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Abstract: In this study, we model the rate or proportion of a specific phenomenon using a set of known
covariates. To fit the regression model, which explains the phenomenon within the intervals (0, 1), [0, 1),
(0, 1], or [0, 1], we employ a logit link function. This approach ensures that the model’s predictions
remain within the appropriate range of zero to one. In cases of inflation at zero, one, or both, the logit
link function is similarly applied to model the dichotomous Bernoulli-type variable with a multinomial
response. The findings demonstrate that the model yields a non-singular information matrix, ensuring
valid statistical inference. This ensures the invertibility of the information matrix, allowing for hypothesis
testing based on likelihood statistics regarding the parameters in the model. This is not possible with
other asymmetric models, such as those derived from the skew-normal distribution, which has a singular
information matrix at the boundary of the skewness parameter. Finally, empirical results show the
model’s effectiveness in analyzing proportion data with inflation at zero and one, proving its robustness
and practicality for analyzing bounded data in various fields of research.

Keywords: unit proportional hazard distribution; censoring; proportion data; truncation;
zero-one inflation

MSC: 62J05; 62E15

1. Introduction

In recent years, probability distributions have seen significant advancements, particu-
larly through the creation of new families derived from extensions or generalizations of
classical distributions. These innovations aim to overcome the limitations of traditional
models and provide greater flexibility to better fit the complex phenomena observed in
various fields of knowledge. Examples of these distributions include those based on trans-
formations such as the generalized beta distribution by Eugene et al. [1], the family of
generalized distributions based on the Kumaraswamy distribution, referred to as Kw-
distributions and introduced by Cordeiro and De Castro [2] (Kw-normal, Kw-Weibull,
Kw-gamma, Kw-Gumbel, and Kw-inverse Gaussian distribution); and the beta modified
Weibull distribution of Silva et al. [3]. These new distributions not only better capture data
characteristics like skewness and kurtosis but also improve accuracy in modeling extreme
events or phenomena with heavy tails. Furthermore, their implementation has proven
useful in fields such as biomedicine, economics, and engineering, where classical models
fail to adequately describe the reality of the data.

In parallel, truncated distributions have emerged as another essential tool, particularly
when the data are bounded within a specific range. These distributions are modifications
of classical ones, where values outside a certain interval are truncated, improving the
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model’s fit for data restricted by natural or experimental constraints [4]. For example, the
truncated normal distribution is widely used in reliability analysis and survival studies
where negative values are not possible [5,6]. Similarly, the truncated Weibull distribution
has been applied in actuarial sciences to model the time to event data [7], offering greater
flexibility when standard distributions fail to capture the behavior of the tail.

A method for creating new families of distributions involves using a generating distri-
bution as a base. This method has been widely employed by various authors, including
Cordeiro et al. [8,9], Zografos and Balakrishnan [10], Ristić and Balakrishnan [11], Castel-
lares et al. [12], and Cordeiro et al. [13]. In the same context, Mahdavi and Silva [4] introduced
a method for generating families of truncated distributions, producing a two-parameter exten-
sion of the base distribution. This method has been used to derive distributions such as the
truncated exponential-exponential and the truncated Lomax-Exponential. These innovations
in probability distributions have proven to be valuable tools in statistical analysis, providing
more robust and adaptable models for complex data.

The method introduced by Mahdavi and Silva [4] can be summarized as follows:

• Definition of the Truncated Distribution: A random variable U with support in the
interval (a, b), where a ≤ 0 and b ≥ 1, and cumulative distribution function (CDF) F
is considered. The CDF of the truncated random variable U in the interval (0, 1) is
defined as:

FUt(u) =
F(u)− F(0)
F(1)− F(0)

. (1)

• Generation of the New Family of Distributions: Using the truncated CDF, the new
truncated F–G family of distributions is introduced. For each absolutely continuous G
distribution (denoted as the baseline distribution), the TF–G distribution is associated.
The CDF of the TF–G class of distributions is defined as:

GX(x) =
F(G(x))− F(0)

F(1)− F(0)
, (2)

where G is the CDF of the random variable V used to generate a new distribution.

The probability density function (PDF), fX(x), survival function, and hazard rate
function are given, respectively, by:

fX(x) =
g(x) f (G(x))
F(1)− F(0)

, (3)

SX(x) =
F(1)− F(G(x))

F(1)− F(0)
. (4)

and

hX(x) =
g(x) f (G(x))

F(1)− F(G(x))
, (5)

where f and g are the PDF of the random variables U and V, respectively. The extension to
the location-scale case of the model (3) is obtained from the transformation Y = µ + σX,
where X ∼ TF-G, for µ ∈ R y σ ∈ R+; it has PDF given by:

fY(y) =
1
σ

g(x) f (G(x))
F(x1)− F(x0)

, (6)

where
x =

y − µ

σ
, x0 =

a − µ

σ
, x1 =

b − µ

σ
.

Some distributions that have been derived using the generator proposed by [4] are the
truncated exponential-exponential (TEE), the truncated Lomax-Exponential by Enami [14],
the truncated exponential Marshall Olkin Lomax distribution of Hadi and Al-Noor [15]
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and the truncated Nadarajah-Haghighi Exponential by Al-Habib et al. [16]. The generator
proposed by [4] can also be used to derive distributions useful for modeling data in the
interval (0, 1), such as proportions, rates, or indices.

The analysis of phenomena represented by proportion data, confined to values be-
tween zero and one, is essential across various scientific disciplines. These data elucidate
part-to-whole relationships and are prevalent in numerous applications, including the
prevalence of diseases, the distribution of resources in economics, the survival rates of
species, and the utilization of habitats in ecology [17]. Modeling such data can be highly
challenging when there is high zero-to-one inflation in proportion data. Traditional statisti-
cal models, such as the censored normal or censored log-normal models, may not be the
best solution, as they often struggle to accurately characterize the underlying distribution
of proportion data with inflated extremes.

Numerous authors have collaborated to develop more robust models than the censored
normal and censored log-normal models for this type of data. By incorporating distribu-
tions such as the Birnbaum–Saunders [18,19], Student-t [20,21], skew-normal (SN) [22–25],
and power-normal (PN) [26,27] distributions, among others, they offer a framework for ana-
lyzing data with high degrees of skewness and kurtosis compared with traditional models.

