic algorithms that attempted to predict KOA had an accuracy
between 76.1% and 92.2%.

A technique for determining if a patient has osteoarthritis based on the joint space
width (JSW) was provided by Kokkotis et al. [30]. They preprocessed the KOA images,
selected areas of interest (ROIs), computed edges, and assessed the joint space width as
part of their methodology. Two radiologists and two orthopedic surgeons collaborated to
determine the extent of the damage seen in the 140 images that were taken into considera-
tion. The suggested method achieved an accuracy rate of 97.14% and a score of 98.4% on
the F1 scale, successfully classifying KOA.

Saleem et al. [31], used an ML-based computer-aided design (CAD) system. Before
applying a multivariate linear regression-based normalization approach, the X-ray images
underwent preprocessing. The aim was to achieve maximum uniformity in the appearance
of osteoarthritic and Healthy knees. First, the features are extracted using an independent
component analysis. Next, they are classified using a random forest (RF) in conjunction
with a Naive Bayes (NB) model. The researchers’ methodology was based on 1024 distinct
OAI knee X-ray images. Their method has an 82.98% accuracy rate, an 80.65% specificity
rate, and an 87.15% sensitivity rate.

Roth et al. [17] use a discriminative regularized autoencoder to elucidate the crucial
and discriminative components that improve the detection process. To guarantee that
the final model has all of the required discriminative data, the training conditions were
changed to include discriminative loss. In total, 3900 knee X-rays that were taken from the
OAI’s open-access database were analyzed by the researchers. By contrasting their results
with those of other DL approaches, they were able to demonstrate an accuracy of 82.53%.
Their results are fascinating, especially considering that their technique outperformed other
sophisticated DL techniques in terms of accuracy.

Nasser et al. [32] used a DCNN for the identification of KOA. The Korean National
Health and Nutrition Examination Survey (KNHANES) was conducted in 2015 and 2016 to
gather the data for this study. The proposed method used DCNNs and scaled principal
component analysis (PCA) to automatically obtain key features for assessing risk factors
associated with KOA. They concluded that their classification model had an accuracy of
71.97% and a sensitivity level of 66.67%.
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Brahim et al. [33] used YOLOv2 for the identification of KOA using KL severity
grading. The suggested approach begins by identifying knee joints in the X-rays by
employing a customized YOLOv2 network. The KL system was used to grade knee images,
and the results were reliably classified into severity levels. This was accomplished via
fine-tuning variants of DenseNet, VGG, ResNet, and InceptionV3. With a mean Jaccard
index of 0.858 and recall of 92.2%, their knee joint recognition approach performed well,
but the calibrated VGG-19 [13] model was only 69.7% effective in predicting the severity of
knee osteoarthritis [34,35].

The procedure for obtaining LBP features from 3D images of radiographs is described
in [36]. Through the use of deep feature extraction, Dark-net-53, and Alex-Net, 90.6%
accuracy in the KOA image classification was found. In the proposed localization method,
an open exchange neural network (ONNX) is combined with YOLOv2 to achieve a mean
absolute precision of 0.98. These images were taken from the OAI dataset and divided in
half, one for training and the other for testing.

Yunus et al. [37] proposed automatic image classification for KOA. Preprocessing is
the initial stage of the two-part classification process that KOA images go through. A first
extraction from the VGG network concentrates on the knee joint center. Subsequently, the
images are provided to the ResNet-50 network for classification. To rebalance the data,
the authors employed a SMOTE method and they were able to achieve a classification
accuracy of 81.41%. Wang et al. [38] proposed a DL classification method based on contrast
knee images from patients who underwent total knee replacement. The KL-based grading
categories were divided using a cross-validation method trained on ResNet34. 4796 OAI
X-rays in total were included in the dataset utilized for this investigation. Their suggested
model’s accuracy was 72.7%. Given the tiny size of their dataset and their use of transfer
learning, it is plausible that their model’s performance was not as good.

Leung et al. [39] proposed a hybrid model that combines elements of a deep and
traditional model to increase the accuracy of early KOA detection. The traditional model
made use of logistic regression, ANNs, and RF. The deep learning model used CNNs to
classify KOA images. The subjects for the OAI dataset comprised 3285 individuals without
KOA and 1389 individuals with KOA. Their proposed hybrid model yielded an AUC of
0.807, sensitivities of 72.3%, and specificities of 80.9%.

Gaun et al. [40] proposed a CNN model for the classification of KOA using the KL
grading system. They achieve remarkable results by employing a deep Siamese CNN.
After using data from the multicenter osteoarthritis research to train their model, they used
5960 OAI knee images for validation to ensure their work was accurate. Their model’s
overall classification accuracy was 66.71%, and in the quadratic range, its Kappa value
was 0.83. Furthermore, they focus on emphasizing the significant visual elements related
to the proposed model’s conclusion. The study [41] used ML methods to identify the
fundamental features of KOA. The researchers used a combination of distance-weighted
discrimination and k-means clustering to identify patterns of similarity among patient
phenotypes. The dataset was obtained by researchers at the National Institutes of Health
from the Osteoarthritis Biomarkers Consortium Foundation. The collected dataset contains
600 patients with 76 distinct variables. The difference between those who had improved
and those who had not across all assessments was indicated by a z-score of 10.1.

A feature extraction method was devised by Nelson et al. [42] to help radiologists diag-
nose KOA. Furthermore, a method based on ML was introduced to identify KOA automati-
cally from the gathered data. They used the SVM and KNN algorithms to categorize knee
X-rays. Based on the OAI data, knee radiographs were categorized as KOA-progressors or
non-progressors. By using the SVM technique, they were able to achieve a classification
accuracy of 74.07%.
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Table 1. Recent studies that use artificial intelligence (AI) models for the classification of KOA using
different medical images.

