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Abstract: This paper considers the model-following preview control problem for a class of continuous-
time descriptor systems with actuator failures. Firstly, the model-following problem is transformed
into an optimal preview control problem by utilizing restricted equivalent transformations and the
construction of augmented systems. After discussing the relationship between the stabilizability and
detectability of the augmented system and the corresponding characteristics of the controlled system,
the model-following preview controller of the original descriptor system is obtained by integrating on
the controller of the augmented system. Finally, an application to electrical circuit system is used for
assessment purposes. The simulation results demonstrate the effectiveness of the proposed controller.
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1. Introduction

A descriptor system is also known as a differential algebraic system or a singular
system, etc. Compared with a normal system, its form is more extensive. It was formed
and developed in the 1970s. Rosenbrock first proposed the descriptor system and studied
the decoupling zero point and the restricted equivalent transformation of the descriptor
system [1]. After that, the existence and uniqueness of the solutions of the descriptor system
were discussed in [2]. Since then, many control scholars have begun to explore this new
study field; however, there are relatively few research results on model-following control
based on descriptor systems.

The model-following control method in the normal system was extended to the
descriptor system, and the model-following controller designing method for a class of
linear descriptor systems with disturbance was proposed in [3]. Wu et al. presented a model-
following control method for a discrete-time nonlinear descriptor system and showed the
constraint conditions to ensure that the output tracking error was asymptotically convergent
to a zero vector [4]. Zhao and Okubo discussed a model-following controller designing
method for a continuous-time nonlinear descriptor system [5]. The H∞ model-following
controller was proposed for a class of linear parameter-varying descriptor systems [6].
The robust model reference controller was designed by Tian and Duan for uncertain
second-order descriptor systems, and sufficient conditions were given to guarantee the
complete parameterization of the robust controller [7]. The robust model-following control
problem for high-order descriptor systems with norm-bounded parameter uncertainties
was investigated in [8].

Preview control is a control technique that utilizes future information to improve
system transient response and enhance tracking performance. At present, the basic theory
of preview control has been basically constructed [9–13], which has made progress in
the research of the multirate system [14], the descriptor system [15–17], the stochastic
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system [18,19], and the multi-agent system [20,21] and is widely applied to practical
projects such as aircraft, wind turbines, vehicle stability control and so on [22–25].

Model-following control is an important theoretical method in fault-tolerant control.
The major idea is to establish a reference model and to realize the tracking of the reference
model by designing the controller of the controlled system. Motivated by [26], this article
researches the model-following problem for a class of continuous-time descriptor systems
with actuator failures by introducing a normal control system with a known input vector
as the reference model. The main contributions are summarized as follows:

(1) Unlike traditional preview control, the output of the reference model is desired to be
a signal, and the input of the reference model is a previewable signal.

(2) The fault-tolerant preview control theory previously proposed for normal systems
is extended to a descriptor system, and this theory is successfully applied to a real
electrical circuit system.

The structure of this article is as follows: The system model and related assumptions
are presented in Section 2. The restricted equivalent transformation of the descriptor
system is enunciated in Section 3. Section 4 presents the main results, which contain the
establishment of an augmented system and a global optimal preview controller. Conditions
for the existence of the controller are drawn in Section 5. In Section 6, the effectiveness
of the theoretical results was verified through a simulation. Conclusions are provided in
Section 7.

2. Model and Related Assumptions

Consider the following linear continuous-time descriptor system with actuator failures{
E

.
x(t) =Ax(t) + Bu(t) + G f (t)

y(t) =Cx(t)
(1)

where x(t) ∈ Rn, u(t) ∈ Rr, y(t) ∈ Rm, and f (t) ∈ Rr are state vectors, input vectors,
output vectors, and known fault vectors, respectively. E ∈ Rn×n, A ∈ Rn×n, B ∈ Rn×r,
C ∈ Rm×n, and G ∈ Rn×r are known constant matrices, and rank(E) = q < n.

The fault-free reference model is described by{ .
xm(t) = Amxm(t) + Bmum(t),
ym(t) = Cmxm(t),

(2)

where xm(t) ∈ Rnm , ym(t) ∈ Rm, and um(t) ∈ Rrm are reference state vectors, reference out-
put vectors, and known reference input vectors, respectively. Am ∈ Rnm×nm , Bm ∈ Rnm×rm ,
and Cm ∈ Rm×nm are known constant matrices [26].

