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Abstract: The cold chain logistics industry faces significant challenges in terms of transportation
costs and carbon emissions. It is imperative to plan multimodal transportation routes efficiently
to address these issues, minimize food waste, and reduce carbon emissions. This paper focuses
on four key optimization objectives for multimodal cold chain transport: minimizing total trans-
portation time, costs, carbon emissions, and food waste. To tackle these objectives, we propose a
high-dimensional multiobjective route optimization model for multimodal cold chain networks. Our
approach involves the development of a multiobjective evolutionary algorithm, utilizing Monte Carlo
simulation and a one-by-one selection strategy. We evaluate the proposed algorithm’s performance by
analyzing various convergence and distribution indicators. The average values for the minimum total
transportation time, transportation cost, carbon emission cost, and cargo loss rate derived from the
proposed algorithm ultimately converge to 6721.7, 5184.4, 301.5, and 0.21, respectively, demonstrating
the effectiveness of the algorithmic solution. Additionally, we benchmark our algorithm against the
existing literature to showcase its efficiency in solving high-dimensional multi-objective route opti-
mization problems. Furthermore, we investigate the impact of different parameters, such as carbon
tax rates, temperature, and cargo activation energy, on carbon emissions, and food waste. Moreover,
we conduct a real-world case study to apply our approach to solving a practical business problem
related to multimodal cold chain transportation. The insights gained from this research offer valuable
decision-making support for multimodal carriers in developing low-carbon and environmentally
friendly transportation strategies to efficiently transport perishable goods.

Keywords: multimodal cold chain; multiobjective optimization; carbon emissions; food waste

MSC: 90B06; 90C11; 90C29

1. Introduction

As society and the global economy evolve, there has been a marked increase in
health awareness, leading to a stronger emphasis on the freshness and quality of food.
In recent years, the global production of fresh agricultural products has steadily risen,
with projections suggesting a potential 60% increase by 2050. This growth is driven by
improving living standards and increasing awareness of health among consumers, which
has driven the expansion of supply chains and the proliferation of global retail networks [1].
Technological advances, including the Internet of Things (IoT), artificial intelligence (AI),
and digital twins, have also played a pivotal role in improving the monitoring and tracking
of product transport [2]. Moreover, the rise of fresh e-commerce platforms, vegetable and
fruit delivery services, and online shopping has significantly boosted the fresh e-commerce
market, further fueling the demand for efficient cold chain logistics. As a result, the trade
of perishable goods has emerged as a critical component of international commerce.
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According to reports from the Food and Agriculture Organization, more than 14% of
food is lost during transport from production sites to retailers, and approximately 30% of
fresh food spoils in transit due to inadequate temperature regulation [3,4]. The perishable
nature of fresh goods requires the use of specialized personnel, equipment, and technologies
to continuously monitor environmental conditions, cargo quality, and storage throughout
the transportation process. Ensuring the integrity, safety, and freshness of these goods not
only enhances customer satisfaction but also strengthens the competitiveness of logistics
providers [5]. However, compared to conventional goods, transporting fresh products is
more time consuming and costly. The need for temperature-controlled environments to
maintain product quality further increases carbon emissions, which conflicts with low-
carbon environmental goals and the imperatives of a sustainable economy.

The transportation sector is a major contributor to energy consumption and carbon
dioxide emissions, posing significant challenges to achieving carbon neutrality [6]. In
pursuit of a low-carbon transformation in transportation, upgrading infrastructure and
promoting multimodal transportation have emerged as sustainable solutions. These ap-
proaches reduce transportation costs and times, enhance logistics standards, alleviate
road congestion, and minimize environmental impacts. Driven by supportive govern-
ment policies and market demands, the cold chain logistics industry is poised to adopt
multimodal transportation practices. This is a composite transportation model, combin-
ing multiple modes of transport that connect and transfer seamlessly to complete the
entire cargo transportation process. By optimizing resource allocation, improving orga-
nizational structures, and reducing dependence on traditional road and air transport,
multimodal cold chain logistics can offer more efficient distribution routes. This approach
not only mitigates product loss and reduces carbon emissions but also enhances overall
logistics efficiency.

Existing research underscores the critical importance of managing food waste in cold
chain logistics. Shashi et al. [7], in their systematic review of 1189 studies on the Food Cold
Chain (FCC), identified food waste management as one of the most frequently cited topics
in FCC literature. Wu and Hsiao [8], using a failure mode and effects analysis (FMEA),
identified improper temperature control as the leading cause of food quality degradation
in cold chain systems. Multimodal temperature-controlled transportation, highlighted
by Behdani et al. [9], offers an economical and efficient alternative to single-mode road
transport, addressing key challenges in managing perishable goods. Zhang et al. [10]
proposed a value-based management (VBM) approach within a decision-making frame-
work for multimodal cold chains, optimizing transport mode selection and scheduling by
leveraging the characteristics of perishable goods and market conditions.

The inherent characteristics of perishable goods, such as order volume, temperature
control requirements, and waste cost coefficients, introduce complexity into distribution
scheduling and delivery route optimization models. Zhang et al. [11] addressed a vehicle
routing problem (VRP) for multiproduct frozen food distribution by utilizing a genetic
algorithm (GA) that accounts for unit volume and perishability coefficients. Chen et al. [12]
investigated the scheduling of distribution and the optimization of route for cold food
chains under increasing demand, taking into account both the volume of orders and
the temperature control requirements. Zheng et al. [13] integrated food loss costs and
freshness satisfaction into a multimodal transport mode selection model to optimize cold
chain food logistics for efficient delivery. Urban logistics systems add another layer of
complexity to cold chain VRP models. Chaofan et al. [14] developed a VRP for urban cold
chain distribution that incorporates simultaneous delivery and pickup to minimize total
transportation costs using a GA to solve the model. Franceschetti et al. [15] examined
pollution-aware VRP models, proposing a metaheuristic algorithm based on adaptive
large neighborhood search (ALNS) to address time-dependent pollution in urban traffic.
Ma et al. [16] combined order selection and a time-dependent VRP with time windows
for perishable goods delivery, solving the model with a hybrid ant colony optimization
algorithm. Liu [17] extended this work with a time-dependent cold chain multimodal
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transportation route optimization model, which addresses both static and dynamic real-
time optimization. Transportation planning models for cold chain products are typically
shaped by preservation constraints or penalty costs, focusing on a single aspect. However,
most literature lacks consideration of the temperature variations in quality control modeling,
leading to insufficiently comprehensive problem formulations.

Incorporating multiple objectives in cold chain optimization is essential to ensure
efficiency and sustainability, as single-objective models often fall short. Existing stud-
ies commonly convert multiobjective optimization into a single-objective problem by
applying weights to each objective or using chance constraints. However, these meth-
ods can lead to a loss of feasible solutions and restrict the decision makers’ range of
choices. Roghanian and Cheraghalipour [18] tackled this challenge by developing a
closed-loop citrus supply chain optimization model with objectives that minimize cost,
maximize demand responsiveness, and reduce carbon emissions. They employed five
metaheuristic algorithms, with the multiobjective tree growth algorithm (MOTGA) out-
performing others. Tirkolaee et al. [19] also recognized the importance of multiobjective
optimization, introducing a pollution routing problem with cross-docking using a bi-
objective mixed-integer linear programming model, which as solved with MOSA and
NSGA-II algorithms. Zulvia et al. [20] proposed a multi-objective green VRP for per-
ishable products, incorporating operational costs, deterioration costs, carbon emissions,
and customer service levels, and they developed a many-objective gradient evolution
algorithm (MOGE), which outperformed other algorithms in terms of diversity and conver-
gence. Wu et al. [21] considered multiple factors in their model, including transportation
costs, penalties, overloading costs, carbon tax costs, and customer satisfaction. They
formulated the objective function as the ratio of total costs to customer satisfaction and
applied an enhanced A* algorithm alongside an ant colony algorithm to solve the model.
The results verified the model’s effectiveness, efficiency, and accuracy. Zhang et al. [22]
developed a low-carbon cold chain logistics route optimization model tailored to China’s
traffic conditions, factoring in the combined impacts of traffic conditions on total distribu-
tion costs, product freshness, and carbon emissions. To address the complexities of this
multidimensional discrete model, they proposed an improved discrete firefly algorithm
(IDFA). Similarly, Liao et al. [23] designed an urban cold chain logistics network with a
control strategy aimed at balancing total cost and customer satisfaction, thereby reducing
the risk of outbreaks associated with cold chain pollutants. To solve this model, they intro-
duced a specially initialized multiobjective evolutionary algorithm (MOEA-SI). It is evident
that the research on optimization algorithms for discrete multiobjective problems, typically
involving two or three objectives, has been widely explored in the literature. However,
there is comparatively less focus on optimization problems with four or more objectives in
this field.

Our study addresses the research gaps by developing a high-dimensional multiob-
jective route optimization model for multimodal cold chain transportation networks. The
model aims to minimize total transportation costs, time, carbon emissions, and food loss
rates. Transportation costs include on-route, trans-shipment, and storage costs. To solve
the model, we propose a multiobjective evolutionary algorithm based on Monte Carlo sim-
ulation and a one-by-one selection strategy (MC-ObOEA), which is designed to handle the
uncertainty in transportation time. The effectiveness of the algorithm will be demonstrated
through a case study using real-world business data. The main contributions of this paper
are as follows:

• The model accounts for the accumulation of total transportation time and temperature
variations during transit to highlight the differences between cold chain cargo trans-
portation and traditional cargo transportation. The Weibull function is used to model
the changing cargo loss rate due to temperature fluctuations.

