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Abstract: This study presents a detailed investigation of the temporal evolution of the Nusselt number
(Nu) in uniformly accelerated and decelerated turbulent pipe flows under a constant heat flux using
direct numerical simulations. The influence of different acceleration and deceleration rates on heat
transfer is systematically studied, addressing a gap in the previous research. The simulations confirm
several key experimental findings, including the presence of three distinct phases in the Nusselt
number temporal response—delay, recovery, and quasi-steady phases—as well as the characteristics
of thermal structures in unsteady pipe flow. In accelerated flows, the delay in the turbulence response
to changes in velocity results in reduced heat transfer, with average Nu values up to 48% lower
than those for steady-flow conditions at the same mean Reynolds number. Conversely, decelerated
flows exhibit enhanced heat transfer, with average Nu exceeding steady values by up to 42% due to
the onset of secondary instabilities that amplify turbulence. To characterize the Nu response across
the full range of acceleration and deceleration rates, a new model based on a hyperbolic tangent
function is proposed, which provides a more accurate description of the heat transfer response than
previous models. The results suggest the potential to design unsteady periodic cycles, combining
slow acceleration and rapid deceleration, to enhance heat transfer compared to steady flows.

Keywords: unsteady flow; Nusselt number; turbulent pipe flow; heat transfer; direct numerical
simulation; flow acceleration; flow deceleration

MSC: 76-10

1. Introduction

Understanding the heat transfer characteristics of unsteady turbulent pipe flows is crucial
for optimizing a wide range of industrial and technological processes. These include exhaust
systems in internal combustion engines; heating, ventilation, and air conditioning (HVAC)
systems; aerospace propulsion; chemical reactors; and biomedical technology applications. In
recent decades, there has been growing interest in the potential of unsteady periodic pipe flows
to enhance convective heat transfer compared to steady flows at the same Reynolds numbers.
In particular, pipe flow driven by pulsations has attracted significant attention. Numerous
experimental studies (Dec et al. [1], Habib et al. [2], Barker and Ffowcs Williams [3], Elshafei
et al. [4], Patel and Attal [5], Simonetti et al. [6], Brahma and Singh [7]) and computational fluid
dynamics (CFD) analyses (Wang and Zhang [8], Elshafei et al. [9], Nishandar et al. [10]) have
investigated how pulsation parameters, such as amplitude, frequency, and mean Reynolds
number, affect heat transfer. Despite extensive research, the effects of these parameters
remain unclear, and contradictory findings continue to challenge the development of reliable
predictive models.

Investigations have shown that pulsation can increase, decrease, or have no effect on
heat transfer relative to steady conditions, depending on the pulsation control parameters. It
is generally accepted that enhancing heat transfer requires the pulsation amplitude to exceed
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the mean velocity, leading to flow reversal (Dec et al. [1], Patel and Attal [5], Simonetti
et al. [6], Brahma and Singh [7], Wang and Zhang [8]). However, it is still uncertain whether
this condition alone is sufficient or if additional factors play a role in determining the heat
transfer enhancement. When the pulsation amplitude is below the mean velocity, researchers
have observed slight reductions (Habib et al. [2], Elshafei et al. [4,9]) in heat transfer, as well
as cases where heat transfer remains similar to steady-flow conditions (Barker and Ffowcs
Williams [3], Elshafei et al. [4,9], Nishandar et al. [10]).

Unlike amplitude, there is no consensus on how pulsation frequency affects heat
transfer. Some studies indicate that heat transfer increases with higher pulsation frequen-
cies (Dec et al. [1], Patel and Attal [5]), while others report that significant changes only
occur at optimal or resonant frequencies (Habib et al. [2], Simonetti et al. [6], Wang and
Zhang [8]). In contrast, numerous studies have found that varying the pulsation frequency
has little to no significant effect (Barker and Ffowcs Williams [3], Elshafei et al. [4], Brahma
and Singh [7], Elshafei et al. [9], Nishandar et al. [10]). There is currently no theory that
explains the differing results reported in these experiments and simulations

Similarly, the influence of the mean Reynolds number on heat transfer remains
contentious. While most studies have not detected significant effects from variations in
the Reynolds number (Barker and Ffowcs Williams [3], Elshafei et al. [4], Brahma and
Singh [7], Elshafei et al. [9], Nishandar et al. [10]), some have observed that heat transfer
enhancement due to pulsation increases with the mean Reynolds number up to a threshold,
beyond which further increases yield no significant changes (Patel and Attal [5], Wang
and Zhang [8]).

While the effects of pulsatile flows on heat transfer have been extensively studied, much
less attention has been given to non-periodic unsteady flows, such as uniformly accelerated
and decelerated flows. Understanding the heat transfer characteristics of these flows is
important not only due to their broad industrial and civil engineering applications but also
because unsteady periodic flows are composed of alternating acceleration and deceleration
phases. Thus, investigating the heat transfer behavior during these individual phases could
provide valuable insights into unresolved questions regarding heat transfer in pulsatile flows.

To date, only the laboratory experiments conducted by Shiibara et al. [11] and Naka-
mura et al. [12] have explored the effects of acceleration or deceleration on heat transfer
in turbulent pipe flow. Using high-speed infrared thermography, these studies reported
on the temporal response of the Nusselt number and thermal structures when flow speed
changed abruptly (Shiibara et al. [11]). Based on these observations, a model was proposed
to characterize this temporal response (Nakamura et al. [12]). Their results indicated a time
delay in the heat transfer response to changes in velocity, resulting in lower heat transfer
during acceleration and higher heat transfer during deceleration compared to steady con-
ditions. However, the experimental setup did not allow control over the acceleration and
deceleration rates (denoted by the parameter α), so they were unable to explore the effects
of varying α.

To address this gap, the present work uses direct numerical simulations (DNS) to
systematically investigate the impact of α on the temporal evolution of the Nusselt number
in turbulent pipe flow under constant heat flux. DNS captures all relevant scales of motion
and avoids the approximations of turbulence models, allowing for a detailed examination
of flow structures and heat transfer mechanisms. However, due to its high computational
cost, DNS has not been previously used to study heat transfer in unsteady flows.

This study contributes to the field in two significant ways. First, the simulations offer
the first numerical verification of the experimental findings, confirming the existence of
three phases in the Nusselt number evolution—delay, recovery, and quasi-steady phases—
as well as the characteristics of the thermal structures during these phases. The results
further show that, for the parameters investigated, accelerated flows may reduce heat
transfer by up to 48% compared to the steady conditions, while decelerated flows may
increase it by up to 42%. These findings suggest that unsteady periodic flow cycles,



Mathematics 2024, 12, 3560 3 of 23

composed of alternating slow acceleration and rapid deceleration phases, could be designed
to achieve greater heat transfer efficiency compared to steady flows.

Second, it is found that the experimental model for the temporal response of the
Nusselt number is accurate only for high values of |α|. For moderate or small |α|, the model
fails to capture the response accurately. To address this limitation, a new model based on a
hyperbolic tangent function is proposed, which accurately describes the temporal response
of the Nusselt number across a broad range of α values.