System (2) describes the ideal dynamic performance of the closed-loop system, and
ym(t) is equivalent to the desired signal in the traditional preview control technology, but
the reference signal is generated by the reference input vector um(t) (this is a previewable
signal) in the given reference model instead of given directly. The failure of the controlled
system will lead to an increase in the error between y(t) and ym(t). Therefore, how to
design the controller to make the controlled system still asymptotically track the output
vector of the reference model under the condition of failure is a key issue in this paper.

We define the tracking error vector as

e(t) = y(t)− ym(t). (3)

The goal of this article is to design a model-following controller u(t) with preview
compensation for descriptor fault system (1) to eliminate the effect of the fault signal on
the system output y(t) and to make the output y(t) of closed-loop system (1) track the
output ym(t) of reference model (2) without static error, that is, the output error e(t) is
asymptotically stable to the zero vector:
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lim
t→∞

e(t) = lim
t→∞

[y(t)− ym(t)] = 0.

According to the research objectives of this article, the quadratic performance index
function is given as follows:

J =
∫ ∞

0

[
eT(t)Qee(t) +

.
uT

(t)R
.
u(t)

]
dt, (4)

where Qe and R are positive definite matrices. Introducing
.
u(t) into the performance index

function can enable the closed-loop system to include an integrator to help eliminate static
errors [11].

The following assumptions are made regarding systems (1) and (2).

Assumption 1. Suppose system (1) is impulse-free, namely [27]

rank
[

E 0
A E

]
= n + rank(E)

A necessary condition is that system (1) is regular, but from [27], it is known that the
impulse-free descriptor system must be regular, so the system that satisfies Assumption 1
is regular.

Assumption 2. (E, A, B) is stabilizable, (E, C, A) is detectable, and

rank
[

A B
C 0

]
= n + m

Lemma 1. The equivalent condition for (E, A, B) to be stabilizable is rank
[
sE − A B

]
= n,

and the equivalent condition for (E, C, A) to be detectable is rank
[

sE − A
C

]
= n, where s is any

complex number that satisfies Re(s) ≥ 0 [27].

Assumption 3. Am is stable, namely, the eigenvalues of the Am have a negative real part.

Assumption 4. The reference input signal um(t) is piecewise continuous differentiable and satisfies

lim
t→∞

um(t) = um, lim
t→∞

.
um(t) = 0

where um is a constant vector. Moreover, um(s) (t ≤ s ≤ t + lr) is previewable at each instant of
time t; lr is the preview length of um(t).

Assumption 5. The fault signal f (t) is piecewise continuous differentiable and satisfies

lim
t→∞

f (t) = f , lim
t→∞

.
f (t) = 0

where f is a constant vector. Moreover, f (t) (t ≤ s ≤ t + l f ) is previewable at each instant of time
t; l f is the preview length of f (t).

Remark 1. Assumptions 4 and 5 are the basic assumptions for previewable signals in preview
control theory [28].

3. Restricted Equivalent Transformation

In order to simplify the descriptor system and make use of the conclusion of preview
control, we transform system (1) into second restricted equivalent forms by a nonsingular
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linear transformation. According to rank(E) = q, there always exist nonsingular matrices

Q1 and P1, such that Q1EP1 =

[
Iq 0
0 0

]
.

Making a nonsingular linear transformation

x(t) = P1x(t),

substituting into the first equation of system (1), we obtain{
EP1

.
x(t) =AP1x(t) + Bu(t) + G f (t),

y(t) =CP1x(t)
(5)

Taking left transformation matrix Q1 over both sides of (5), we obtain

(Q1EP1)
.
x(t) = (Q1 AP1)x(t) + (Q1B)u(t) + (Q1G) f (t).

Partitioning the matrices Q1 AP1, Q1B, Q1G, and CP1, denote

Q1 AP1 =

[
A11 A12
A21 A22

]
, Q1B =

[
B1
B2

]
, Q1G =

[
G1
G2

]
, CP1 =

[
C1 C2

]
.

Let x(t) =

[
x1(t)
x2(t)

]
, where x1(t) ∈ Rq and x2(t) ∈ Rn−q. System (1) can be trans-

formed into 
.
x1(t) =A11x1(t) + A12x2(t) + B1u(t) + G1 f (t),

0 =A21x1(t) + A22x2(t) + B2u(t) + G2 f (t),

y(t) =C1x1(t) + C2x2(t).

