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Abstract: In semi-supervised learning (SSL) for medical image classification, model performance
is often hindered by the scarcity of labeled data and the complexity of unlabeled data. This paper
proposes an enhanced SSL approach to address these challenges by effectively utilizing unlabeled
data through a combination of pseudo-labeling and contrastive learning. The key contribution
of our method is the introduction of a Dynamic Sample Reweighting strategy to select reliable
unlabeled samples, thereby improving the model’s utilization of unlabeled data. Additionally,
we incorporate multiple data augmentation strategies based on the Mean Teacher (MT) model to
ensure consistent outputs across different perturbations. To better capture and integrate multi-scale
features, we propose a novel feature fusion network, the Medical Multi-scale Feature Fusion Network
(MedFuseNet), which enhances the model’s ability to classify complex medical images. Finally,
we introduce a pseudo-label guided contrastive learning (PGC) loss function that improves intra-
class compactness and inter-class separability of the model’s feature representations. Extensive
experiments on three public medical image datasets demonstrate that our method outperforms
existing SSL approaches, achieving 93.16% accuracy on the ISIC2018 dataset using only 20% labeled
data, highlighting the potential of our approach to advance medical image classification under
limited supervision.

Keywords: semi-supervised learning; medical image classification; consistency regularization; feature
fusion; contrastive learning

MSC: 68T45

1. Introduction

Deep learning has achieved significant advancements in medical image classifica-
tion [1], primarily due to the availability of large-scale, high-quality, labeled datasets [2,3].
However, acquiring accurate and well-labeled medical image data is both time-consuming
and costly in real-world applications. This challenge is particularly evident in clinical
settings, where vast amounts of unlabeled medical images are available, but expert anno-
tation remains expensive and labor-intensive. The difficulty is further compounded by
the diversity of imaging modalities and pathological conditions. For example, the ISIC
2018 dataset, which focuses on dermoscopic images of skin lesions, and the NCT-CRC-HE
dataset, containing histopathological images of colorectal cancer tissues, present distinct
challenges in image classification. These images often suffer from missing labels, such as
tumor grades, disease stages, or specific pathological features, which complicates the learn-
ing process. Additionally, rare diseases, such as early-stage melanoma or specific colorectal
cancer subtypes, often comprise only a small fraction of the available data, making it diffi-
cult to obtain sufficient labeled samples for accurate diagnosis. Similarly, the Chest X-ray14
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dataset, which contains over 112,120 frontal-view X-ray images of 14 different thoracic
diseases, presents its own set of challenges. While it provides a large volume of labeled data,
it suffers from class imbalance, with certain diseases being underrepresented in the dataset.
Moreover, X-ray images may vary in quality due to differences in acquisition equipment
or imaging protocols, further complicating classification tasks. The presence of noise and
variations in image quality, combined with the challenge of obtaining high-quality labels for
rare conditions like tuberculosis or interstitial lung diseases, makes this dataset particularly
challenging for training robust machine learning models. Thus, the imbalance between the
abundance of unlabeled data and the scarcity of labeled data presents a significant barrier
to developing robust deep learning models. Consequently, semi-supervised learning (SSL)
has emerged as a promising approach to leverage this abundant unlabeled data [4,5], aim-
ing to bridge this gap and enhance model performance despite challenges associated with
noisy and unreliable annotations, especially when labels are missing for critical features
such as tumor subtypes or early disease markers.

The primary challenge in applying semi-supervised learning (SSL) to medical image
classification lies in the noise present in unlabeled data and the potential for generating
inaccurate pseudo-labels, particularly when data distributions are imbalanced or exhibit
diverse pathology types [6,7]. Pseudo-labeling methods aim to utilize existing labeled data
to train a model, which then makes predictions on unlabeled data to generate pseudo-
labels. The effectiveness of this approach heavily depends on the reliability of these
pseudo-labels—if they are inaccurate, the model can be adversely affected by propagating
errors during training, leading to degraded performance [8,9]. Specifically, models are
often not fully trained at the outset, making the reliability of the generated pseudo-labels
difficult to guarantee, which exacerbates the issue of error propagation.

To mitigate the challenges posed by pseudo-labeling, advanced SSL methods have
incorporated consistency regularization. This approach encourages the model to produce
consistent outputs for the same input under different data augmentations, thereby improv-
ing robustness against noise and variations. For instance, the Mean Teacher model [10]
utilizes a moving average of model weights to generate consistent predictions, significantly
enhancing performance. Additionally, the Virtual Adversarial Training (VAT) method [11]
creates adversarial examples to impose consistency constraints, further stabilizing the
model’s predictions. However, both methods exhibit notable limitations: pseudo-labeling
is overly reliant on the initial quality of labeled data—if these initial labels are inaccurate,
subsequent training results can be significantly compromised [12]. Meanwhile, consistency
regularization may struggle to maintain performance in the presence of strong noise or
outliers, particularly in scenarios where the data volume is limited, raising concerns about
model stability [13]. Furthermore, existing methods often face difficulties in effectively
capturing information across different spatial scales in unlabeled medical images, further
limiting their practical applicability [14].

In this paper, we propose a novel Dynamic Sample Reweighting and Pseudo-label
Guided Contrastive Learning Framework (DSRPGC), specifically designed to address the
challenges faced by existing semi-supervised learning (SSL) methods. Our main contribu-
tions are summarized as follows:

1. Dynamic Sample Reweighting Strategy (DSR):
We are the first to combine meta-learning with gradient optimization to dynamically
adjust the weights of unlabeled samples. In contrast to traditional methods with
fixed weight allocation, the DSR module adaptively increases the weights of high-
confidence samples, effectively reducing the impact of noisy samples on pseudo-label
quality. This dynamic adjustment not only enhances the accuracy of pseudo-labels but
also effectively reduces the risk of error propagation, thereby improving the model’s
robustness in uncertain environments.

