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Abstract: This text investigates the bending/buckling behavior of multi-layer asymmetric/symmetric
annular and circular graphene plates through the application of the nonlocal strain gradient model.
Additionally, the static analysis of multi-sector nanoplates is addressed. By considering the van der
Waals interactions among the layers, the higher-order shear deformation theory (HSDT), and the
nonlocal strain gradient theory, the equilibrium equations are formulated in terms of generalized
displacements and rotations. The mathematical nonlinear equations are solved utilizing either the
semi-analytical polynomial method (SAPM) and the differential quadrature method (DQM). Also,
the available references are used to validate the results. Investigations are conducted to examine
the effect of small-scale factors, the van der Waals interaction value among the layers, boundary
conditions, and geometric factors.
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1. Introduction

A new era in science can be attributed to the development of nanotechnology. Many re-
searchers have become interested in nanostructures since the discovery of carbon nanotubes.
Initial research revealed that nanostructures’ mechanical characteristics differ from those
of other materials. Because of these unique qualities, nanostructures are now employed
in a wide range of applications, such as electric batteries, nanocomposites, nanoactuators,
nanosensors, and nanobearings [1–3]. Graphene sheets, which are formed by forming
carbon nanotubes, are one type of nanostructure. Other types of nanostructures include
nanowires, nanorings, and nanorods [4]. With its hexagonal crystal lattice structure and
thickness equivalent to that of a carbon atom, graphene exhibits exceptional mechanical
and physical characteristics such as high tensile strength, high flexibility, and high thermal
and electrical conductivity, among others [5].

There are two methods for modeling nanostructures: continuum mechanics and molec-
ular dynamics (MD) simulation. When dealing with many atoms, the MD method requires
a substantial amount of computational effort. Studies conducted through experimentation
have demonstrated that structures’ mechanical properties at very small scales can differ
from those at macroscales. Because classical continuum mechanics models are unable to
take small-scale effects into account, they cannot predict the properties of nanostructures.
Various models of nonclassical continuum mechanics have been developed to surmount
these challenges, such as strain gradient theory, couple stress theory, and nonlocal elas-
ticity theory. These models were developed to overcome the limitations of traditional
approaches and offer a more complete understanding of the mechanical properties of
nanoscale structures [6].

Eringen [7] added non-local effects to classical elasticity theory by introducing a
nonlocal elasticity model. In this theory, the entire material domain influences the stress at
a given location. Yang and his colleagues [8] created a couple stress theory by taking strain
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gradients from symmetry rotation into account. Moreover, the modified strain gradient
theory was developed by Lam et al. [9] to investigate the effects of strain gradients, such
as deviatoric stretch gradient, symmetry rotation gradient, and dilatation gradient. These
theoretical frameworks consider the influence of strain gradients or nonlocal factors.

Only nanostructures with softening behavior can be modeled by nonlocal elastic
models, suggesting that “smaller is more compliant” [10]. According to the gradient
elasticity theory, extra strain gradient terms should be included in the total stress and
nanostructures can be represented as atoms with higher-order mechanical properties
instead of as collections of points [11]. However, this theory does not take into account
the inter-atomic long-range force. Moreover, gradient elasticity theory, which suggests
that “smaller is stiffer”, can only simulate hardening nanostructures [10]. Therefore, it is
necessary to integrate both theories in order to model nanostructures that exhibit both
hardening and softening behavior. Tian et al. [12] reported experimental evidence of
this kind of response. The nonlocal strain gradient theory was created by Lim and his
associates [13], which essentially combines the nonlocal and strain gradient theories into a
single theory by requiring that the stress tensor take into consideration the contributions
of both the nonlocal stress tensor and the strain gradient stress tensor. This theory takes
into account the nonlocal effects of strain gradients within the material, meaning that
it takes into account how nearby material points affect the deformation behavior. The
nonlocal strain gradient and length scale are important parameters in this theory. It is the
characteristic length over which the deformation of adjacent material points is influenced
by the nonlocal length scale. Variations in strain within the material are taken into account
by the strain gradient. To capture the size-dependent mechanical behavior of materials,
especially at the nanoscale, nonlocal strain gradient theory is used [14].