2. Materials and Methods
2.1. Governing Equations and Dimensionless Parameters

The hydrodynamically and thermally developed flow of an incompressible fluid
through a straight, horizontal pipe of a constant cross-sectional area is analyzed (Figure 1).
The fluid properties, including density ρ, kinematic viscosity ν, thermal conductivity κ,
specific heat at constant pressure Cp, and thermal diffusivity λt, are assumed to be constant.
The fluid motion is described by the continuity and momentum equations in cylindrical
coordinates (r, θ, z). The mean bulk velocity vb,m of the acceleration or deceleration period
(definition is given below), the pipe diameter D, the dynamic pressure ρv2

b,m, and the
advective time scale D/vb,m are used as characteristic scales for velocity, length, pressure,
and time, respectively. These considerations lead to the following non-dimensional forms
of the momentum and continuity equations:

∂v
∂t

+ (v · ∇)v = −∇p +
1

Rem
∇2v, (1)

∇ · v = 0, (2)

where v = (vr, vθ , vz) represents the velocity field in cylindrical coordinates, t denotes time,
p is the non-dimensional pressure, and

Rem =
vb,mD

ν
, (3)

is the mean Reynolds number.

r

z
θ

Flow direction

L = 3πD

D

qw

Figure 1. Schematic of the pipe flow configuration and the coordinate system used in the simulations.
A constant and uniform heat flux per unit area, qw, is applied along the pipe surface, as indicated by
the red arrows.

Periodic boundary conditions are applied in the axial and azimuthal directions,
whereas no-slip conditions at the pipe wall and regularity conditions at the axis are imposed
in the radial direction.

This study examines flows that are uniformly accelerated or decelerated. To model this
behavior, the non-dimensional bulk velocity vb(t) is updated at each time step according to
the equation
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vb(t + δt) = vb(t) + αδt, (4)

where δt is the time step size, and α represents the non-dimensional rate of acceleration or
deceleration, defined as

α =
dvb
dt

, (5)

The updated bulk velocity is enforced using the equation

vb(t + δt) =
1
A

∫
vzdA, (6)

where A denotes the cross-sectional area of the pipe. The variation in the bulk velocity
implies that the Reynolds number continuously changes during flow acceleration or decel-
eration. The characteristic Reynolds number in these cases is calculated using the mean
bulk velocity, defined as vb,m =

vb,init+vb,end
2 , where vb,init and vb,end indicate the bulk velocity

at the beginning and end of the acceleration or deceleration phase.
The external surface of the pipe is subjected to a constant and uniform heat flux per

unit area, denoted by qw. In this analysis, the effects of gravitational buoyancy are neglected,
which allows us to treat the temperature T as a passive scalar. Viscous dissipation and
internal heat generation are also neglected. Consequently, the temporal evolution of T is
governed by the advection–diffusion equation, given in its dimensional form by

∂T
∂t

+ v · ∇T = κ∇2T. (7)

Fluid properties are evaluated at the mean bulk temperature, denoted as Tb, which is
defined as the volumetric flow rate weighted average temperature across the cross-sectional
area of the pipe [13]:

Tb =

∫
A⟨vz⟩t⟨T⟩tdA∫

A⟨vz⟩tdA
, (8)

where ⟨.⟩t denotes time averaging. An energy balance conducted over a thin section of the
pipe reveals a linear axial variation in Tb, characterized by the following rate of change:

dTb
dz

=
4qw

ρCpvb,mD
. (9)

This scenario prevents the use of periodic boundary conditions in the axial direction.
In line with previous studies [14–16], this limitation is addressed by replacing temperature
variable T with the dimensionless temperature difference ϕ = Tb(z)−T(r,θ,z,t)

Tre f
, where the

reference temperature is defined as Tre f =
qw

ρCpvb,m
. This modification eliminates the axial

temperature gradient d⟨ϕ⟩t

dz = 0, thus permitting the use of periodic boundary conditions.
The reformulated equation, expressed in non-dimensional terms using the previously

defined scales, is

∂ϕ

∂t
+ v · ∇ϕ − 4vz =

1
RemPr

∇2ϕ, (10)

where Pr is the Prandtl number, defined as

Pr =
ν

λt
, (11)

Periodic boundary conditions are used in the axial and azimuthal directions, with
regularity conditions at the pipe axis and a prescribed heat flux, often termed the isoflux
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condition [14], applied at the pipe wall. The isoflux condition is expressed in non-dimensional
form as

∂ϕ

∂r

∣∣∣∣
r=1/2

= −RemPr. (12)

An additional condition is required to ensure the uniqueness of the solution for
Equation (10) [14]. It is imposed that the volumetric flow rate weighted average of ϕ over
the entire pipe volume must be zero: ∫

V
ϕvz dV = 0. (13)

To quantify convective heat transfer in accelerated or decelerated flows, the instan-
taneous Nusselt number is employed, which measures the relative importance between
convective and conductive heat transport in the fluid:

Nu(t) =
h(t)D

κ
=

qwD
κ⟨(Tw(t, θ, z)− Tb(z)⟩θ,z , (14)

where Tw is the wall temperature, and ⟨.⟩θ,z denotes averaging over the axial and azimuthal
directions. With the non-dimensionalization carried out in this study, the instantaneous
Nusselt number is expressed as

Nu(t) = − RemPr
⟨ϕw(t, θ, z)⟩θ,z . (15)

Table 1 provides a summary of the dimensionless numbers that arise in the mathe-
matical formulation of the problem, distinguishing between the control parameters (input
parameters) and those derived from the simulation results (output parameters). For the
control parameters, the values used in this study are also presented.

Table 1. Summary of the dimensionless numbers arising in the formulation of the problem.

Dimensionless Number Symbol Equation Character Value/s

Mean Reynolds number Rem (3) Input parameter 6400
Acceleration/Deceleration

rate α (5) Input parameter 0.0015 ≤ |α| ≤ 2

Prandtl number Pr (11) Input parameter 0.7
Nusselt number Nu (14) Output parameter -

2.2. Methodology and Numerical Code

The results presented in this paper were obtained from direct numerical simulations
of the equations and boundary conditions outlined in Section 2.1. These simulations
were performed using the open-source code NSPipeFlow [17], which has been recently
extended to support non-isothermal flow simulations. The updated version of the code
has been validated against previously published data in [14,16]. This enhanced version of
the code is made publicly available in conjunction with this paper and is accessible in the
repository [18].

The spatial discretization of the flow variables is performed using eighth-order central
finite differences on a Gauss–Lobatto–Chebyshev grid in the radial direction, combined with
Fourier–Galerkin expansions in the two homogeneous directions, θ and z. The Fourier–Galerkin
expansions for the dimensionless velocity, pressure, and temperature fields are given by
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v(r, θ, z) =
L

∑
l=−L

N

∑
n=−N

v̂(r, n, l)ei(nθ+lkzz), (16)

p(r, θ, z) =
L

∑
l=−L

N

∑
n=−N

p̂(r, n, l)ei(nθ+lkzz), (17)

ϕ(r, θ, z) =
L

∑
l=−L

N

∑
n=−N

ϕ̂(r, n, l)ei(nθ+lkzz). (18)

Here, n and l represent the Fourier mode numbers in the azimuthal and axial directions,
respectively, and kz is the axial wavenumber, which defines the axial length of the computa-
tional domain as Lz = 2π/kz. The coefficients v̂(r, l, n), p̂(r, l, n), and ϕ̂(r, l, n) are complex
spectral coefficients. The values of N and L specify the spectral resolution in the θ and z
directions, respectively.