2. Medical Multi-scale Feature Fusion Network (MedFuseNet):
To address the challenges of multi-scale medical image analysis, we propose Med-
FuseNet, which integrates feature information across different scales to improve
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classification performance. Unlike traditional SSL methods that utilize single-scale
features, MedFuseNet extracts both low-level and high-level features and fuses them
through similarity matrices and element-wise addition. This comprehensive approach
captures intricate details in medical images, leading to significantly improved classifi-
cation accuracy, especially in complex medical imaging scenarios.

3. Pseudo-label Guided Contrastive Loss (PGC Loss):
We propose a PGC loss module that employs a momentum update strategy to optimize
feature representations in contrastive learning. Unlike existing contrastive learning
methods, our approach leverages pseudo-labels to guide the selection of positive and
negative sample pairs, enabling high-quality feature representations even with a large
proportion of unlabeled data. In contrast to methods that rely heavily on labeled data,
our PGC loss improves robustness and classification accuracy, especially in noisy
data environments.

The integration of DSR, MedFuseNet, and PGC Loss in the DSRPGC Framework
significantly improves pseudo-label quality, leverages multi-scale features, and enhances
model robustness. Our approach provides a more comprehensive and effective solution
for medical image classification compared to conventional SSL methods, especially in
challenging conditions with limited labeled data and noisy unlabeled data.

Finally, we evaluate our method on three different medical image datasets and conduct
ablation studies to investigate the impact of each component. The experimental results
demonstrate the effectiveness of our method on multi-class datasets. The paper is structured
as follows: Section 2 discusses related work on semi-supervised learning and contrastive
learning; Section 3 provides a detailed description of our proposed method; Section 4
presents and analyzes the experimental results; Section 5 offers a discussion on our method;
and the final section concludes the paper.

2. Related Work
2.1. Consistency Regularization Methods

In recent years, various semi-supervised learning (SSL) methods [15,16] have increas-
ingly found applications in medical image classification. Among these, consistency regular-
ization methods stand out as they rely on the smoothness assumption to leverage unlabeled
data by enhancing the model’s prediction consistency under different perturbations [17,18].
For instance, Liu et al. [19] focus on ensuring semantic consistency across different samples,
which helps the model discover additional semantic details from unlabeled data. A com-
prehensive review by Shakya [20] highlights various deep semi-supervised learning (DSSL)
techniques and categorizes them into six main approaches, one of which is consistency
regularization. The study emphasizes the role of consistency regularization in improving
model generalization and addressing challenges such as limited labeled data and dataset
heterogeneity in medical image classification. Our method, however, differentiates itself by
addressing this problem through the elimination of Gaussian noise and the incorporation of
diverse data augmentation strategies, thereby reinforcing consistency training. Despite the
success of consistency regularization in semi-supervised learning, medical image datasets
often encounter challenges such as class imbalance, noise, and misinformation. Conse-
quently, to better utilize unlabeled data and improve model performance, consistency
regularization methods frequently combine with other techniques to address these issues.

2.2. Pseudo-Labeling Methods

Pseudo-labeling techniques generate confidence-based prediction distributions through
entropy minimization [21,22], which are then used as training targets alongside the standard
cross-entropy loss function [23]. For example, Liu et al. [24] innovated by selecting unla-
beled samples based on their information content, rather than using traditional threshold-
based pseudo-label selection methods, and introduced Anti-Curriculum Pseudo-Labeling
(ACPL), which combines deep learning with a KNN classifier to estimate pseudo-labels,
thereby improving training balance and label accuracy. Zeng et al. [25] introduced a robust
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technique to differentiate between high- and low-quality pseudo-labeled data by applying
adversarial noise at the feature level, based on the principle that clean data tend to exhibit
lower loss compared to noisy data. Mahmood et al. [26] utilized a weighted combination of
class prototypes and classifiers to predict reliable pseudo-labels for unlabeled images and
introduced alignment loss to reduce the model’s bias towards the majority class. Despite
these advancements, such methods face limitations: substantial amounts of data below the
threshold are discarded, leading to underutilization of unlabeled data, and the model’s
initial training stages are constrained by a limited number of unlabeled samples, which
impacts overall performance.

2.3. Contrastive Learning Methods

Contrastive learning enhances classifier performance on unlabeled data by maximiz-
ing similarity between samples of the same class and minimizing it between samples of
different classes, helping the model understand and differentiate various medical image
features. Techniques like SimCLR (Contrastive Learning of Visual Representations) [27]
exemplify well-designed contrastive learning algorithms. In semi-supervised learning,
contrastive learning can combine with pseudo-labels to define positive and negative sample
pairs. For instance, Khosla et al. [28] proposed a method that enhances feature discrim-
ination by utilizing a contrastive loss to pull together representations of similar labeled
samples while pushing apart those of different classes, effectively leveraging both labeled
and unlabeled data in semi-supervised medical image classification. Li et al. [29] improved
pseudo-labels by applying a smoothness constraint on class probabilities through em-
beddings, while pseudo-labels regularized the structure of embeddings via graph-based
contrastive learning [30]. This approach enhances the model’s sensitivity to subtle fea-
tures in medical images, especially those with low inter-class differentiation. Additionally,
Biswas et al. [31] proposed pNNCLR, a refined nearest neighbor-based contrastive learning
method, which improves the quality of the support set by introducing pseudo nearest
neighbors, resulting in enhanced performance in both image and medical image recogni-
tion tasks. Wu et al. [32] further enhance semi-supervised segmentation with federated
learning, combining prototype-based pseudo-labeling and contrastive learning to improve
performance on COVID-19 X-ray and CT segmentation tasks. Liu et al. [33] proposed a
semi-supervised learning framework, Contrastive Mutual Learning with Pseudo-Label
Smoothing (CMLP), to address issues like pseudo-label noise and spectral variability in
hyperspectral image classification. By combining mutual learning, pseudo-label smoothing,
and contrastive learning, the framework enhances feature representation, with a dynamic
threshold strategy (DTS) adjusting the use of unlabeled data during training.