• To make the model more realistic, random variables are incorporated to represent
transportation time uncertainties, and Monte Carlo simulation is employed for the
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effective treatment of these uncertainties. Additionally, the shift periods of transporta-
tion modes are explicitly modeled.

• A carbon pricing function is introduced to convert carbon emissions into carbon
emission costs, thereby integrating environmental impact into the transportation
modeling process.

• To solve the high-dimensional, multiobjective optimization problem, we propose the
MC-ObOEA algorithm. The algorithm evaluates and selects individuals based on
convergence and distribution metrics, ensuring that the Pareto front solution set with
superior performance is obtained.

The remainder of the paper is organized as follows: Section 2 provides a formal de-
scription of the problem. Section 3 introduces the high-dimensional MC-ObOEA algorithm.
Computational experiments are discussed in Section 4, followed by a case study in Section 5.
Finally, Section 6 presents the conclusions of the study.

2. A Multiobjective Multimodal Cold Chain Transport Route Optimization Model
2.1. Problem Description

The multimodal transportation network analyzed in our study encompasses highway,
railway, and waterway transport modes. The decision maker may select one or multiple
transportation modes to deliver goods from the distribution center to the final destination.
Each mode significantly impacts transportation time, costs, carbon emissions, and food
losses in cold chain logistics. Highway transport is subject to variability caused by road
congestion and traffic accidents, while waterway transport is influenced by factors such as
extreme weather conditions, port congestion, and ship collisions, all of which introduce
uncertainties in transportation time. Both the waterways and the railway modes follow
fixed daily schedules, which affect not only the timing of subsequent departures but also
limit cargo waiting times at transshipment nodes, leading to increased holding costs.

In the context of carbon reduction policies and efforts to promote a low-carbon transfor-
mation in the transportation sector, it is essential to account for the cost of carbon emissions
during the transportation process. Moreover, in the supply chain of fresh and perishable
goods, switching between transport modes often extends transit times and accelerates
perishable product degradation, resulting in significant food waste. Taking these factors
into account, this study performs a single-source, single-destination route optimization
with the objectives of minimizing total transportation time, overall transportation costs,
carbon emissions, and food loss rates. The study is based on the following assumptions:

1. Transported cargoes are indivisible and must remain intact during delivery.
2. The time and cost of transitioning between different transport modes are known.
3. The arrival time of the cargoes at the nodes marks the beginning of loading, unloading,

and trans-shipment.
4. After loading, unloading, and trans-shipment, the subsequent transport leg begins

according to the nearest available schedule of the chosen mode.
5. The transport time distributions for each stage of the journey are known.
6. Waiting times during transportation are solely due to constraints of the transport

mode shift.
7. The capacities, facilities, equipment, and personnel of the transport nodes meet the

requirements for feasible transshipment.
8. The temperature of the goods remains constant while being transported by a sin-

gle mode of transport; however, during transit, the temperature may change to
some extent.

2.2. Parameter Definition

We represent the multimodal stochastic transportation network as a graph
G = (N, Ẽ, M), where N is the set of nodes, with nodes o and d representing the nodes of
origin and destination, respectively. M denotes the set of available transport modes, and Ẽ
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is the set of arcs, which is defined as Ẽ =
{

ẽa
i,j|i, j ∈ N, a ∈ M

}
. Each arc ẽa

i,j is characterized

by a set of parameters t̃a
i,j, ca

i,j, ca
ei,j

, and Da
i,j, where the transport times t̃a

i,j follow a specific
probability distribution. Detailed definitions of the parameters are provided below:

q : Cargo volume.

p : Carbon tax coefficient.

ca
i,j : Transportation cost from node i to node j with transport mode a.

t̃a
i,j : Transportation time from node i to node j with transport mode a.

δa
i,j : Carbon emissions coefficient from node i to node j with transport mode a.

va
i,j : Average speed from node i to node j by transport mode a.

Tdep
i : Cargo departure time at node i (assuming that the departure time at the origin TG

o
is given).

Tarr
i : Cargo arrival time at node i.

T f in
i : Cargo trans-shipment completion time at node i.

ca,b
i : Cost of changing the transport mode from a to b at node i.

t̃a,b
i : Time to change the transport mode from a to b at node i.

ξa,b
i : Carbon emissions coefficient of change in transport mode from a to b at node i.

Γa
i,j : Gives the schedule for using the transport mode a from node i to node j, where

Γa
i,j = (. . . , Φn−1, Φn, . . .) and Φn denote the departure time of the n-th change.

tdel
i : Cargo transshipment time at node i.

fi : The correlation between cargo holding costs and trans-shipment time is expressed as
a piecewise function, where the cost varies depending on the duration of the holding
period. (For example, the holding cost is set at 0.01 CNY per minute for the first
three hours, increasing to 0.02 CNY per minute for three to five hours, with different
rates applied beyond this time.) These rates also differ depending on the transport
mode used.

A set of binary decision variables is defined as follows:

xa
i,j =

{
1, if the cargo is shipped from node i to node j via the transport mode a
0, otherwise

(1)

ya,b
j =

{
1, if the cargo is transferred from transport mode a to mode b at node j
0, otherwise

(2)

2.3. Optimization Model Formulation

When the cargo reaches node i for trans-shipment, it departs at the latest scheduled
departure time of the selected transport mode after the completion of the transfer process.
The departure time of the cargo is determined as follows:

Φn = φ
(

T f in
i , Γa

i,j

)
, Φn−1 < T f in

i ≤ Φn (3)

The moment when the transition is completed after the shipment arrives at a node i is
as follows:

T
f in

i = (Tarr
i + t̃a,b

i ) ya,b
i , ∀(i) ∈ N\{o} (4)

Then, the departure moment Tdep
i at node i is as follows:

Tdep
i = ∑

b∈M
∑

j∈N\{o}
φ
(

T
f in

i , Γb
i,j

)
xa

i,j, ∀(i) ∈ N\{d} (5)
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The moment Tarr
j at which the shipment arrives at node j is shown below:

Tarr
j = (Tdep

i + t̃a
i,j)xa

i,j , ∀(i) ∈ N\{o} (6)

The detention time tdel
i of the cargo at node i is as follows:

tdel
i = Tdep

i − T f in
i , ∀(i) ∈ N\{o, d} (7)

Therefore, the total transportation time T can be calculated in the following:

T = ∑
i∈N

∑
j∈N\{i}

∑
a∈M

t̃a
i,jx

a
i,j+ ∑

i∈N\{o,d}
∑

a∈M
∑

b∈M
t̃a,b
i ya,b

i + ∑
i∈N\{o,d}

∑
a∈M

∑
b∈M

tdel
i ya,b

i (8)

Transportation costs are calculated based on three primary components: in-transit
road transportation costs, transshipment costs, and additional storage costs incurred from
holding cargo at trans-shipment nodes due to scheduling constraints.

C = ∑
i∈N

∑
j∈N\{i}

∑
a∈M

ca
i,jx

a
i,j+ ∑

i∈N\{o,d}
∑

a∈M
∑

b∈M
ca,b

i ya,b
i + ∑

i∈N\{o,d}
∑

a∈M
∑

b∈M
fi tdel

i ya,b
i (9)

During the model construction, a carbon tax function is incorporated to translate
carbon emissions into associated costs. Carbon emissions are primarily derived from
two sources: transportation and trans-shipment. Taking both into account, the total carbon
emission cost, Ce, is calculated using the following formula:

Ce = (∑
i∈N

∑
j∈N\{i}

∑
a∈M

t̃a
i,jv

a
i,j δ

a
i,j xa

i,j+ ∑
i∈N\{o,d}

∑
a∈M

∑
b∈M

t̃a,b
i ξa,b

i ya,b
i )qp (10)

The key distinction between cold chain transport and traditional cargo transport
lies in the gradual decline of product quality during storage and transit. The percentage
of damaged goods reflects the loss of cargo due to quality degradation caused by the
cumulative effects of transportation time and temperature fluctuations during transit and
transshipment. The rate of deterioration due to temperature changes can be modeled using
the Arrhenius equation: K = A · exp(−Eα/RF), where K is the reaction rate constant, A
is the Arrhenius constant (or frequency factor), Eα represents the activation energy, and
R is the gas constant. The reaction rates and temperatures of the cargo during transport
and transit are denoted by k1, F1, and k2, F2, respectively. k1 and k2 are calculated using
Equation (11).

k1 = A · exp
[

−Eα

R(F1 + 273.15)

]
, k2 = A · exp

[
−Eα

R(F2 + 273.15)

]
. (11)

The relationship between F1, F2, and the temperature variation during transit ∆F is ex-
pressed in Equation (12).