(6)

The above transformation is usually called a restricted equivalent transformation, and
system (6) is the second restricted equivalent transformation form of system (1).

It is noted that the restricted equivalent transformation does not change the regularity,
stabilizability, detectability, and impulsiveness of the system [27]. Without losing generality,
we can study system (1) through system (6).

Remark 2. By [27], we can see that the following two propositions are equivalent:

(1) The descriptor system is impulse-free.
(2) Matrix A22 in the second restricted equivalent transformation form of the descriptor system

is reversible.

4. Augmented System and Controller Design

By assuming Assumption 1, descriptor system (1) is impulse-free, so the A22 in the
second restricted equivalent transformation is reversible. System (6) is composed of a
normal system and an algebraic equation. By using the characteristic of matrix A22 as
reversible, the algebraic equation is deformed, and we can turn system (6) into a normal
control system with state vector x1(t).

According to the second form of system (6), we obtain

x2(t) = −A22
−1 A21x1(t)− A22

−1B2u(t)− A22
−1G2 f (t). (7)

Substituting (7) in the first and third forms of (6), system (6) becomes a normal system{ .
x1(t) = Ãx1(t) + B̃u(t) + G̃ f (t),
y(t) = C̃x1(t) + D̃1u(t) + D̃2 f (t),

(8)

and an Equation (7), where
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Ã = A11 − A12 A22
−1 A21, B̃ = B1 − A12 A22

−1B2, G̃ = G1 − A12 A22
−1G2, C̃ = C1 −

C2 A22
−1 A21, and D̃1 = −C2 A22

−1B2, D̃2 = −C2 A22
−1G2.

Under the premise of maintaining dynamic characteristics, we transform descrip-
tor system (1) with actuator failures into normal system (8) and algebraic equation (7).
Therefore, we only need to consider the output tracking problem of system (8) to refer-
ence model (2). We construct an augmented system by using the method of the preview
control theory.

By taking the derivative on both sides of (3), the state equation in (8) and (2), we
can obtain

.
e(t) =

.
y(t)− .

ym(t) = C̃
.
x1(t) + D̃1u(t) + D̃2 f (t)− Cm

.
xm(t), (9)

..
x1(t) = Ã

.
x1(t) + B̃

.
u(t) + G̃

.
f (t), (10)

..
xm(t) = Am

.
xm(t) + Bm

.
um(t). (11)

Combining (9), (10), and (11) and taking e(t) as the output vector, we can yield an
augmented system { .

X(t) = ÂX(t) + B̂
.
u(t) + B̂m

.
um(t) + Ĝ

.
f (t),

e(t) = ĈX(t),
(12)

where

X(t) =

 e(t)
.
x1(t).
xm(t)

, Â =

0 C̃ −Cm

0 Ã 0
0 0 Am

, B̂ =

D̃1
B̃
0

, B̂m =

 0
0

Bm

, Ĝ =

D̃2
G̃
0

,

Ĉ =
[
I 0 0

]
.

Remark 3. e(t) = y(t)− ym(t) as the output of the augmented system (12) is reasonable due to
the output of systems (1) and (2), which are y(t) and ym(t), respectively.

When using the relevant variables in (12) to represent performance index function (4),
it can be rewritten as

J =
∫ ∞

0

[
XT(t)QX(t) +

.
uT

(t)R
.
u(t)

]
dt, (13)

where Q =

Qe
0

0

.

So far, the model-tracking problem in this article has been transformed into an optimal
preview problem for system (12) and performance index function (13). Similar to [11], we
can obtain the following theorem.

Theorem 1. Suppose (Â, B̂) is stabilizable and (Q1/2, Â) is detectable. The optimal preview input
of system (12) under performance index function (13) can be represented as

.
u(t) = −R−1B̂T PX(t)− R−1B̂T g(t), (14)

where matrix P is a positive semi-definite matrix satisfying the algebraic Riccati equation

ÂT P + PÂ − PB̂R−1B̂T P + Q = 0 (15)

and

g(t) =
∫ l f

0

[
exp(σÂT

c )PĜ
.
f (t + σ)

]
dσ +

∫ lr

0

[
exp(σÂT

c )PB̂m
.
um(t + σ)

]
dσ (16)
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the matrix
Âc = Â − B̂R−1B̂T P (17)

is stable.