3. Method

In this section, we provide a detailed explanation of the algorithm’s implementation
and functionality. The Enhanced Semi-Supervised Medical Image Classification Framework,
as shown in Figure 1, outlines the core process of our method. The framework is built
upon the Mean Teacher (MT) model, which utilizes an Exponential Moving Average (EMA)
update strategy to update the student network, focusing on unlabeled medical image data.
Both the teacher and student networks learn feature representations from the enhanced
unlabeled data, which are then used for dynamic weight updates and improved consistency
loss calculations.

To enhance clarity, the overall framework is divided into smaller sub-modules, each
with its own specific role in the algorithm’s functionality. Figure 2 illustrates the Dynamic
Sample Reweighting Strategy (DSR), responsible for processing unlabeled data and adap-
tively adjusting sample weights. This helps to improve pseudo-label quality and reduce the
impact of noisy samples on model training. Next, Figure 3 presents the Medical Multi-scale
Feature Fusion Network (MedFuseNet), which integrates feature maps of unlabeled images
at multiple scales. The fusion of low-level and high-level features enhances the classifica-
tion accuracy, providing rich representations for further learning tasks. Finally, Figure 4
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depicts the Pseudo-label Guided Contrastive Learning (PGC) module. Here, pseudo-labels
are used to define positive and negative sample pairs for contrastive learning. The feature
representations are updated using momentum, and dynamic weighting is applied to the
contrastive learning loss. Additionally, the feature queue is updated, improving the learn-
ing effectiveness on the unlabeled data. Each of these modules contributes to the robust
performance of the semi-supervised medical image classification task. By following these
sub-modules in sequence, the entire framework operates cohesively, ensuring effective
pseudo-label generation, high-quality feature fusion, and efficient contrastive learning.
Collectively, these components play a critical role in improving the model’s performance
on semi-supervised medical image classification tasks.

Figure 1. Enhanced Semi-Supervised Medical Image Classification Framework based on Dynamic
Sample Reweighting and Pseudo-Label Guided Contrastive Learning.

Figure 2. Dynamic Sample Reweighting implementation flow chart.
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Figure 3. Medical Multi-scale Feature Fusion Network (MedFuseNet) diagram.

Figure 4. Pseudo-Label Guided Contrastive (PGC) Learning implementation flow chart.

3.1. Dynamic Sample Reweighting Strategy

In semi-supervised medical image classification, leveraging unlabeled data is essential
for improving model performance. However, one of the key challenges lies in the potential
for error propagation through noisy and imbalanced data, especially in the context of
pseudo-labeling. Pseudo-labeling, while effective in utilizing unlabeled data, often suffers
from the problem of noisy pseudo-labels, particularly during the early stages of training
when the model’s predictions are less accurate. In such situations, the model may generate
incorrect pseudo-labels that are subsequently used to train the model, amplifying errors as
training progresses. This error propagation is further exacerbated when the data are imbal-
anced, as the model may rely too heavily on noisy pseudo-labels from underrepresented
classes, leading to poor generalization.
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To address this issue, we propose a Dynamic Sample Reweighting strategy that adjusts
the weight of unlabeled samples based on their predicted reliability. As illustrated in
Figure 2, by incorporating meta-learning concepts and gradient descent algorithms, our
method dynamically reweights the unlabeled data throughout the training process. This
approach helps reduce the influence of unreliable pseudo-labels by giving more weight to
samples that the model is confident about. Consequently, this strategy mitigates the risk of
error propagation, ensuring that the model’s learning process remains stable and reliable,
even when faced with noisy or imbalanced data.

Additionally, in our Dynamic Sample Reweighting strategy, the model adjusts the
weight of unlabeled samples based on their predicted uncertainty, which is calculated
using metrics like entropy. During the early training stages, when pseudo-labels are less
reliable, we assign lower weights to uncertain samples, reducing their impact on training
and mitigating error propagation. As training progresses and the model’s predictions
become more accurate, the weights of more reliable pseudo-labels are increased, allowing
these samples to contribute more to the training process. This dynamic adjustment ensures
that noisy pseudo-labels have minimal influence initially, while the model gradually learns
from more confident pseudo-labels, leading to a stable and reliable learning process that
can better generalize to unseen data.

Overall optimization loss function. In semi-supervised medical image classifica-
tion, we aim to utilize both labeled and unlabeled data to improve model performance.
To achieve this, we introduce an overall optimization loss function denoted as L(α, β).
This loss function is designed to balance the learning process across different types of
data, where α represents the model parameters and β represents the weights assigned to
unlabeled samples based on their reliability. The optimization process incorporates the
dynamic reweighting of unlabeled samples, which is crucial in the presence of noisy or
imbalanced data. By adjusting the weights βu based on the predicted entropy, the model
focuses more on reliable unlabeled data while minimizing the impact of unreliable samples.
This dynamic adjustment helps maintain the stability of the model’s learning process,
especially in the early training stages, and ensures that the performance gains are robust to
noise and data imbalance. The overall optimization loss function can be expressed as

L(α, β) = Lout(α, β) + λioLin(α, β) (1)

where Lout(α, β) represents the loss function of the outer loop, which focuses on optimizing
the meta-parameters β. The outer loop adjusts the weights of the unlabeled samples based
on their predicted reliability. Meanwhile, Lin(α, β) is the inner loop loss function, respon-
sible for updating model parameters α to minimize the training loss on both labeled and
weighted unlabeled data. The term λio is a hyperparameter that balances the contribution
of the inner and outer loop objectives [34].

Gradient Calculation. Next, we calculate the gradient of the overall optimization loss
function L(α, β) with respect to the parameters α and β. The gradients are essential for
updating the model parameters and are computed using the following equation:

∇α,βL(α, β) =

(
∂L(α, β)

∂α
,

∂L(α, β)

∂β

)
(2)

where ∇α,βL represents the gradient of the loss function with respect to model parameters

α and meta-parameters β. The gradient ∂L(α,β)
∂α indicates how the loss function changes

with respect to changes in the model parameters, while ∂L(α,β)
∂β shows the sensitivity of

the loss to changes in the weights assigned to the unlabeled samples. These gradients are
computed using standard backpropagation techniques, allowing for iterative optimization
of both labeled and unlabeled data during the training process.
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By using this gradient-based approach, the model iteratively adjusts both the pa-
rameters α and the weights β of the samples. This two-loop optimization process not
only updates the model to fit reliable data but also continuously refines the pseudo-label
reliability assessment throughout training. As a result, it significantly reduces the risk of
error amplification that often plagues pseudo-labeling approaches in noisy and imbalanced
medical datasets.