Perhaps the beta distribution is the most well-known in the statistical literature and is
commonly used for fitting unit interval data. However, it has limitations when modeling
unit data with zero-one inflation. Recent proposals, such as the zero-one inflated beta mod-
els, have been made to overcome this limitation and have proven to be viable alternatives
for handling data with certain degrees of asymmetry [28–33]. Despite advancements in
modeling data with inflation and asymmetry, there remains a gap in adequately addressing
zero-one inflation in proportion data. Existing models fail to fully capture the unique
distributional characteristics and complexities introduced by these inflations, leading to
biased estimators and imprecise inferences [34,35].

The primary aim of this study is to introduce and develop unit-proportional hazard
zero-one inflated (UPHZOI) models, a novel class of regression models specifically designed
to address the challenges posed by zero-one inflation in proportional data confined to the
unit interval. UPHZOI models combine a continuous-discrete mixture distribution with
covariates, enabling them to effectively capture the complex dynamics of such data.

The remainder of this article is structured as follows: Section 2 provides background
on the asymmetric proportional hazard model and introduces the truncated proportional
hazard model. It also presents the process of parameter estimation, considering a classical
approach using the maximum likelihood method. In Section 3, we introduce new regression
models for unit interval data with inflation, including the model formulation, parameter
estimation, and elements of the Hessian matrix. Section 4 demonstrates the application of
these models through empirical case studies on doubly censored data and zero-inflated
data. Section 5 presents an analysis of the major results, limitations, and future research
directions. The article concludes with Section 6.

2. An Asymmetric Distribution for Skew Data

This section provides background on the proportional hazard (PH) distribution in-
troduced by Martínez-Flórez et al. [36] for modeling data with high or low kurtosis and
a wide range of skewness. Additionally, the unit-proportional hazard distribution is in-
troduced, derived using the truncated method of [4]. The latter serves as the foundation
for formulating the UPHZOI models, from which regression models for proportion data
are developed.

2.1. Proportional Hazard Distribution and Its Modeling

The PDF of the PH distribution is given by

ϕPH(y; θ) = α f
(

y − ξ

σ

){
1 − F

(
y − ξ

σ

)}α−1
, y ∈ R, (7)
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where θ = (ξ, σ, α), with ξ ∈ R is a location parameter, σ ∈ R+ is a scale parameter, α
is a positive real number and, F is an absolutely continuous distribution function with
continuous density function f = dF. The notation Y ∼ PH(ξ, σ, α) indicates that Y follows
an PH distribution with parameters ξ, σ, and α.

Under the PH model, the hazard function is presented as

hPH(y, α) = αh f (y),

where h f (·) = f (·)/(1 − F(·)) is the hazard function regarding the density f . When the
CDF F in the (7) model corresponds to the CDF of the standard normal distribution, that is,
F = Φ and therefore f = ϕ, we obtain the model denominated proportional hazard normal
(PHN), whose PDF is given by

ϕPHN(y; θ) = αϕ

(
y − ξ

σ

){
S
(

y − ξ

σ

)}α−1
, y ∈ R, (8)

where S(·) is the survival function of the standard normal PDF. This model also serves as
an alternative for fitting data with much wider ranges of skewness and kurtosis than those
of the normal distribution, which the latter cannot adequately capture. The CDF of the
PHN(µ, σ, α) is given by:

ΦPHN(y; θ) = 1 −
{

S
(

y − ξ

σ

)}α

, y ∈ R. (9)

By considering various values of α, Martínez-Flórez et al. [36] found that the range
of the asymmetry and kurtosis coefficients,

√
β1 and β2, for the variable Y ∼ PHN(0, 1, α)

are the intervals (−1.1578, 0.9918) and (1.1513, 4.3023), respectively. This indicates that the
PHN model is superior to both the SN and PN models in terms of asymmetry and kurtosis.
Furthermore, ref. [36] demonstrate that the information matrix of the PHN distribution
is non-singular. This is advantageous for statistical inference, as it allows for hypothesis
testing based on likelihood ratio statistics.

2.2. Truncated Proportional Hazard Normal Distribution

Based on the TF-G distribution, we define the truncated proportional hazard normal
(TPHN) distribution in the unit interval [0, 1]. Let F(·) be the CDF of the PHN distribution
and G(·) the CDF of a continuous uniform distribution on [0, 1]; then, we have that the
PDF of the TPHN model is

ϕTPHN(y; ξ, σ, α) =

α
σ ϕPHN

(
y−ξ

σ

)
{

S
(
−ξ
σ

)}α
−

{
S
(

1−ξ
σ

)}α , 0 < y < 1, (10)

where ϕPHN and S are defined in (8). The standardization terms, which facilitate the
normalization of the data within the specified limits, are defined as

z =
y − ξ

σ
, z0 = − ξ

σ
, z1 =

1 − ξ

σ
.

This is denoted by TPHN(ξ, σ, α). It can be seen from (10) that the CDF, survival
function, and hazard function for the TPHN distribution are given by:

ΦTPHN(y; ξ, σ, α) =
{S(z0)}α − {S(z)}α

{S(z0)}α − {S(z1)}α
, (11)

STPHN(y; ξ, σ, α) =
{S(z)}α − {S(z1)}α

{S(z0)}α − {S(z1)}α
, (12)
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and

hTPHN(y; ξ, σ, α) =
α

σ

ϕ(z){S(z)}α−1

{S(z)}α − {S(z1)}α
= α

{S(z)}α

{S(z)}α − {S(z1)}α
h(y), (13)

respectively, where h(y) is the hazard function of the normal distribution.
The moments of a random variable with TPHN distribution can be obtained using

the expression

E(Yr) =
α ∑r

j=1 ξr−jσjλj

{S(z0)}α − {S(z1)}α , r = 1, 2, . . . (14)

where

λ =
∫ S(z0)

S(z1)
Φ−1(1 − u)uα−1du

being Φ−1(·) the inverse of the function Φ(·).