Ref Year Models
Image Type

Dataset Accuracy
X-Rays KL Severity

Touahema et al. [43] 2024 DCNN ✓ × Medical
Expert-II 94.94%

Ahmed et al. [44] 2023 CNN ✓ × OAI 2022 99.10%
Messaoudene et al. [45] 2024 DCNN ✓ × OAI 77.24%

Kumar et al. [46] 2023 CNN ✓ × OAI 91.03%
Feng et al. [47] 2020 CBAM ✓ × OAI 70.23%

Chan et al. [48] 2022 Vgg-19 ✓ × Knee Joint
space 91.70%

Tayyaba et al. [49] 2023 ResNet-34 ✓ × OAI 98.00%
Mononen et al. [50] 2024 CNN ✓ × GLCM 72.00%

Chen et al. [13] 2019 InceptionV3 ✓ × OAI 69.70%
Thomas et al. [11] 2020 CNN × × OAI 66.00%
Zhang et al. [51] 2020 CBAM ✓ × OAI 78.41%
Yong et al. [26] 2021 ORM ✓ × OAI 88.09%
Von et al. [27] 2020 Graph CNN ✓ × OAI 64.66%

Abedin et al. [52] 2019 CNN ✓ × OAI 69.70%
Patil et al. [53] 2023 CNN ✓ ✓ OAI 2021 81.00%

Several limitations have been observed in the majority of recent research studies
[43–46,49,54,55]; (1) no data preprocessing techniques were applied; (2) the images in
KOA datasets contain low contrast. No image enhancement method was used by prior
studies; thus, it might affect the performance of the model; (3) imbalance classes; and (4) no
study works on the KOA classification based on the knee severity grading. Therefore, this
study fulfills this gap by addressing these aforementioned problems.

3. Materials and Methods

This section presents a comprehensive description of the datasets, image enhancement,
data generative methods, and the proposed KOC_Net model. KOA, the main cause of
which is the increase in articular cartilage degeneration, often appears in old age [47–49].
To detect the KOA, the researchers use an X-ray image widely. Applying DL algorithms
to improve the diagnostic accuracy of the grading of KOA in each of the 0–4 categories:
Minimal, Doubtful, Moderate, Severe, and Healthy [13,56,57]. Moreover, early diagnosis
of KOA provides doctors with a greater chance to prevent the progression of the disease
and to initiate treatment [58]. Advances in technology related to image processing and AI
have greatly involved the medical domain such as skin cancer [59], genetic disorders [60],
lung cancer [61], etc. Smart automated systems depend largely on the research community
for their improvements to ensure the evaluation process is even quicker and with even
more accuracy. We have designed a novel KOC_Net model in this study, which aims to
identify five different types of KOA using KOA Grading images. The KOC_Net model
is trained and tested on two publicly available KOA datasets. The KOA images are re-
sized to 150 × 150 pixels before training the proposed model. After this, we improved the
contrast of the KOA images by applying the Contrast-Limited Adaptive histogram equal-
ization (CLAHE) technique. The Synthetic Minority Over-Sampling Technique (SMOTE)
Tomek method was adopted to resolve the unbalanced dataset problem and keep the size
of samples in each class balanced [62,63]. The KOC_Net model and four baseline classifiers
such as Vgg-19 [64], DenseNet 169 [65], Xception [14], and Inception-V3 were executed
up to 30 epochs. The Grad-CAM heat-map technique has been applied to visualize the
discriminating properties of KOA and to highlight the input features that affect the clas-
sification of KOA. These features were employed to highlight the determinants of KOA
diagnosis. Figure 1 depicts the workflow of the proposed KOC_Net model.
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Figure 1. Proposed study framework for the identification of KOA using KL grading system.

3.1. Description of Datasets

For this study, two publicly available benchmark datasets such as KOA datasets with
severity grading [14] and Digital Knee X-ray Images [66] are used. Two medical experts
discuss each radiographic knee X-ray using the KL grading system. Based on KL grading,
the dataset is divided into five different grades such as Grade 0 (Healthy), Grade 1 (Doubt-
ful), Grade 2 (Minimal), Grade 3 (Moderate), and Grade 4 (Severe). The dataset-1 [14]
contains a total of 1629 KOA images including 693 images of Grade 0, 296 images of
Grade 1, 447 images of Grade 2, 223 images of Grade 3, and 51 images of Grade 4. The
dataset-2 [66] contains a total of 1650 of which 514 images are of Grade 0, 477 images of
Grade 1, 232 images of Grade 2, 221 images of Grade 3, and 206 images of Grade 4. A
detailed description of the KOA dataset is presented in Table 2. Additionally, Figure 2
presents a few original samples of KOA.
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Table 2. A detailed summary of the KOA dataset.

No. of Classes Class Name
Datasets

Total
Dataset-1 [14] Dataset-2 [66]

0 Healthy 639 514 1153
1 Doubtful 269 477 746
2 Minimal 447 232 679
3 Moderate 223 221 444
4 Severe 51 206 257

Total 1629 1650 3279

3.2. KOA Image Data Preprocessing

As discussed in the above section, this study uses two KOA datasets. The KOA images
of the datasets are further separated into five different grades. For better training of the
proposed model, several data-preprocessing methods are used to enhance the KOA dataset.
The steps for conducting data processing are depicted in Figure 3.
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The dataset is symbolized as X1, each KOA image is symbolized as x1(v) ∈ X1,
v = 1, 2, . . . ..|X| = 6400. We have X1 = [x1(1), x1(2), . . . , x1(v), . . . , x1(|X|)]. The size of
each KOA image is [X1(v)] = W1 × H1 × C1. Here, W1 = H1 = 512, C1 = 3. The raw KOA
images are not appropriate for training CNN due to several issues, including (i) having
duplicate data in three color channels, (ii) uneven contrast, (iii) including background and
text information, and (iv) high-resolution KOA images. The first step X1 was to transform
the color images into grayscale as shown in Equation (1).