Several studies on the size-dependent characteristics of nanostructures have been con-
ducted [15–19]. Using nonlocal strain gradient theory, research was performed by Gui and
Wu [20] on the buckling of a thermal- electric-elastic nano cylindrical shell under axial load.
Also, they found that the strain gradient parameter had less of an impact on the buckling
load of nano cylindrical shells than the nonlocal coefficient. A size-dependent classical
model was proposed by Lu and his colleagues [21] to examine the buckling of rectangular
nanoplates. Arefi et al. [22] presented the bending examination of sandwich plates with
porosity using FSDT and the nonlocal strain gradient theory. Using a higher-order nonlocal
strain gradient theory, Farajpour et al. [23] examined the buckling of orthotropic nanoplates
in the thermal environment. They discovered that the buckling load is almost completely
affected by the nonlocal parameter. A similar approach was used in ref. [24] to investigate
the nonlinear vibration of sandwich nanoplates, and it was found that small-scale parame-
ter influence on the nonlinear frequency increased with vibration amplitude. Thai et al. [25]
used nonlocal strain gradient theorem to examine the vibrations of FG annular nanoplates
composed of magnetic- elastic-electrical properties. The natural frequencies derived from
circular nanoplates were demonstrated to be higher than those anticipated with annular
ones. Also, Thai and colleagues [26] conducted a study on the free vibration analysis of
functionally graded (FG) rectangular nanoplates using the nonlocal strain gradient theory
and higher-order shear deformation theorem. Alghanmi [27] studied the bending of porous
plates via the nonlocal strain gradient theory and noticed that plates with even porosities
deflect more than those with uneven porosities. Siddique and Nazmul [28] carried out
the bending examination of functionally graded beams with the aid of the nonlocal strain
gradient theorem and nonlocal couple stress model via the Laplace transform method. By
applying the Galerkin method to the first-order shear deformation theory, the nonlinear
static examination of hygrothermal magneto-electro-elastic nanoplates while taking the
flexo-magneto-electric effect into account was investigated in ref. [18]. Phung-Van et al. [29]
analyzed the small-scale examination of FG nanoplates with the triply periodic minimal
surface property. The study shows how adjusting the nonlocal and strain gradient parame-
ters can help understand the mechanisms that both increase and decrease stiffness in the
nanoplate. Thai and his colleagues [25] investigated the free vibrations of FG nanoplates
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with magnetic, electric and elastic properties using the nonlocal strain gradient theorem and
the higher-order shear deformation theory. Through the manipulation of two parameters,
their method captures the nonlocal and strain gradient effects in nanoplates, which lead to
increased stiffness and decreased stiffness, respectively. Liu et al. [30] examined the bending
of thin rectangular plates. Gao et al. [31] studied the nonlinear bending of a cantilever beam
subjected to different types of loading. Also, Wang and his colleague [32] performed the
bending investigation of rectangular nanolaminates with the aid of the Kirchhoff model.
They showed that surface effects diminish the values of the deflection. Moreover, Krysko
et al. [33] analyzed the static investigation of nanoplates exposed to distributed loads and
local areas via the modified couple stress model. They showed that the stress–strain state is
reduced (deflection and stress) for various environments and types of loads by enhancing
the size–dependent parameter.

Also, recently, many papers have studied nonlinear analyses and using different nu-
merical techniques [34–36]. For example, Wu and his colleagues [37] studied the nonlinear
static examination of nanobeams with longitudinal linear temperature gradients based
on nonlocal stress gradient theory via the Galerkin method. Using DQM, Shan et al. [38]
investigated the nonlinear vibration of the FGM piezoelectric micro/nanobeam incorpo-
rating flexoelectric effect based on the Euler beams model and the extended dielectric
theorem. Using the fourth-order Runge–Kutta method and Airy stress functions as well
as the Galerkin technique, Cong and Duc [36] studied the nonlinear static and dynamic
of nanoplate with the graphene platelet–reinforcement nonlocal elasticity theorem and
classical plate model. Using the finite element method, Phuc et al. [39] analyzed the free
vibration and the bending of composite nanoplates based on the nonlocal theory and
third-order shear deformation model.

The literature states that, mainly, studies have been conducted to examine how nano
beams/plates behave in Cartesian coordinates and using first-order shear deformation
theory. Nevertheless, there are fewer studies of nanoplates in polar coordinates (circu-
lar/annular/sector plates) than there are of beams or rectangular graphene sheets. Until
now, there has been no work considering multilayer graphene plates using nonlocal strain
gradient theory as well as HSDT considering polar coordinates. This paper employs the
nonlocal strain gradient theory as well as HSDT to examine the bending/buckling of circu-
lar/annular multilayer nanoplates considering the nonlocal strain gradient theorem. Also,
the static study of multi-sector nanoplates is addressed. Moreover, geometry, values of the
elastic foundation, small-scale parameters, and various boundary conditions are examined.
This investigation offers a theoretical foundation that can contribute to the design and
advancements of nanodevices.

2. The Governing Equations

Multiple layers of graphene can be employed to overcome the limited bending
strengths of graphene sheets. Layers of graphene are thus created by stacking graphene
sheets on top of one another and joining them using van der Waals force [40]. The Lennard–
Jones potential model is used to simulate the van der Waals interaction forces between
the layers as a set of springs [41,42]. Figure 1 depicts a multi-layer graphene sheet under
uniform transverse loading q, with thickness h. Also, k0 is defined as the van der Waals
stiffness coefficient among layers. Furthermore, kw and kp are defined as the coefficients
of the Winkler as well as Pasternak elastic foundations. Moreover, Figure 2. displays the
bottom layer of the graphene annular plate on elastic foundations with inner radius ri, and
outer radius ro. The displacement field (considering the HSDT) can be expressed as follows:

Ui(r, θ, z) = ui(r)− z dwi(r)
dr + g(z)ϕi(r)

Vi(r, θ, z) = 0
Wi(r, θ, z) = wi(r) , i = 1, . . . n

(1)
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Figure 2. The bottom layer of the graphene annular plate on the Pasternak-Winkler elastic foundation.

It should be noted that in the above equations, the layer number is represented by the
index i; for instance, i = 1 denotes the upper layer that is subject to a transverse load, and
i = n denotes the lower layer that is supported by an elastic foundation (i = 1, 2, . . .n).

u0, v0, and w0 can be defined as the displacement components of the midplane in the
r, θ, and z directions, respectively. Also, ϕ is the rotation component in the θ axis. The
function g(z) is defined as follows.

g(z) = f (z) + zy∗ (2)

f (z) and y* are different functions that have been utilized in different references and
can be seen in Table 1.
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Table 1. The g(z) functions considered by different authors.