Substituting these expansions into Equations (1) and (10) yields a set of (2N+1)× (2L+1)
independent equations, each associated with a specific (n, l) pair. Solving this system enables
the determination of the spectral coefficients. The time integration of these equations is carried
out using a second-order accurate predictor–corrector scheme based on the Crank–Nicolson
method [19]. To facilitate understanding of this algorithm, it is useful to define Nv̂ = −(v̂ · ∇)v̂
y Nϕ̂ = −(v̂ · ∇)ϕ̂ + 4v̂z and to rewrite Equations (1) and (10) as

(
∂

∂t
− 1

Rem
∇2)v̂ = −∇p̂ + Nv̂, (19)

(
∂

∂t
− 1

PrRem
∇2)ϕ̂ = Nϕ̂. (20)

Additionally, a pressure Poisson equation must be included, which is obtained by taking
the divergence of Equation (19), along with the incompressibility condition

∇2 p̂ = ∇ · Nv̂. (21)

In all these equations, the hat symbol indicates that the variables are spectral coefficients.
The predictor step provides the initial estimates of the velocity and temperature fields at time
step q + 1 using data from time step q, and is formulated as

∇2 p̂q+1
1 = ∇ · Nq

v̂, (22)

(
1
δt

− c
Rem

∇2)v̂q+1
1 = −∇p̂q+1

1 + Nq
v̂ + (

1
δt

− (1− c)
Rem

∇2)v̂q, (23)

(
1
δt

− c
PrRem

∇2)ϕ̂
q+1
1 = Nq

ϕ̂
+ (

1
δt

− (1− c)
PrRem

∇2)ϕ̂q, (24)

where δt is the time step size, and c is a constant that sets the implicitness of the scheme (set
to 0.5 in our simulations). These initial estimates, v̂q+1

1 and ϕ̂
q+1
1 , are then iteratively refined

through a correction process. During each iteration, the non-linear terms are updated, and the
velocity and temperature fields are refined by solving

∇2 p̂q+1
j+1 = ∇ · Nq+1

v̂j
, (25)

(
1
δt

− c
Rem

∇2)v̂q+1
j+1 = −∇p̂q+1

j+1 + cNq+1
v̂j

+ (1− c)Nq
v̂ + (

1
δt

− (1− c)
Rem

∇2)v̂q, (26)

(
1
δt

− c
PrRem

∇2)ϕ̂
q+1
j+1 = cNq+1

ϕ̂j
+ (1− c)Nq

ϕ̂
+ (

1
δt

− (1− c)
PrRem

∇2)ϕ̂q, (27)

where j = 1, 2, . . .
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The iteration terminates once ∥v̂q+1
j+1 − v̂q+1

j ∥ ≤ 10−6 and ∥ϕ̂
q+1
j+1 − ϕ̂

q+1
j ∥ ≤ 10−6, with

convergence typically achieved after one corrector iteration. The additional cost of evaluating
advective terms twice per time step is offset by the larger δt permitted by this scheme compared
to other conventional methods.

To solve the pressure Poisson Equation (21), a homogeneous Neumann boundary con-
dition, ∂p̂

∂r
= 0, is used at the pipe wall. Consequently, the velocity field obtained from (19)

does not satisfy the divergence-free condition. This condition is subsequently enforced through
influence matrices, a technique that ensures machine-level accuracy (typically of the order
10−16) and avoids the need for artificial pressure boundary conditions.

The code employs a hybrid MPI-OpenMP approach for parallelization, enabling efficient
scaling across thousands of processors. For further details about the parallelization strategy
and code functionalities, the reader is referred to [17] and the references therein.

All results presented in this article correspond to uniformly accelerated or decelerated
flows, where the initial and final Reynolds numbers are Reinit = 3200 and Reend = 9600,
respectively, for accelerations, and vice versa for decelerations. The mean Reynolds number
in all cases is therefore Rem = 6400. Within this range of Reynolds numbers, the flow is
always turbulent under constant flow rate conditions. Figure 2 displays two examples
of the temporal evolution of the instantaneous Reynolds number, Re(t) = vb(t)D

ν . For
accelerated flows (Figure 2a), the instantaneous Reynolds number increases linearly from
Re = 3200 to Re = 9600. A steady phase is then simulated, where the flow rate remains
unchanged to monitor the stabilization of flow characteristics at Re = 9600. Similarly, for
decelerated flows (Figure 2b), the instantaneous Reynolds number decreases linearly from
Re = 9600 to Re = 3200, followed by a steady phase to examine stabilization at the lower
Reynolds number. In all cases, Pr is set to 0.7. The initial conditions for these simulations
are calculated from constant-flow rate simulations at Re = 3200 and Re = 9600.

Acceleration phase Steady phase

(a)

Deceleration phase Steady phase

(b)

Figure 2. Variation of the instantaneous Reynolds number with time in simulations, where (a) the
flow is uniformly accelerated with α = 0.01 from Reinit = 3200 to Reend = 9600, followed by a steady
phase, and (b) the flow is uniformly decelerated with α = −0.1 from Reinit = 9600 to Reend = 3200,
followed by a steady phase.

To examine how acceleration or deceleration rates affect convective heat transfer,
simulations were conducted with |α| values ranging from 0.0015 to 2.

The simulations were carried out in a pipe of an axial length 3πD, using 128 radial
nodes, 121 azimuthal Fourier modes, and 400 axial Fourier modes. To confirm the resolution
adequacy, additional simulations were performed using twice the number of radial nodes
and 1.5 times the Fourier modes in both the azimuthal and axial directions. These tests
revealed no significant quantitative differences, validating the initial grid size. The time
step size was set to δt = 5 × 10−3 for |α| < 0.01 and δt = 10−3 for |α| ≥ 0.01. All
simulations were conducted on the Picasso supercomputer at the University of Málaga
using 128 processors per simulation, resulting in durations ranging from 3 to 6 days
depending on the value of α.
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3. Results
3.1. Temporal Variation in the Nusselt Number in Uniformly Accelerated Flows

This section examines the behavior of convective heat transfer in a uniformly acceler-
ated flow. Figure 3a illustrates the temporal evolution of instantaneous Nusselt number
Nu (solid black line) at a moderate acceleration rate of α = 0.02. It also presents the
corresponding quasi-steady Nusselt number values obtained from the empirical Gnielin-
ski correlation (red dashed line). Three distinct phases can be identified in the temporal
variation in Nu. In the initial phase (Phase 1), which lasts up to t ≈ 27, Nu remains nearly
unchanged. This is followed by a growth phase (Phase 2), which is characterized by three
sub-stages with different growth rates: a slow increase from t ≈ 27 to t ≈ 35, a more rapid
increase from t ≈ 35 to t ≈ 50, and finally, a gradual approach to the quasi-steady value,
which is reached around t ≈ 61. In the last phase (Phase 3), Nu fluctuates around the
quasi-steady value.