X2 = G(X1) = {x2(1), x2(2), . . . . . . , x2(v), . . . . . . , x2(|X|)} (1)

where G means the grayscale operation. After converting the images into grayscale images,
the dataset becomes [X2(v)] = W2× H2×C2 which represents the W2 = H2 = 512, C2 = 3.
Now, the contrast-limited adaptive histogram equalization (CLAHE) method was used to
enhance the contrast of KOA images. CLAHE is used to enhance the contrast of digital
images. For vth image X3 (v), v = 1, 2, . . . . . . |X|, we first calculate their minimum grayscale
value χmin(v) and maximum grayscale value χmax(v) by using Equations (2) and (3).

χmin(v) = minW1
a=1 ×maxW1

b=1×x2(v|a, b) (2)

χmax(v) = minW1
a=1×maxW1

b=1 × x2(v|a, b) (3)
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Here, (a, b) means the coordinates of the pixel of the image. The new CLAHE image
X3(v) is obtained by using Equation (4).

x3(v) =
x2(v)− χmin(v)

χmax(v)− χmin(v)
(4)

In all, we obtain the CLAHE image set X3 = CHALE(H 2)= {x3(1), x3(2), . . . , x3(v), . . . , x3(|X|)}.
The image produced by using CLAHE is graphically represented in Figure 4.

Mathematics 2024, 12, x FOR PEER REVIEW 9 of 33 
 

 

𝝌𝒎𝒊𝒏(𝒗) =  𝒎𝒊𝒏𝒂ୀ𝟏𝑾𝟏 × 𝒎𝒂𝒙𝒃ୀ𝟏𝑾𝟏 × 𝒙𝟐(𝒗|𝒂, 𝒃)  (2)𝝌𝒎𝒂𝒙(𝒗) =  𝒎𝒊𝒏𝒂ୀ𝟏𝑾𝟏 × 𝒎𝒂𝒙𝒃ୀ𝟏𝑾𝟏 × 𝒙𝟐(𝒗|𝒂, 𝒃)  (3)

Here, (a, b) means the coordinates of the pixel of the image. The new CLAHE image 𝑋ଷ(𝑣) is obtained by using Equation (4). 𝑥ଷ(𝑣) = ௫మ(௩)ିఞ೘೔೙(௩)ఞ೘ೌೣ(௩)ିఞ೘೔೙(௩)  (4)

In all, we obtain the CLAHE image set 𝑋ଷ = CHALE(𝐻ଶ)  = ሼ𝑥ଷ(1), 𝑥ଷ(2), … , 𝑥ଷ(𝑣), … , 𝑥ଷ(|𝑋|)ሽ. The image produced by using CLAHE is graphically 
represented in Figure 4. 

 
Figure 4. After applying CLAHE on KOA images. 

Third, we cropped the KOA images to remove the text at the margin areas and reduce 
the size of the KOA images. Thus, we obtain the cropped dataset (𝑋ସ) by using Equation 
(5). 𝑿𝟒 = 𝑪(𝑿𝟑[𝒉𝒓, 𝒉𝒎, 𝒉𝒋, 𝒉𝒌] = ሼ𝒙𝟒(𝟏), 𝒙𝟒(𝟐), … … , 𝒙𝟒(𝒗), … . . 𝒙𝟒(|𝑿|)ሽ (5)

where C represents crop operation. Parameter (ℎ௥, ℎ௠, ℎ௝, ℎ௞) means the crop values in 
units of pixels from the top, bottom, left, and right. We set ℎ௥ = ℎ௠ = ℎ௝ = ℎ௞ = 256. Now 
the size of each image size [𝑥ସ(𝑣)] = 𝑊ସ × 𝐻ସ × 𝐶ସ .  We can have 𝑊ସ = 𝐻ସ =256 𝑎𝑛𝑑 𝐶ସ = 1. Fourth, we down-sampled each image to the size of [𝑊ହ , 𝐻ହ ], and now 
obtain the resized image set (𝑋ହ) as mentioned in Equation (6). 𝑿𝟓 =⇓ (𝑿𝟓[𝑾𝟓, 𝑯𝟓]) = ሼ𝒙𝟓(𝟏), 𝒙𝟓(𝟐), … … , 𝒙𝟓(𝒗), … . . 𝒙𝟓(|𝑿|)ሽ (6)

The 𝑋ହ represents the down-sampling (DS), where b is the down-sampled version of 
the original image a, and denotes this fact ⇓ : 𝑎 → 𝑏 original image. In this study, 𝑊ହ =𝐻ହ = 150 and 𝐶ହ = 1. There are two aspects to DS’s benefit: (i) it can reduce storage needs 
and (ii) it avoids overfitting with a smaller dataset as demonstrated in Table 3. The reason 
why we set 𝑊ହ = 𝐻ହ = 150 is based on the trial-and-error method. We found that larger 
size will bring in overfitting which impairs the performance, and meanwhile, the smaller 
size will make the images blurry which also decreases the classifier’s performance. 

We compare the size and storage of each KOA image 𝑥௦(𝑣), 𝑠 =  1, ⋯ ,5, 𝑣 = 1, ⋯ , |𝑋| at every preprocessing step. Here, following the preprocessing step, we can ob-
serve that the storage or size requirements for each image have been reduced to approxi-
mately 2.08%. Visual representations of the final state’s compression ratios (CRs) 𝑋ହ to 
original stage 𝑋ଵ were calculated as 𝐶𝑅 ௌ௧௥௢௚௘(𝑣)  =  𝑏𝑦𝑡𝑒[𝑥ହ(𝑣)]/𝑏𝑦𝑡𝑒[𝑥ଵ(𝑣)]  =  62,011/

Figure 4. After applying CLAHE on KOA images.