Model g(z) Function

Ambartsumian [40] − 1
6 z3 + h2

8 z
Reddy [43] − 4

3h2 z3 + z
Reissner [44] − 5

3h2 z3 + 5
4 z

Touratier [45] h
π sin

(
πz
h
)

Soldatos [46] hsinh
( z

h
)
− z cosh

(
1
2

)
Aydogdu [47] ze−2( z

h )
2

Mantari [48] h
π

(
sin
(

πz
h
)
em cos ( πz

h ) + m π
h z
)

, m ≥ 0

Based on the von Karman presumptions, strain components are as follows:

εir =
dUi
dr

+
1
2
(

dWi
dr

)
2
=

dui
dr

− z
d2wi
dr2 + g(z)

dϕi
dr

+
1
2

(
dwi
dr

)2
(3)

εiθ =
Ui
r

=
1
r

(
ui − z

dwi
dr

+ g(z)ϕi

)
(4)

γirθ = 0 (5)

γirz =
dWi
dr

+
dUi
dz

= ϕi
dg(z)

dz
(6)

γiθz = 0 (7)

Lim et al. [13] developed the nonlocal strain gradient theory which can be expressed
as follows:

(1 − µ2∇2)σij = Cijkl(1 − l2∇2)εkl , ∇2 =
d2

dr2 +
1
r

d
dr

(8)

In Equation (8) the nonlocal, strain gradient and elastic coefficients are µ, l, and
Cijkl , respectively. Also, the constitutive mathematical relationship for stress–strain at the
nanoscale can be seen in Equation (9) [49]:

(1 − µ2∇2)

 σr
σθ

σrz

 = (1 − l2∇2)

 Q11 Q12 0
Q12 Q22 0
0 0 G13

 εr
εθ

γrz

,

Q11 = E1
1−ν12ν21

, Q22 = E2
1−ν12ν21

, Q12 = ν12E2
1−ν12ν21

, G13 = E1
2(1+v12)

(9)

It is noted that in Equation (9), E1 and E2 are the Young’s modulus along 1 and 2
directions. Also v12 and v21 are Poisson’s ratios. G12, G13 and G23 can be written as the
shear moduli.

Considering the nonlocal form (NL), the force as well as momentum resultants can be
written as given below:

{Nir, Niθ , Qir}NL =
∫ h

2

−
h
2

{σir, σiθ , σirz}NLdz (10)

{Mir, Miθ}NL =
∫ h

2

−
h
2

{σir, σiθ}NLzdz (11)

{Rir, Riθ}NL =
∫ h

2

−
h
2

{σir, σiθ}NL f (z)dz (12)
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RNL
irz =

∫ h
2

−
h
2

σNL
irz f ′(z)dz (13)

The system’s potential energy is described as follows [50]:

Π = Ui + Ωi (14)

U can be defined as the strain energy, Π is the potential energy, and Ω can be defined as
the potential energy of external forces. Also, taking into account the principle of minimum
potential energy, the variation in the potential energy of the system in the equilibrium state
is equal to zero [50]:

δΠ = δUi + δΩi = 0 (15)

Therefore,
δU =

y

V

(σirδεir+σiθδεiθ + σirzδγirz)dV (16)

Moreover,

δΩ1 =
∫ ro

ri

∫ 2π

0
(q + ko(w2 − w1))δwrdrdθ : Upper layer (17)

δΩi =
∫ ro

ri

∫ 2π

0
(−ko(wi − wi−1) + ko(wi+1 − wi))δwrdrdθ, (i = 2 . . . , n − 1) (18)

δΩn =
∫ ro

ri

∫ 2π

0

(
−ko(wn − wn−1)− kwwn + kp∇2wn

)
δwrdrdθ : Bottom layer (19)

In Equation (19), kw and kp depict the Winkler as well as Pasternak elastic foun-
dation coefficients, respectively. By setting δΠ to zero, the coefficients of δu, δw, and
δϕ are considered equal to zero, and the Euler–Lagrange mathematical relations can be
written as follows:

δui : NiNL
r + r

dNiNL
r

dr
− NiNL

θ = 0 , i = 1, . . . n (20)

δw1 : r d2 MNL
1r

dr2 + 2 dMNL
1r

dr − dMNL
1θ

dr + ((q + k0(w2 − w1))r+

NNL
1θ

dw1
dr + rNNL

1r
d2w1
dr2

)
= 0

(21)

δwi : r d2 MNL
ir

dr2 + 2 dMNL
ir

dr − dMNL
iθ

dr + ((−k0(wi − wi−1) + k0(wi − wi−1))r+

NNL
iθ

dwi
dr + rNNL

ir
d2wi
dr2

)
= 0, (i = n − 1)

(22)

δwn : r d2 MNL
nr

dr2 + 2 dMNL
nr

dr − dMNL
nθ

dr +
((
−k0(wn − wn−1)− kwwn + kp∇2wn

)
r+

NNL
nθ

dw2
dr + rNNL

nr
d2wn
dr2

)
= 0

(23)

δϕi : y∗
(

r
dMNL

ir
dr

+ MNL
ir − MNL

iθ − rQNL
ir

)
+ RNL

ir + r
dRNL

ir
dr

− RNL
iθ − rRNL

irz = 0, i = 1, . . . n (24)

It is noted that the nonlocal form can be considered as follows:

(
1 − µ∇2

)
{Nir, Niθ , Qir}NL =

∫ h
2

−
h
2

(
1 − µ∇2

)
{σir, σiθ , σirz}NLdz (25)
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The following are the local form resultants for force and moment:

{Nir, Niθ , Qir}L =
∫ h

2

−
h
2

{σir, σiθ , σirz}Ldz (26)

{Mir, Miθ}L =
∫ h

2

−
h
2

{σir, σiθ}Lzdz (27)

{Rir, Riθ}L =
∫ h

2

−
h
2

{σir, σiθ}L f (z)dz (28)

RL
irz =

∫ h
2

−
h
2

σL
irz f ′(z)dz (29)

Furthermore, the following forms of resultants are obtained with respect to displacements:

NL
ir = (1 − l2∇2)

{
1

1 − ν12ν21
(E1h

(
dui
dr

+
1
2

(
dwi
dr

)2
)
+ ν12E2h

1
r

ui

+

(
E1

dϕi
dr

+ ν12E2
1
r

ϕi

) h
2∫

−
h
2

f (z)dz)


(30)

NL
iθ = (1 − l2∇2)

{
1

1 − ν12ν21
(ν12E2h

(
dui
dr

+
1
2

(
dwi
dr

)2
)
+ E2h

1
r

ui+

(
ν12E2

dϕi
dr

+ E2
1
r

ϕi

) h
2∫

−
h
2

f (z)dz)


(31)

ML
ir = (1 − l2∇2)

{
1

1 − ν12ν21
(E1

h3

12

(
−d2wi

dr2 + y∗
dϕi
dr

)
+

ν12E2
h3

12

(
−1

r
dwi
dr

+ y∗
1
r

ϕi

)
+

(
E1

dϕi
dr

+ ν12E2
1
r

ϕi

) h
2∫

−
h
2

z f (z)dz)


(32)

ML
iθ = (1 − l2∇2)

{
E2

1 − ν12ν21
(ν12

h3

12

(
−d2wi

dr2 + y∗
dϕi
dr

)
+

h3

12

(
−1

r
dwi
dr

+ y∗
1
r

ϕi

)
+

(
ν12

dϕi
dr

+
1
r

ϕi

) h
2∫

−
h
2

z f (z)dz)


(33)
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RL
ir = (1 − l2∇2)

 1
1 − ν12ν21

((
E1

(
dui
dr

+
1
2

(
dwi
dr

)2
)
+ ν12E2

1
r

ui

)∫ h
2

−
h
2

f (z)dz

+

(
ν12E2

(
−1

r
dwi
dr

+ y∗
1
r

ϕi

)
+ E1

(
−d2wi

dr2 + y∗
dϕi
dr

))∫ h
2

−
h
2

z f (z)dz+

(
E1

dϕi
dr

+ ν12E2
1
r

ϕi

)∫ h
2

−
h
2

( f (z))2dz




(34)

RL
iθ = (1 − l2∇2)

 E2

1 − ν12ν21

((
ν12

(
dui
dr

+
1
2

(
dwi
dr

)2
)
+

1
r

ui

)∫ h
2

−
h
2

f (z)dz+

(
ν12

(
−d2wi

dr2 + y∗
dϕi
dr

)
+

(
−1

r
dwi
dr

+ y∗
1
r

ϕi

))∫ h
2

−
h
2

z f (z)dz+

(
ν12

dϕi
dr

+
1
r

ϕi

)∫ h
2

−
h
2

( f (z))2dz




(35)

QL
ir = (1 − l2∇2)

G13ϕiy∗h + G13ϕi

∫ h
2

−
h
2

(
f ′(z) + y∗

)
dz

 (36)

RL
irz = (1 − l2∇2)

G13ϕi

∫ h
2

−
h
2

(
f ′(z)

)2dz + G13y∗ϕi

∫ h
2

−
h
2

f ′(z)dz

 (37)

For the first layer (i = 1) and the subsequent layers, the equilibrium relationships (local
form) are explained as follows:

δui : NiL
r + r

dNiL
r

dr
− NiL

θ = 0 , i = 1, . . . n (38)

δw1 : r d2 ML
1r

dr2 + 2 dML
1r

dr − dML
1θ

dr +
(
1 − µ∇2)((q + k0(w2 − w1))r+

NL
1θ

dw1
dr + rNL

1r
d2w1
dr2

)
+ µr

((
∇2NL

1r
) d2w1

dr2 +
(
∇2NL

1θ

) 1
r

dw1
dr

)
= 0

(39)

δwi : r d2 ML
ir

dr2 + 2 dML
ir

dr − dML
iθ

dr +
(
1 − µ∇2)((−k0(wi − wi−1) + k0(wi − wi−1))r+

NL
iθ

dwi
dr + rNL

ir
d2wi
dr2

)
= 0, (i = 2, . . . n − 1)

(40)

δwn : r d2 ML
nr

dr2 + 2 dML
nr

dr − dML
nθ

dr +
(
1 − µ∇2)((−k0(wn − wn−1)− kwwn + kp∇2wn

)
r+

NL
nθ

dw2
dr + rNL

nr
d2wn
dr2

)
= 0

(41)

δϕi : y∗
(

r
dML

ir
dr

+ ML
ir − ML

iθ − rQL
ir

)
+ RL

ir + r
dRL

ir
dr

− RL
iθ − rRL

irz = 0, i = 1, . . . n (42)

Also for the buckling analysis of the circular (or annular) nanoplate, the stability
equations are as follows:

δui : NiL
r + r

dNiL
r

dr
− NiL

θ = 0 , i = 1, . . . n (43)
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δw1 : r d2 ML
1r

dr2 + 2 dML
1r

dr − dML
1θ

dr +(
1 − µ∇2)((k0(w2 − w1))r + NL

1θ
dw1
dr + rNL

1r
d2w1
dr2 − N

(
dw1
dr + r d2w1

dr2

)
+

µ
((

∇2NL
1r
) ∂2w1

∂r2 +
(
∇2NL

1θ

)( 1
r

∂w1
∂r

)))
= 0

(44)

δwi : r d2 ML
ir

dr2 + 2 dML
ir

dr − dML
iθ

dr +
(
1 − µ∇2)((−k0(wi − wi−1))r + NL

iθ
dwi
dr +

rNL
ir

d2wi
dr2 − N

(
dwi
dr + r d2wi

dr2

)
+ µ

((
∇2NL

ir
) ∂2wi

∂r2 +
(
∇2NL

iθ
))( 1

r
∂wi
∂r

))
= 0, (i = 2 . . . n − 1)

(45)

δwn : r d2 ML
nr

dr2 + 2 dML
nr

dr − dML
nθ

dr +
(
1 − µ∇2)((−k0(wn − wn−1)− kwwn + kp∇2wn

)
r+

NL
nθ

dwn
dr + rNL

nr
d2wn
dr2

)
= 0

(46)

δϕi : y∗
(

r
dML

ir
dr

+ ML
ir − ML

iθ − rQL
ir

)
+ RL

ir + r
dRL

ir
dr

− RL
iθ − rRL

irz = 0, i = 1, . . . n (47)

Moreover, it is possible to obtain the equilibrium relationships for the multilayer sector
plate. In that case, the displacement field (considering the HSDT) can be expressed as
follows (ψ is the rotation components in the r direction.):

Ui(r, θ, z) = ui(r, θ)− z ∂wi(r,θ)
∂r + g(z)ϕi(r, θ) , i = 1, . . . n

Vi(r, θ, z) = vi(r, θ)− z
r

∂wi(r,θ)
∂θ + g(z)ψi(r, θ) , i = 1, . . . n

Wi(r, θ, z) = wi(r, θ) , i = 1, . . . n
(48)

Therefore, the equilibrium relationships are as follows:

δui : NiL
r − NiL

θ + r
∂NiL

r
∂r

+
∂NiL

rθ

∂θ
= 0 , i = 1, . . . n (49)

δvi :
∂NiL

θ

∂θ
+ r

∂NiL
rθ

∂r
+ 2NiL

rθ = 0 , i = 1, . . . n (50)

δw1 : r ∂2 ML
1r

∂r2 + 2 ∂ML
1r

∂r − ∂ML
1θ

∂r + 1
r

∂2 ML
1θ

∂θ2 + 2
r

∂ML
1rθ

∂θ +

2 ∂2 ML
1rθ

∂θ∂r +
(
1 − µ∇2)((q + k0(w2 − w1))r + NL

1θ
∂w1
∂r +

rNL
1r

∂2w1
∂r2 + 1

r N1θ
∂2w1
∂θ2 + 1

r
∂NL

1θ
∂θ

∂w1
∂θ +

∂NL
1rθ

∂r
∂w1
∂θ +

2NL
1rθ

∂2w1
∂r∂θ

)
+ µr

((
∇2NL

1r
) ∂2w1

∂r2 +
(
∇2NL

1θ

)( 1
r

∂w1
∂r + 1

r2
∂2w1
∂θ2

)
+

2
(
∇2NL

1rθ

)( 1
r

∂2w1
∂r∂θ − 1

r2
∂w1
∂θ

))
= 0

(51)

δwi : r ∂2 ML
ir

∂r2 + 2 ∂ML
ir

∂r − ∂ML
iθ

∂r + 1
r

∂2 ML
iθ

∂θ2 +

2
r

∂ML
irθ

∂θ + 2 ∂2 ML
irθ

∂θ∂r +(
1 − µ∇2)((−k0(wi − wi−1))r+

NL
iθ

∂wi
∂r + rNL

ir
∂2wi
∂r2 + 1

r N2θ
∂2wi
∂θ2 + 1

r
∂NL

iθ
∂θ

∂wi
∂θ +

∂NL
irθ

∂r
∂wi
∂θ + 2NL

irθ
∂2wi
∂r∂θ +

µr
((

∇2NL
ir
) ∂2wi

∂r2 +
(
∇2NL

iθ
)( 1

r
∂wi
∂r + 1

r2
∂2wi
∂θ2

)
+

2
(
∇2NL

irθ

)( 1
r

∂2wi
∂r∂θ − 1

r2
∂wi
∂θ

))
= 0 , (i = 2 . . . , n − 1)

(52)
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δwn : r ∂2 ML
nr

∂r2 + 2 ∂ML
nr

∂r − ∂ML
nθ

∂r + 1
r

∂2 ML
nθ

∂θ2 +

2
r

∂ML
nrθ

∂θ + 2 ∂2 ML
nrθ

∂θ∂r +(
1 − µ∇2)((−k0(wn − wn−1)− kwwn + kp∇2wn

)
r+

NL
nθ

∂wn
∂r + rNL

nr
∂2wn
∂r2 + 1

r N2n ∂2wn
∂θ2 + 1

r
∂NL

nθ
∂θ

∂wn
∂θ +

∂NL
nrθ

∂r
∂wn
∂θ + 2NL

nrθ
∂2wn
∂r∂θ +

µr
((

∇2NL
nr
) ∂2wn

∂r2 +
(
∇2NL

nθ

)( 1
r

∂wn
∂r + 1

r2
∂2wn
∂θ2

)
+

2
(
∇2NL

nrθ

)( 1
r

∂2wn
∂r∂θ − 1

r2
∂wn
∂θ

))
= 0

(53)