2.3. Parameter Estimation in the TPHN Model

The TPHN parameters can be estimated using the maximum likelihood (ML) method
by maximizing the log-likelihood function. We consider a random sample of n obser-
vations, Y1, Y2, . . . , Yn from the TPHN(ξ, σ, α) distribution; the log-likelihood function of
θ = (ξ, σ, α)⊤ is obtained by taking the natural logarithm of the joint likelihood func-
tion defined as L(θ, y) = ∏n

i=1 ϕTPHN(yi; θ), where now θ = (ξ, σ, α). Taking the natural
logarithm in the above expression, we obtain the log-likelihood function established as

ℓ(θ) = n log(α)− n log(σ) +
n

∑
i=1

log(ϕ(zi))

+(α − 1)
n

∑
i=1

log(S(zi))− n log(W(ξ, σ, α)), (15)

where zi = yi−ξ
σ and W = W(ξ, σ, α) = log

(
{S(z0)}α − {S(z1)}α). By taking the first

derivatives of the function presented in (15) with respect to the parameters, ℓ̇(θ) = ∂ℓ(θ)/∂θ,
we obtain the score elements. For the location parameter ξ, the score function is formulated as

ℓ̇(α) =
n
α
+

n

∑
i=1

log(S(zi))− n
{S(z0)}α log(S(z0))− {S(z1)}α log(S(z1))

W
. (16)

For the scale parameter σ, the score function is defined as

ℓ̇(µ) =
1
σ

n

∑
i=1

zi +
α − 1

σ

n

∑
i=1

ϕ(zi)

S(zi)
− n

α

σ

h(z0){S(z0)}α − h(z1){S(z1)}α

W
. (17)

For the shape parameter α, the score is formulated as

ℓ̇(σ) = −n
σ
+

1
σ

n

∑
i=1

z2
i +

α − 1
σ

n

∑
i=1

zi
ϕ(zi)

S(zi)
− n

α

σ

z0h(z0){S(z0)}α − z1h(z1){S(z1)}α

W
. (18)

The maximum likelihood estimate (MLE) of the parameters is obtained by solving the
system of equations formed by setting (16)–(18) equal to zero. This system is generally
solved using iterative numerical methods, such as the Newton–Raphson or quasi-Newton al-
gorithms, which iteratively refine the parameter estimates to maximize the likelihood function.

2.4. Information Matrix in TPHN Model

The observed information matrix can be approximated by the negative of the Hessian
matrix, which is obtained from the second derivatives of the log-likelihood function. The
second derivatives of the log-likelihood function for ξξ, ξσ, σσ, ξα, σα an αα are given in the
Appendix A.1. To derive the information matrix, it suffices to find the expected value of the
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elements of the observed information matrix. According to [36], the family of proportional
hazard distributions is regular; thus, the information matrix of the PHN model is non-
singular, as demonstrated in Martínez-Flórez et al. [36]. Consequently, the information
matrix of the truncated distribution on [0, 1] is non-singular, and its covariance matrix is
given by

Σ = Σ(ξ, σ, α) = I−1(ξ, σ, α) = (E(J(ξ, σ, α)))−1.

It follows that, for large n, θ̂ is consistent and, furthermore, by the central limit theorem,
θ̂ is asymptotically normally distributed with mean vector θ and covariance matrix Σ, i.e.,

θ̂
D−→ N3(θ, Σ),

Details of this result can be found in [37].
In practice, since the matrix J(θ) is consistent for I(θ), we can take Σ = J−1(θ) as the

covariance matrix of the estimator vector for the TPHN model.

2.5. Unit-Proportional Hazard Regression Model

We now introduce the unit-proportional hazard normal (UPHN) regression model to
fit proportion data from the TPHN distribution by changing the location parameter ξ in (10)
to the linear predictor ξi = x⊤i β, where xi = (1, x1i, . . . , xpi)

⊤ is an observed covariate
vector for the observation i, and β = (β0, β1, . . . , βp)⊤ is the regression coefficient vector.
The response (dependent) variable Yi can be modeled by

Yi = β0 + β1x1i + · · ·+ βpxpi + εi, i = 1, . . . , n, (19)

where εi ∼ TPHN(0, σ, α). It follows from the natural form that

Yi ∼ TPHN(x⊤i β, σ, α), i = 1, 2, . . . , n.

Since our focus is on cases where the variable of interest lies within the unit interval
(0, 1), issues may arise with the expected response or predicted value, which could fall
outside this standard unit interval (0, 1), potentially resulting in negative estimates that
lack interpretation and/or meaning. To avoid these issues, we change the assumption
that the response variable Y is a linear function of the vector of explanatory variables
x⊤i = (x1, x2, . . . , xp) to a nonlinear transformation of this set of variables. This model will
be obtained by assuming that the location parameter of yi can be written as

g(µi) = ξi = x⊤i β, i = 1, . . . , n, (20)

where g(·) is a strictly monotonic and twice differentiable link function that maps (0, 1) to
R. There are several options for choosing the link function g(·); two commonly used for
this particular case are the logit function g(µi) = log(µi/(1 − µi)), and the probit function
g(µi) = Φ(µi). These two options yield very similar results in predicted values, with some
exceptions for extreme values. Because the logit and probit functions provide very similar
results in terms of model fit, and unlike the probit function, the logit link function allows for
simpler algebraic manipulations and obtaining expressions for the score function, elements
of the information matrix and expectation calculations among others, we opt for the logit
function. Thus, in this case, we write

µi =
exp(x⊤i β)

1 + exp(x⊤i β)
, i = 1, 2, . . . , n. (21)

For this model, the parameters are interpreted based on the odds ratio between the
odds of the prediction or mean when one of the variables is increased by m units (while
keeping the other explanatory variables constant) and the odds without this increase. It has
been demonstrated that this odds ratio is given by exp(mβk), where βk is the parameter as-
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sociated with the explanatory variable increased by m units. It follows that the distribution
of the variable under study is

yi ∼ TPHN(µi, σ, α), i = 1, 2, . . . , n.

The estimates of the parameters of the UPHN regression model with a logit link func-
tion can be obtained using the ML method. The log-likelihood function for the parameter
vector θ = (β, σ, α) given a sample of n observations is given by

ℓ(θ) = n log(α)− n log(σ) +
n

∑
i=1

log(ϕ(zi))

+ (α − 1)
n

∑
i=1

log(S(zi))−
n

∑
i=1

log(Wi(µi, σ, α)), (22)

where Wi = Wi(µi, σ, α) = log
(
{S(z0i)}α − {S(z1i)}α) with

zi =
yi − µi

σ
, z0i = −µi

σ
, z1i =

1 − µi
σ

.