∆F = |F1 − F2| (12)

Our cargo loss rate model is based on the time-dependent relationship of the cargo
loss rate, which is represented by a Weibull function introduced by Giri et al. [24]. This
relationship is expressed in Equation (13):

D(t) =

{
1 − e−kt, if t > 0
0, else

(13)
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Therefore, the cumulative cargo loss rate during transportation can be calculated using the
following formula:

D =
n

∑
i=1

n

∑
j=1

M

∑
a=1

[
1 − exp(− k1 t̃a

i,j) xa
i,j +(1 − exp(− k2(t̃

a,b
i + tdel

i ))) exp(− k1 t̃a
i,j) ya,b

i

]
(14)

The optimization model is designed with four primary objectives: minimizing total
transportation time, reducing total transportation costs, minimizing carbon emission costs,
and minimizing cargo loss rates. These objectives are incorporated into a high-dimensional,
multiobjective, multimodal transport route optimization model, while the previously
discussed constraints are implicitly included but not restated in the following formulation.

Objectives:
min T, min C, min Ce, and min D (15)

Constraints:

∑
j∈N\{i}

∑
a∈M

xa
i,j ≤ 1, ∀i ∈ N (16)

∑
i∈N\{o}

∑
a∈M

xa
o,i = ∑

i∈N\{d}
∑

a∈M
xa

i,d = 1 (17)

∑
i∈N\{o}

∑
a∈M

xa
i,o = ∑

i∈N\{d}
∑

a∈M
xa

d,i = 0 (18)

∑
a∈M

∑
b∈M

ya,b
i ≤ 1, ∀(i) ∈ N\{o, d} (19)

∑
i∈N\{j}

∑
a∈M

xa
i,j = ∑

i∈N\{j}
∑

a∈M
xa

j,i, ∀j ∈ N\{o, d} (20)

∑
k∈N\{d}

xa
k,i + ∑

j∈N\{o}
xb

k,i ≥ 2 ya,b
i , ∀(i) ∈ N\{o, d}, ∀a, b ∈ M (21)

Equation (16) guarantees that only a single-cargo departure occurs at each node.
Equations (17) and (18) ensure that cargo departs from the origin node o (the initial
shipment point) and eventually reaches the destination node d (the final delivery point).
Equations (19) and (20) stipulate that the cargo is loaded and unloaded at one transit node
at a time. Lastly, Equation (21) ensures that the flow balance is maintained across all nodes.

3. A High-Dimensional Multiobjective Multimodal Route Optimization Algorithm

We introduce a high-dimensional, multiobjective, multimodal transportation route
optimization algorithm, called the Multiobjective Evolutionary Algorithm Based on Monte
Carlo Simulation and One-by-One Selection Strategy (MC-ObOEA), to solve our proposed
model. The algorithm is built on the core framework of a genetic algorithm [25] and incor-
porates the Monte Carlo (MC) simulation [26] to account for uncertainties in transportation
time. The algorithm evaluates individuals using both convergence and distribution indica-
tors. During the offspring generation process, individuals are selected primarily based on
convergence indicators, and for each selected individual, similar individuals are eliminated
using distribution indicators to maintain a balance between convergence and diversity
in the population. To further enhance the performance of the solution set, a boundary
preservation mechanism based on angle solutions is also incorporated, improving the
extension and coverage of the results.

3.1. General Algorithm Framework

Algorithm 1 outlines the overall framework, which consists of the following steps.
First, a randomly initialized population is generated based on the initial transport network
and arc segment data. The offsprings are then produced using cross and mutation operators.
The parent and offspring populations are then merged to form a combined population, and
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the fitness of each individual is evaluated. Following this, the convergence and distribution
metrics are computed across the population. Finally, a one-by-one selection process is
applied to form the new population. Two critical components of this framework are the
calculation of convergence and distribution metrics (lines 7–9), as well as the selection
strategy (line 10), both of which are detailed in the following sections.

Algorithm 1 MC-ObOEA framework.

Input: P (initial population), N (population size)
1: t = 0
2: Initializing the population P(t);
3: while Failure to meet termination conditions do
4: Generation of offspring populations P′(t) using crossover, mutation operators;
5: Q(t) = P(t) ∪ P′(t);
6: Calculate the multi-objective adaptation value for individuals in Q(t);
7: for all xi ∈ Q(t), i = 1, . . . , 2N do
8: Compute the convergence metric c(xi) and the distribution metric d(xi);
9: end for

10: P(t + 1) selects (Q(t), c, d) one by one;
11: t = t + 1
12: end while
13: Choose the unoccupied solution in P(t) to form FS
14: Output FS

3.2. Convergence and Distribution Metrics
3.2.1. Convergence Metric

In calculating the convergence metric, all optimization objectives are treated with
equal importance and are combined into a single scalar value. The general formulation of
the convergence metric is presented as follows:

c(x) = agg[ f1(x), . . . , fM(x)] (22)

Three representative methods are used to calculate the convergence metric. The first
method involves determining the Chebyshev distance from each individual to the globally
optimal solution, which is denoted as CdI.

c(x) = max
1≤m≤M

fm(x)− z∗m (23)

where z∗ =
{

z∗1 , . . . , z∗M
}T is the globally optimal value, and z∗m = min

xi∈Q(T)
fm(xi). The

second method calculates the Euclidean distance between each individual and the global
optimal value, which is denoted as EdI.

c(x) =
√

∑ M
m=1[ fm(x)− z∗m]

2 (24)

The third method calculates the Euclidean distance between each individual and the global
base value, which is referred to as EdN.

c(x) = 1
/√

∑ M
m=1

[
fm(x)− znad

m
]2 (25)

where znad =
{

znad
1 , . . . , znad

M

}T
is the global base value, and znad

m = max
xi∈Q(t)

fm(xi). Since

our model is a minimization problem, the inverse of the distance is used as an indicator
of convergence.
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Figure 1 illustrates the contour plots formed by different convergence metrics in a
two-dimensional objective space ( f1, f2). Individuals located on the same contour line
share identical convergence metric values. When the contours of the chosen convergence
metric align closely with the shape of the Pareto frontier of the optimization problem, the
resulting solution set tends to be of higher quality.

(a) CdI (b) EdI (c) EdN

Figure 1. Contour plots under different convergence indicators in two-dimensional space.

3.2.2. Distribution Metric

The distribution metric is represented as a vector where each element denotes the
distance between one individual and every other individual. The cosine similarity, cal-
culated as the cosine of the angle between two vectors, is used to assess their similarity.
A cosine similarity of 1 indicates identical vector directions, while a value of 0 signifies
perpendicular vectors. The range of cosine similarity spans [0, 1], making it particularly
suitable for comparing individuals in high-dimensional spaces. Figure 2 illustrates a step-
by-step selection process using cosine similarity as a distribution metric, with cos(θ) as
the distribution threshold. In the example, the individual A is selected, leading to the
elimination of C. Then, the individuals B and D are selected, and E is cleared. Finally, F
is selected, resulting in the removal of I, H, and G. This method effectively reduces the
number of solutions that exhibit dominant resistance, such as I, H, and G.

�
�

�
� �

G
F

ED

C
BA

H
I

0 f 1

f 2

Figure 2. One-by-one selection process using cosine similarity as distribution index.

Therefore, the following distributive indicators are introduced.

d(xi) =
{

d1(x), . . . , d|Q(t)|(xi)
}

, i = 1, . . . , |Q(t)| (26)

where
dj(xi) = 1 − cos(θij), j = 1, . . . , |Q(t)| (27)
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represents the distance between xi and xj, and

cos(θij) =
∑ M

m=1[ fm(xi)− z∗m]×
[

fm(xj)− z∗m
]√

∑ M
m=1[(xi − z∗m)]

2 ×
√

∑ M
m=1[ fm(xi)− z∗m]

2
. (28)

It is straightforward to observe that dj(xi) takes values within the range [0, 1], where
smaller values of dj(xi) indicate that xi is closer to xj. Furthermore, dj(xi) is equal to di(xj),
and di(xi) is always 0. During the selection process, once an individual is selected, all
individuals in the population with dj(xi) below a predefined threshold are removed. If a
distribution metric based on Euclidean distance is employed, the formula for calculating
the distance between xi and xj is given as follows:

dj(xi) =

√√√√ M

∑
m=1

[
fm(xi)− fm(xj)

]2
, j = 1, . . . , |Q(t)|. (29)

3.3. Selection Strategy

The flowchart of the MC-ObOEA algorithm is illustrated in Figure 3. The gray boxes
detail the process of individual selection, carefully outlining the steps of the selection
strategy. Using the convergence and distribution metrics introduced in Section 3.2, the
individuals in population Q(t) are categorized into three distinct sets: (1) the preselected
solution set Qs, (2) the set of solutions Qth eliminated by distribution thresholds, and
(3) the set of dominated solutions Qd. Initially, a boundary preservation mechanism
selects corner individuals, denoted as xconer

m , for inclusion in the Qs solution set. In an
optimization problem with M objective functions, a corner solution is defined as the one
that simultaneously minimizes kc objectives, where kc < M. We define a corner solution
(or marginal individual) as an individual with the smallest value of the scalar function in
the current population of the objective functions kc. These corner individuals are identified
using M scalar functions, which replace convergence metrics in the selection process.

BeginInitialize the population P(t)

Generate offspring populations P'(t) by applying 

crossover and variational operators, Q(t)=P(t)∪P'(t)

Compute convergence and 

distribution metrics

Apply Monte Carlo simulation 

to model individuals in Q(t)

Calculate multi-objective adaptation 

values for all individuals in Q(t)

Select the remaining individuals in Q(t) into the pre-selected 

solution set Qs one by one according to the convergence index

Pre-selected solution set (Qs) ≥ population size (N)? NO

YES

Q(t) = cleared solution set Qth ∪ dominated solution set Qd

The first N individuals in the pre-selected 

solution set Qs are selected into Pt+1

Output the next generation population Pt+1 

obtained using the selection strategy

Satisfy the iteration 

stop condition?