0 20 40 60 80 100

0

5

10

15

20

25

30

A B

C

D

E

F

Phase 1 Phase 2 Phase 3

(a)

P
h

a
s
e

 1

P
h

a
s
e

 2

P
h

a
s
e

 3

(b)

Figure 3. Temporal variation in Nusselt number Nu (a) and friction coefficient c f (b) in a uniformly
accelerated flow with a moderate acceleration rate, α = 0.02. The red dashed lines represent the
corresponding quasi-steady values, calculated using the Gnielinski correlation for Nu and the Blasius
formula for c f . The brown vertical dashed lines delineate the distinct phases, each characterized
by different behaviors. The points in the left panel correspond to the time instants for which flow
patterns are shown in Figure 4.

The qualitative behavior of the Nu response shown in Figure 3a is in agreement with
experimental observations [11,12], even though those studies were conducted at higher
acceleration rates. It is also consistent with the established descriptions of turbulence behav-
ior in unsteady flows [20,21]. These descriptions propose that the response of turbulence to
changes in the mean velocity occurs in three stages.

The initial stage, often referred to as the delay phase, corresponds to Phase 1 in
Figure 3a. This phase is characterized by the phenomenon of frozen turbulence, where
turbulent stresses respond with a delay to changes in mean velocity. Due to this delay,
the intensity of the turbulent stresses remains largely unchanged despite the variation
in the instantaneous Re. Consequently, the convective heat transfer carried by these
stresses remains nearly constant, resulting in the almost invariant Nu observed during this
initial stage.

Once the turbulent fluctuations respond to the velocity change, the turbulence intensity
increases (second stage), leading to the growth in Nu observed in Phase 2. Eventually, the
turbulence intensity stabilizes at the quasi-steady condition (third stage), similar to how
Nu stabilizes in Phase 3. These latter two stages are typically referred to as the recovery
stage and quasi-steady stage, respectively.
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(a) ϕ at t = 10.0 (point A) (b) vr at t = 10.0 (point A)

(c) ϕ at t = 20.0 (point B) (d) vr at t = 20.0 (point B)

(e) ϕ at t = 33.5 (point C) (f) vr at t = 33.5 (point C)

(g) ϕ at t = 41.5 (point D) (h) vr at t = 41.5 (point D)

(i) ϕ at t = 48.5 (point E) (j) vr at t = 48.5 (point E)

(k) ϕ at t = 71.5 (point F) (l) vr at t = 71.5 (point F)

Figure 4. Instantaneous snapshots of the temperature difference with respect to bulk temperature ϕ

(left panels), and radial velocity vr (right panels), illustrating the evolution of these structures in
the near-wall region under uniform flow acceleration with α = 0.02. The structures are depicted in a
cylindrical section (z, θ) at a radial location of r/D = 0.49. The flow direction is from left to right.
From top to bottom, each row corresponds to the structures at points A to F as denoted in Figure 3a.
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A key result of the delayed response of convective heat transport to changes in the
mean velocity is that, during acceleration, the instantaneous Nu is always less than or
equal to the quasi-steady Nu. This delay causes the average Nu for a uniformly accelerated
flow to be lower than that of a steady flow at the mean Reynolds number (in this study,
Rem = 6400). For the specific case shown in Figure 3a, the average Nu is 13.7, while the Nu
for a steady flow at Re = 6400 is 20.32, indicating a 32.6% reduction from the steady value.
A detailed quantitative study on the reduction or increase in Nu relative to the steady case,
as a function of the α values, is provided in Section 3.4.

Comparing the temporal response of Nu with that of the friction coefficient c f for the
same case, shown in Figure 3, provides useful insights. The friction coefficient is calculated
using the Fanning equation c f (t) =

τw(t)
2vb(t)2 , where τw(t) denotes the instantaneous wall shear

stress, and vb(t) is the instantaneous bulk velocity. The figure also includes quasi-steady
values (red dashed line), which, for this range of Re values, are well approximated by the
empirical Blasius formula c f (t) = 0.079Re(t)−0.25. The temporal variation in c f observed in
the simulation qualitatively matches the previous findings [22], showing the three stages of
the turbulence response in unsteady flows: delay, recovery, and quasi-steady phases. However,
two important differences are noted between the temporal responses of Nu and c f .

The first difference occurs during the initial delay phase. Here, c f initially shows a slight
increase above the quasi-steady value caused by the high inertia needed to start accelerating
the flow. This is followed by a significant decrease, reaching values approximately 40% lower
than the quasi-steady case. This behavior contrasts with Nu, which remains constant during
this phase. This observation deviates from the widely accepted Colburn analogy [23], which
posits a proportional relationship between c f and Nu. While this analogy has been extensively
validated in steady flows, the comparison in Figure 3 suggests that the relationship between
these two quantities is more complex in unsteady flows.

The second difference is observed during the recovery phase. In this stage, c f rapidly
increases due to the rise in turbulent stresses, surpassing the quasi-steady value and
reaching a relative maximum at t ≈ 43. Subsequently, c f decreases and stabilizes around
the steady value at t ≈ 48. In contrast, the growth rate of Nu is much more gradual,
resulting in a considerably longer recovery phase compared to c f .

An important aspect investigated in the experiments of [11,12] is the spatiotemporal
characteristics of heat transfer in unsteady flows. Specifically, they examined the evolution
of the spatial distribution of the instantaneous convective heat transfer coefficient near the
pipe wall, as the flow was accelerated or decelerated. To compare their observations with the
simulation results, Figure 4 illustrates the spatial distribution of the temperature difference
relative to the bulk temperature, ϕ (left panels), near the pipe wall at various time instants
during acceleration. Notably, this quantity is proportional to the convective heat transfer
coefficient, and therefore, its spatiotemporal characteristics are analogous.

In the color scale used to depict ϕ structures, dark blue represents regions of higher
temperature, while yellow indicates areas of lower temperature within the section shown.
Note that negative values of ϕ indicate a temperature higher than the bulk temperature,
which is typically observed near the wall. To aid in the interpretation of the physical
processes driving the evolution of these thermal structures, the evolution of the radial
velocity, vr (right panels), is also shown in Figure 4. The color maps for vr employ a blue-
to-red scale, where negative values (blue) correspond to radial flow toward the pipe center,
and positive values (red) correspond to radial flow toward the wall.

During the early delay phase, ϕ structures appear as elongated streaks aligned with the
flow direction (Figure 4a). These streaks show alternating regions of high and low temperature
in the azimuthal direction and have slight modulations that appear to be associated with
localized areas of significant radial velocity (Figure 4b). These areas are remnants of the initial
steady turbulent state. As the flow accelerates, these regions do not regenerate and gradually
dissipate. This characteristic is evident in Figure 4d, where significant radial velocity gradients
are only observed in a small area near the outlet section of the pipe.
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Without vortices to redistribute momentum and heat, the streaky structures of ϕ lose
the weak modulation observed in the early stages of the acceleration, becoming almost
parallel and more elongated, often spanning the entire computational domain (Figure 4c).
It is important to note that although some structures span the entire pipe length, suggesting
that the axial domain used in the simulations may be insufficient to capture the full physics
of the problem, additional simulations with extended pipe lengths were conducted and
revealed no significant differences from the results obtained with the present configuration.