Parameter update. We use the gradient descent algorithm to iteratively update the
model parameters α and weights β as follows:

α′ = α − lα ·
∂L(α, β)

∂α
(3)

β′ = β − lβ ·
∂L(α′, β)

∂β
(4)

In these equations, lα and lβ are the learning rates for updating the model parameters α
and weights β, respectively. The learning rates control the size of the parameter update
step, ensuring stable convergence during training.

In practice, this dynamic reweighting strategy helps the model focus more on unla-
beled samples with higher predicted reliability, effectively reducing the influence of noisy
pseudo-labels during the early stages of training. By adjusting the sample weights accord-
ing to the predicted entropy (uncertainty), the model avoids relying heavily on samples
with uncertain or erroneous pseudo-labels, thus reducing error propagation. In the early
stages of training, when the model’s predictions are less accurate and pseudo-labels are
noisy, the dynamic weighting mechanism ensures that these uncertain samples are given
lower weight, preventing them from negatively affecting the model’s learning process.
As the model improves and its confidence in the pseudo-labels increases, the weights of
the unlabeled samples are dynamically updated, ensuring that only the most reliable sam-
ples contribute to the training, which reduces the risk of error propagation from incorrect
pseudo-labels. This is particularly important in medical image classification tasks where
noisy and imbalanced data are common, as it ensures that the model focuses on more
reliable data, leading to better generalization and performance on unseen samples.

Unlabeled Data Weight. For each unlabeled sample xu, we calculate the predicted
entropy to assign a weight to the sample based on its predicted uncertainty. The entropy H
of the prediction is given by

H( f (xu, α)) = −
C

∑
j=1

f (xu; α)j log
(

f (xu; α)j

)
(5)

where f (xu; α)j is the predicted probability for the unlabeled sample xu belonging to class
j, and C is the total number of classes.

The weight βu for each unlabeled sample is then defined as

βu = 1 − H( f (xu; α))

log(C)
(6)

This formulation allows us to convert the predicted entropy H( f (xu; α)) into a confidence
score βu. The weight for each unlabeled sample is computed based on its predicted
entropy. The entropy reflects the model’s uncertainty about the sample’s class: higher
entropy indicates greater uncertainty, resulting in a lower weight, while lower entropy
suggests higher confidence, leading to a higher weight. This dynamic weighting mechanism
ensures that the model prioritizes more reliable data and reduces the impact of noisy or
incorrect pseudo-labels during training. As the model’s confidence improves, the weights
of unlabeled samples are updated to better reflect their reliability, minimizing the risk of
error propagation from uncertain pseudo-labels.
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In the early stages of training, when the model’s predictions are less reliable, the en-
tropy is higher for most of the unlabeled samples, meaning they will receive lower weights.
This ensures that uncertain samples have minimal influence on the model’s learning in the
initial phases. As training progresses and the model’s confidence increases, the entropy
decreases for more confident samples, and the weights are gradually adjusted, allowing
the model to learn more effectively from reliable pseudo-labels and reducing the influence
of noisy ones.

The entire Dynamic Sample Reweighting strategy is a meta-learning-based parameter
update process. The model inputs the weights β for the unlabeled samples and the parame-
ters α of the neural network. The training process involves two nested loops. The inner
loop updates the model parameters α to minimize the inner loop loss Lin given the current
weights β, as shown in Equation (3). In contrast, the outer loop adjusts the weights β based
on the updated model parameters α′, to maximize the outer loop loss Lout, as shown in
Equation (4). This dynamic optimization process ensures that the weights of the unlabeled
samples are continuously updated to reflect their reliability, improving the efficiency of
unlabeled data utilization during training. Moreover, the use of a meta-learning framework
allows the model to iteratively adjust these weights as the training progresses, reducing the
reliance on noisy pseudo-labels, particularly in the early training stages. Unlike traditional
pseudo-labeling approaches that apply fixed weights, our method continuously updates
the weights based on the model’s current confidence, thereby mitigating the risk of error
propagation. This adaptive strategy ultimately enhances the performance of the semi-
supervised medical image classification model, particularly in improving the consistency
loss and pseudo-label-guided contrastive learning loss.

3.2. Enhancing Consistency Regularization

We apply consistency regularization to train the model with the goal of generating
similar predictions from different perturbations of the same image. In our approach,
we have removed the Gaussian noise from the original Mean Teacher (MT) model [10],
as smaller Gaussian noise does not significantly enhance model performance. Instead, we
use a diverse set of augmentation strategies. For each unlabeled sample, both weak and
strong augmentation strategies are applied before the samples are processed by the student
and teacher models. Additionally, Dynamic Sample Reweighting ensures the reliability of
the data. This enhancement strategy better simulates real data diversity and improves the
model’s utilization efficiency of unlabeled data.

Weak and Strong Augmentation. For each unlabeled sample xu, we apply weak
augmentation tw and strong augmentation ts:

x̃w
u = tw(xu), x̃s

u = ts(xu) (7)

Here, x̃w
u and x̃s

u are the augmented versions of the sample xu using weak and strong
augmentations, respectively. The choice of augmentation strategies follows methods used
in prior works for enhancing model robustness [35].

Weak Augmentation: Weak augmentation refers to mild perturbations applied to the
original image, such as small geometric transformations or slight changes in color. These
augmentations are designed to simulate slight variations in the input while preserving the
core structure and information of the image. The goal of weak augmentation is to enforce
consistency under minimal perturbation, ensuring that the model learns to generalize well
under minor changes.