NO

YES

End

Remove individuals that are dominated by          or 

similar to it according to the removal operator        

coner

mx


Remove individuals that are dominated by          or 

similar to it according to the removal operator        

coner

mx


Choose the marginal individual           in 

Q(t) into the pre-selected solution set Qs

Remove individuals that are dominated by            or 

similar to it according to the removal operator        
uniquexRemove individuals that are dominated by            or 

similar to it according to the removal operator        
uniquex

coner

mx

Figure 3. Flowchart of MC-ObOEA.



Mathematics 2024, 12, 3559 11 of 27

cm(x) = agg[ f1(x), . . . , fm+1(x), . . . , fM(x)], m = 1, . . . , M (30)

For example, when using EdI as the convergence metric, the scalar function is given by

cm(x) =
√

∑ M
i=1,i ̸=m

[
fi(x)− z∗i

]2, m = 1, . . . , M. (31)

Therefore, the marginal individual xconer
m can be obtained as follows:

xconer
m = arg min

xi∈Q(t)
cm(xi), m = 1, . . . , M (32)

Prioritizing the selection of these edge individuals significantly improves the algo-
rithm’s ability to explore the entire Pareto frontier, as these individuals are inherently
non-dominated. Afterward, the remaining individuals of the population Qt are selected
for inclusion in Qs one by one. In particular, when an individual xunique is added to the Qs
solution set, any individual that is dominated by or too similar to it is removed from the
population using the removal operator ζ. This ensures that dominated individuals are not
selected over non-dominated ones. The selection and removal operations continue until Qt
is fully depleted. If, after this initial depletion, the number of individuals in Qs exceeds the
population size N, only the first N individuals are retained for population P(t). Otherwise,
the remaining individuals in Qth and Qd will compete for selection in Qs again. During
this process, once Qt is empty, the individuals of Qth and Qd are reintroduced into Qt for
another selection round. Finally, based on the number of individuals in Qs, the distribution
threshold is updated as follows:

ζt+1 = ζt × e
ratio/RATIO−1

M , (33)

where ratio = |Qs|
/

N is the ratio of the number of preselected solutions to the population
size. In our study, ζ1 is initialized to 1, and the threshold RATIO ∈ [0, 2] is used to
control the number of preselected solutions. When RATIO = 1, it provides the optimal
balance between convergence and distribution performance. Using the adaptive adjustment
method in Equation (33), if the number of preselected solutions falls below R × N, ζt is
reduced; conversely, if it exceeds this value, ζt is increased. This ensures that the number
of preselected solutions remains approximately at R × N. However, when the number
of dominated individuals in Qt exceeds (2 − R)× N, it becomes impossible to select N
individuals for Qs, regardless of how ζt is adjusted. In such cases, the value of ζt+1

remains unchanged.

4. Computational Experiments
4.1. Experimental Design and Parameters

This paper constructs a multimodal transportation network consisting of 15 nodes,
where H represents highways, R represents railroads, and W represents waterways, as
illustrated in Figure 4. Assuming that the transportation time for each segment follows a
normal distribution, the specific data are provided in Table 1. Additional data for nodal
transit transitions, among other factors, are detailed in Tables 2–5. The interval between
shifts is assumed to be consistent across all transport modes at each node. The MC-ObOEA
algorithm is based on the genetic algorithm framework. The time complexity of the genetic
algorithm can be approximated as O(Nd × N × F), where Nd represents the number of
decision variables, N is the population size, and F accounts for the time required to
evaluate the fitness function and perform other operations with fixed time costs. The space
complexity is approximately O(P × S), where S is the space occupied by each individual.
Given the more complex operations in MC-ObOEA, its overall complexity is higher, making
the choice of algorithm parameters crucial. The algorithm and model parameters used in
this study are based on the relevant literature [26,27], with the specific values presented in
Table 6.
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Figure 4. Multimodal cold chain network of the numerical experiments.

Table 1. Mutimodal transportation network dataset.

oA;[25,3]891;[42,4]700;∼; EF;[47,5]1650;∼;∼;

oB;[25,3]924;[42,3]700;∼; EG;[47,5]891;∼;∼;

oC;[28,5]957;[70,6]372.75;∼; EH;[31,3]1551;[43,3]980;[102,5]530.25;

AD;[48,5]1650;∼;∼; EJ;∼;∼;[95,6]509.25;

AE;[25,4]924;[42,3]700;∼; EM;∼;∼;[95,6]1120;

AI;∼;[38,5]1330;[100,6]556.5; FI;∼;[38,5]1330;[100,6]551.25;

BA;[25,3]891;[43,4]700;∼; FJ;[25,3]891;[43,3]700;∼;

BC;∼;[30,3]1120;∼; FL;[25,3]891;[43,4]700;∼;

BD;[28,5]957;∼;[69,6]372.75; GI;[25,3]924;[44,3]700;∼;

BE;[30,3]1551;[43,3]1015;[103,5]530.25; GJ;∼;[30,3]1120;∼;

BF;[25,3]924;[42,4]700;∼; GL;[24,3]924;[42,4]700;∼;

BG;[25,3]891;[42,4]700;∼; HI;[31,3]1518;[43,3]1015;[102,5]530.25;

BH;[31,3]1551;[43,3]980;[103,5]540.75; HJ;[28,5]957;∼;[70,6]372.75;

CD;[25,3]924;[43,4]700;∼; HL;[24,3]924;[42,4]700;∼;

CE;[25,3]891;[43,4]700;∼; IK;[25,4]891;[42,4]700;∼;

CJ;∼;[37,5]1295;[100,6]556.5; IL;[30,3]1551;[43,3]101;[102,5]530.25;

DF;[25,3]924;[42,4]700;∼; IM;∼;[37,4]1330;[101,5]551.25;

DG;[25,3]924;[43,3]700;∼; JK;[25,3]11,891;[42,4]700;∼;

DH;[25,3]891;[42,4]700;∼; JL;[30,4]1518;[43,3]1015;[103,4]530.25;

DI;∼;∼;[95,6]504; JM;[47,4]1650;∼;∼;

DK;[25,3]891;[42,4]700;∼; Kd;[30,4]1518;[43,3]1015;[102,5]535.5;

ML;[26,3]924;[43,4]700;∼; LK;[47,4]1650; ∼;∼;

Md;∼;[37,5]1295;[100,6]551.25; Ld;[38,5]1330;[100,6]551.25;∼;

1 Data order: Origin and destination; road transport time and costs; rail transport time and costs; waterway
transport time and costs. 2 Data format for randomly distributed parameters of transportation time: [average,
standard deviation]. 3 Empty data: Represented as ∼.
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Table 2. Carbon emissions per unit and average speed of various transport modes.

Transport Mode Carbon Emissions Average Speed Transport Mode(kgCO2/t km) (km/h)

highway 0.044 80 highway
railway 0.0091 40 railway

waterway 0.0127 25 waterway

Table 3. Unit transition time between transport modes.

Transport Mode Highway Transition Time Railroad Transition Time Waterway Transition Time
(h) (h) (h)

highway 1 1.5 2
railway 1.5 2 4

waterway 2 4 3

Table 4. Unit transition cost between transport modes.

Transport Mode Highway Transition Cost Railroad Transition Cost Waterway Transition Cost
(CNY) (CNY) (CNY)

highway 30 30 40
railway 30 40 50

waterway 40 50 50

Table 5. Unit transition carbon emissions coefficients between transport modes.

Transport Mode Highway Transition Coefficient Railroad Transition Coefficient Waterway Transition Coefficient
kgCO2/t kgCO2/t kgCO2/t

highway 0.125 0.128 0.117
railway 0.128 0.115 0.113

waterway 0.117 0.113 0.12

Table 6. Parameters of the algorithm and model.

Parameter Definition Initial Value Parameter Definition Initial Value

Network node size 15 Carbon tax coefficient p 30
Number of individuals in population 80 Temperature during transportation F1 (°C) 5 °C

Number of iterations Nd 100 Variation in transit temperature range ∆F(°C) 1 °C
Crossover probability Pc 0.8 Cargo activation energy Eα 34 KJ/mol
Mutation probabilityPm 0.2 Cargo weight q 25 t

Simulation runs MC 500 Maximum reaction rate Kmax 5 × 1014
RATIO 1 Gas constant R 8.314
Correlation coefficients between cargo storage costs and detention times 1

In addition to the 15-node network, 30-node, and 50-node networks were randomly
generated following the same rules. The departure time for cargo from the origin is set to
7:30 a.m. In the MC-ObOEA algorithm—to achieve a balance between convergence and
distribution performance—and the convergence indicator EdI is utilized for optimization,
while cosine similarity (Cs) is employed as the distribution indicator.