System (12) has the same form as system (3.4) in [11], therefore, the derivation process
is similar to that of [11]. It is omitted here.

5. Conditions for the Existence of the Controller

Theorem 1 requires (Â, B̂) to be stabilizable and (Q1/2, Â) to be detectable; we discuss
the situations that controlled system (1) needs to satisfy in order to establish these two
conditions. Please note that (2) is a given system that must satisfy Assumption 3.

Lemma 2. Under Assumption 3, the necessary and sufficient condition for (Â, B̂) to be stabilizable

is that (Ã, B̃) must be stabilizable and

[
Ã B̃
C̃ D̃

]
must be of full row rank.

Proof. Based on the PBH criterion [29], the necessary and sufficient condition for (Â, B̂) to
be stabilizable is that the matrix

Uc =

sI −C̃ C̃m D̃
0 sI − Ã 0 B̃
0 0 sI − Am 0


is of full row rank, where s is any complex number that satisfies Re(s) ≥ 0. According to
Assumption 3, Am − sI is invertible. Therefore,

rank(Uc) = rank(sI − Am) + rank

[
sI −C̃ D̃
0 sI − Ã B̃

]

= nm + rank

[
sI −C̃ D̃
0 sI − Ã B̃

]
.

That is to say, the equivalent condition for matrix Uc to be row full rank is that[
sI −C̃ D̃
0 sI − Ã B̃

]
is row full rank. There are two situations to discuss below.

(i) When s = 0, it is obvious that the equivalent condition for

[
sI −C̃ D̃
0 sI − Ã B̃

]
to be

row full rank is that

[
Ã B̃
C̃ D̃

]
is row full rank;

(ii) When Re(s) ≥ 0 and s ̸= 0, the equivalent condition for

[
sI −C̃ D̃
0 sI − Ã B̃

]
to be row

full rank is that
[
sI − Ã B̃

]
is row full rank.

It can be known that
[
sI − Ã B̃

]
|s=0 is also full row rank from the discussion of

s = 0. Therefore, we draw the conclusion to be proven by combining these discussions.
Lemma 2 is proven. □

Lemma 3. The necessary and sufficient condition for (Ã, B̃) to be stabilizable is that (E, A, B) is
stabilizable [15].
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Lemma 4. The necessary and sufficient condition for

[
Ã B̃
C̃ D̃

]
to be row full rank is that

[
A B
C 0

]
is row full rank [15].

From Lemmas 2–4, we obtain the relationship between the stabilizability of the aug-
mented system and the original descriptor system.

Theorem 2. Under Assumption 3, the necessary and sufficient condition for (Â, B̂) to be stabilizable

is that (E, A, B) is stabilizable and
[

A B
C 0

]
is of full row rank.

Lemma 5. Under Assumption 3, the necessary and sufficient condition for (Q1/2, Â) to be detectable
is that (C̃, Ã) is detectable.

Proof. In light of the PBH criterion, the equivalent condition for (Q1/2, Â) to be detectable

is that matrix Uo =

[
sI − Â
Q1/2

]
is column full rank, where s is any complex number that

satisfies Re(s) ≥ 0. Note that

Uo =



sI −C̃ Cm

0 sI − Ã 0
0 0 sI − Am

Q1/2
e 0 0
0 0 0
0 0 0


.

According to the structure of Uo and the invertibility of Am − sI and Q1/2
e , we yield

rank(Uo) = rank


sI −C̃ Cm

0 sI − Ã 0
0 0 sI − Am

Q1/2
e 0 0


= rank(Q1/2

e ) + rank

 −C̃ Cm

sI − Ã 0
0 sI − Am


= rank(Q1/2

e ) + rank(Am − sI) + rank

[
sI − Ã

C̃

]

= p + nm + rank

[
sI − Ã

C̃

]
.

Lemma 5 is proven. □

Lemma 6. The necessary and sufficient condition for (C̃, Ã) to be detectable is that (E, C, A) is
detectable [15].

From Lemmas 5 and 6, we obtain the connection between the detectability of the
augmented system and the original descriptor system.

Theorem 3. Under Assumption 3, the necessary and sufficient condition for (Q1/2, Â) to be
detectable is that (E, C, A) is detectable.