Third, we cropped the KOA images to remove the text at the margin areas and reduce
the size of the KOA images. Thus, we obtain the cropped dataset ( X4) by using Equation (5).

X4 = C
(
X3

[
hr, hm, hj, hk

]
= {x4(1), x4(2), . . . . . . , x4(v), . . . ..x4(|X|)} (5)

where C represents crop operation. Parameter
(
hr, hm, hj, hk

)
means the crop values in units

of pixels from the top, bottom, left, and right. We set hr = hm = hj = hk = 256. Now the size
of each image size [x 4(v)] = W4 × H4 × C4 . We can have W4 = H4 = 256 and C4 = 1.
Fourth, we down-sampled each image to the size of [W5 , H5 ], and now obtain the resized
image set (X5) as mentioned in Equation (6).

X5 =⇓ (X5[W5, H5]) = {x5(1), x5(2), . . . . . . , x5(v), . . . ..x5(|X|)} (6)

The X5 represents the down-sampling (DS), where b is the down-sampled version
of the original image a, and denotes this fact ⇓: a→ b original image. In this study,
W5 = H5 = 150 and C5 = 1. There are two aspects to DS’s benefit: (i) it can reduce storage
needs and (ii) it avoids overfitting with a smaller dataset as demonstrated in Table 3. The
reason why we set W5 = H5 = 150 is based on the trial-and-error method. We found that
larger size will bring in overfitting which impairs the performance, and meanwhile, the
smaller size will make the images blurry which also decreases the classifier’s performance.

Table 3. Image storage and size per preprocessing step.

Process Symbol W H C Size (Per Image in
Bytes)

Storage (Per Image in
Bytes)

Original X1(v) 512 512 3 2,034,617 10,456,121
Grayscale X2(v) 512 512 3 1,037,465 3,124,564
CLAHE X3(v) 512 512 1 1,037,465 3,124,564
Cropped X4(v) 256 256 1 413,065 96,704

DS X5(v) 150 150 1 31,256 62,011
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We compare the size and storage of each KOA image xs(v), s = 1, · · · , 5, v = 1, · · · , |X |
at every preprocessing step. Here, following the preprocessing step, we can observe that
the storage or size requirements for each image have been reduced to approximately
2.08%. Visual representations of the final state’s compression ratios (CRs) X5 to original
stage X1 were calculated as CR Stroge(v) = byte[x5(v)]/byte[x1(v)] = 62,011/10,456,121,
and CR Size(v) = size[x5(v)]/size[x1(v)] = 31,256/2,034,617. Hence, we can obtain
CR Size(v)= CR Size(v) = 2.083%, ∀v = 1, 2, . . . . . . , |X|.

3.3. Implementation of SMOTE Tomek

From Table 2, it has been observed that the KOA dataset has an uneven distribution of
knee images in each class. The imbalance number of knee images affects the performance
of the model. Therefore, the SMOTE Tomek [67] method is used to synthetically balance the
knee images in each class of the KOA dataset. SMOTE is the technique for oversampling
which balances class distribution in a KOA dataset. Tomek links are selected pairs of
instances from the same class and in SMOTE new instances may be created at random [68].
Therefore, this study combines SMOTE and Tomek to lower the chance of overlap. The
pseudocode of SMOTE Tomek is outlined in Algorithm 1.

Algorithm 1: Balancing knee images of the KOA dataset using the SMOTE Tomek algorithm

Input: S = Set for training, M = instances of minority set, U & q = No of nearest neighbors,
C = The number of synthetic examples required to compensate for the number of original KOA

images in the specified class.
Output: A group of synthetic samples from the minority: O′

1. ST = Φ //ST is a collection of samples that are considered as Smote Tomek
2. for all Oi in O do
3. Noi ← k nearest neighbors of Oi in S
4. n← The number of samples in Noi and not in O
5. if k/2 ≤ n < k then //oi is a borderline sample
6. add oi to ST
7. end if
8. end for
9. O′ = Φ //O′ is a set containing synthetic samples
10. for all st′ i in ST do
11. Nsti← q nearest neighbors of st i in O
12. f or i = 1 to C do
13. o← choose a random sample from Nsti
14. st′ i ← st′ i+ j * (st′ i − o //j is a random number in (0, 1), st′ i is a synthetic
sample
15. add st′ i to O′

16. end for
17. end for
18. O′ = O U O′ //O′ is the union of minority samples and synthetic samples
19. return O′

Figure 5 presents the synthetic images generated by the SMOTE Tomek up-sampling
method. Additionally, the detailed description of the KOA dataset after using SMOTE
Tomek and pre-processing methods such as X1 to X5 are presented in Table 4.
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Table 4. Summary of the enhanced KOA dataset after applying the up-sampling method of
SMOTE Tomek.

No. of
Classes

Class
Name

No. of Images
After SMOTE

Data Splitting

Training (70%) Validation (20%) Testing (10%)

0 Healthy 2520 1764 504 252
1 Doubtful 2314 1621 462 231
2 Minimal 2900 2030 580 290
3 Moderate 2372 1661 474 237
4 Severe 2565 1797 512 256

Total 12,671 8873 2532 1266

3.4. Proposed KOC_Net Model

Disease classification, image segmentation, and face detection are computer vision ap-
plications that benefit greatly from the CNN architecture, which incorporates the anatomy
of the human brain as its primary source of inspiration. Translation invariance, also re-
ferred to as geographical invariance [67–70], signifies the ability of a CNN to recognize the
identical feature in multiple images independently of its visual location. For this study, we
designed a novel KOC_Net model based on CNN for the classification of KOA using KL
severity grading X-rays. The architecture of the KOC_Net is illustrated in Figure 6, which
includes five convolutional (ConvL) blocks, one dropout layer, two dense layers, and a
SoftMax classification layer.
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3.4.1. Convolutional Blocks of KOC_Net

The ConvL block of the proposed KOC_Net model contains a convolutional2D
(ConvL_2D) and a pooling2D (Pool_2D). To allocate weights to the various kernel lay-
ers, the LecunUniformV2 kernel initializer is designed. Through the utilization of the
activation function of ReLU, we prevent the model from the issue of gradient-vanishing.
In KOC_Net, the initial ConvL_2D layers apply the filter to extract the information from
the knee X-ray images. This layer, sometimes called the kernel, initiates the process by
activating filters. The filter size of the proposed KOC_Net model is demonstrated in
Equation (7).