4.2. Impact of Convergence Indicators on the Performance of MC-ObOEA

In Equation (34), the function calculates the distribution factor (AF) to assess the spread
of the obtained solution set. Meanwhile, Equation (35) defines the spatial performance
indicator (SP), which evaluates the uniformity of the distribution of the solution set. A
smaller AF value suggests a broader spread of the solution set, whereas a smaller SP value
indicates a more uniform distribution. In this section, the proposed convergence metrics
CdI, EdI, and EdN are evaluated. The AF and SP values for the solution sets obtained by
the algorithm under 2-, 3-, and 4-dimensional optimization objectives are illustrated in
Figures 5–7.
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AF =

√√√√ 1
|A| − 1

|A|

∑
i=1

(
d∗i − d̄

)2 (34)

SP =

√√√√ 1
|A| − 1

|A|

∑
i=1

(
d̄ − di

)2 (35)

d∗i = min
j∈A\j ̸=i

m

∑
k=1

∣∣∣ f i
k − f j

k

∣∣∣,d̄ =

( |A|

∑
i=1

d∗i

)
/|A|,i, j ∈ A (36)

where m represents the number of optimization objective functions, di denotes the minimum
distance from the i-th solution to the other solutions in set A, and d̄ is the average of all
di values.
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Figure 5. AF and SP values of 15-node network under different convergence indicators.

7 5 5 . 2 7 2 2 1

5 3 3 . 3 8 9 0 5

4 2 5 . 2 4 9 1 9

7 6 0 . 3 0 7 3 1

5 5 4 . 1 0 4 6 4

3 6 4 . 6 3 0 4 6

5 1 8 . 0 5 0 1 4

6 2 9 . 4 6 4 8 5

4 1 4 . 2 2 0 1 3

7 2 8 . 5 6 6 7 5

4 9 0 . 5 5 2 6 6

3 4 9 . 9 0 6 4 3

6 6 1 . 7 4 7 5 9

4 2 2 . 8 9 2 5

2 9 8 . 3 4 3 4 3

5 8 2 . 0 6 4 3

5 5 5 . 2 8 2 0 6

3 7 5 . 8 7 1 8 7

2  O b j e c t i v e s

3  O b j e c t i v e s

4  O b j e c t i v e s

0 2 0 0 4 0 0 6 0 0 8 0 0
A F  V a l u e

 C d I
 E d I
 E d N

2  O b j e c t i v e s

3  O b j e c t i v e s

4  O b j e c t i v e s

0 2 0 0 4 0 0 6 0 0 8 0 0
S P  V a l u e

 C d I
 E d I
 E d N

(a) AF value

7 5 5 . 2 7 2 2 1

5 3 3 . 3 8 9 0 5

4 2 5 . 2 4 9 1 9

7 6 0 . 3 0 7 3 1

5 5 4 . 1 0 4 6 4

3 6 4 . 6 3 0 4 6

5 1 8 . 0 5 0 1 4

6 2 9 . 4 6 4 8 5

4 1 4 . 2 2 0 1 3

7 2 8 . 5 6 6 7 5

4 9 0 . 5 5 2 6 6

3 4 9 . 9 0 6 4 3

6 6 1 . 7 4 7 5 9

4 2 2 . 8 9 2 5

2 9 8 . 3 4 3 4 3

5 8 2 . 0 6 4 3

5 5 5 . 2 8 2 0 6

3 7 5 . 8 7 1 8 7

2  O b j e c t i v e s

3  O b j e c t i v e s

4  O b j e c t i v e s

0 2 0 0 4 0 0 6 0 0 8 0 0
A F  V a l u e

 C d I
 E d I
 E d N

2  O b j e c t i v e s

3  O b j e c t i v e s

4  O b j e c t i v e s

0 2 0 0 4 0 0 6 0 0 8 0 0
S P  V a l u e

 C d I
 E d I
 E d N

(b) SP value

Figure 6. AF and SP values of 30-node network under different convergence indicators.

Figures 5–7 demonstrate that the solution sets generated by the MC-ObOEA algorithm
exhibited favorable AF and SP values across all convergence indicators. This suggests that
the solution sets are both extensive and uniformly distributed, making all three indicators
effective for solving Pareto front optimization problems. Further analysis shows that for
two optimization objectives, the AF and SP values were relatively larger across all network
scales and convergence indicators, likely due to the smaller number of frontier solutions
leading to a more sparse distribution among individuals. As the number of optimization
objectives increased to three and four, the number of frontier solutions rose, resulting in
decreased AF and SP values and, consequently, a more extensive and uniform distribution
of the solution sets. For example, with four optimization objectives and a 15-node network,
the EdN indicator yielded the smallest AF and SP values, slightly outperforming the CdI in-
dicator. However, the difference between EdN and CdI was minimal—only 0.83—whereas
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the difference between the EdI indicator and both AF and SP was significantly larger at 29.
For the 30-node and 50-node networks, the EdI indicator produced the smallest AF and
SP values, indicating higher-quality solution sets, with only minor differences between
the CdI and EdN indicators. In short, the MC-ObOEA algorithm performed effectively
across all three convergence indicators, demonstrating robust results in optimizing solution
set quality.
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Figure 7. AF and SP values of 50-node network under different convergence indicators.

The solution set coverage indicator (C_metric) assesses the dominance relationship
between two solution sets, as mathematically defined in Equation (37). Table 7 presents the
coverage rates for the solution sets obtained using the CdI, EdI, and EdN indicators across
different optimization problems.

C_metric(A, B) =
{|{u ∈ B|∃v ∈ A : v dominates u}|}

|B| , (37)

where the numerator represents the number of solutions in set B that are dominated by
at least one solution from set A, while the denominator represents the total number of
solutions in set B.

Table 7. Comparison of solution sets C_metric under different convergence indicators.

Optimization Problem CdI EdI EdI EdN CdI EdN

15-2 0.0125 0.1250 0.1429 0.1250 0.1429 0.1250
15-3 0.3333 0.0345 0.0345 0.3333 0.0345 0.0345
15-4 0.0345 0.0345 0.0333 0.0345 0.0333 0.0345
30-2 0.0769 0.0769 0.0769 0.0769 0.0769 0.0769
30-3 0.0417 0.0345 0.0345 0.0417 0.0345 0.0345
30-4 0.0345 0.0385 0.0385 0.0345 0.0385 0.0385
50-2 0.2000 0.2000 0.1111 0.2000 0.1111 0.2000
50-3 0.3230 0.0400 0.0370 0.0323 0.0370 0.0400
50-4 0.0417 0.0278 0.0000 0.0417 0.0000 0.0278

Note: The “Optimization Problem” column denotes the format “number of nodes in the network—number of
optimization objectives”. For instance, a problem labeled as 15-2 indicates an optimization problem involving a
network with 15 nodes and 2 objectives.

The data in Table 7 clearly shows that the solution sets derived from the CdI and
EdI indicators exhibited minimal overlap across all optimization problems. A comparison
between the EdI and EdN indicators indicates that EdN only outperformed EdI in the
50-node, 4-objective optimization problem. Similarly, when comparing CdI and EdN, EdN
only surpassed CdI in the same 50-node, 4-objective scenario. Overall, Table 7 highlights
the effectiveness of all three convergence indicators in solving this test problem.

4.3. Impact of Distribution Indicators on the Performance of MC-ObOEA

We utilized distribution indicators based on cosine similarity (Cs) and Euclidean
distance (Ed), running the algorithm 20 times to address optimization problems with two,
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three, and four objectives across 15-node, 30-node, and 50-node networks. Table 8 provides
the mean values of the AF, SP, and C_metric indicators for the solution sets obtained
through different methods. Figure 8 illustrates the variation in AF and SP values of the
solution sets across evolutionary generations for the 15-node network.

Table 8. Comparison of solution sets AF, SP, and C_metric under different methods.

Optimization AF SP C_metric

Problem Cs Ed Cs Ed Cs Ed

15-2 1272.79 1305.11 1266.09 1346.38 0.1670 0.1250
15-3 397.49 413.82 362.42 381.76 0.0340 0.0330
15-4 394.80 461.91 401.38 423.56 0.0303 0.0345
30-2 822.69 941.07 809.31 935.13 0.0769 0.0769
30-3 346.42 698.58 282.68 624.86 0.0476 0.0417
30-4 429.68 668.30 379.47 637.12 0.0333 0.0345
50-2 760.31 793.15 661.75 681.66 0.1250 0.2000
50-3 554.10 819.72 489.89 718.31 0.0476 0.0323
50-4 364.63 649.91 298.34 508.81 0.0556 0.0417

From Table 8 and Figure 8, it is evident that the Cs-based method consistently produces
smaller values AF and SP compared to the Ed-based method in the nine optimization
problems. Although there was no significant difference in the values of C_metric between
the two methods, the overall results suggest that the algorithm utilizing cosine similarity
offers superior performance in terms of distribution metrics. Further analysis shows that as
the number of objectives increased, the Cs method outperformed the Ed method in both
the breadth and uniformity of the solution set distribution. For example, the AF values for
the Cs method were lower than those for the Ed method, with differences of 32.32, 16.33,
67.11; 118.38, 352.16, 238.62; and 32.84, 265.62, 285.28, respectively. The SP values followed
a similar trend. As illustrated in Figure 8, the Cs-based method reduced the AF and SP
values more quickly in the early iterations and stabilized sooner. In conclusion, the Cs
distribution metrics provide more desirable performance for frontier solution sets than the
Euclidean distance-based approach in this test problem.
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Figure 8. Impact of iteration numbers on AF and SP values.