Strong Augmentation: In contrast, strong augmentation introduces more significant
transformations to the image, such as larger crops, rotations, or applying more extreme
color distortions. These augmentations are intended to challenge the model more and
promote robustness to more substantial variations in the input data. The purpose of strong
augmentation is to ensure that the model can maintain consistent predictions even under
more substantial perturbations, simulating real-world variations in the data.
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Model Outputs. The student model and the teacher model generate outputs based on
the augmented samples:

pw
u = hα(x̃w

u ), ps
u = hα′(x̃s

u) (8)

where hα denotes the student model and hα′ denotes the teacher model. The parameters α
and α′ represent the model parameters for the student and teacher networks. The student
model is updated based on the outputs of x̃w

u , and the teacher model is updated based
on x̃s

u.
Enhanced Consistency Loss. The enhanced consistency loss is defined as

LC =
1

|Du|

|Du |

∑
u=1

βu∥ps
u − pw

u ∥2
2 (9)

where Du is the total number of unlabeled samples and βu is the dynamic weight for each
sample. The loss function LC measures the consistency between the predictions of the
student and teacher models on augmented samples. The use of dynamic weights βu adjusts
the importance of each sample based on its reliability, as determined through our Dynamic
Sample Reweighting strategy [36].

The design of the enhanced consistency loss LC aims to improve the model’s ro-
bustness and generalization capabilities by leveraging different augmentation strategies.
By ensuring that the outputs of the student and teacher models remain consistent under
various perturbations, we can utilize unlabeled data more effectively, significantly enhanc-
ing classification performance in semi-supervised learning scenarios. This approach not
only improves the model’s efficiency in utilizing unlabeled data but also strengthens its
adaptability to data diversity. Additionally, the model uses an Exponential Moving Aver-
age (EMA) strategy to smooth the parameter updates, which helps to reduce fluctuations
during training and ensures the consistency of the outputs, which is crucial for effective
semi-supervised learning.

3.3. Medical Multi-Scale Feature Fusion Network (MedFuseNet)

To better capture and integrate image features at different levels and optimize un-
labeled data feature learning in semi-supervised medical image classification, this paper
designs the Medical Multi-scale Feature Fusion Network (MedFuseNet). In MedFuseNet,
feature extraction is conducted at multiple levels to capture a wide range of details from
lesion images. The low-level features, extracted by the initial layers (conv1), focus on fine-
grained details such as edges, textures, and local patterns, which are crucial for identifying
subtle variations in the image. The high-level features, derived from the deeper layers
(conv3), represent abstract, global information, including the overall shape and contextual
relationships of lesions, which contribute to a holistic understanding of the image. This
multi-level approach ensures that both detailed and abstract information are effectively
utilized, leading to optimal classification results.

To address the challenges in semi-supervised learning (SSL) where labeled data are
scarce and unlabeled data may be noisy or imbalanced, MedFuseNet incorporates multi-
scale feature fusion in an SSL setting, optimizing the learning of both labeled and unlabeled
data. By integrating low-level and high-level features in a manner that prioritizes the most
informative parts of the image, we enable the model to better adapt to the complexities of
semi-supervised tasks. Specifically, this fusion strategy boosts the model’s ability to classify
images with minimal labeled data while leveraging the abundant unlabeled data in the
training process.

Observing Figure 3, the network extracts low- and high-level features using convo-
lutional layers. These features are standardized to a common number of channels using
1 × 1 convolutions. A similarity matrix is then created to evaluate the correlation between
features by flattening and multiplying them. The similarity matrix can be expressed as
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Sij =
exp(Pi · Qj)

∑N
k=1 exp(Pi · Qk)

(10)

where Sij represents the similarity between the i-th feature in the low-level feature P of the
image and the j-th feature in the high-level feature Q. N is the number of pixels, which
is the product of the feature map height H and width W, where P ∈ R(H×W×Clow) and

Q ∈ R(H′×W ′×Chigh).
Specifically, we first perform matrix multiplication on the similarity matrix

Sij ∈ R(N×N′) obtained from the calculation above and the feature at the i-th position
of the low-level feature pi to obtain the weighted low-level features Fw. These features are
then reshaped to match the shape of the high-level features Freshaped. Finally, the adjusted
low-level features are element-wise added to the high-level features to obtain the final
fused features:

Fj =
N

∑
i=1

(
Sij · pi

)
+ Bj (11)

where Bj represents the feature of the j-th channel of the high-level feature map. The fused
features are further processed to map them to the number of channels required for the
classification task, and the feature map size is adjusted through upsampling to match the
original size of the input image, thereby obtaining the final classification result.

In contrast to traditional feature fusion techniques, MedFuseNet uses a similarity
matrix to quantify the correlation between low-level and high-level features. Traditional
methods typically fuse features from different scales through simple weighted sums or con-
catenation. In contrast, our design precisely adjusts the fusion of low-level and high-level
features by calculating the similarity matrix (Equation (10)), allowing the fused features to
better capture both the detailed and global information of the image. Additionally, the 1 × 1
convolution layers and matrix weighting mechanism in MedFuseNet provide a more effec-
tive way to adjust low-level features, effectively preventing the loss of detailed information
in the context of high-level features, which is a common issue in traditional methods.

Regarding feature fusion, all extracted features from low and high levels are used.
We apply 1 × 1 convolutions (convP, convQ) to standardize the channel dimensions of
these features, ensuring they are compatible for the subsequent fusion process. The fusion
process involves the use of a similarity matrix, which measures the correlation between
low-level and high-level features. This matrix is used to weigh and combine the most
relevant features from both levels. The weighted low-level features are then adjusted to
match the shape of the high-level features before being fused via element-wise addition.
This ensures that the fusion captures the most important information from each level,
enhancing feature diversity without excluding any important details.

In MedFuseNet, the fusion of low-level and high-level features serves not only to
enhance feature representation but also to closely interact with the pseudo-label mechanism
in semi-supervised learning. By dynamically generating pseudo-labels for unlabeled data
and weighting the low-level and high-level features based on these labels, MedFuseNet
more effectively utilizes unlabeled data, thereby boosting the overall model’s generalization
ability. Unlike traditional feature fusion methods, MedFuseNet’s pseudo-label-guided
fusion significantly improves the model’s adaptability to unlabeled data, making it more
robust in real-world medical imaging scenarios with sparse labeled data.