Thus, the score function, defined as the derivative of the log-likelihood function with
respect to each of the parameters, is given for the vector whose components are given by:

ℓ̇(α) =
n
α
+

n

∑
i=1

log(S(zi))−
n

∑
i=1

{S(z0i)}α log(S(z0i))− {S(z1i)}α log(S(z1i))

Wi
,

ℓ̇(β j) =
1
σ

n

∑
i=1

xijziµi(1 − µi) +
α − 1

σ

n

∑
i=1

xijµi(1 − µi)ϕ(zi)

S(zi)

− α

σ

n

∑
i=1

xijµi(1 − µi)
(
h(z0i){S(z0i)}α − h(z1i){S(z1i)}α)

Wi
,

ℓ̇(σ) = −n
σ
+

1
σ

n

∑
i=1

z2
i +

α − 1
σ

n

∑
i=1

zi
ϕ(zi)

S(zi)
− α

σ

n

∑
i=1

z0ih(z0i){S(z0i)}α − z1ih(z1i){S(z1i)}α

Wi
.

Setting these expressions to zero, we get the corresponding score equations whose
numerical solution leads to the MLE. The elements of the information matrix are obtained
using the chain rule and are presented in Appendix A.2.

It can be seen that, for large sample sizes, we have

θ̂
D−→ Np+3(θ, IF(θ)

−1).

where, “D” indicates convergence in distribution. In this way, inferences can be made
about the parameters using likelihood ratio statistics.

2.6. MCMC Methods for the PHN Model

Bayesian methods can also be implemented to perform statistical inference within the
PHN distribution family. Although there is limited statistical literature addressing this
issue in power-normal distributions, Sarabia and Castillo [38] provides some initial ideas
on how to approach it. In this section, we do not aim to propose specific Bayesian methods
but rather open the door to exploring these methods within the PHN model class.

We consider the standard case of the PHN(0, 1, α) ≡ PHN(α) model, and, similar
to [38], we assume a gamma distribution for the shape parameter α. The model we
consider is

Y | α ∼ PHN(α) (23)

α ∼ Gamma(δ0, λ0), (24)
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where Gamma(δ0, λ0) denotes a gamma random variable with PDF proportional to sδ0−1e−λ0s

with δ0 and λ0 known. If we denote by m(y) the marginal distribution of Y and by π(α | Y)
the posterior distribution of the shape parameter α, we have that:

m(y) =
∫ ∞

0
αϕ(y)[1 − Φ(y)]α−1 λδ0

0
Γ(δ0)

αδ0−1e−λ0αdα

=
λδ0

0
Γ(δ0)

ϕ(y)
1 − Φ(y)

Γ(δ0 + 1)
{λ0 − log[1 − Φ(y)]}δ0−1 , (25)

from which it follows that:

π(α | Y) =
{λ0 − log[1 − Φ(y)]}δ0+1

Γ(δ0 + 1)
αδ0 e−(λ0−log[1−Φ(y)])α, (26)

which is the PDF of a random variable Gamma(δ1, λ1), where δ1 and λ1 are given by

δ1 = δ0 + 1, λ1 = λ0 − log[1 − Φ(y)]

Inference about the parameter α is carried out based on the posterior distribution given
in (26). For the location-scale case, PHN(ξ, σ, α), prior distributions for the parameters ξ
and σ that can be considered are the normal and inverse-gamma distributions, respectively.

3. UPHN Zero-One Inflated Regression Model

In this section, we present some regression models for unit interval (proportion) data
that account for inflation at values zero and one or any value between zero and one.

3.1. Models for Censored Data

Cragg proposed a two-part model [39], which is a framework for fitting the mixture of
a discrete and a continuous random variable. This model is represented by:

g(yi) = pi Ii + (1 − pi) f (yi)(1 − Ii),

where pi is the probability that determines the relative contribution of the point mass
distribution made by the discrete variable, f (·) is a PDF, and Ii is an indicator variable that
takes values of 0 or 1. This model is optimal in cases where the model is inflated at the
point mass value (for example, yi = a), whose probability at y = a cannot be explained
by the CDF associated with the PDF f (·). Cragg’s model can be extended to the case of a
variable with double censoring or two-point mass values, for example, 0 and 1, in which
case it is given by:

g(yi) = p0i I0i + (1 − p0i − p1i) f (yi)(1 − I0i − I1i) + p1i I1i,

where p0i = Pr(yi = 0), p1i = Pr(yi = 1), I0i is the indicator variable that takes the value 1
if yi = 0 and zero otherwise. Similarly, I1i is the indicator variable for yi = 1. In this model,
the three components are determined by different stochastic processes, thus necessarily
leading to a positive response from f . On the other hand, a zero or a one comes from the
distribution of a point mass.

3.2. Zero-One Inflated PHN Distribution

Based on Cragg’s model, we proposed the zero-one inflated PHN model as a means of

g(y) =


ρ0, if y = 0,
α
σ (1 − ρ0 − ρ1)ϕ(z){S(z)}α−1, if 0 < y < 1,
ρ1, if y = 1,
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where
z =

y − µ

σ
, ρ0 = Pr(y = 0), ρ1 = Pr(y = 1).

From this model, cases of inflation only at zero follow by taking ρ1 = 0 or inflation
only at one by taking ρ0 = 0.

The CDF is represented by:

G(y) =


ρ0, if y ≤ 0,
ρ0 + (1 − ρ0 − ρ1)

[
{S(z0)}α − {S(z)}α], if 0 < y < 1,

1, if y ≥ 1.

The most interesting case in this new model is when covariates are used to explain the
response both in the censored part (0 and 1) and in the uncensored part (the continuous part
in (0, 1)). Thus, for the discrete part, it is assumed that the responses at zero and one can be
explained by the covariate vectors x(0)i = (1, x0i1, . . . , x0iq)

⊤ and x(1)i = (1, x1i1, . . . , x1ir)
⊤

respectively. Then, to determine the probabilities ρ0 and ρ1, a logistic model with a polyto-
mous response can be constructed such that:

ρ0i = Pr(yi = 0) =
exp (x⊤(0)iβ(0))

1 + exp (x⊤
(0)iβ(0)) + exp (x⊤

(1)iβ(1))
, (27)

ρ1i = Pr(yi = 1) =
exp (x⊤(1)iβ(1))

1 + exp (x⊤
(0)iβ(0)) + exp (x⊤

(1)iβ(1))
, (28)

ρ01i = 1 − ρ0i − ρ1i = Pr(yi ∈ (0, 1)) =
1

1 + exp (x⊤
(0)iβ(0)) + exp (x⊤

(1)iβ(1))
, (29)

where β(0) = (β00, β01, . . . , β0q)
⊤ y β(1) = (β10, β11, . . . , β1r)

⊤ are vectors of unknown
parameters associated respectively with the covariate vectors x(0) and x(1).