To more intuitively demonstrate the effectiveness of using the Cs method in the
algorithm, we applied both methods to optimize the objectives for a 15-node network
with four objectives, which are visualized using a parallel coordinate system. Figure 9
shows the solution sets obtained from a single run of the MC-ObOEA algorithm under
each method, where each curve represents a different solution, and the points along the
curves correspond to the objective values. To standardize the four objective values within
the same coordinate system, data processing was performed on the objective values of each
solution, with the original values of Objectives 1 to 4 scaled by factors of 6 × 104, 1 × 104,
1 × 103, and 1, respectively. From Figure 9, it can be observed that the objective value
distribution for the solution set obtained using the Cs method was more uniform, whereas
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the Ed method yielded a higher number of similar solutions, indicated by the overlapping
curves. This shows that the Cs method more effectively differentiates similar solutions,
thus improving the overall quality of the solution set.
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Figure 9. Solution distributions of Cs and Ed values with 15 nodes instance.

4.4. Algorithm Effectiveness Analysis

Based on the 15-node network established in this study and the specified algorithm
parameters, Figure 10 illustrates the iterative evolution of the MC-ObOEA high-dimensional
multiobjective algorithm. It depicts the average value of each objective for all individuals
in the population across generations during the iteration process. As shown in Figure 10,
the algorithm consistently converged toward minimizing individual objective values,
confirming the correctness of the algorithm’s design.
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Figure 10. Impact of iteration numbers on objective function values of 15-node network.

Figure 11 shows the distribution of the objective values for a set of Pareto frontier
solutions obtained by running the algorithm. The four box plots, from left to right, repre-
sent the total transportation time (in minutes), the total transportation cost (in CNY), the
carbon emission cost (in CNY), and the rate of cargo loss. As depicted, the values of all
four objective functions stabilized after a certain number of iterations, demonstrating the
algorithm’s convergence and initially validating the effectiveness of its solution approach.



Mathematics 2024, 12, 3559 18 of 27
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Figure 11. Distributions of objective function values for the Pareto frontier solutions (15 nodes).

The algorithm was executed 20 times for each of the three different network scales,
resulting in 20 sets of Pareto frontier solutions. Table 9 presents the average minimum
values and the overall mean values for each objective in these sets of solutions. For example,
in the 15-node network, the average minimum values for total transportation time (Obj.1),
total transportation cost (Obj.2), carbon emission cost (Obj.3), and cargo loss rate (Obj.4)
are 6721.7, 5184.4, 301.5, and 0.21, respectively, with corresponding mean values of 9637.52,
5724.16, 397.53, and 0.28. The standard deviation, which reflects the variability in the
minimum values of these objective functions across runs, is 246.49, 72.13, 2.21, and 0.0072.
This indicates that the algorithm consistently achieves stable optimization performance
across networks of varying scales.

Table 9. Pareto frontier solutions for different network scales.

Network Scale Stats Obj.1 Obj.2 Obj.3 Obj.4

15-node
Min 6721.7 5184.4 301.5 0.21

Mean 9637.52 5724.16 397.53 0.28
Std 246.49 72.13 2.21 0.0072

30-node
Min 9633.35 7158.5 413.6 0.28

Mean 14,483.72 7835.96 615.73 0.38
Std 98.05 60.21 2.01 0.0024

50-node
Min 13,336 9694.5 609.5 0.29

Mean 18,497.79 10,359.2 770.52 0.39
Std 556.16 150.37 23.62 0.0068

To further validate the effectiveness of the proposed algorithm, the MC-ObOEA
algorithm was compared with the RPEA [28] and NSGA-II [29] algorithms. Table 10
presents the average number of frontier solutions (AN), the average distribution (AF), and
the values of the uniformity indicator (SP) obtained by the different algorithms in nine
optimization problems after 20 runs. The paired samples t-test analysis allows us to assess
the degree of difference between the data by examining the size of the p-value within the
confidence interval. If the p-value is less than 0.05, it indicates a significant difference;
otherwise, no significant difference is present. Table 11 presents the results of the paired
samples t-test for different algorithms, which were calculated using SPSS based on the data
from Table 10. Additionally, Table 12 lists the mutual coverage rates of the solution sets
produced by each algorithm. From Table 12, it is clear that the mutual dominance between
the solution sets of the three algorithms was rare, indicating no significant differences in
this regard. Although Table 11 indicates that the AF and SP values of MC-ObOEA for
the five optimization problems are not significantly different from those obtained with
PREA and NSGA-II, the results in Table 10 show that MC-ObOEA achieved the lowest AF
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and SP values in five out of the nine optimization problems, demonstrating its superior
overall performance. Additionally, the AN value of the MC-ObOEA was tested against the
other two algorithms, yielding a p-value of 0.002, which is less than 0.05. This indicates a
statistically significant difference, highlighting MC-ObOEA’s effectiveness in enhancing the
diversity of the solution set. The AN values for MC-ObOEA ranged from 6.3 to 13.4, with
a more gradual increase as the number of optimization objectives increased. In contrast,
the NSGA-II algorithm exhibited a sharp rise in the number of frontier solutions as both
network size and the number of optimization objectives increase, indicating a degree of
diversity in its solution sets. However, as shown in Table 12, the solution sets obtained by
the NSGA-II algorithm did not exhibit a significant dominance over those produced by
the other two algorithms, suggesting that the NSGA-II algorithm generates a substantial
number of similar solutions.

Using the example of the 30-node network with three optimization problems, when
the number of objectives is two, the differences in AN values between the MC-ObOEA algo-
rithm and the RPEA and NSGA-II algorithms are −0.4 and −1.05, respectively, indicating
no significant variation. However, the differences in AF values are 188.05 and 11.65, while
the differences in SP values are 243.9 and 21.298, suggesting that the RPEA and NSGA-II
algorithms achieved higher solution set quality and better performance in this scenario.
When the number of objectives increased to three and four, significant differences emerged.
The AN value differences between MC-ObOEA and the other two algorithms became −2.7,
−4.95 (for three objectives) and −2.6, −6.1 (for four objectives). The AF value differences are
−130.53, −257.52 (for three objectives) and −113.24, −138.84 (for four objectives). Similarly,
the SP value differences were −136.57, −285.12 (for three objectives) and −2.7, −147.51 (for
four objectives), all of which highlight substantial discrepancies. These results indicate
that the MC-ObOEA algorithm outperformed both the RPEA and NSGA-II algorithms in
handling high-dimensional multiobjective optimization problems.

Table 10. Quality comparison of solution sets obtained by different algorithms with different evalua-
tion indicators.

Evaluation Indicators AN AF SP

Optimization Problem MC-ObOEA RPEA NSGA-II MC-ObOEA RPEA NSGA-II MC-ObOEA RPEA NSGA-II

15-2 6.3 7.6 6.4 1272.79 1072.72 1254.86 1266.09 1006.77 1250.99
15-3 7.6 11.3 14.25 397.49 418.41 473.14 362.42 398.51 438.57
15-4 9.3 14.4 17.8 393.8 428.69 455.13 405.38 393.26 419.62
30-2 8.1 8.5 9.15 826.69 638.64 815.04 809.31 565.41 788.012
30-3 11.6 14.3 16.55 346.42 476.95 603.94 282.68 419.25 567.8
30-4 12.9 15.5 19 427.68 540.92 566.52 379.47 382.17 526.98
50-2 8.7 9 10.5 754.3 722.86 742.28 661.74 693.01 699.97
50-3 11.6 14.5 19.7 554.1 534.46 524.25 489.89 496.1 490.45
50-4 13.4 16.3 23.4 364.63 410.13 493.6 298.34 433.19 415.18

Table 11. Result of paired sample t-test for solution sets obtained by different algorithms.

Evaluation Indicator Algorithm t-Value p-Value α = 0.05

AN
MC-ObOEA-PREA 4.710 0.002 yes

MC-ObOEA-NSGA-II 4.453 0.002 yes
RPEA-NSGA-II 3.459 0.009 yes

AF
MC-ObOEA-PREA 0.268 0.795 no

MC-ObOEA-NSGA-II 2.042 0.075 no
RPEA-NSGA-II 3.226 0.012 yes

SP
MC-ObOEA-PREA 0.392 0.706 no

MC-ObOEA-NSGA-II 2.154 0.063 no
RPEA-NSGA-II 2.666 0.029 yes
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Table 12. Quality comparison of solution sets obtained by different algorithms.

Optimization Problem MC-ObOEA RPEA MC-ObOEA NSGA-II RPEA NSGA-II

15-2 0.1429 0.1111 0.1250 0.1111 0.1670 0.1000
15-3 0.0357 0.0357 0.0313 0.0357 0.0370 0.0300
15-4 0.0357 0.0294 0.0323 0.0000 0.0370 0.0290
30-2 0.0769 0.0625 0.0769 0.0667 0.1000 0.0380
30-3 0.0400 0.0385 0.0500 0.0385 0.0500 0.0300
30-4 0.0345 0.0370 0.0345 0.0333 0.0430 0.0320
50-2 0.0270 0.0286 0.1667 0.1250 0.1670 0.1100
50-3 0.0345 0.0370 0.0345 0.0333 0.0450 0.0260
50-4 0.0323 0.0000 0.0417 0.0333 0.0360 0.0230

4.5. Effects of Parameter Variations on Carbon Emissions and Cargo Loss

The carbon tax rate is a key factor in determining carbon emission costs, as fluctuations
in the tax rate can significantly affect the algorithm’s optimization process. To assess this
impact, a 15-node network was used as an example, with four carbon tax rates tested:
10 CNY/t, 25 CNY/t, 40 CNY/t, and 60 CNY/t. The algorithm was run for each tax rate,
and transportation plans with identical routes and modes were selected from the Pareto
solution set. These were then compared to analyze the changes in carbon emission costs
under different tax rates. The results are presented in Table 13.