3.4. Pseudo-Label Guided Contrastive Learning (PGC)

Momentum Update Strategy. In this paper, we adopt the momentum update method
from MoCo V2 [37] to implement dynamic updates of the queue mechanism. This method
introduces a momentum parameter to retain historical update information and combines
it with current gradient information to achieve real-time updates of features and weights,
optimizing the feature learning of unlabeled data.
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Specifically, we apply momentum updates to both the features of unlabeled data stored
in the queue and their corresponding weights. This ensures that the feature information in
the queue is effectively updated and maintained as new data features are captured. Let
ft represent the features stored in the queue at time step t. The formula for momentum
update can be expressed as follows:

mt = θmt−1 + (1 − θ)gt (12)

ft+1 = ft + ηmt (13)

In these equations, mt represents the momentum vector at time t, which integrates both
the historical momentum mt−1 and the current gradient gt. The momentum coefficient
θ governs the retention of historical information, while gt, the gradient at time step t,
signifies the instantaneous rate of change. Additionally, η denotes the learning rate, which
determines the step size for the update. Together, these parameters play a crucial role in
optimizing the learning process and enhancing the convergence of the model.

Pseudo-label Guided Contrastive (PGC) Loss Function. For unlabeled samples
xu, we make predictions using the trained model to obtain a class probability distribu-
tion. From this distribution, the category with the highest probability is selected as the
pseudo-label:

ŷu = arg max
{

p
(

y =
C
xu

; α

)}
(14)

where C denotes the category index. For the current unlabeled sample, the generated
pseudo-label is compared with the sample features stored in the queue. If the pseudo-labels
match, they form a positive sample pair (samples of the same category) with the current
sample; otherwise, they form a negative sample pair (samples of different categories).

To measure the similarity between samples, a contrastive loss function is constructed.
The loss function must meet the following conditions:

1. For each sample xu, when it is similar to the positive sample pair, its similarity is high
and the contrast loss is small.

2. When the sample xu is not similar to the positive sample pair or is similar to other
negative sample pairs, the contrast loss should be high.

To address these requirements, this paper proposes a pseudo-label guided contrast
loss function:

LPGC =
1

Du

Du

∑
u=1

− log
∑p∈P(u) exp

(
βuzu ·wpzp

τ

)
∑a∈A(u) exp

(
βuzu ·waza

τ

) (15)

where βu denotes the weight of the unlabeled sample after dynamic reweighting, which
ensures the reliability of the unlabeled data. The weight wp signifies the importance of the
positive sample pair, emphasizing the similarity between samples of the same category,
while wa represents the weight of all sample pairs, balancing the similarity differences
across categories and minimizing the overlap in the feature space. Additionally, P(u) and
A(u) correspond to the positive sample pairs and all sample pairs (including both positive
and negative pairs), respectively. Finally, τ is the temperature parameter that controls the
smoothness of the similarity distribution.

Observing Figure 4, The Pseudo-Label Guided Contrastive (PGC) loss function uses a
momentum update strategy to continuously update the features in the queue mechanism,
enhancing the model’s effective use of unlabeled data. Additionally, pseudo-labels are
used to partition positive and negative sample pairs, which reduces the dependence on
labeled data for contrastive learning. Importantly, PGC integrates contrastive learning with
the features fused by MedFuseNet, optimizing and improving the classification decision
boundary, thereby enhancing classification performance.
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3.5. Total Loss Function

Minimizing the cross-entropy loss function ensures that the predicted probability dis-
tribution for labeled samples aligns with their corresponding one-hot encoded true labels.
By optimizing this loss during training, the model adjusts its parameters α to accurately re-
flect the true category of each labeled sample, leading to improved classification performance.

The supervised loss function is defined as follows:

LS = − 1
M

M

∑
l=1

C

∑
c=1

yl,c log f (xl ; α)c (16)

where M denotes the number of labeled samples, f (xl ; α)c represents the predicted proba-
bility distribution of the model for sample xl in category c, and yl,c indicates the true label
of sample xl in category c.

The overall optimized loss function is expressed as follows:

L = LS + λ1LC + λ2LPGC (17)

where λ1 and λ2 are hyperparameters that control the balance between the consistency
regularization loss LC and the pseudo-label guided contrastive loss LPGC, respectively.

3.6. Model Training

The following describes the training process of our semi-supervised learning model,
which integrates both labeled and unlabeled medical images. In each iteration, the model
processes labeled and unlabeled medical images, applying weak augmentation to labeled
samples and both weak and strong augmentation to unlabeled samples. Feature represen-
tations are extracted using the baseline model DenseNet-121 and the Medical Multi-scale
Feature Fusion Network (MedFuseNet), both of which are trainable throughout the training
process. The model dynamically weights the samples based on the confidence scores as-
signed to unlabeled data, ensuring that higher confidence samples receive greater attention
during training.

The specific training process is as follows:

1. Initialize model parameters and prepare the labeled and unlabeled datasets by apply-
ing normalization and data augmentation techniques.

2. Utilize DenseNet-121 to process both labeled and unlabeled samples. The resulting
feature representations are then passed to MedFuseNet for multi-scale feature fusion,
generating a comprehensive feature representation.

3. Calculate sample weights based on the model’s confidence in its predictions for unla-
beled samples. These weights are dynamically updated during training to prioritize
learning from high-confidence samples.

4. Generate pseudo-labels for unlabeled data using the current model’s predictions.
Compute the Pseudo-label Guided Contrastive (PGC) Loss with these pseudo-labels
to enhance the model’s ability to distinguish similar samples.

5. Apply various augmentation operations to the input images and compute the con-
sistency loss to ensure stable outputs under perturbations. This loss helps the model
learn robust feature representations.