At the beginning of the recovery phase (point C in Figure 3a), regions of significant radial
velocity begin to emerge across a large portion of the section (Figure 4f). The heat transport
associated with these fluctuations causes the streaky structures to start oscillating and breaking
down into smaller structures (Figure 4e). In areas where the radial velocity remains near zero,
the ϕ structures continue to form elongated streaks aligned with the flow direction.

As the recovery phase progresses, and the Nusselt number growth rate increases (point D
in Figure 3a), radial velocity structures have spread almost entirely along the pipe’s axial length
(Figure 4h). Consequently, the elongated streaks from earlier moments transform into shorter
streaks that eventually break down into structures with varied spatial scales (see Figure 4g,i).
Toward the end of the recovery phase, the ϕ (Figure 4i) and vr (Figure 4j) structures become
nearly identical to those observed in the steady case (Figure 4k and Figure 4l, respectively).

The magnitude of ϕ substantially decreases during the recovery phase, indicating
that as the flow becomes more turbulent, mixing is enhanced near the wall, leading to
temperatures closer to the bulk temperature. A smaller value of ϕ corresponds to a higher
Nu, consistent with the evolution of this parameter shown in Figure 3a. Conversely, the
magnitude of vr increases during the recovery phase, rising from very low values in the
delay phase (often referred to as the relaminarization phase due to the low fluctuation
intensity) to the typical levels seen in fully developed turbulent flow.

The evolution of the ϕ structures depicted in this figure closely resembles the instan-
taneous convective heat transfer coefficient patterns reported by Nakamura et al. (see
Figure 4 in [12]) for experiments in a similar Reynolds number range, further confirming
the high fidelity of the simulations in reproducing the experimental results.

3.2. Temporal Variation in the Nusselt Number in Uniformly Decelerated Flows

This section examines the evolution of the Nusselt number in uniformly decelerated
flows. Figure 5a illustrates the temporal response of Nu for a simulation with a deceleration
rate of α = −0.02, matching the magnitude used for the uniformly accelerated case in
Section 3.1. The three phases identified for uniformly accelerated flows are also present in
decelerated flows.
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Figure 5. Temporal variation in Nusselt number Nu (a) and friction coefficient c f (b) in a uniformly deceler-
ated flow with a moderate acceleration rate, α = −0.02. The red dashed lines represent the corresponding
quasi-steady values, calculated using the Gnielinski correlation for Nu and the Blasius formula for c f . The
brown vertical dashed lines delineate the distinct phases, each characterized by different behaviors. The
points in the left panel correspond to the time instants for which flow patterns are shown in Figure 6.
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(a) ϕ at t = 5.5 (point A) (b) vr at t = 5.5 (point A)

(c) ϕ at t = 30.0 (point B) (d) vr at t = 30.0 (point B)

(e) ϕ at t = 50.0 (point C) (f) vr at t = 50.0 (point C)

(g) ϕ at t = 75.0 (point D) (h) vr at t = 75.0 (point D)

(i) ϕ at t = 100.0 (point E) (j) vr at t = 100.0 (point E)

(k) ϕ at t = 196.0 (point F) (l) vr at t = 196.0 (point F)

Figure 6. Instantaneous snapshots of the temperature difference with respect to the bulk temperature,
ϕ (left panels), and the radial velocity, vr (right panels), illustrating the evolution of these structures
in the near-wall region under uniform flow deceleration with α = −0.02. The structures are depicted
in a cylindrical section (z, θ) at a radial location of r/D = 0.49. The flow direction is from left to right.
From top to bottom, each row corresponds to the structures at points A to F as denoted in Figure 5a.
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Initially, there is a delay phase (Phase 1), during which Nu remains approximately
constant despite a decrease in instantaneous Re (see inset in the figure). This phase is
significantly shorter than in the uniformly accelerated case. Here, the delay phase extends
to t ≈ 6, accounting for 12% of the deceleration period, whereas it covered nearly 50% of
the acceleration period in the accelerated flow.

Following the delay phase, the recovery phase (Phase 2) begins, during which Nu
decreases from its initial value to levels consistent with the final condition. Unlike the
recovery phase in accelerated flows, where the intensity of turbulent fluctuations increases
towards the quasi-steady level, in decelerated flows, the intensity of these fluctuations de-
creases to match the lower mean flow velocity. However, this decrease occurs more slowly
than in the quasi-steady case (dashed red line), leading to greater convective heat transport
and consequently higher Nu compared to the quasi-steady case. This implies an increase
in the intensity of turbulent fluctuations during the initial part of the recovery phase.

The exact cause of this increase is not entirely clear, but it may be associated with
the presence of inflection points in the velocity profile, a characteristic feature of decel-
erated flows. These inflection points can induce instantaneous linear instabilities [24,25],
potentially providing the energy needed for the transient increase in turbulence intensity.

The decrease in Nu continues until t ≈ 110, extending well beyond the duration
of the deceleration period. This is followed by a slight increase, leading to the quasi-
steady phase (Phase 3), during which Nu oscillates slightly around a steady value. Notably,
there is an offset between this steady value and the quasi-steady value predicted by the
Gnielinski correlation. This offset is expected, as the correlation is known to deviate from
the experimental values when Re approaches the transitional regime. As in the uniformly
accelerated case, the three phases observed in the Nu response to deceleration are consistent
with the experimental observations in [11,12].

In contrast to the acceleration case, Nu values during deceleration are always above or
equal to those of the quasi-steady case, resulting in a net increase in heat transfer compared
to the steady case when the flow is driven at the mean Re. For this specific case, the average
Nu during deceleration is 24.68, while, as noted earlier, Nu corresponding to the steady
case for Re = 6400 is 20.32. This leads to a net increase in Nu of 21.45%.

A comparison of the temporal evolution of Nu and c f throughout the deceleration
phase (Figure 5b) reveals significant differences in their respective responses. The temporal
response of c f can be divided into four distinct stages.

In the initial phase, c f undergoes a slight decrease due to the adverse pressure gradient
applied to decelerate the flow. This phase is brief, lasting only until t ≈ 1, which is six
times shorter than the delay phase observed in the temporal response of Nu. Following
this initial decrease, a second phase begins, characterized by a rapid recovery to values
exceeding the quasi-steady level. During this phase, c f follows the same trend as the
quasi-steady value but its magnitude remains slightly higher. This behavior supports the
hypothesis of a local instability that transiently increases turbulence levels during flow
deceleration. The onset of this second phase could therefore be linked to the initiation of
this instability.

The third phase starts at the end of the deceleration period (t = 50) and extends to
t ≈ 140. During this phase, c f exhibits a pronounced overshoot above the quasi-steady
value due to the significant inertia of the fluid. After reaching this maximum, c f gradually
decreases to values below the steady case before stabilizing.

In the fourth and final phase, c f oscillates around the steady value. Notably, as in the
case of uniformly accelerated flow, c f reaches this final phase before Nu stabilizes.

As discussed in the previous section, the qualitative differences in some phases of the
Nu and c f temporal responses suggest that the physical mechanisms governing the instan-
taneous values of these parameters in unsteady flows may differ. This observation raises
questions about the applicability of the Colburn analogy for unsteady-flow conditions.