δϕi : y∗
(

r ∂MiL
r

∂r +
∂MiL

rθ
∂θ + MiL

r − MiL
θ − rQiL

r

)
+

RiL
r − RiL

θ + r ∂RiL
r

∂r +
∂RiL

rθ
∂θ − rRiL

rz = 0 , i = 1, . . . n
(54)

δψi : y∗
(

r ∂MiL
rθ

∂r +
∂MiL

θ
∂θ + 2MiL

rθ − rQiL
θ

)
+ 2RiL

rθ−

rRiL
zθ + r ∂RiL

rθ
∂r +

∂RiL
θ

∂θ = 0 , i = 1, . . . n
(55)

Also, the boundary conditions of the present study for the circular (or annular) plate
can be noticed as given below:

Simply supported (S):
ui = wi = Mir = Rir = 0 (56)

Clamped (C):

ui = wi = ϕi =
dwi
dr

= 0 (57)

Free (F):
Nir = Mir = Rir = Qir = 0 (58)

Also, the boundary condition of the sector plate in the clamped (C) condition is
as follows:

u = v = w = φ = ψ = 0 r = ri , ro
u = v = w = φ = ψ = 0 θ = 0 , τ

(59)

Moreover, for converting the governing mathematical relationships of the dimension-
less nanoplate, the following assumptions are considered:

u∗ = u0
h ; w∗ = w0

ro
; ϕ∗ = ϕ ; ψ∗ = ψ ; N∗

r = Nr
E1h ; N∗

θ = Nθ
E1h ;

Q∗
r = Qr

E1h ; Q∗
θ = Qθ

E1h ; M∗
r = Mr

E1h2 ; M∗
θ = Mθ

E1h2 ; ∇∗2 = d2

dr∗2 +
1
r∗

d
dr∗ ;

R∗
r = Rr

E1h2 ; R∗
θ = Rθ

E1h2 ; R∗
rz =

Rrz
E1h ; r∗ = r

ro
; z∗ = z

h ;

δ = h
ro

; µ∗ = µ

r2
o

; l∗ = l
ro

; q∗ = q
E1

; k∗w = kwro
E1

; k∗p =
kp

E1ro

(60)

3. Numerical Solution Method

Considering the definition of polynomials, the semi–analytical polynomial technique is
a straightforward approach for solving both ordinary and partial differential mathematical
relationships. In this study for obtaining the results of circular/annular plates, SAPM
is used.

The differential equations can be changed to an algebraic equation system by replacing
u∗, w∗, and φ∗ as functions in equilibrium equations:

u∗ =
N
∑

i=1
air(i−1)

w∗ =
N
∑

i=1
a(i+N)r(i−1)

φ∗ =
N
∑

i=1
a(i+2N)r(i−1)

(61)



Mathematics 2024, 12, 3545 11 of 19

There are currently N unknown constants and N algebraic equations. Then, using
a numerical technique (for example the Newton-Raphson method), this set of algebraic
equations can be solved (Please see the Appendix A for more details).

The extended Kantorovich method (EKM) was created by Arnold Kerr [51] and is one
of the efficient techniques to solve partial differential mathematical relationships. In this
paper, first, the 2D equations of the sector plate are converted into one-dimensional form
via the extended Kantorovich technique. Then DQM is used to solve the equations.

Using the EKM, the product of univariate functions can be obtained as [51]:

f (r, θ) = f1(r)× g1(θ) (62)

So, the displacement and rotation functions are as follows:

u(r, θ) = f1(r)× g1(θ) (63)

v(r, θ) = f2(r)× g2(θ) (64)

w(r, θ) = f3(r)× g3(θ) (65)

ϕ(r, θ) = f4(r)× g4(θ) (66)

ψ(r, θ) = f5(r)× g5(θ) (67)

By inserting Equations (63)–(67) in the equilibrium equations, ordinary differential
equations are obtained. Then choosing the arbitrary initial of gi, i = 1 . . . 5, the equa-
tions can be derived with the weighted Galerkin residual technique. Therefore, the gov-
erning mathematical relationships are then multiplied by an appropriate function, and
after integration, ordinary differential equations can be derived, which is a function of
fi, i = 1 . . . 5. Then, by solving these equations, the fi functions can be derived [51]:∫ τ

0
g1(θ)× e1dθ = 0 (68)

∫ τ

0
g2(θ)× e2dθ = 0 (69)∫ τ

0
g3(θ)× e3dθ = 0 (70)∫ τ

0
g4(θ)× e4dθ = 0 (71)∫ τ

0
g5(θ)× e5dθ = 0 (72)

where, e1, e2, . . . , e5 are equilibrium mathematical relationships.
Each equilibrium equation must be multiplied by the appropriate gi and integrated

from 0 to τ. By inserting the obtained fi functions in the equilibrium equations, the ordinary
differential equations are obtained, from which the differential relationships can be solved
to calculate gi.