6. Extract features at different layers using MedFuseNet and combine them to create a
comprehensive representation of the input images.

7. Update model parameters by minimizing the overall loss function, which includes
both the contrastive loss and the consistency loss.

8. Repeat steps (2)–(7) for each training iteration until convergence.
9. Evaluate the performance of the trained model on the test dataset. The model’s

predictions are compared to the ground truth labels to compute accuracy and assess
classification performance.
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A more detailed explanation is illustrated in Algorithm 1.

Algorithm 1 Enhanced Semi-Supervised Medical Image Classification Based on Dynamic
Sample Reweighting and Pseudo-Label Guided Contrastive (DSRPGC) Learning

Require: Labeled dataset Dl = {(xi, yi)}
Nl
i=1; Unlabeled dataset Du = {xj}Nu

j=1; Initialize
parameters (α, β).

1: Initialize cache queue Q to be empty.
2: Initialize the classification network F.
3: for t = 1 to T do
4: Select s labeled samples: Xl = {(x(i)l , y(i))}s

i=1.

5: Select s unlabeled samples: Xu = {x(j)
u }s

j=1.
6: Apply weak augmentation to unlabeled samples: x̃w

u = tw(xu).
7: Apply strong augmentation to unlabeled samples: x̃s

u = ts(xu).
8: Input xw

l , x̃w
u , and x̃s

u into the model F.
9: Calculate entropy for unlabeled samples and assign weights βu based on uncertainty,

as shown in Equations (5) and (6).
10: Ensure consistency of predictions for the same image under different augmentations,

as shown in Equation (9).
11: Extract and fuse features at multiple levels using MedFuseNet, as shown in

Equations (10) and (11).
12: Use a momentum updating strategy to maintain dynamic updates of features and

weights, as shown in Equations (12)–(15).
13: Calculate the total training loss, as shown in Equation (17), enabling the model

to learn the underlying structures and features within the data, thereby improving
classification accuracy and robustness.

14: Update parameters using Equations (3) and (4) to ensure that the model can quickly
adapt and improve its classification performance when encountering new samples.

15: end for
16: Output the well-trained model F.

4. Experiments
4.1. Experimental Settings

Dataset setup. To validate the semi-supervised classification method proposed in this
paper, we conducted experiments on three public medical image datasets: ISIC2018 [38],
NCT-CRC-HE [39], and Chest X-ray14 [40]. Specifically, ISIC2018 contains 10,015 dermo-
scopic images categorized into seven classes. These images are RGB color images with
three channels. The seven classes are as follows: 1113 melanomas (MEL), 6705 melanocytic
nevi (NV), 514 basal cell carcinomas (BCC), 327 actinic keratoses (AKIEC), 1099 benign
keratoses (BKL), 115 dermatofibromas (DF), and 142 vascular lesions (VASC). The training
set consists of 7012 images, the test set contains 2003 images, and the validation set includes
1000 images. These seven types of images are shown in Figure 5. Each image in this dataset
represents a single class, focusing on distinct skin lesions with specific characteristics.

NCT-CRC-HE consists of high-resolution pathology images from colorectal cancer
patient tissue samples, containing 100,000 hematoxylin and eosin (HE) stained tissue slice
images covering nine categories. These categories are adipose (ADI) with 10,407 samples,
background (BACK) with 10,566 samples, debris (DEB) with 11,512 samples, lymphocytes
(LYM) with 11,557 samples, mucus (MUC) with 8896 samples, smooth muscle (MUS)
with 13,536 samples, normal colon mucosa (NORM) with 8763 samples, cancer-associated
stroma (STR) with 10,446 samples, and colorectal adenocarcinoma epithelium (TUM) with
14,317 samples. The dataset is split into 70% for training, 20% for testing, and 10% for
validation. All images are resized to 224 × 224 to ensure consistency in the experiments.
These nine categories are shown in Figure 6. The images in this dataset may contain
multiple tissue types, as each tissue slice may include various regions corresponding to
different categories (e.g., tumor cells and surrounding stroma in the same image). Thus,
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these images often present a multi-class tissue composition, making the classification task
more challenging.

Figure 5. Samples from ISIC2018 dataset: (a) melanomas (MEL); (b) melanocytic nevi (NV); (c) basal
cell carcinomas (BCC); (d) actinic keratoses (AKIEC); (e) benign keratoses (BKL); (f) dermatofibromas
(DF); (g) vascular lesions (VASC).

Figure 6. Samples from NCT-CRC-HE dataset: (a) adipose (ADI); (b) background (BACK); (c) debris
(DEB); (d) lymphocytes (LYM); (e) mucus (MUC); (f) smooth muscle (MUS); (g) normal colon mucosa
(NORM); (h) cancer-associated stroma (STR); (i) colorectal adenocarcinoma epithelium (TUM).

The Chest X-ray14 dataset contains a total of 112,120 X-ray images, representing
14 different types of lung diseases. For our experiments, we selected six common lung
diseases: Atelectasis (2564 images), Effusion (2406 images), Infiltration (2296 images),
Mass (1302 images), Nodule (1646 images), and Pneumothorax (1335 images), along with
10,711 normal lung images. The dataset is divided into a training set of 15,582 images,
a validation set of 2226 images, and a test set of 4452 images. Examples of these six types of
lung conditions are shown in Figure 7. This dataset’s heterogeneity arises from the presence
of multiple lung conditions in single images, which can complicate the classification task.
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Implementation details. Our classification model framework is implemented in
PyTorch and trained on a 24 GB RTX 3090 GPU using Python 3.8. The model employs two
augmentation strategies with varying random parameters during training. The smoothing
parameter for the EMA is set to 0.999. DenseNet-121 [41] is used as the backbone, and the
Adam optimizer [42] with an initial learning rate of 1 × 10−4 is employed. The batch size
is 64, consisting of 16 labeled samples and 48 unlabeled samples. The training process
includes a warm-up phase followed by the formal training phase.

Figure 7. Samples from Chest X-ray14 dataset: (a) Atelectasis; (b) Effusion; (c) Infiltration; (d) Mass;
(e) Nodule; (f) Pneumothorax.