The most important result of this article can be obtained on the basis of Theorems 1–3.
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Theorem 4. If Assumptions 1–5 hold, and Qe, R are positive definite matrices, the Riccati
Equation (15) has a unique symmetric positive semi-definite solution, and the optimal preview input
of system (1) under the performance index function (4) can be represented as

u(t) = u(0)− Ke

∫ t

0
e(σ)dσ − Kx[x(t)− x(0)]− Kxm [xm(t)− xm(0)]− f1(t)− f2(t), (18)

in which f1(t), f2(t), Ke, Kx and Kxm are

f1(t) = R−1B̂T∫ lr
0 exp(σÂT

c )PB̂m[um(t + σ)− um(σ)]dσ,3pt

f2(t) = R−1B̂T∫ l f
0 exp(σÂT

c )PĜ[ f (t + σ)− f (σ)]dσ,

K = R−1B̂T P =
[
Ke Kx1 Kxm

]
, (19)

Kx =
[
Kx1 0

]
P1

−1.

The expression for stable matrix Âc is (17). The initial values u(0), x(0) and xm(0) can
be arbitrarily selected.

Proof. By integrating the two sides of (14)

.
u(t) = −Kee(t)− Kx1

.
x1(t)− Kxm

.
xm(t)− R−1B̃T g(t),

on [0, t], we can obtain

u(t) = u(0)− Ke

∫ t

0
e(σ)dσ − Kx1 [x1(t)− x1(0)]− Kxm [xm(t)− xm(0)]− R−1B̃T

∫ t

0
g(s)ds. (20)

Since x(t) =

[
x1(t)
x2(t)

]
and nonsingular transformation x(t) = P1x(t), we have[

x1(t)
x2(t)

]
= P−1

1 x(t). Order Kx =
[
Kx1 0

]
P1

−1, then

Kxx(t) =
[
Kx1 0

]
P1

−1x(t) =
[
Kx1 0

][x1(t)
x2(t)

]
= Kx1 x1(t),

and we can obtain Kx1 x1(0) = Kxx(0) by making k = 0 in this formula, and substituting
this into (20), we have

u(t) = u(0)− Ke

∫ t

0
e(σ)dσ − Kx[x(t)− x(0)]− Kxm [xm(t)− xm(0)]− R−1B̃T

∫ t

0
g(s)ds, (21)

And ∫ t
0 g(s)ds =

∫ t
0

∫ l f
0

[
exp(σÂT

c )PĜ
.
f (s + σ)

]
dσds

+
∫ t

0

∫ lr
0

[
exp(σÂT

c )PB̂m
.
um(s + σ)

]
dσds

=
∫ l f

0

{
exp(σÂT

c )PĜ
[∫ t

0

.
f (s + σ)ds

]}
dσ

+
∫ lr

0

{
exp(σÂT

c )PB̂m

[∫ t
0

.
um(s + σ)ds

]}
dσ

=
∫ l f

0

[
exp(σÂT

c )PW̃[ f (t + σ)− f (σ)]
]
dσ

+
∫ lr

0

[
exp(σÂT

c )PB̂m[um(t + σ)− um(σ)]
]
dσ.

The conclusion is proved by substituting the above formula into (21).
Note that the control effect can be improved by selecting the initial values of x(0),

xm(0) and u(0). □
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Remark 4. In (18), −Ke
∫ t

0 e(σ)dσ shows the integrator; −Kxx(t) indicates the state feedback
of (1); −Kxm xm(t) represents the state feedback of (2); and f1(t) and f2(t) express the preview
compensation of the reference input signal um(t) and fault signal f (t), respectively.

Define the controller given by Equation (18) as a model-following preview controller.
It also can be called a fault-tolerant preview controller in the fault-tolerant control problem.

6. Numerical Simulation

When the controller given in (18) is introduced into the original descriptor system (1),
we obtain the closed-loop system

E
.
x(t)= (A − BKx)x(t) + Bφ(t) + G f (t),

y(t)= Cx(t),

φ(t)= −Ke

∫ t

0
e(σ)dσ − f1(t)− f2(t)− Kxm xm(t) + u(0) + Kxx(0) + Kxm xm(0),

(22)

Using the method given by [30], system (22) is discretized to obtain the iteration format

x((k + 1)T) = E
{

Ax(kT) + T
2 B[φ(kT) + φ((k + 1)T)] + T

2 G[ f (kT) + f ((k + 1)T)]
}

,
xm((k + 1)T) = (TAm + I)xm(kT) + TBmum(kT),
y(kT) = Cx(kT),
ym(kT) = Cmxm(kT),
e(kT) = y(kT)− ym(kT),