Table 13. Transport options under different carbon tax rates.

Routes and Modes
Carbon Tax

Rate
Carbon

Emissions Cost Rate of Change Routes and Modes
Carbon Tax

Rate
Carbon

Emissions Cost Rate of Change
(CNY/t) (CNY) (CNY/t) (CNY)

Scheme 1:
o(H)C(H)

D(H)K(H)d

10 375 /
Scheme 2:
o(W)C(R)

D(R)K(R)d

10 274 /
25 520 0.37 25 300 0.095
40 660 0.27 40 326 0.087
60 850 0.29 60 360 0.104

Scheme 3:
o(H)A(H)

E(R)M(R)d

10 326 /
Scheme 4:
o(H)A(R)

E(R)M(R)d

10 300 /
25 401 0.23 25 357 0.19
40 476 0.19 40 405 0.13
60 578 0.21 60 469 0.16

Scheme 5:
o(R)B(H)

D(H)K(R)d

10 340 /
Scheme 6:
o(R)B(W)

D(R)K(R)d

10 272 /
25 422 0.24 25 298 0.095
40 504 0.19 40 323 0.084
60 611 0.21 60 357 0.11

Scheme 7:
o(H)B(H)

G(H)L(R)d

10 352 /
Scheme 8:
o(R)B(R)

G(H)L(R)d

10 310 /
25 455 0.29 25 358 0.15
40 558 0.23 40 407 0.14
60 695 0.25 60 472 0.16

Table 13 presents eight transportation schemes, including all-road transportation,
rail–water intermodal transportation, and various mixed modes. Comparing schemes 1
and 2, it is evident that the rate of increase in carbon emission costs for scheme 1 was
consistently higher than for scheme 2 as the carbon tax rate rose. For instance, when the
carbon tax rate increased from 10 CNY/t to 60 CNY/t, the carbon emission cost for scheme
1 increased by 475 CNY, while for scheme 2, the increase was only 86 CNY. This highlights
the importance of reducing long-distance road transportation to reduce carbon emissions
and move towards greener modes such as rail and waterway transport. A similar trend
was seen when comparing schemes 7 and 8. Scheme 7, which relies more heavily on road
transportation, showed greater fluctuations in carbon emission costs compared to scheme
8. However, comparing schemes 2 and 6, both of which utilize rail–water intermodal
transportation, reveals that carbon emission costs were less sensitive to changes in the
carbon tax rate, suggesting that such schemes are more resilient to tax fluctuations. These
comparisons demonstrate that increasing the carbon tax rate leads to higher carbon emission
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costs across transportation schemes. Consequently, freight companies are incentivized to
favor cleaner, greener modes of transportation, such as railways and waterways.

The cold chain and fresh goods are highly perishable and sensitive to spoilage, requir-
ing strict control over the transport environment, particularly with respect to temperature
fluctuations. The maintenance of stable temperatures during transport is vital for minimiz-
ing product loss. To better understand the risks of spoilage, it is essential to analyze the loss
rates of various goods under different temperature conditions. Different types of products
have varying activation energies, which represent the minimum energy required to initiate
a chemical reaction, typically leading to spoilage. This activation energy, denoted Eα and
measured in kJ/mol, varies between products. Goods with lower activation energies are
more prone to spoilage and degradation. Table 14 provides a list of common items along
with their respective activation energies.

Table 14. Product activation energy table.

Product Activation Energy
(kJ/mol) Product Activation Energy

(kJ/mol) Product Activation Energy
(kJ/mol)

Apricot 30.62 Date 54.51 Tomato 32.94
Sliced potato 39.49 Bean 27.71 Purple grape 67.29

Sliced pumpkin 78.93 Garlic 23.48 Sliced carrot 25.93

Using the 15-node network as an example, the activation energy (Eα) was set at
34 kJ/mol, the temperature fluctuation (∆F) during transitions was set at 1 ◦C, the gas
constant (R) was 8.314, and the maximum reaction rate (Kmax) was 5 × 104. All other
algorithmic parameters remained unchanged. Four transportation schemes were selected
from the Pareto frontier solutions.

Scheme 1: o(H)B(H)G(H)L(R)d, with a total transportation time of 7126 min, a transporta-
tion cost of 5857 CNY, a carbon cost of 490 CNY, and a cargo depletion rate of 0.220.
Scheme 2: o(R)A(H)E(R)M(R)d, with a total transportation time of 8720 min, a trans-
portation cost of 6033 CNY, a carbon cost of 375 CNY, and a cargo depletion rate of 0.263.
Scheme 3: o(W)C(R)D(H)K(W)d, with a total transportation time of 15,565 min, a trans-
portation cost of 5046 CNY, a carbon cost of 388 CNY, and a cargo depletion rate of 0.426.
Scheme 4: o(R)B(W)D(R)K(R)d, with a total transportation time of 13,002 min, a trans-
portation cost of 5484 CNY, a carbon cost of 306 CNY, and a cargo loss rate of 0.368.

The temperature variation (∆F) ranges from 0 to 2 ◦C, while the activation energy (Eα)
varies between 30 and 48 kJ/mol. Table 15 illustrates the cargo loss rate for transport Scheme
1 across different activation energy and temperature fluctuation levels. Figure 12a–d
show the trends of variation in the cargo loss rates for the first to fourth transport schemes,
respectively. In Figure 12, the activation energy (Eα) axis is incremented by 3 kJ/mol, while
the temperature fluctuation axis (∆F) is increased by 0.2 ◦C.

Table 15. Cargo loss changes with activation energy and temperature difference for Scheme 1.

∆F (◦C)

Eα
30
kJ/mol

33
kJ/mol

36
kJ/mol

39
kJ/mol

42
kJ/mol

45
kJ/mol

48
kJ/mol

0.2 0.72071 0.31413 0.08855 0.02513 0.00779 0.00212 0.00058
0.4 0.72522 0.31459 0.08917 0.02602 0.00775 0.00777 0.00058
0.6 0.73096 0.31562 0.09312 0.02624 0.00779 0.00776 0.00058
0.8 0.7355 0.31685 0.09641 0.02709 0.00779 0.00781 0.00058
1 0.7409 0.31727 0.09716 0.02816 0.00782 0.00777 0.00059

1.2 0.74419 0.31738 0.09942 0.02874 0.00781 0.00782 0.00059
1.4 0.75269 0.31828 0.09978 0.02884 0.00782 0.0078 0.00058
1.6 0.75361 0.31682 0.09925 0.02895 0.0078 0.0078 0.00059
1.8 0.75399 0.31752 0.09941 0.02899 0.00782 0.00787 0.00058
2 0.75436 0.31855 0.10007 0.029 0.00785 0.00777 0.00058
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Figure 12 reveals a general trend in which the cargo loss rate decreases as the activation
energy increases, but increases with increased temperature fluctuations. As shown in
Figure 12a and Table 15, under the same temperature conditions, the cargo loss rate was
particularly sensitive to changes in activation energy. For example, when the activation
energy reached 48 kJ/mol, the cargo loss rate dropped to 0.00058. Conversely, for the same
cargo, an increase in temperature difference resulted in a higher loss rate, especially for
perishable goods with lower activation energy. The impact of temperature fluctuations
was more pronounced on goods with lower activation energy, underscoring the critical
importance of controlling temperature during transport. For goods with low activation
energy, such as fresh or perishable items with Eα equal to 30 kJ/mol, the cargo loss rate
remained elevated across the four transport schemes, particularly in Schemes 3 and 4. This
highlights the need for the development of faster transport modes, such as air transport, to
reduce the transportation time for sensitive goods in the future.
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Figure 12. Cargo loss changes under different transport schemes.

5. A Case Study

Assume a standard container shipment is to be transported from Chongqing, China,
to Duisburg, Germany. The carrier must develop a feasible transportation plan that meets
the requirements of the carrier while ensuring timely and high-quality delivery to the
consignee. To achieve this, a transportation network is constructed with Chongqing as the
starting point and Duisburg as the destination. The network incorporates various modes
of transport, including road, rail, and water, and spans 24 city nodes, such as Chongqing,
Xinjiang Alashankou, Shanghai, and Duisburg, as illustrated in Figure 13.