Partial differential equations can be single-variable using the introduced functions
and become ordinary types. For the numerical solution of one-dimensional differential
relationships, DQM is among the most effective methods. DQM is defined as one node’s
integral along the domain, which is dependent upon every other node in that direction [52]:

d f
dr

∣∣∣∣
ri

=
N

∑
j=1

Aij f
(
rj
)

, i = 1, 2, . . . , N (73)

In the above relationship (Equation (73)), weight coefficients as well as function values
at discrete nodes are determined with w1, w2, . . . , wn and f1, f2, . . . , fn.
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The author of ref. [53] reported that in quadratic form, the derivative at a specific node
in the function domain depends on the function values of each node in the domain through
the weight parameter:

A(1)
ij =

P(ri)(
ri − rj

)
P
(
rj
) (74)

P(ri) =
N

∏
j=1

(
ri − rj

)
, i ̸= j (75)

A(1)
ii = −

N

∑
k=1

A(1)
ik , i ̸= k (76)

Moreover, for the higher-order derivatives, the Equation (77) can be expressed as
follows [52]:

d(n) f
dr(n)

∣∣∣∣∣
ri

=
N

∑
j=1

A(n)
ij f (rj) , i = 1, . . . , N (77)

For higher derivatives, the weighting coefficients are as given below [52]:

A(n)
ij = n

A(1)
ij A(n−1)

ii −
A(n−1)

ij(
ri − rj

)
 , i ̸= j (78)

A(n)
ii = −

N

∑
j=1, ̸=i

A(n)
ij , i, j = 1 . . . N (79)

where N can be defined as the number of grid points in the direction of r. To obtain more
precise results, it is more recommended to use the grid point distribution, which is based on
Chebyshev–Gauss–Lobatto points. Based on the distribution of Chebyshev–Gauss–Lobatto
grid points, the grid points’ coordinates can be written as follows [52]:

ri =
a
2

[
1 − cos

(
πi

N − 1

)]
, i = 0, 1, . . . , N (80)

4. Results and Discussion

This section examines the static behavior of the circular (or annular) and sector
nanoplates via HSDT. The nonlocal strain gradient model is taken into account using
SAPM. Additionally, the current results are contrasted with the references’ results in order
to validate the solution approach.

Figure 3 illustrates how the number of nodes (N) in the solution method affects the
current study’s findings. Proper convergence is attained after nine nodes, as is shown.

Table 2 compares the deflection of the single-layer circular nanoplate with references
via the following assumptions:

E1 = E2 = 2 × 106 Pa, µ = 0, ν12 = ν21 = 0.3, R∗ =
r0

h
= 10 (81)

In this part, several functions are gathered to define the shear stress distribution along
the thickness:

g1(z) = h
π sin

(
πz
h
)
, g2(z) = − 4

3h2 z3 + z, g3(z) = hsinh
( z

h
)
− z cosh

(
1
2

)
,

g4(z) = ze−2( z
h )

2
, g5(z) = − 5

3h2 z3 + 5
4 z

(82)

As can be seen from comparison with Table 2, the outcomes of this part are in accept-
able harmony with the outcome of the previous papers. Also, the results of using different
values of g(z) interchangeably are actually negligible when compared to other parameters.
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Therefore, it is optional to use any types of g(z) functions introduced in Table 1 to obtain
the results.
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Table 2. The non-dimensional maximum deflection of the single-layer circular plate compared to the
references for different values of nondimensional load (q*).

q* Ref. [54] Ref. [55] Ref. [56] Present (g1) Present (g2) Present (g3) Present (g4) Present (g5)

0.0001 0.1678 0.1687 0.1706 0.1732 0.1801 0.1793 0.1789 0.1801
0.0003 0.4583 0.4655 0.5119 0.471 0.4863 0.4843 0.4835 0.4863
0.001 1.0509 1.0937 1.7069 1.0708 1.0929 1.0899 1.0887 1.0929

Table 3 compares the deflections gathered by the authors with those documented in
the paper [57] for the single-layer sector plate, considering Equation (83):

τ =
π

3
, E = 200 × 109Pa, q = 1Pa,

r
h
= 100 (83)

Table 3. The deflection obtained by the authors compared to the reference for the sector plate.

ri/ro [57] Present Study

0.25 2.84 2.85
0.5 1.41 1.45

0.75 0.1 0.093

It is noticed that the results obtained by the authors are in good harmony with
the reference.

The following definition of buckling strain is used for validation purposes [41,58]:

εb =
N
Eh

(84)

where εb is strain buckling and N is buckling load. Also E and h are the Young modulus
and thickness given in the reference. For a range of nonlocal parameters and radiuses,
Table 4. lists the buckling strains of the circular nanoplate with a clamped edge. It can be
noticed that the current findings closely resemble those of ref. [41].



Mathematics 2024, 12, 3545 14 of 19

Table 4. Nondimensional strain buckling of single-layer and bilayer circular nanoplate with clamped
boundary conditions obtained by the authors with ref. [41].

Reference r (nm)
The Percentage of the strain of Buckling

µ=0 µ=1 µ=4

Present single-layer 4 0.91 0.48 0.19
Present bilayer 4 1.38 0.84 0.33
Reference [41] 4 0.93 0.47 0.19

Present single-layer 8 0.23 0.19 0.12
Present bilayer 8 1.09 0.81 0.41
Reference [41] 8 0.23 0.19 0.12

Regarding the following data:

E1 = 1765(GPa) , E2 = 1588(GPa) ,ν12 = 0.3 , ν21 = 0.27, q = 1(GPa) ,
k0 = 50(GPa/nm), kw = 1.13(GPa/nm), kp = 1.13(Pa.m), h = 0.34(nm) ,
ri = 10(nm), ro = 10(nm).