The evolution of the ϕ structures near the wall during uniform deceleration (left panels
of Figure 6) shows significant differences compared to the case of uniform acceleration
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depicted in Figure 4. As in Figure 4, the evolution of vr is shown alongside the ϕ structures,
using the same color palettes.

During the delay phase (illustrated in Figure 6a,b for t ≈ 5.5), both the ϕ and vr
structures remain similar to the initial steady turbulent state. The thermal structures
are primarily organized into streaks, alternating regions of high (blue) and low (yellow)
temperatures in the azimuthal direction, which coexist with smaller structures.

Comparing the ϕ structures with the vr distribution reveals that regions with smaller
structures align with areas where the radial velocity is more pronounced. These regions are
identified in Figure 6b as spatially localized regions with closely spaced high positive (dark
red) and negative (dark blue) radial velocities in the azimuthal direction.

A significant change observed during the transition to the recovery phase is the elonga-
tion of the vr structures (Figure 6d). Regarding the ϕ structures, fewer small structures are
observed (Figure 6c), and the streaky structures exhibit several clear differences compared
to the previous phase: a marked increase in both the axial length and azimuthal width of
the structures, and the onset of a certain undulation. This undulation is consistent with the
emergence of a secondary instability as previously speculated, which enhances turbulence
levels and causes Nu to rise above the quasi-steady value.

As time progresses and the deceleration period nears its end, the width of the ϕ
structures continues to grow, and their undulation becomes more pronounced due to
fluctuations extracting energy from the secondary instability (Figure 6e). An increase in
the magnitude of ϕ is also evident, consistent with the decrease in Nu that results from
the diminishing intensity of turbulent fluctuations as the instantaneous Re decreases. This
substantial reduction in turbulent fluctuation intensity is clearly visible in Figure 6f. Addi-
tionally, this figure shows that the distribution of vr remains similar to that at the start of the
recovery phase, though the azimuthal length of the structures has significantly increased.

The transition between the deceleration phase and the subsequent steady phase is
marked by a clear change in the topology of the structures (Figure 6g,h). The elongated
streaks observed in earlier stages are replaced by irregular structures with a large az-
imuthal length, similar to the “mottled structure” observed experimentally in [11,12]. This
change likely results from streak collapse due to the local secondary instability during the
recovery phase.

Notably, up to this point, the ϕ structures consistently displays negative values near
the wall, indicating higher temperatures than the bulk temperature. However, Figure 6g
shows that some thermal structures now have positive values, indicating temperatures
lower than the average. This change indicates significant heat and momentum transport
from the central part of the pipe, where the temperature is lower, to the wall, which is
also consistent with the substantial increase in c f relative to the steady value observed in
Figure 5b during the third phase of the temporal response of this parameter. This increase
in c f is also consistent with the substantial rise in the magnitude of vr observed in Figure 6h.

As Nu approaches the end of the recovery phase, the turbulent fluctuations arising
from the secondary instability gradually dissipate, and the ϕ structures revert to streaks
aligned with the flow direction but with a significantly larger azimuthal length than
during the initial deceleration stages (Figure 6i). This feature is again consistent with the
experimental observations in [11,12]. The evolution of the structures during this stage
is similar to what occurs during the frozen turbulence phase when the flow accelerates.
Initially, the intensity of turbulent fluctuations remains at very low levels for some time
(Figure 6j), giving rise to ϕ streaks that extend axially across the entire computational
domain, along with smaller streaks that emerge from the breakup of larger streaks in regions
where vr is significant. Eventually, the intensity of turbulent fluctuations increases to adapt
to the final steady state (Figure 6l), and the thermal structures take on the characteristic
distribution of a steady turbulent flow, exhibiting a pattern of streaks of various sizes
alternating high and low temperatures in the azimuthal direction (Figure 6k).
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3.3. Characterization of the Temporal Variation in the Nusselt Number as a Function of
Acceleration or Deceleration Rate

This section examines the temporal characteristics of the Nu variation as a function of
the acceleration or deceleration rate α and introduces a simple model that satisfactorily
reproduces the Nu response across a wide range of α values.

Figure 7 presents the temporal evolution of Nu for uniformly accelerated flows, cover-
ing α values spanning three orders of magnitude. Two distinct behaviors emerge depending
on the magnitude of α.
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Figure 7. Temporal response of the Nusselt number in uniformly accelerated flows as a function
of the acceleration rate α. (a) Cases where α ≤ 0.002, showing the Nusselt number increasing in a
quasi-steady manner. The red dashed lines represent the quasi-steady values of the Nusselt number
calculated using the semi-empirical Gnielinski correlation. (b) Cases where α > 0.002, with the
evolution of the Nusselt number following the qualitative description provided in Section 3.1. The
brown dashed line indicates the transition between the delay and recovery phases.

For very small values (α ≤ 0.002, Figure 7a), Nu increases quasi-steadily over time.
The change in the mean flow velocity is slow enough for the turbulent fluctuations to
adjust almost instantaneously to the evolving flow conditions. As a result, the Nu value
corresponding to each instantaneous Re value closely matches that of a steady flow at the
same Re. In these cases, the Gnielinski correlation (indicated by the red dashed lines in
the figure) provides a good estimate of the Nu evolution. Initially, the correlation slightly
underestimates Nu because the instantaneous Re is close to transitional values, where this
semi-empirical correlation is known to be less accurate. However, as time progresses and
the instantaneous Re moves further from the transitional regime, Nu converges with high
precision to the value predicted by the Gnielinski correlation.

For α > 0.002 (Figure 7b), the evolution of Nu follows the three phases described in
Section 3.1. The delay phase (demarcated by the brown dashed line) lasts until t ≈ 27 in all
cases, demonstrating that its duration is independent of α. However, the range of Re values
encompassed during this phase expands as α increases due to the more rapid change in
mean velocity, which results in a higher Re by the end of the delay phase. When α exceeds
0.02, the transition time between the initial and final Re values becomes shorter than the
delay phase, causing this phase to extend beyond the acceleration period. Despite this, the
qualitative behavior of the Nu evolution is consistent with that observed at lower α values,
with the notable exception that the increase in Nu and its approach to quasi-steady values
occur while the flow is already being driven at a constant Re.

The most significant effect of increasing α is the faster growth in Nu during the
recovery phase. As α increases, this increase becomes increasingly sharper until α ≈ 0.1.
Beyond this point, further increases in α have minimal impact on the recovery phase, and
the temporal evolution of Nu is practically identical in all cases as observed for α = 0.1 and
α = 0.2.