Similarly, for the continuous component of the model, a unit model PHN(µi, σ, α) is
still assumed with a logit link function in the mean response, i.e., log(µi/(1 − µi)) = x⊤i β,
where xi = (xi1, xi2, . . . , xip) is a vector of covariates with associated coefficient vector
β = (β0, β1, β2, . . . , βp)⊤. For this model, it is easy to verify that the log-likelihood function
for the parameter vector θ = (β⊤

(0), β⊤
(1), β⊤, σ, α)⊤ given X(0), X, X(1) and Y can be written

in the form:
ℓ(θ) = ℓ(β(0), β(1)) + ℓ(β, σ, α),

where

ℓ(β(0), β(1)) = ∑
0

x(0)iβ(0) + ∑
1

x(1)iβ(1) −
n

∑
i=1

log
[
1 + exp (x⊤(0)iβ(0)) + exp (x⊤(1)iβ(1))

]
.

and
ℓ(β, σ, α) = ∑

yi∈(0,1)
(log(α)− log(σ) + log(ϕ(zi)) + (α − 1) log(S(zi))).

Given these characteristics, the MLEs of the model parameters can be obtained sep-
arately for each component of the log-likelihood function. The score function is derived
by differentiating each component of the log-likelihood function. It can be shown that the
Fisher information matrix can be written as a block diagonal matrix in the form:

I(θ) = Diag
{

I(β(0), β(1)), I(β, σ, α),
}

where I(β(0), β(1)) corresponds to the information matrix of the discrete part. The elements
of the observed information matrix for the discrete part are given in the Appendix A.3.
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The respective Fisher information matrix is obtained by calculating the expectation of the
elements of the observed information matrix. Furthermore, since the inverse of a block
diagonal matrix is the block diagonal matrix of the respective inverses, it follows that the
variance-covariance matrix is given by:

Σ = Diag{I−1(
β(0),β(1)

), I−1
(β,σ,α)

}.

Here, for large sample sizes it follows that for θ = (β, β(0), β(1), σ, α)⊤

θ̂
D−→ Np+q+r+3(θ, IF(θ)

−1).

Confidence intervals for θr with of confidence coefficient ω = 100(1 − ψ)% can be

obtained as θ̂r ∓ z1−ω/2

√
σ̂(θ̂r). By talking ρ1i = 0, the zero-inflated model is followed and,

making ρ0i = 0, the zero-inflated model is obtained.

3.3. The Zero-One Inflated UPHN Model

Similarly to how the zero-one inflated PHN model was constructed, a zero and/or
one-inflated UPHN distribution can be proposed, which is given by:

f (yi) =


ρ0, if y = 0,

α
σ (1 − ρ0 − ρ1)

ϕ(z){S(z)}α−1

{S(z0)}α − {S(z1)}α
, if 0 < y < 1,

ρ1, if y = 1.

where z, ρ0 = Pr(y = 0) and ρ1 = Pr(y = 1) are defined as in the zero-one inflated
PHN model.

The CDF of this distribution is represented by

F(y) =


ρ0, if y ≤ 0,

ρ0 + (1 − ρ0 − ρ1)
{S(z0)}α − {S(z)}α

{S(z0)}α − {S(z1)}α
, if 0 < y < 1,

1, if y ≥ 1.

For the case of covariates in the model, x(0)i = (1, x0i1, . . . , x0iq)
⊤ and

x(1)i = (1, x1i1, . . . , x1ir)
⊤ for the zero- and one-inflated part, with associated coefficient

vector β(0) = (β00, β01, . . . , β0q)
⊤ and β(1) = (β10, β11, . . . , β1r)

⊤. For the continuous com-
ponent of the model, we connect the response variable with the linear predictor using
the logit link function. As before, we choose this link function because, in addition to
ensuring that the predictions model is within the (0, 1) interval, the logit function allows
for more explicit expressions of the score function elements and the information matrix
compared to the probit function, which depends on the integral of the cumulative distri-
bution function of the standard normal distribution. In this way, we assume relationship
log(µi/(1 − µi)) = x⊤i β, where xi = (1, xi1, xi2, . . . , xip)

⊤ is a vector of covariates with
vector of coefficients β = (β0, β1, β2, . . . , βp)⊤.

The proposal again is to use a polytomous logistic model to explain the probabilities
ρ0i and ρ1i. As in the case of the inflated PHN model, we have that the log-likelihood
function is given by

ℓ(θ) = ℓ(β(0), β(1)) + ℓ(β, σ, α),

where ℓ(β(0), β(1)) is the same as the inflated PHN model, while
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ℓ(θ; y) = n01 log(α)− n01 log(σ) + ∑
yi∈(0,1)

log(ϕ(zi)) + (α − 1) ∑
yi∈(0,1)

log(S(zi))

− ∑
yi∈(0,1)

log(Wi(µi, σ, α)),

where zi, Wi = Wi(µi, σ, α), z0i and z1i are as defined in (22).
The score function is obtained by differentiating each component of the log-likelihood

function and the Fisher information matrix can be written as a diagonal block matrix in
the form:

I(θ) = Diag
{

I(β(0), β(1)), I(β, σ, α)
}

.

The elements of the matrix I(β(0), β(1)) are like those given in the inflated PHN model,
while the elements of the matrix I(β, σ, α) are like those given in the information matrix of
the UPHN regression model.

3.4. Generalized Two-Part PHN Model

Cragg’s two-part model [39] encounters the issue that some censored points may
be values at the boundary of the censoring limit. This is particularly problematic for
a distribution f (·) within the unit interval [0, 1], where a zero or one could either be a
realization from the point mass distribution or a partial observation of f (·) having a critical
value that is not precisely known but is close to (0, T1) or (T2, 1) for small values of the pre-
specified constants T1 and T2. In practice, the values T1 and T2 are, in some cases, defined as
those for which the instruments cannot record measurements below or above, respectively,
and, consequently, are treated as censoring values. In other cases, these observational
limits are defined for ethical or practical reasons. For example, in clinical studies, it may be
unethical to continue observing a patient under certain conditions, or the costs of prolonged
observation may become prohibitive.