FFilter_size = fx × fy (7)

where fx and fy represent the filter width and height, respectively. For this study, we used
the filter size of 3 × 3. Equation (8) presents the ConvL_2D operation of the KOC_Net.
Suppose, I is the input image, FFilter_size is the kernel size, and O is the output feature map.

O(x, y) = ∑a∑b× I(x + a, y + b)× FFilter_size(a, b) (8)

where O (x,y) is the value at position (x,y) in the output feature map, I (x + a, y + b) is the
value at position (x + a, y + b) in the input image. FFilter_size(a, b) is the value at position
(a,b) in the kernel. An output feature map was produced through the use of a ConvL_2D.
Equation (9) for the ConvLs reveals the input feature maps are combined to produce each
output feature map.

X
v
k
= I

[
∑i∈MbX

v− 1
k
∗ R

v
ij
+ M

v
k

]
(9)

where, X v
k is the output of the present layer, (Xv − 1) × (k − 1) is the previous layer’s

output, R v
ij is the current layer’s kernel, M v

k are the current layer’s biases, and M represents
a collection of input maps. After that, the ConvL results are processed by a ReLU function.

3.4.2. Flatten Layer

The utilization of the flatten layer (FTL) allowed for the transformation of the 2D visual
representation into a 1D input as presented in Equation (10). The image produced by using
FTL is graphically represented in Figure 7.
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FTL2D = T1D (10)

where T represents the input tensor. This reshaping essentially flattens the spatial di-
mensions of the input tensor, transforming it into a vector that fed into a fully con-
nected layer (FCL) for the final stages of a KOC_Net to classify the knee image into their
respective classes.
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3.4.3. Dropout Layer of KOC_Net Model

For this study, the incorporation of the dropout layer into the KOC_Net model to lessen
the possibility of overfitting [71]. The dropout value of 0.5 is used for the KOC_Net model.
This layer aimed to alleviate training time constraints and model complexity. Equation (11)
is used for employing the dropout process in the proposed model.

Y = Dropout(X) (11)

Here, Y is the output of the dropout layer. Each element of Y is computed by using
Equation (12).

Yi =
Xi

1− p
(12)

where Xi is the corresponding element in the input X, and p is the dropout probability.
During training, each neuron’s output is set to zero with probability p and scaled by (1 − p)
to account for the dropped-out neurons. During inference, the dropout layer is deactivated,
and the output is scaled by 1 − p to ensure that the expected output remains the same.

3.4.4. Dense Block of the KOC_Net

The proposed KOC_Net model contains two dense blocks, with an activation function
comprising each block. The detailed description of these blocks is stated below:

• ReLU Function

The ReLU activation function determines the movement of KOC_Net output from one
layer to another. ReLU activation is achieved through the substitution of every negative
outcome with a value of zero and leaves positive values unchanged. It introduces non-
linearity to the network, allowing it to learn complex patterns and relationships in the KOC
image data during the training process of the KOC_Net. The following Equation (12) is
used to perform the ReLU operations.
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ReLU(x) = max(0, x) (13)

• Dense Layer

The dense layer generates output that is consistent with the characteristics of the input
matrix, which is a singular matrix. This output is produced by the dense layer. The final
output of the KOC_Net model is generated by a dense layer comprising five neurons,
which employs the SoftMax activation function [11]. SoftMax is an activation function
that operates based on probability, where the quantity of neurons is equivalent to the total
number of classes. The 1,150,037 parameters make up the total amount of parameters, with
1,150,037 of them being trainable and zero of them being non-trainable.

3.5. Model Evaluations

The confusion matrix is generated for evaluating the performance of the proposed
KOC_Net model and other baseline models. The initial phase in the process of training the
proposed model and baseline models consisted of dividing the dataset into two distinct
sets: a training set and a test set [72,73]. Using the test set, the performance of the model
was evaluated in terms of several parameters such as accuracy (ACC), precision (PRE),
recall (REC), and F1-Score. Equations (14)–(17) are used to measure these parameters.

3.5.1. Accuracy (ACC)

The ACC is used to calculate the proportion of correct prediction of the KOA made by
the KOC_Net model. Equation (14) is used to calculate the ACC.

ACC =
TP + TN

TP + FN + FP + TN
(14)

3.5.2. Precision (PRE)

The PRE is used to evaluate the accuracy of positive prediction carried out by the
proposed KOC_Net and other baseline models. Equation (15) is used to measure the PRE.

PRE =
TP

TP + FP
(15)

3.5.3. Recall (REC)

REC is TPR, which measures the ability of a KOC_Net model and baseline models
used in this work to identify all relevant positive instances. Equation (16) is applied to
calculate the REC.

REC =
TP

TP + FN
(16)

3.5.4. F1-Score

The harmonic mean of REC and PRE is called F1-Score. The following Equation (17) is
used to measure the F1-Score.