(85)

the results of the current study are examined. Figure 4a,b show the results of the nondi-
mensional maximum deflection versus the van der Waals coefficient between layers for the
annular multi-layer nanoplate (i = 2) at different boundary conditions. With the enhance-
ment of the van der Waals coefficient between layers, the maximum deflection decreases.
By increasing the van der Waals coefficient between layers, the stiffness of the nanoplates is
enhanced, and as a result, the dimensionless deflection of the plates is reduced. Despite
the single–layer plate deflection behavior, it is noticed that the maximum nondimensional
deflection for the simply supported boundary condition is more than that of the clamped
boundary condition. Also, it is concluded that increasing the nonlocal parameter decreases
the deflection of the plate.

By considering the Equation (86) assumptions:

E1 = E2 = 1.06 × 1012(Pa) , ν12 = 0.3 , ν21 = 0.27, q = 5(GPa) ,
k0 = 50(GPa/nm), kw = 1.13(GPa/nm), kp = 1.13(Pa.m), h = 0.34(nm) ,
ri = 10(nm), ro = 10(nm)

(86)

the results of the sector analysis are examined. Figure 5. compares the results of the
maximum deflection of the multi-layer sector nanoplate (i = 2) with an equivalent single-
layer plate (with the same thickness as the multi-layer one) versus the sector angle in
the clamped condition. Moreover, it can be noticed that by increasing the strain gradient
parameter, the maximum dimensionless deflection of the plate decreases. This reduction is
made more significant by increasing the sector angle. Additionally, increasing the sector
angle causes an increase in the deflection of the plate.

Figure 6 reveals the nondimensional buckling load of the circular multilayer nanoplate
(i = 2) with respect to the thickness-to-radius ratio (h/r) for the clamped and simply
supported boundary conditions. From the graph, it is evident that increasing the h/r
decreases the nondimensional buckling load. Also, by increasing the h/r, the outcomes of
the clamped and simply supported boundary conditions approach each other.
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Figure 4. (a) The deflection of the annular multi-layer nanoplate (i = 2) versus the van der Waals
coefficient among layers in the S-F boundary condition. (b) The deflection of the annular multi-layer
nanoplate (n = 2) versus the van der Waals coefficient among layers in the C-F boundary condition.
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tor nanoplate (i = 2) with equivalent single-layer plate versus the sector angle in the clamped
boundary condition.
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Figure 6. The buckling load of the circular multilayer nanoplate (i = 2) with respect to the thickness-
to-radius ratio.

5. Conclusions

The static examination of the circular (or annular) and sector multi-layer nanoplate via
the nonlocal strain gradient theory with HSDT considering nonlinear strains, was carried
out herein. Additionally, the mechanical buckling of the multi-layer sector nanoplate was
studied. Also, to solve governing mathematical relations, SAPM and DQM were used. For
validation, other references were used to compare the results. Examinations were carried
out to study the effect of small-scale factors, the van der Waals interaction value among
layers, boundary conditions, and geometric factors of the plate.
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Appendix A

For the bending analysis, by using SAPM and placing the polynomial functions of
Equation (61) in the equilibrium equations (obtained based on displacements), the differ-
ential mathematical relationships are converted to an algebraic mathematical equations
system. Also, instead of SAPM, it is possible to use DQM to discretize the differential
equations and convert them to series form. Then, using numerical methods such as Newton–
Raphson, these algebraic equations can be solved. In this type of analysis, there are N
unknown constants and N algebraic equations.

For the buckling analysis, either SAPM or DQM can be used to convert them to
algebraic equations. In this type of analysis, there are N algebraic equations and N + 1
unknown constants. Therefore, the Newton–Raphson method cannot be solely used to
obtain the results. For this type of analysis, the methods of eigenvalues and eigenvectors
can be used.

For example, consider the buckling of the single-layer circular plate using first-order
shear deformation theory. Therefore, for each node, there are four unknowns and three
equations, whose unknowns are, e.g., w0, φ, u0 (displacement components of the middle
plate) and N (critical buckling load). So, there are 34 unknowns and 33 equations for
11 nodes. After discretizing the equilibrium equations (using SAPM or DQM) and sub-
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stituting displacements in them, the matrix form of the obtained equations is generally
expressed as follows:

[Ce f ]33∗33



u∗1
0

φ∗1

w∗1
0

.

.
u∗11

0
φ∗11

w∗11
0


= 0 (A1)

[Ce f ]33∗33 is the matrix of coefficients of obtained equations for 11 nodes. By setting
the determinant of the matrix of coefficients equal to zero in the computer program (using
MATLAB 8.4 R2014b, Maple 2023, etc.), the critical buckling load can be obtained. This
technique is also can be used for solving equations in higher-order theories with more
displacements and equations.

Also, the iteration method can be applied by guessing the buckling load solving the
equations (as the bending analysis), and checking the deflection of the plate:∣∣∣Nr+1 − Nr

∣∣∣
Nr+1 ≤ ε0 (A2)

where ε0 is a small value and can be taken as 10−4. Also, here r + 1 and r show the two
consequent iterations, for obtaining the critical buckling load (N).
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