To address this issue in the two-part model, Moulton and Halsey [40] propose a new
approach to adjust the mixture of continuous and discrete random variables. This approach
allows for the possibility that some limiting responses result from an interval censoring
of f (·). The model proposed by Moulton and Halsey (1995) for left censoring at point
a is given by: g(yi) = [pi + (1 − pi)F(T)]Ii + (1 − pi) f (yi)(1 − Ii), where F is the CDF
associated to f and, T It is a pre-established constant within the interval (a, T) where some
limiting responses are considered censored. Similarly to how we generalized Cragg’s
model, Moulton and Halsey’s model can also be generalized for left and right censoring or
two boundary inflation points within the definition interval of the pdf f (·). In our case,
for the unit PHN distribution within the interval [0, 1], this generalization of Moulton and
Halsey’s model is given by:

g(yi) =
(

p0i + (1 − p0i − p1i)(1 − {S(z0i)}α)
)

I0i +
α(1 − p0i − p1i)

σ
ϕ(zi){S(zi)}α−1 I(0,1)i

+
(

p1i + (1 − p0i − p1i){S(z1i)}α)I1i.

It can be observed that this distribution is a model with double censoring (at zero
and one) and, therefore, allows for the fit of datasets with inflation at zero and one. This
represents an alternative to the double-censored Tobit model, where the CDF of the normal
distribution does not efficiently fit the probability of the point mass where double censoring
occurs, i.e., the probability of the inflation points.

Extending this model to the case of covariates in each part of the model, we again
assume that x(0)i = (1, x0i1, . . . , x0iq)

⊤ and x(1)i = (1, x1i1, . . . , x1ir)
⊤ are sets of auxil-

iary covariates for the discrete part at zero and one, respectively; and a set of covariates
xi = (1, xi1, . . . , xip)

′ for the continuous part in the interval (0, 1). Then, denoting by ρ0
the proportion of observations below zero, yi = 0 (lower detection limit), and by ρ1 the
proportion of observations above one, yi = 1 (upper detection limit), the extension of the
Moulton and Halsey model to the double-censored PHN case can be expressed through
the PDF given by
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g(yi) =


ρ0i + (1 − ρ0i − ρ1i)(1 − {S(z0i)}α), if yi ≤ 0,
α
σ (1 − ρ0i − ρ1i)ϕ(zi){S(zi)}α−1, if 0 < yi < 1,
ρ1i + (1 − ρ0i − ρ1i){S(z1i)}α, if yi ≥ 1,

where ρ0i and ρ1i are the probability masses at points zero and one, while z0i, z1i, zi are as
defined above; log(µi/(1 − µi)) = x⊤i β, where β is the set of coefficients associated with
the covariate vector xi = (1, xi1, . . . , xip)

⊤.
The CDF of this model is represented by

G(yi) =


ρ0i + (1 − ρ0i − ρ1i)(1 − {S(z0i)}α), if yi ≤ 0,
ρ0i + (1 − ρ0i − ρ1i)

[
1 − {S(zi)}α], if 0 < yi < 1,

1, if yi ≥ 1.

To model the responses at the point masses yi = 0 and yi = 1, a multinomial logistic
model with a logit link function is used again, where β⊤

(0), β⊤
(1) are the vectors of coefficients

associated with the sets of covariates x(0)i = (1, x0i1, . . . , x0iq)
⊤ and x(1)i = (1, x1i1, . . . , x1ir)

⊤.
The log-likelihood function for parameter vector estimation θ = (β⊤

(0), β⊤
(1), β⊤, σ, α)⊤

conditionally on X(0), X, X(1), is given by:

ℓ(θ) = ∑
0

log
[
exp(x⊤(0)iβ(0)) + 1 − {S(z0i)}α

]
+ ∑

1
log

[
exp(x⊤(1)iβ(1)) + {S(z1i)}α

]
+ ∑

i∈(0,1)
(log(α)− log(σ) + log(ϕ(zi)) + (α − 1) log(S(zi)))

−
n

∑
i=1

log
[
1 + exp (x⊤(0)iβ(0)) + exp (x⊤(1)iβ(1))

]
. (30)

The score equations are obtained by performing the first derivatives with respect to
the model parameters θ = (β⊤

(0), β⊤
(1), β⊤, σ, α)⊤ while the information matrix is obtained

by proceeding as in the models studied previously. Models with inflation only at zero or
only at one can be studied by taking ρ0 = 0 or ρ1 = 0, respectively.

4. Empirical Applications

In this section, we illustrate the application of the proposed models and compare
it with other models using real data. We show that the proposed model can be a valid
alternative to some existing regression models in the statistical literature.

4.1. Application 1: Case Study on Students’ Dropout Data

Student dropout is a major problem many Latin American countries face. In some uni-
versities in Colombia, this phenomenon can lead to more than 50% of students who enroll
in a university program abandoning their higher education studies. This phenomenon has
its greatest impact in the first four semesters of undergraduate studies, which is why it is
important to determine the main causes leading to this abandonment of higher education.

This application refers to student dropout in the Faculty of Veterinary Medicine and
Zootechnics (MVZ, by its acronym in Spanish) at the University of Córdoba, Colombia.
The analyzed information corresponds to a sample of students who dropped out during
one of the first four semesters (early dropout) of the programs in the MVZ Faculty at the
University of Córdoba. The data correspond to variables from the SPADIES System of the
Ministry of National Education (MEN by its acronym in Spanish) and the university itself.

The response variable y corresponds to the proportion of subjects passed up to the
point of dropout. The explanatory variables considered were: x1 = Saber 11 test score
(exams taken at the end of secondary education); x2 = age at the time of taking the
Saber 11 test; x3 = variable indicating whether the student received financial support
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(taking values 1 = yes, 0 = no); x4 = mother’s educational level (categorized as 1 if
professional and, 0 otherwise); x5 = number of siblings; x6 = socioeconomic status of the
student (categorized as 1 if from strata 1, 2, or 3, referred to as low and 0, otherwise); and
x7 = student’s gender (categorized as 1 if male and 0 otherwise).

The zero-one inflated model, PHN, UPHN, and Doubly-Censored PHN (DCPHN)
were fitted since some students drop out in the first semester without passing any subjects,
and others drop out in the first four semesters even after passing all enrolled subjects.

The results obtained with the models studied in this article show that in all models,
the significant variables for 0 < y < 1 were the Saber 11 test score (x1), age at the time of
taking the Saber 11 test (x2), and number of siblings (x5). Similarly, the censored part at
zero (y = 0) is not explained by any variable in any of the three models, while the censored
part at one (y = 1) showed significance in variables such as age at the time of taking the
Saber 11 test (directly related to the age of university entry) and number of siblings.