F1− score = 2× PRE× REC
PRE× REC

(17)

3.6. Proposed Algorithm

Algorithm 2 presents the pseudocode of the proposed KOC_Net model. Algorithm 2
consists of input, output, and five sections such as [H1, H2, H3, H4, H5]. H1 demonstrates
the pre-processing of knee X-rays. The steps for synthetically balancing the size of the KOA
dataset are presented in H2. The structure of the proposed KOC_Net model is discussed
in H3. The training and validation of the proposed KOC_Net on the enhanced dataset are
described in H4. The last section H5 computes the performance of the model.
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Algorithm 2: Classification of KOA diseases using KL severity grading X-rays

Input: X1 = X-Rays
Output: KOA Diseases Classification

Pre-Processing: H1
1 H1 : X1 → X5
2 Gray Scaling : X1 → X2 See Equation (1)
3 CLAHE : X2 → X3 See Equations (2)–(4)
4 Cropped Image : X3 → X4 See Equation (5)
5 DS : X4 → X5 See Equation (6)

Generating Synthetic Images Using Smote Tomek: H2
6 S1→ See Algorithm (1)

Proposed KOC_Net Model: H3
7 ConvL → C(1) See Equations (7)–(9)
8 C(1) :

Add FTL to ConvL o f C(1) See Equation (10)
Add Dropout to C(1) See Equations (11) and (12)
Add Dense Block to C(1) See Equation (13)

Training & Validation Split of Models: H4
9 Training set: KTrain_Knee(e), Validation set: KVal_Knee(e)
10 For i = 1: |KTrain_Knee(e) on S1 //S1 represents enhanced data obtained in H2
11 Training Image: KTrain_Knee(i, e)
12 KTrain_Knee(e): training image in epoch (e)
13 KTrain_Knee(e) → KTrain_Knee_data(i, e)
14 End

15 Pred (a, b) = predict
[

P(a, b), KVal_Knee(e)
]

Performance Evaluation of KOC_NET: H5
16 For V = 1: 4% V is the performance evaluation indicator of KOC_Net

Measure Indicator : Cm(a, b) See Equations (14)–(17)
End

17 Select Best Model V(c) in terms of V
18 End

4. Experimental Results and Discussions

This section presents the experimental results obtained by using the KOC_Net model.
Additionally, the results of the proposed KOC_Net are also compared with baseline models.

4.1. Experimental Setup and Hyperparameters

Tensor flow (TF) and Keras library were used to implement the proposed KOC_Net
model and other baseline models used in this work. Additionally, the Python programming
language is used to implement the operations that are not linked with CNN. The proposed
KOC_Net model and baseline models are executed up to 30 epochs with a batch size of
16. The momentum and learning rate of the KOC_Net is 0.9 and 0.0001, respectively. The
experiment is performed on a Windows 10 operating system having 32 GB of RAM and an
11 GB NVIDIA GPU.

4.2. Results Analysis

This section presents the detailed results of the KOC_Net and other baseline models
in terms of many performance evaluation metrics.

4.2.1. Results of KOC_Net Model in Terms of Accuracy

After enhancing the dataset by using SMOTE Tomek, we compared the proposed
KOC_Net model and baseline models such as Vgg-19, XceptionNet, DenseNet-169, and
Inception-V3. We also observed the outcomes obtained by using the proposed KOC_Net
model without applying SMOTE Tomek. Table 5 presents the detailed results obtained
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by using the KOC_Net model with and without using SMOTE Tomek, and the other four
baseline models.

Table 5. Results obtained by the proposed model and other baseline models in terms of many
performance metrics.

Classifiers ACC PRE REC F1-Score AUC

Vgg-19 81.08% 88.91% 82.66% 81.46% 84.24%
DenseNet-169 84.97% 89.17% 89.93% 88.73% 85.21%

Xception 87.06% 88.73% 85.41% 81.11% 85.58%
Inception-V3 83.62% 89.60% 81.96% 83.37% 80.53%

KOC_Net without SMOTE
Tomek) 79.89% 77.85% 79.47% 72.28% 77.99%

KOC_Net with SMOTE Tomek 96.51% 90.25% 91.95% 96.70% 95.71%

From Table 5, it has been observed that the proposed KOC_Net model with SMOTE
Tomek achieved the highest classification accuracy of 96.51% as compared to other baseline
approaches. The Vgg-19 achieved a classification ACC of 81.08%, PRE of 88.91%, REC of
89.93%, F1-Score of 81.46%, and AUC of 84.24%. The DenseNet-169 model attained an ACC
of 84.97%, PRE of 89.17%, REC of 82.66%, and F1-Score of 88.73%. The XceptionNet model
achieved an ACC of 87.06%, PRE of 88.73%, REC of 85.41%, AUC of 85.58%, and F1-Score
of 81.11%. Additionally, the Inception-V3 attained an ACC of 83.62%, PRE of 89.60%, REC
81.96%, and F1-Score of 83.37%. The proposed KOC_Net model without SMOTE Tomek
achieved the outcomes of 79.89% ACC, 77.85% PRE, 79.47% REC, 72.28% F1-Score, and
77.99% AUC. However, the proposed KOC_Net model with SMOTE Tomek attained the
highest results of 96.51% ACC, 90.25% PRE, 91.95% REC, 96.70% F1-Score, and 95.71%
AUC. Figure 8 shows the graphical representation of the proposed model with and without
SMOTE Tomek, and other baseline models.
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4.2.2. Results of the KOC_Net Model in Terms of AUC

For this study, the AUC is used to measure the ability of the model to distinguish
between the KOA classes. The high value of AUC shows that the model is performing
significantly while distinguishing the positive and negative classes. Thus, to determine the
efficacy of the proposed KOC_Net model, a comparison has been performed. The Vgg-19,
XceptionNet, DenseNet-169, and Inception-V3 attain the AUC of 84.24%, 85.21%, 85.58%,
and 80.53%, respectively. The proposed KOC_Net model without SMOTE Tomek achieves
the AUCH of 77.99%. The highest AUC of 95.71% was achieved by the proposed KOC_Net
with SMOTE Tomek. The results reveal that the proposed KOC_Net model with SMOTE
Tomek performs better than other approaches discussed in this study. The detailed results
of the AUC of these models are presented in Figure 9.
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4.2.3. Results of the KOC_Net Model in Terms of Precision