φ(kT) = −KeT
k−1
∑

i=0
e(iT)− f1(kT)− f2(kT)− Kxm xm(kT) + u(0) + Kxx(0) + Kxm xm(0),

f1(kT) = R−1B̂TT
[lr/T]−1

∑
j=0

{
exp(σÂT

c )PB̂m[um(kT + jT)− um(jT)]
}

,

f2(kT) = R−1B̂TT
[l f /T]−1

∑
j=0

{
exp(σÂT

c )PĜ[ f (kT + jT)− f (jT)]
}

,

where
E =

[
E − T

2 (A − BKx)
]−1

, A = E + T
2 (A − BKx), T is the sampling period.

Consider the electrical circuit system with actuator failures [31], where the inductance
is 1H, the capacitance is 1F, and the resistance is 1Ω.{

E
.
x(t)= Ax(t) + Bu(t) + G f (t),

y(t)= Cx(t),
(23)

where E =


1 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0

, A =


0 1 0 0
1 0 0 0
−1 0 0 1
0 1 1 1

, B =


0
0
0
−1

, G =


0
0
0

0.5

, C =
[
0 0 1 0

]
.

In this model, the components of the state vector x(t) =
[
x1(t) x2(t) x3(t) x4(t)

]T

represent the current in the circuit, the voltage of the resistance, the voltage of the inductance
and the voltage of the capacitance, respectively. Input vector u(t) represents the voltage
source. y(t) is the voltage of the capacitance, which can be measured in a physical sense, so
it is defined as the output vector of the system. f (t) is a known fault vector

f (t) =
{

0, 0 ≤ t ≤ 15
8, t > 15
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Select reference model (2) as

Am =

[
−1 0.2
0 −0.7

]
, Bm =

[
1
0

]
, Cm = [1 1],

where the reference input is a step signal

um(t) =
{

0, 0 ≤ t ≤ 2
10, t > 2

Note that output vector ym(t) of (2) is the ideal value of the voltage of the capacitor.
According to the structure of matrix E in system (22), it should be taken as

Q1 = I, P1 =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

.

After the restricted equivalent transformation is carried out, system (6) is obtained, where

A11 =

[
0 0
1 0

]
, A12 =

[
1 0
0 0

]
, A21 =

[
−1 0
0 1

]
, A21 =

[
0 1
1 1

]
,

B2 =

[
0
−1

]
, G2 =

[
0

0.5

]
, C1 =

[
0 1

]
,

x1(t) =
[

x1(t)
x3(t)

]
, x2(t) =

[
x2(t)
x4(t)

]
.

The corresponding matrices of the augmented system (12) are

Â =

 0 C1 −Cm

0 A11 − A12 A22
−1 A21 0

0 0 Am

 =


0 0 1 −1 −1
0 −1 −1 0 0
0 1 0 0 0
0 0 0 −1 0.2
0 0 0 0 −0.7

,

B̂ =

 0
−A12 A22

−1B2
0

 =


0
1
0
0
0

, B̂m =

 0
0

Bm

 =


0
0
0
1
0

Ĝ =

 0
−A12 A22

−1G2
0

 =


0

−0.5
0
0
0

,

Ĉ =
[

1 0 0 0 0
]
.

Obviously, this example satisfies all the conditions of Assumptions 1–5. The weight
matrices of performance index function (4) are taken as Qe = 3, R = 1. The solution of (15)
and the gain matrices in (18) are

P =


5.0958 1.7321 3.8278 −2.7548 −3.4797
1.7321 1.2100 1.9421 −1.3515 −1.8539
3.8278 1.9421 3.7699 −2.6064 −3.3924
−2.7548 −1.3515 −2.6064 1.8415 2.4102
−3.4797 −1.8539 −3.3924 2.4102 3.2048

,

Ke = 1.7321,

Kx1 =
[

1.2100 1.9421
]
,

Kx =
[

1.2100 0 1.9421 0
]
,

Kxm =
[
−1.3515 −1.8539

]
,
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where P is symmetric positive definite.
The initial conditions are chosen to be u(0) = 0, x(0) =

[
0 0 0 0

]T , and

xm(0) =
[
0 0

]T , and the sampling period is T = 0.1. Figures 1–3, respectively, stand for
the output response, output tracking error, and the voltage source of the electrical circuit
system when the reference input signal and the fault signal are previewable. It can be seen
that the preview compensations can effectively suppress the adverse effects caused by fault
signals and accelerate the response speed of the system output.
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Figure 1. The output response of the electrical circuit system with previewable signals.
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Figure 2. The output error of the electrical circuit system with the previewable signals.