Table 1 shows the results of the best-fitted model for each of the considered models.
To determine which model presents better performance, we used the AIC criteria [41] and
the corrected AIC (AICc) [42]. These criteria are defined as:

AIC = −2ℓ(θ) + 2p and AICc = −2ℓ(θ) +
2n(p + 1)
n − p − 2

,

where p is the number of parameters of the model in question.
The MLEs, with standard errors in parentheses, are given in Table 1. According to

the AIC and AICc criteria, the model that best fits the student dropout data is the UPHN,
followed by the DCPHN model.

Table 1. ML estimates of the indicated parameter and model for the dropout data and their AIC
and AICc.

Estimador PHN UPHN DCPHN

β̂00 −2.1624 −2.1624 −2.4371
(0.2071) (0.2071) (0.3025)

β̂10 2.9392 0.9771 1.3859
(0.0144) (0.0223) (0.6003)

β̂11 0.0142 0.0273 0.0208
(0.0092) (0.0041) (0.0096)

β̂12 −0.3281 −0.2844 −0.2687
(0.0125) (0.0175) (0.0905)

β̂15 0.1295 0.2129 0.1847
(0.0146) (0.0205) (0.0910)

β̂20 14.5124 14.5124 16.0286
(7.9470) (7.9470) (13.6058)

β̂21 0.0208 0.0208
(0.0127) (0.0127)

β̂22 −1.2230 −1.2230 −1.2024
(0.5150) (0.5150) (0.8650)

β̂25 0.4998 0.4998
(0.2509) (0.2509)

σ̂ 0.1064 0.1160 0.1238
(0.0104) (0.0057) (0.0598)

α̂ 0.1538 0.1427 0.1721
(0.0364) (0.0197) (0.1933)

AIC 195.0036 182.4216 183.6414

AICc 198.4687 185.6696 186.6646
Where PHN is proportional hazard normal, UPHN is truncated proportional hazard normal, DCPHN is dou-
bly censored proportional hazard normal, AIC is Akaike information criterion, and AICc is corrected Akaike
information criterion.
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To identify outliers and/or model misspecification, we examined the transformation
of the martingale residual, rMTi, as proposed by Barros et al. [43]. These residuals are
defined by

rMTi = sgn(rMi)
√
−2[rMi + δi log(δi − rMi)]; i = 1, 2, 3, · · · , n,

where rMi = δi + log(S(ei, θ̂)) is the martingal residual proposed by Ortega et al. [44],
where δi = 0, 1 indicates whether the ith observation is censored or not, respectively,
sgn(rMi) denotes the sign of rMi and S(ei; θ̂) represents the survival function evaluated at
ei, where θ̂ are the MLE for θ.

The plots of rMTi with confidence envelope graphs generated for the PHN, UPHN,
and DCPHN models, shown in Figures 1 and 2, indicate that the fitted regression models
PHN, UPHN, and DCPHN, with a logit link function, exhibit a good fit.
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Figure 1. Plots of envelopes for rMTi using: (Left) PHN and (Right) UPHN models and dropout data.
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Figure 2. Plots of envelopes for rMTi using DCPHN model and dropout data.
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4.2. Application 2: Case Study on Periodontal Disease Data

The data motivating this second application come from a clinical study in which the
clinical attachment level (CAL), a key marker of periodontal disease (PD), was measured at
six sites on each tooth of a subject. The primary statistical question is to estimate functions
that model the relationship between the “proportion of diseased sites associated with
a specific tooth type (incisors, canines, premolars, and first molars)” and the covariates
described below. The full dataset was previously analyzed by Galvis et al. [45] and includes
information from 290 individuals. The response variable in this study is the proportion
of diseased sites for the premolars (denoted as Y), with auxiliary covariates being gender
(X1), age (X2), glycosylated hemoglobin (X3), and smoking status (X4).

The dataset exhibits significant inflation at Y = 0, but for certain subjects, we also
observe Y = 1. To account for this, we applied the beta zero-one inflated (BIZU), trun-
cated log-normal zero-one inflated (LNIZU), doubly censored proportional hazard normal
(DCPHN), and the UPHN inflated zero-one (UPHNIZU) regression models. Our analysis
revealed that only the covariates X1 and X2 were statistically significant. For the DCPHN
model, only X2 was significant for both the discrete outcomes.

We used several information criteria to compare the various models, including AIC and
the AICC. We also used the Bayesian Information Criterion (BIC) and the Hannan–Quinn
Information Criterion, defined as follows:

BIC = −2ℓ(θ) + p log(n), HQC = −2ℓ(θ) + 2p log(log(n)),

where p is the number of parameters of the model in question.
The MLEs, with standard errors in parentheses, are given in Table 2.

Table 2. ML estimates of the indicated parameter and model for the tooth data and their AIC, AICc,
BIC, and HQC.

Estimador BIZU LNIZU DCPHN UPHNIZU

β00 0.6337 0.6337 −7.2205 0.6337
(0.7408) (0.7408) (0.8854) (0.7408)

β02 −0.0376 −0.0376 −0.0935 −0.0376
(0.0135) (0.0135) (0.0161) (0.0135)

β10 −1.3885 −2.8949 −2.4039 −5.2246
(0.3957) (1.1453) (0.6809) (3.1908)

β11 −0.5366 −1.3134 −0.5517 −2.9349
(0.1613) (0.4387) (0.2420) (1.4567)

β12 0.0217 0.0393 0.0363 0.1325
(0.0068) (0.0194) (0.0123) (0.0735)

β20 −8.0316 −8.0316 −12.7261 −8.0316
(2.3153) (2.3145) (1.4938) (2.3153)

β22 0.0788 0.0788 −0.0487 0.0788
(0.0358) (0.0358) (0.0236) (0.0358)

σ 0.0903 0.3096 0.3060 0.6011
(0.0652) (0.0796) (0.0305) (0.1354)

α 1.5871 2.8429
(0.0974) (0.7634)

AIC 311.7097 316.0700 325.2363 308.0793

AICC 314.3525 318.7128 328.3095 310.8678

BIC 341.0687 345.4290 358.2652 341.1082

HQC 323.4723 327.8326 338.4693 321.3123

In Figures 3–6, it can be observed that the best fits correspond to the BIZU and
UPHNIZU models. Additionally, note that in three of the criteria, the UPHNIZU model
performs better than the BIZU model, while for the fourth criterion (BIC), no significant
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differences are found between the two models. It is important to consider that the BIZU
model has one less parameter, which further supports the superior fit of the UPHNIZU
model. This allows us to conclude that the UPHNIZU model is a promising new alternative
for modeling responses within the unit interval [0, 1] with zero-one inflation.