The dependence of the Nu temporal response with α in uniformly decelerated flows,
illustrated in Figure 8, reveals two significant differences compared to the uniformly
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accelerated case. The first is that, for low deceleration rates, no quasi-steady variation in
Nu is observed. Even at the lowest deceleration rate considered (α = −0.0015), shown in
Figure 8a, the three phases described in Section 3.2 are still present. After the delay phase,
which extends until t ≈ 10 (see the inset in the figure), Nu decreases to values close to those
predicted by the Gnielinski correlation but progressively deviates as time advances. This
deviation can be attributed to two factors. First is the presence of a secondary instability
that increases turbulence levels and convective heat transfer beyond what would exist
in a quasi-steady state. Second, as the instantaneous Re approaches transitional values,
the Gnielinski correlation becomes less accurate. The first factor explains the early-stage
deviations, while the second factor accounts for deviations later in the deceleration and
during the quasi-steady phase that follows.
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Figure 8. Temporal response of the Nusselt number in uniformly decelerated flows as a function of
the deceleration rate, α. (a) The behavior for the lowest deceleration rate considered, α = −0.0015,
along with the quasi-steady Nusselt number values calculated using the semi-empirical Gnielinski
correlation (red dashed line). (b) presents a comparison of several cases where 0.0015 ≤ |α| ≤ 0.02.
(c) The response for very rapid decelerations, |α| ≥ 0.04. In all panels, an inset highlights the details
of the initial delay phase.

The second notable difference is the dependence between the delay phase duration
and α. As the magnitude of α increases, the delay phase shortens (see inset of Figure 8b).
However, this trend does not hold across the entire range of α values studied. For rapid
decelerations as shown in Figure 8c, the delay phase stabilizes at t ≈ 5. The variation in the
delay phase duration observed for 0.0015 ≤ |α| ≤ 0.02 may be linked to the onset of the
secondary instability. As the magnitude of α increases, the instability sets in earlier, causing
variations in the turbulent fluctuations level and the associated convective transport. As
a result, Nu deviates from its initial value earlier. However, for rapid decelerations, the
transition between the initial and final states occurs so quickly that the onset of instability
is similar regardless of the value of α. This could explain why the duration of the delay
phase becomes independent of α at higher deceleration rates.

Similar to accelerated flows, the Nu values during the recovery phase vary more
sharply as the deceleration rate increases (Figure 8b), until reaching a limit at α = −0.04.
Beyond this threshold, further increases in α do not significantly affect the temporal
response of Nu (Figure 8c).

The evolution of thermal structures during both acceleration and deceleration is
qualitatively similar to the structures described in Sections 3.1 and 3.2. The exception is the
quasi-steady cases for uniformly accelerated flows, where the thermal structures exhibit
the characteristic pattern of turbulent flow: streaks of varying sizes coexisting with smaller
structures that become finer as the instantaneous Re increases.

Nakamura et al. [12] propose a model to characterize the temporal variation in Nu in
unsteady flows upon sudden acceleration (deceleration), assuming an exponential growth
(decay) of Nu during the recovery phase. This model is based on two parameters: the delay
phase duration ∆td and a parameter τ, which controls the steepness of the exponential
growth (decay). According to this model, the instantaneous Nu is given by the following
piecewise function:
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Nu(t) =

{
Nuinit if t ≤ ∆td

Nuend − (Nuend − Nuinit) exp
(
− t−∆td

τ

)
if t > ∆td,

(28)

where Nuinit and Nuend represent the Nu values corresponding to the initial and final
Re values in steady-flow conditions. When applied to the simulation data for uniformly
accelerated flows, this model accurately reproduces the Nu response for high acceleration
rates (Figure 9a). However, for moderate α values (Figure 9b) and quasi-steady cases
(Figure 9c), the model fails to adequately predict the Nu growth.
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Figure 9. Characterization of the temporal response of the Nusselt number in uniformly accelerated
flows. The upper panels illustrate the performance of the model proposed by Nakamura et al. [12]
when fitted to our data. (a) Results for α = 1, representing rapid accelerations; (b) data for α = 0.02,
corresponding to moderate acceleration rates; and (c) data for α = 0.002, where the Nusselt number
evolves in a quasi-steady manner. The lower panels demonstrate the performance of the model
proposed in this study. For comparison, the same α values as in the upper panels are used: (d) α = 1,
(e) α = 0.02, and (f) α = 0.002.

To address this limitation, a new model is proposed, where the Nu growth is mod-
eled using a hyperbolic tangent function. In this model, the temporal variation in Nu is
expressed as

Nu(t) = 0.5(Nuinit + Nuend) + 0.5(Nuend − Nuinit) tanh
( t − tin f

s

)
. (29)

This model also introduces two parameters: tin f , which marks the inflection point of
the Nu growth curve, and s, which controls the steepness of the curve, similar to τ in the
previous model. As shown in the lower panels of Figure 9, the proposed model accurately
estimates the Nu response across the entire range of α values. For high α values, the
new model matches the accuracy of the exponential model (Figure 9d). However, unlike
the exponential model, it also accurately predicts the Nu variation for moderate α values
(Figure 9e).

Even for low α values, where Nu varies quasi-steadily, the proposed model provides
a reasonable estimate, with only a slight overestimation during the initial phase. In quasi-
steady cases, the Gnielinski correlation (shown as a green dashed line in Figure 9e) remains
the most accurate predictor of Nu values.
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The variation in the model parameters tin f and s with α is presented in Figure 10. The
parameter tin f , shown in Figure 10a, decreases with increasing α and eventually stabilizes
at an approximately constant value for α > 1. This behavior is well described by an
exponential function with three parameters (blue line in the figure):

tin f = 0.2α−1.1 + 29 (30)

The variation in s, displayed in Figure 10b, exhibits two distinct phases. For low
to moderate values of α (up to α ≈ 0.02), s decreases sharply as α increases. However,
beyond this threshold (α > 0.02), the decrease becomes much more gradual. The variation
in s across the entire range of α is well approximated by the following function (again
represented by the blue line in the figure):

s = 0.5(0.33α−1.04 + 0.175α−0.54 − 9.76) + 0.5(0.175α−0.54 − 0.33α−1.04 + 13.96) tanh
(

α − tin f

s

)
(31)

(a) (b)

Figure 10. Variation in the parameters tin f (a) and s (b) as a function of the acceleration rate α in
uniformly accelerated flows.

Similar conclusions can be drawn when these models are applied to characterize
uniformly decelerated flow. The exponential model reasonably estimates the temporal
response of Nu for high deceleration rates, but its accuracy decreases as the deceleration
rate lowers. This is evident in the upper panels of Figure 11. In Figure 11a, which shows a
high deceleration rate simulation, the model satisfactorily reproduces the instantaneous
Nu values, except at the end of the recovery phase, where it overestimates the simulation
results, and during the initial delay phase, where it predicts an average value and therefore
fails to capture the oscillations observed during this phase.

For moderate decelerations (Figure 11b), the model not only overestimates Nu before
the quasi-steady phase but also shows slight deviations during the early recovery phase.
These deviations increase as the absolute value of α decreases as shown in Figure 11c.

Similar to the uniformly accelerated case, the hyperbolic tangent-based model pro-
posed here satisfactorily estimates the temporal evolution of Nu across the entire range
of α values. For high deceleration rates (Figure 11d), it is slightly less accurate than the
exponential model, overestimating Nu during the final part of the recovery phase and
slightly underestimating the average value during the delay phase. This underestimation
persists for all α values. However, as the absolute value of α decreases, the proposed
model captures the recovery phase much more accurately than the exponential model,
significantly reducing the overestimation of the Nu values during the approach to the
quasi-steady phase (Figure 11e,f).