The parameter precision is used to calculate positive predictions made by the model.
The higher the value of precision shows that the model makes fewer false positive predic-
tions. Figure 10 shows the graphical representation of the precision value obtained by the
proposed KOC_Net model and other baseline models. The results show that Vgg-19 attains
a precision of 88.91%. The DenseNet-169 and XceptionNet achieved a precision of 89.17%
and 88.73%, respectively. The inception-V3 attains 89.60% precision. Additionally, the result
obtained by the KOC_Net model without SMOTE Tomek is 77.85%. The higher precision
value of 90.25% was attained by the proposed KOC_Net model with SMOTE Tomek.
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4.2.4. Results of the KOC_Net Model in Terms of Recall

The metric recall is used to measure the correct identification of true positives from all
the actual positive knee image samples of the KOA dataset. Figure 11 illustrates the recall
curve data that were employed in the process of evaluating the proposed KOC_Net model
in comparison to Vgg-19, Inception-V3, XceptionNet, and DenseNet-169. The proposed
KOC_Net model without SMOTE achieves a recall of 79.47%. The Vgg-19, DenseNet-169,
XceptionNet, and Inception-V3 attains the recall of 82.66%, 89.93%, 85.41%, and 81.96%,
respectively. The highest recall of 91.95% was attained by the proposed KOC_Net model
with SMOTE Tomek.
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4.2.5. Results of the KOC_Net Model in Terms of F1-Score

The metric F1-Score is used to measure the harmonic means of precision and recall.
The high F1-Score represents that the model performs significantly in classifying five classes
of KOA. The highest F1-Score of 96.70% was achieved by the proposed KOC_Net model
with SMOTE Tomek. The other models Vgg-19, DenseNet-169, XceptionNet, and Inception-
V3 attains the F1-Score of 81.46%, 88.73%, 81.11%, and 83.37%, respectively. The lowest
72.28% F1-Score was achieved by the KOC_Net model without SMOTE Tomek. The results
obtained by these models in terms of F1-Score are depicted in Figure 12.
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4.2.6. Results of the KOC_Net Model in Terms of Loss

The loss function represents the numerical difference between the actual and pre-
dicted values. The categorial cross-entropy loss function is used in this study to calculate
the loss. The Vgg-19, DenseNet-169, XceptionNet, and Inception-V3, produced the loss
values of 0.6321%, 0.6501%, 0.6155%, and 0.8537%, respectively. The proposed KOC_Net
model with SMOTE Tomek produces a loss of 0.5885%. The graphical representation of
the loss curve obtained by these models is presented in Figure 13.
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4.2.7. Results of the KOC_Net Model in Terms of ROC

ROC curves are graphs showing the performance of the proposed KOC_Net model
and baseline models by plotting the TP rate and FP rate. The ROC values for the proposed
KOC_Net with and without SMOTE Tomek were 1.00 and 0.7105, respectively. The Vgg-19,
DenseNet-169, XceptionNet, and Inception-V3 were 0.7587, 0.7365, 0.7423, and 0.6817,
respectively. The ROC curve in Figure 14 demonstrates that the suggested KOC_Net model
performs much better than other competitive approaches used in this study.
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4.2.8. AU(ROC) for Multi-Class Evaluation Using Proposed KOC_Net Model

A comparison between the proposed KOC_Net model and four baseline deep models
is illustrated in Figure 15 through the extension of the ROC curve. As shown in Figure 15
demonstrated a significant enhancement when the dataset was balanced utilizing the
SMOTE Tomek method. The proposed KOC_Net model demonstrated a significant effect
on the AUC for all classes. When there is an increase in AUC, it indicates that the feature
selection that was carried out by KOC_Net has reached a high level of accuracy.

To validate our proposed KOC_Net model, we conducted a comparison with four
other models utilizing a confusion matrix. The KOC_Net model is significantly improved
through the integration of SMOTE Tomek, as depicted in Figure 16.

The proposed KOC_Net model correctly classifies the 154 images as Healthy, 152 cases
as Doubtful, 111 images as Minimal, 202 cases as Moderate, and 229 cases are Severe. Out
of a total of 209 images, the XceptionNet correctly categorizes 92 images as Healthy cases,
misclassifying 80 images as Doubtful, 34 images as Minimal, and 3 images as Moderate.
Additionally, 172 Doubtful images out of 235 total images were correctly classified as
Doubtful, while 35 were incorrectly identified as Healthy, 25 as Minimal, and 3 as Moderate.
As presented in Figure 16d, the proposed KOC_Net model without SMOTE Tomek correctly
classifies 5 cases as Healthy and inaccurate classifying 72 cases as Doubtful and 19 cases as
Minimal. Additionally, 203 cases of Doubtful were accurately classified, and 29 and 01 cases
as Minimal and Healthy, respectively were misclassified. However, the proposed KOC_Net
model without SMOTE Tomek correctly classifies the 50 cases as Moderate and 12 cases
as Severe. Next, we visualize the output of the proposed KOC_Net model with SMOTE
Tomek using the Grad-CAM heatmap technique. The goal of the heatmap is to highlight
the KOA area based on KL severity grading. Figure 17 demonstrates the heatmap of the
proposed KOC_Net.
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Figure 17. Visualization of the infected region of KOA using GRAD-CAM. The first rows represent
the Healthy images and the remaining rows from Grade 1 to Grade 4 highlight the infected region of
KOA by using the proposed KOC_net model.