According to calculations, the overshoot of the closed-loop system with different
previewable lengths is as follows: 1⃝ when lr = 0 s, l f = 0 s, the overshoot is 12.27%;

2⃝ when lr = 0.5 s, l f = 0.5 s, the overshoot is 6.00%; and 3⃝ when lr = 2 s, l f = 3 s, the
overshoot is 3.17%. Therefore, the longer the previewable length, the smaller the overshoot.

Figures 4–6 demonstrate the output response, the tracking error, and the voltage source
of the electrical circuit system without fault, respectively. The simulation results reveal that
the tracking effect of the capacitance voltage to the ideal value is still remarkable under the
reference input preview compensation. When the controlled system does not malfunction,
the controller proposed in this article is still valid.



Mathematics 2024, 12, 3561 12 of 14

Mathematics 2024, 12, x FOR PEER REVIEW 13 of 16 
 

 

 
Figure 1. The output response of the electrical circuit system with previewable signals. 

 
Figure 2. The output error of the electrical circuit system with the previewable signals. 

 
Figure 3. The voltage source of the electrical circuit system with the previewable signals. 

Figures 4–6 demonstrate the output response, the tracking error, and the voltage 
source of the electrical circuit system without fault, respectively. The simulation results 

0 5 10 15 20
-2

0

2

4

6

8

10

12

t

y m
(t)

 &
 y

(t)
 &

 f(
t)

 

 

yd

y: l r=0,l f=0

y: l r=0.5,l f=0.5

y: l r=2,l f=3

0 5 10 15 20

-6

-4

-2

0

2

4

t

e(
t)

 

 
tracking error e: l r=0,l f=0

tracking error e: l r=0.5,l f=0.5

tracking error e: l r=2,l f=3

0 5 10 15 20

0

2

4

6

8

10

12

14

t

u(
t)

 

 

input u: l r=0,l f=0

input u: l r=0.5,l f=0.5

input u: l r=2,l f=3

Figure 3. The voltage source of the electrical circuit system with the previewable signals.
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Figure 4. The output response of the electrical circuit system without a fault signal.

Mathematics 2024, 12, x FOR PEER REVIEW 14 of 16 
 

 

reveal that the tracking effect of the capacitance voltage to the ideal value is still re-
markable under the reference input preview compensation. When the controlled system 
does not malfunction, the controller proposed in this article is still valid. 

 
Figure 4. The output response of the electrical circuit system without a fault signal. 

 
Figure 5. The output error of the electrical circuit system without a fault signal. 

 
Figure 6. The voltage source of the electrical circuit system without a fault signal. 

0 5 10 15 20
-2

0

2

4

6

8

10

12

t

y m
(t)

 &
 y

(t)
 &

 f(
t)

 

 

ym

output y: l r=0,l f=0

output y: l r=0.5,l f=0.5

output y: l r=2,l f=3

f

0 5 10 15 20

-6

-4

-2

0

2

4

t

e(
t)

 

 
tracking error e: l r=0,l f=0

tracking error e: l r=0.5,l f=0.5

tracking error e: l r=2,l f=3

0 5 10 15 20

0

1

2

3

4

5

6

7

8

9

10

t

u(
t)

 

 

input u: l r=0,l f=0

input u: l r=0.5,l f=0.5

input u: l r=2,l f=3

Figure 5. The output error of the electrical circuit system without a fault signal.
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7. Conclusions

Based on the theory of preview control and the model-following control theory of fault-
tolerant control, a model-following preview controller for a class of linear continuous-time
descriptor systems with actuator failures is designed in this paper. Firstly, the controlled
system is transformed into a normal control system through a restricted equivalent transfor-
mation. By constructing an augmented system, the model-following problem is converted
into the optimal preview control problem for the augmented system. We obtain the required
controller for the original descriptor system through the preview control method. Finally,
the result is applied to an electrical circuit system with actuator failures, and numerical
simulation is carried out to illustrate the effectiveness of the result.

In the future, we consider extending the current results to descriptor systems with
stochastic [19,32], multiple input delays, and nonlinearity, which is more challenging.
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