The variation in the parameters tin f and s with |α| follows a trend similar to that
observed in uniformly accelerated flows. For tin f (Figure 12a), a decrease is observed as |α|
increases, which can be accurately fitted with a three-parameter exponential function:

tin f = 0.51|α|−1 + 14.91. (32)
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For parameter s (Figure 12b), two distinct phases are observed: a sharp decrease up
to |α| ≈ 0.15, followed by a phase where s remains approximately constant, around 11.16.
This behavior is well captured by the following expression:

s = 0.5(0.41|α|−1 + 19.67) + 0.5(2.65 − 0.41|α|−1) tanh

(
|α| − tin f

s

)
. (33)
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Figure 11. Characterization of the temporal response of the Nusselt number in uniformly decelerated
flows. The top panels illustrate the performance of the model proposed by Nakamura et al. [12] when
fitted to our data. (a) Results for α = −0.1, representing rapid decelerations; (b) data for α = −0.02,
corresponding to moderate deceleration rates; and (c) data for α = −0.002, corresponding to low
deceleration rates. The bottom panels illustrate the performance of the model developed in this study,
using the same α values as in the top panels: (d) α = −0.1, (e) α = −0.02, and (f) α = −0.002. In all
panels, the inset highlights the details of the initial delay phase.

(a) (b)

Figure 12. Variation in the parameters tin f (a) and s (b) as a function of the absolute value of the
deceleration rate |α| in uniformly decelerated flows.

3.4. Heat Transfer Gain or Loss Relative to Steady Flow

This section examines the heat transfer gain or loss in unsteady flows compared to
steady flows with the same mean Re. As discussed in the introduction, unsteady flows
can potentially enhance heat transfer in industrial processes compared to maintaining a
constant flow rate. To investigate this possibility, it is essential to quantify how variations
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in the parameters governing unsteady flows affect Nu. This study specifically examines
the impact of the acceleration (or deceleration) rate on Nu.

To quantify the heat transfer gain or loss compared to the steady case, the following
parameter is defined:

∆Nu(α) =
Num(α)− Nusteady

Nusteady
× 100, (34)

where Num(α) represents the average Nusselt number during the period of acceleration
or deceleration (excluding the steady period that follows these phases in the simulations),
Nusteady is the Nusselt number corresponding to the mean Reynolds number (Rem = 6400)
obtained from the Gnielinski correlation, which provides an accurate estimate of Nu in
steady conditions for this Re. The values of ∆Nu as a function of α for uniformly accelerated
and decelerated flows are shown in Figure 13a,b, respectively.

(a) (b)

Figure 13. Variation in the parameter ∆Nu, representing the relative decrease or increase in Nu for
uniformly accelerated (a) and decelerated (b) flows, as a function of the acceleration or deceleration
rate, α. Each blue dot represents the result obtained for a specific value of α in our simulations. The
brown dashed lines indicate the limits in each case. For accelerated flows, the upper limit corresponds
to the maximum heat transfer loss, and the lower limit represents the quasi-steady condition. In
decelerated flows, the upper limit corresponds to the maximum heat transfer gain, while the lower
limit again represents the quasi-steady condition.

As explained in Section 3.1, the significant delay in the turbulence response to changes
in the mean velocity results in a reduced heat transfer rate for uniformly accelerated flows
compared to steady flows. It is worth noting that the average Nu in cases with quasi-steady
behavior is slightly higher (by approximately 3%) than the steady Nu value. This deviation
is, however, consistent with the expected errors in estimating this parameter using the
Gnielinski correlation at Re = 6400, suggesting that heat transfer remains effectively
unchanged from the steady case for these α values. For moderate α values, however,
small changes in α can cause significant variations in the average Nu. The largest losses,
approximately ∆Nu = −48% relative to the steady flow, occur for α values, where the
delay phase extends beyond the acceleration period.

In contrast, as discussed in Section 3.2, Nu values during deceleration remain consis-
tently above the quasi-steady values. This is partly due to the presence of an instability that
increases the intensity of turbulent fluctuations, resulting in a higher average Nu compared
to the steady case. Even at the smallest values of |α|, the average Nu shows an approximate
7.5% gain over steady conditions. However, the increase in Nu during deceleration is more
gradual than the sharp decrease observed for accelerated flows, reaching maximum values
of ∆Nu ≈ 42% in simulations with large |α|, where the delay phase extends beyond the
deceleration period.

These results suggest the potential for designing a periodic unsteady-flow cycle that
includes a slow acceleration phase to minimize heat transfer losses, followed by a rapid
deceleration phase to significantly enhance heat transfer compared to the steady case. The
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average Nusselt number for such a cycle would be higher than that of a steady flow, while
maintaining the same mean Reynolds number in both cases.

4. Discussion

This paper presents the first study to use direct numerical simulations to systematically
analyze the temporal evolution of the Nusselt number (Nu) in uniformly accelerated and
decelerated turbulent pipe flows under constant heat flux. The findings confirm previous
experimental results and provide new insights into how acceleration and deceleration rates
affect heat transfer, a parameter not systematically explored in earlier research.

The results confirm the existence of three distinct phases, the delay, recovery, and
quasi-steady phases, consistent with the previous experimental observations [11,12]. These
phases are present at all acceleration rates (α), except when α is very low for accelerated
flows, in which case Nu evolves quasi-steadily over time.

In accelerated flows, the delayed turbulence response reduces heat transfer by up
to 48% compared with the steady case, while decelerated flows exhibit a maximum 42%
increase due to a secondary instability that intensifies turbulence. Evidence of this instability
is provided by the observed increase in turbulence intensity and convective transport, as
well as changes in the topology of the flow structures. The typical elongated streaks seen
in turbulent flows are replaced by more irregular structures with significant azimuthal
extent, akin to the ’mottle structure’ reported in [12]. While the exact mechanism driving
the instability is unclear, it may be linked to inflection points in the velocity profile as
suggested by recent studies [24,25]. Further research is needed to explore this phenomenon
in detail.

Another important observation is the distinct temporal behavior of the friction coeffi-
cient (c f ) compared to Nu. It is observed that c f responds more quickly to velocity changes,
challenging the applicability of the Colburn analogy, which is commonly used in steady
flows. This suggests that separate models are needed to accurately describe the dynamics
of friction and heat transfer in unsteady turbulent flows.

This analysis also introduces a new model based on a hyperbolic tangent function
that accurately characterizes the Nu response across various acceleration and deceleration
rates. This model is more versatile than previous ones and may serve as a valuable tool
in advancing both research and industrial practices related to optimizing heat transfer in
unsteady-flow systems. However, it is valid only for the specific conditions investigated, as
other parameters such as the initial and final Reynolds numbers, or non-linear acceleration
profiles have not been considered. Future work will focus on extending the model to
broader conditions.

One potential application of these findings is the design of flow cycles that enhance
heat transfer in industrial processes. The results suggest that a periodic unsteady-flow
cycle, comprising a slow acceleration phase to minimize heat transfer losses followed by
a rapid deceleration phase to boost heat transfer, could outperform steady-state scenar-
ios. Similar cycles have been recently proposed in the literature to reduce friction losses
in turbulent pipes while producing net energy savings [26]. However, further research
is required to investigate the behavior of Nu during direct transitions between accelera-
tion and deceleration phases, as these may introduce new dynamics not captured in the
present study.
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