We also generated standardized residual plots to identify the presence of outliers
when fitting the UPHNIZU model. Additionally, we present the cumulative distribution
function (CDF) plot of the UPHN model (Figure 5). From these, the model shows a good
fit, and no outliers are detected. In addition, envelope plots were obtained for the fitted
models BIZU, LNIZU, and DCLPHN, which are presented in Figures 3 and 4. These plots
demonstrate that the BIZU and LNIZU models exhibit a better fit than the DCPHN model.
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Figure 3. Plots of envelopes for rMTi using: (Left) BIZU and (Right) LNIZU models and
periodontal data.
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Figure 4. Plots of envelopes for rMTi using DCPHN model and periodontal data.
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Figure 5. (Left) Empirical CDF of the residuals of the UPHNIZU model (solid line) and fitted CDF
(dashed line). (Right) Plots of the standardized residuals of the UPHNIZU model, periodontal data.
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Figure 6. Plots of envelopes for rMTi using UPHNIZU model and periodontal data.

5. Discussion

In this article, we introduced a broad class of skew regression models designed for
response variables that lie within the unit interval, which may exhibit an excess of zeros
or ones. These models were derived from a continuous-discrete mixture distribution that
incorporates covariates in both its discrete and continuous components. As evidenced
by applications using real data, the models we propose serve as a viable alternative for
modeling rates and proportions that are inflated at either zero or one.
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5.1. Major Results and Implications

Our findings demonstrate that the UPHNIZU model consistently surpassed other
models in terms of AIC, AICc, BIC, and HQC values. These models delivered a superior
fit for the data obtained from the case study on students’ dropout data and the clinical
study on periodontal disease, where the response variable was the proportion of diseased
tooth sites.

Our findings also demonstrate that UPHNIZU models generate a non-singular infor-
mation matrix, allowing valid statistical inferences and outperforming other asymmetric
models like those derived from the skew-normal distribution or the beta distribution. Em-
pirical results show the models’ effectiveness in analyzing proportional data with zero
and one inflation, highlighting their robustness and practicality in various research fields
such as biomedicine, economics, and engineering. Additionally, they present parame-
ter estimation methods using maximum likelihood and discuss applications in student
dropout studies and periodontal disease. UPHNIZU models are a promising alternative
for analyzing bounded data with extreme inflation, providing a robust and flexible tool to
capture the complex characteristics of such data. The research also emphasizes the impor-
tance of innovations in probability distributions and their application in modeling complex
phenomena, offering an advanced solution for the challenges of modeling proportional
data with zero and one inflation.

5.2. Model Limitations

Although the results are encouraging, our study has several limitations. First, the
models’ complexity and reliance on iterative numerical methods for parameter estimation
can lead to high computational demands. Second, while the models showed strong perfor-
mance with the datasets utilized in this research, additional validation on different types of
data is required to ensure their applicability in broader contexts.

5.3. Prospects for Further Investigation

Future research may explore several avenues, including the creation of more efficient
algorithms to lessen the computational demands of fitting these models. Furthermore, ap-
plying these models in fields like economics or environmental studies could offer additional
validation and reveal new applications.

Given the importance of model performance in our analysis, while the methods
employed—such as AIC, AICc, BIC, HQC, and martingale residuals—are effective for
evaluating model adequacy, there is room for improvement. Future research could in-
vestigate additional goodness-of-fit tests specifically designed for bounded and inflated
data, which could offer a more thorough evaluation of model performance and robustness.
Additionally, exploring Bayesian inference methods for unit interval data with inflation
could provide valuable insights and enhance the analytical framework.

An intriguing avenue for future research involves adapting these models to accommo-
date longitudinal or hierarchical data structures. This would require methods to manage
correlations within subjects or groups, often present in practical datasets. Additionally,
examining the robustness of these models in various misspecification scenarios could lead
to more resilient modeling strategies.

6. Conclusions

Analyzing proportion data, particularly when values are inflated at zero and one, presents
significant challenges across various scientific disciplines. Conventional models, such as beta
and Tobit regression models, frequently fail to accurately capture the complexities associated
with such data. This underscores the need for more sophisticated modeling techniques capable
of addressing the unique distributional characteristics of zero-one inflation.

This work tackled these challenges by introducing the proportional hazard normal
zero-one inflated models. These models incorporate a continuous-discrete mixture distri-
bution with covariates in both components, offering an advanced framework for analyzing
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proportion data with specific inflation points. Consequently, the proportional hazard
normal zero-one inflated models provide a robust and flexible method for capturing asym-
metrically distributed data and mixed discrete-continuous characteristics, prevalent in
fields such as medicine, sociology, humanities, and economics.

Our applications, which pertain to two case studies on student dropout and periodon-
tal data, demonstrated that the proportional hazard normal zero-one inflated models with
the logit link function are an excellent alternative to traditional models. The transformation
of martingale residuals and the generation of simulated envelopes further validated the
robustness of our models, underscoring their effectiveness in identifying model misfits
and outliers. The proposed models address a critical gap in statistical modeling, providing
valuable insights and reliable estimators for handling bounded and inflated data. The
flexibility and robustness of the proportional hazard normal zero-one inflated models make
them a viable alternative for describing proportion data that are inflated at zero or one.

In conclusion, the proportional hazard-normal zero-one inflated models signify a
significant advancement in statistical modeling techniques for proportion data exhibiting
zero-one inflation. These models provide a robust and adaptable framework for analyzing
such data, yielding deeper insights and more reliable estimators.
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Appendix A. Elements of the Observed Information Matrix

Appendix A.1. Truncated Proportional Hazard Normal Model
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ℓ̈(ξα) = −n
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1
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Appendix A.2. Unit-Proportional Hazard Normal Regression Model
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Appendix A.3. UPHN Regression Model Inflated at Zero and/or One

For the discrete part, the elements of the observed information matrix are given by:
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while the elements for the continuous part are given by:

ℓ̈(β jβk) =
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σ ∑
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σ ∑

yi∈(0,1)
zih(zi),

ℓ̈(αα) =
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,

where zi =
yi−µi

σ and n01 is the number of sample elements that belong to the interval (0, 1).
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