4.3. Comparison of Proposed KOC_Net Model with State-of-the-Arts

This section presents a comprehensive comparison of the proposed KOC_Net model
with recent studies [14,43–46,64–66]. The comparison of the proposed model has been
performed in terms of several metrics as presented in Table 6.

Table 6. Performance comparison of the proposed KOC_Net model with prior studies.

Ref Year Model KOA Classes Datasets ACC (%) REC (%) F1-Score (%)

[43] 2024 DCNN 03 OAI 94.94 × 89.75
[45] 2024 DCNN 05 OAI 77.24 76.12 78.45
[46] 2023 CNN 05 OAI 91.03 90.89 90.35
[64] 2023 DNN 03 OAI 89.00 88.00 89.00
[65] 2022 CNN 05 OAI 61.00 59.95 ×
[14] 2022 CNN 03 OAI 95.12 95.31 ×
[66] 2022 CNN 05 OAI 57.00 × 56.95
[12] 2021 Deep CNN 05 OAI 66.68 × 59.60

Proposed KOC_Net with SMOTE Tomek 05 KL grading +
OAI 96.51 91.95 96.70

4.4. Discussions

X-ray images are commonly used in the detection and categorization of an exten-
sive range of KOAs. Several studies [11,13,14,33,62,65,66,74–76] use knee X-rays for the
identification of KOA severity. Due to KOA severity grading, the diagnosis of KOA is a
time-consuming process. If KOA is not diagnosed in its initial grading, a patient may face
Severe complications. Therefore, this study proposed a KOC_Net model that automatically
classifies the KOA into their respective grades by using the KL grading severity system.
For this work, two publicly benchmark KOA datasets were used for training the proposed
KOC_Net model. The imbalance classes of the dataset were balanced by the SMOTE Tomek
method. The pseudocode of the SMOTE Tomek was presented in Algorithm 1. Several
pre-processing methods were employed to enhance the KOA dataset as shown in Figure 3.
The CLAHE method was also applied to increase the contrast of the image. The proposed
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KOC_Net model was trained on the enhanced dataset generated after pre-processing and
the SMOTE Tomek method. The steps for executing the proposed KOC_Net model are
presented in Algorithm 2.

The performance of the proposed KOC_Net model with and without using SMOTE
Tomek was compared with four baseline models, i.e., Vgg-19, DenseNet-169, XceptionNet,
and Inception-V3. The proposed KOC_Net model with SMOTE Tomek achieved the highest
classification accuracy of 96.51%, while other models, Vgg-19, DenseNet-169, XceptionNet,
and Inception-V3, attained accuracy of 81.08%, 84.97%, 87.06%, and 83.62%. A detailed
comparison of the proposed model and baseline model is presented in Table 5. The results
of Table 5 show that the proposed KOC_Net with SMOTE Tomek is more capable of
identifying the KOA and extracting dominant discriminative patterns from knee X-rays,
with the highest classification accuracy of 96.51%. Additionally, the results of the four
baseline models were also presented in Table 4, and we also provide a detailed description
of why recent studies show less performance in classifying the KOA-based KL grading
severity. The reason is that the classification performance of four baseline pre-trained model
has been restricted by their final ConvL due to their deep network [14,66]. The filter size in
these baseline classifiers is inadequate because neurons connected to the input are so large
it ignores the major elements from the KOA image. Additionally, the vanishing gradient
problem occurred while training these four-baseline model due to their large number of
layers. All these issues are resolved by using the KOC_Net model with SMOTE Tomek. A
simplified structure of CNN layers is introduced in the KOC_Net model which prevents
the model from gradient vanishing. Moreover, fewer training parameters are generated by
the proposed KOC_Net model which also reduces the complexity of the model.

Table 6 presents the comprehensive comparison of the proposed KOC_Net model with
state-of-the-art classifiers. Cueva et al. [65] designed a CNN model for the classification of
KOA and they achieved the classification accuracy of 61.00%. The study [14] developed a
CNN model for the diagnosis of KOA. Their model achieved a classification accuracy of
95.12% in identifying the KOA of three grades. It is also observed that recall attained in this
work is lower compared to the findings [14]. The reason for this is the study [14] focused
on 03 classes, while we increased the number of classes to 05. Recall measures the ability
to identify positive instances, and as we expanded the number of classes, the recall value
decreased in our case. Additionally, Kumar et al. [46] and Touahema et al. [43] designed a
CNN model and achieved an accuracy of 91.03% and 94.94%, respectively. The proposed
KOC_Net model with SMOTE Tomek attains a classification accuracy of 96.51%, which is
superior to state-of-the-art classifiers.

5. Conclusions and Future Work

KOA is rated by a grading system according to the extent of joint degeneration. The
KL grading scale is used to identify the stage of KOA. Therefore, this study proposed the
KOC_Net model for the classification of KOA using KL grading X-rays. For this work,
each convolutional block of the KOC_Net model contained multiple layers to classify the
KOA. Several pre-processing steps such as [X1, X2, X3, X4, X5] were applied to enhance
the KOA dataset. Moreover, the imbalance distribution of the images in the KOA dataset
was resolved by using SMOTE Tomek. Grad-CAM shows a heat map of class activa-
tion to demonstrate the operation of the proposed KOC_Net model with SMOTE Tomek.
The proposed KOC_Net model with SMOTE Tomek achieved 96.51% ACC, 96.51% REC,
96.70% F1-Score, 90.25% PRE, and 95.71% AUC. Thus, it is concluded that the proposed
model with SMOTE Tomek provides great assistance to orthopedics in making diagnoses
of KOA. A limitation of the study is that the KOC_Net model is not suitable for other
medical imaging such as CT, MRI, sonography, etc. Therefore, in the future, we will
train and test the KOC_Net on CT scans and MRI images. Additionally, we would also
use a federated learning method to preserve patient data privacy while performing the
classification of KOA.
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