In Figure 13, nodes 1 to 24 represent cities or countries along the route: Chongqing, Xin-
jiang Alashankou, Shanghai, Ningbo-Zhoushan, Guangzhou, Beibu Gulf (Guangxi), Hong
Kong, the Philippines, Singapore, Malaysia, Vietnam, Kazakhstan, Turkmenistan, Russia,
Iran, India, Sri Lanka, Djibouti, Egypt, Belarus, Poland, France, Italy, and Duisburg, Ger-
many. The specific port cities are determined by the actual logistics conditions. The trans-
port modes are indicated as follows: H for the road, R for rail, and W for water. Lines con-
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necting the nodes indicate their accessibility. The transportation times between nodes follow
a normal distribution, with mean and standard deviation values presented in Table 16.
The schedule of transport modes between nodes is homogeneous, and transshipment and
reloading data remain unchanged at each node. The algorithm and model parameters are
applied as previously described, with the solutions of the MC-ObOEA algorithm for this
multimodal transportation network provided in Table 17.
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Figure 13. Multimodal cold chain transportation network from Chongqing to Duisburg.

Table 17 presents six transport schemes included in the set of Pareto frontier solutions.
Scheme 1 follows the Chongqing–Xinjiang–Europe route, which utilizes rail transport
exclusively. It starts at Chongqing Tuanjiecun Rail Container Center Station and passes
through Xinjiang Alashankou, Kazakhstan, Russia, Belarus, and Poland before reaching
Duisburg, Germany. Schemes 2 and 4 share similar main nodes. Both start at the Chongqing
Tuanjiecun Rail Container Center Station and use rail transport through the New West-
ern Land-Sea Corridor to the Beibu Gulf Port in Nanning, Guangxi, from where they are
shipped by water to Singapore, India, Djibouti, Egypt, and Italy. In Scheme 2, the jour-
ney continues by rail from Italy to Duisburg, while in Scheme 4, the remaining portion
is completed by water. In Scheme 3, the domestic segment is transported by road from
Chongqing to Ningbo-Zhoushan Port, followed by water for the international segment,
with the final leg from Italy to Duisburg completed by rail. Scheme 5 employs the newly
opened Yuyong channel of the river railway (since 2019) to transport cargo domestically to
Ningbo Zhoushan Port, and the international section is completed primarily by waterways.
Finally, Scheme 6 uses Chongqing’s traditional route to the sea, starting from Chongqing
Guoyuan Port along the Yangtze River Golden Waterway to Shanghai Yangshan Interna-
tional Container Port. The international leg of this route then passes through Singapore,
Djibouti, Egypt, and Italy before reaching Duisburg. Figure 14 illustrates the routes for
each transport scheme.

Further analysis reveals that the primary advantage of Transport Scheme 1 is its rela-
tively short transportation time of approximately 11 days, which minimizes cargo spoilage.
Additionally, rail transport is an environmentally friendly transport mode, resulting in
lower carbon emissions and reduced carbon costs. However, Scheme 1 has the highest
total transportation cost compared to the other options. The cost of the Yuxin-Europe
route could be optimized by streamlining customs clearance and minimizing the frequent
transitions and tracking changes that occur during transport. Enhancing the efficiency
of customs procedures and reducing intermediate transition costs offer potential areas
for improvement.
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Table 16. Multimodal transportation network data.

1–2;∼;[67,8]11,055;∼; 9–18;∼;∼;[342,32]14,179;

1–3;[96,5]8678;∼;[240,24]2972; 10–9;∼;∼;[28,8]628;

1–4;[80,5]6720;[62,6]4520;∼ 10–16;∼;∼;[97,8]4097;

1–5;[89,7]8640;[60,7]5940;∼; 10–17;∼;∼;[76,8]3013;

1–6;∼;[14,3]4150;∼; 10–18;∼;∼;[196,18]9606;

2–12;∼;[82,5]10,276;∼; 11–9;∼;∼;[146,12]2246;

3–7;∼;∼;[84,24]3894; 11–10;∼;∼;[185,17]2585;

3–8;∼;∼;[106,8]2880; 12–13;∼;[68,4]2680;∼;

3–9;∼;∼;[192,24]5723; 12–14;∼;[32,2]2981;∼;

4–7;∼;∼;[37,8]1550; 13–15;∼;[32,2]2369;∼;

4–9;∼;∼;[127,21]4050; 14–20;∼;[12,4]3390;∼;

5–7;∼;∼;[96,8]2149; 15–18;∼;∼;[12,4]3689;

5–9;∼;∼;[125,14]5800; 16–18;∼;∼;[156,21]5568;

6–7;∼;∼;[26,8]3030; 17–18;∼;∼;[196,18]6196;

6–9;∼;∼;[126,18]6260; 18–19;∼;∼;[96,8]3109;

6–11;∼;∼;[196,22]6800; 19–22;∼;∼;[146,19]4146;

7–9;∼;∼;[129,8]3889; 19–23;∼;∼;[96,8]3533;

8–9;∼;∼;[97,18]3534; 20–21;∼;[12,2]1600;∼;

8–10;∼;∼;[123,26]3567; 21–24;∼;[42,6]6342;∼;

9–16;∼;∼;[172,12]4572; 22–24;[26,6]3916;[32,3]2890;[52,7]1820;

9–17;∼;∼;[136,16]3581; 23–24;[21,5]4211;[35,3]3501;[64,17]2671;

Table 17. Pareto frontier solution set obtained by the MC-ObOEA algorithm.

Scheme No. Route and Mode Obj.1 Obj.2 Obj.3 Obj.4

1 1(R)2(R)12(R)14(R)20(R)21(R)24 16,345 39,560 498 0.215
2 1(R)6(W)9(W)16(W)18(W)19(W)23(R)24 45,277 37,344 697 0.496
3 1(H)4(W)9(W)16(W)18(W)19(W)23(H)24 48,270 38,594 957 0.519
4 1(R)6(W)9(W)16(W)18(W)19(W)23(W)24 49,315 36,525 716 0.526
5 1(R)4(W)9(W)17(W)18(W)19(W)23(W)24 52,634 34,504 730 0.549
6 1(W)3(W)9(W)18(W)19(W)23(R)24 63,297 38,813 585 0.612

Transport Scheme 5 has the lowest overall transportation cost. This is largely due
to the use of the Chongqing-Ningbo high-speed rail corridor, which reduces domestic
transport distance. In addition, preferential policies promoting rail-water intermodal
transport help to lower costs. The international leg, which relies entirely on water transport,
contributes further to this cost efficiency. In contrast, Transport Scheme 3 incorporates
road transport, leading to the highest carbon emissions cost of 957 CNY, highlighting its
significant environmental impact.

Transport Schemes 2 and 4 show intermediate performance in all four objective func-
tions. Scheme 2 uses rail transport from Italy to Duisburg, while Scheme 4 opts for water
transport for the same segment. Although Scheme 2 offers shorter transit times, it incurs
higher transportation costs, suggesting that water transport is more cost-effective, whereas
rail transport provides greater time efficiency.

Transport Scheme 6, though characterized by relatively low carbon emissions, does not
perform notably well in other areas. Its domestic segment involves water transport, result-
ing in longer transit times and higher cargo loss rates. Additionally, its total transportation
cost remains relatively high, making it less favorable for perishable goods. However, for
bulk goods that are not sensitive to time, Scheme 6 remains a viable option due to its
established and reliable logistics operations.
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Figure 14. Map of transportation network from Chongqing to Duisburg.

6. Conclusions

This study developed a high-dimensional, multiobjective route optimization model
for multimodal cold chain transportation, addressing key objectives such as minimizing
total transportation costs, transit time, carbon emissions, and food loss rates. The model
integrates a comprehensive range of factors, including en-route costs, trans-shipment and
storage costs, and uncertainties in transportation time, using Monte Carlo simulation to
enhance robustness. A carbon pricing function quantifies carbon emissions, while a Weibull
function models the loss rate of perishable goods as a function of temperature and time,
reflecting the real-world complexities of cold chain logistics.

To solve this intricate optimization problem, we proposed the MC-ObOEA, a multi-
objective evolutionary algorithm that combines Monte Carlo simulation with a one-by-one
selection strategy. The MC-ObOEA effectively balances convergence and diversity indica-
tors, producing high-quality Pareto frontier solutions. Evaluation using three convergence
metrics (CdI, EdI, EdN) demonstrates the stability and efficiency of the algorithm to solve
multidimensional high-dimensional optimization problems. In particular, the Cs method
outperformed the Ed method in terms of solution distribution and uniformity, underscoring
the algorithm’s capability to generate diverse and well-distributed solutions across the
Pareto frontier. The MC-ObOEA consistently exhibited strong optimization performance,
particularly in managing the complexities of high-dimensional, multi-objective problems.
The parameter impact analysis further highlights the sensitivity of carbon emission costs
to carbon tax rates and the critical role temperature variation plays in the loss rates of
perishable goods, especially those with low activation energy. These insights underscore
the importance of precise temperature control in cold chain logistics to minimize food
spoilage and improve transportation efficiency.

This study has several limitations. First, the parameter values used were adopted
directly from previous literature without a detailed analysis of their selection process or
an examination of how different parameter configurations might impact algorithm per-
formance and the solution set. Future research could include sensitivity analysis, stress
testing, and robustness analysis to strengthen the justification for these parameter choices.
Additionally, comparative analysis with more advanced algorithms is limited, suggest-
ing that future work could explore integrating and comparing our approach with other
cutting-edge algorithms to further enhance performance. Although this study focuses on
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optimizing single-source to single-destination multimodal transportation routes, future
research should expand the model to accommodate multisource to multidestination scenar-
ios. This extension offers promising avenues for further exploration in the optimization of
cold chain logistics, with the potential to improve efficiency and sustainability in global
food distribution networks.
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