Evaluation Metrics. To evaluate the performance of our proposed method, we use the
following metrics:

1. Accuracy: The proportion of correctly classified samples out of all samples. It is
defined as

Accuracy =
TP + TN

TP + TN + FP + FN
(18)

where TP is True Positives, TN is True Negatives, FP is False Positives, and FN is
False Negatives.

2. Area Under the Curve (AUC): The area under the Receiver Operating Characteristic
(ROC) curve, which plots the True Positive Rate (TPR) against the False Positive Rate
(FPR) at various threshold settings. It is computed as

AUC =
∫ 1

0
ROC(x)dx (19)

where ROC(x) represents the ROC curve.
3. Sensitivity (Recall): The ability of the model to correctly identify positive samples. It

is defined as
Sensitivity =

TP
TP + FN

(20)

4. Specificity: The ability of the model to correctly identify negative samples. It is
defined as

Speci f icity =
TN

TN + FP
(21)
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5. F1 Score: The harmonic mean of precision and sensitivity, providing a balance be-
tween the two metrics. It is defined as

F1 = 2 · Precision · Sensitivity
Precision + Sensitivity

(22)

6. Precision: The proportion of positive identifications that were actually correct. It is
defined as

Precision =
TP

TP + FP
(23)

These metrics provide a comprehensive evaluation of the model’s performance in
terms of classification accuracy, balance between precision and recall, and ability to dis-
criminate between classes. Since evaluation metrics such as accuracy, sensitivity, and AUC
rely on ground truth labels, we applied pseudo-labeling for unlabeled samples. In this
process, the model assigned predicted labels to the unlabeled data, which were then treated
as ground truth for evaluation purposes. These pseudo-labels allowed us to apply the
standard evaluation metrics to the unlabeled samples.

Data Processing. In our study, we performed comprehensive image preprocessing
and data augmentation to enhance the model’s generalization and robustness. Initially,
all images were converted to RGB format and resized to a fixed size of 224 × 224 pixels
to ensure uniformity across the dataset. Figure 8 illustrates the entire preprocessing pro-
cess. It includes the original image, the RGB image, the resized image at 224 × 224 pixels,
the weakly augmented image resulting from random horizontal flipping, and the strongly
augmented image created through random cropping and hue/saturation adjustments. We
applied various data augmentation techniques to the pre-training and training datasets,
including random cropping, color jittering, affine transformations, and horizontal flips.
These augmentation methods allowed the model to learn more generalizable features by
simulating various visual conditions. Each image was processed multiple times with differ-
ent transformations to facilitate contrastive learning. For the validation and test datasets,
we only applied resizing and normalization to maintain consistency in evaluation without
augmentations. To address class imbalance, we employed a custom sampling strategy to
ensure equal representation of both majority and minority classes in each batch. The class
imbalance, particularly observed in the ISIC2018 and NCT-CRC-HE datasets, was mitigated
by these strategies to prevent the model from being biased toward the more frequent classes.
Additionally, this ensured that all classes were sufficiently represented in the training pro-
cess, thus improving the model’s ability to generalize across underrepresented classes. In
addition to the ISIC2018 and NCT-CRC-HE datasets, we also included the Chest X-ray14
dataset, which comprised 112,120 chest X-ray images covering 14 lung diseases. For our
experiments, we focused on six common lung diseases (Atelectasis, Effusion, Infiltration,
Mass, Nodule, and Pneumothorax), along with normal cases. The class imbalance in this
dataset was addressed similarly using our custom sampling strategy to ensure balanced
training batches and improve the model’s performance across all categories.

Figure 8. The entire preprocessing process of ISIC2018 dataset images.
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4.2. Comparison with Other Semi-Supervised Classification Methods

Experimental results of our method on the ISIC2018 dataset. Observing Table 1,
SelfMatch [43] utilized self-supervised learning and pseudo-label generation to effectively
leverage unlabeled data. However, its limitations lie in its dependence on the quality of
pseudo-labels and the effectiveness of the self-matching strategy, which may have led to
the model’s performance being affected by errors in pseudo-labels. In contrast, the MT [10]
method addressed issues such as overfitting and generalization error in labeled data by
leveraging consistency regularization and smooth updates of the teacher model. Compared
to the MT method, SRC-MT [19] introduced a sample relationship consistency paradigm,
further improving performance. Notably, our method incorporates dynamic weighting and
random augmentation strategies into the MT framework, which not only filter out reliable
unlabeled samples but also ensures consistency across different augmented samples in the
feature space, achieving the best results across all evaluation metrics.

Table 1. Comparison with the latest semi-supervised methods on the ISIC2018 dataset with 20%
labeled data.

Methods Labeled Unlabeled AUC Sensitivity Specificity Accuracy F1

Baseline 20 0 91.12 68.69 91.82 91.85 58.21
SelfMatch [43] 20 80 92.92 72.10 92.45 91.96 59.67
MT [10] 20 80 93.34 70.15 92.46 92.38 60.36
SRC-MT [19] 20 80 93.59 70.45 92.52 92.59 60.68
Ours 20 80 94.49 76.92 92.68 93.16 65.82

Observing Figure 9, we compare the experimental results of our proposed method
with the current state-of-the-art SRC-MT method on the confusion matrix. Each matrix
shows the prediction accuracy for each category. Our method exhibits higher accuracy
rates across most categories compared to SRC-MT. For instance, our method shows signifi-
cantly better performance in categories like melanoma (MEL), basal cell carcinoma (BCC),
melanocytic nevi (NV), actinic keratoses (AKIEC), benign keratoses (BKL), dermatofibro-
mas (DF), and vascular lesions (VASC), where SRC-MT exhibits lower accuracy and higher
misclassification rates. This indicates that SRC-MT struggles to correctly classify these
challenging cases, leading to more false positives and false negatives. The superior accu-
racy of our method can be attributed to its dynamic weighting and random augmentation
strategies. These techniques enhance the robustness of our model, allowing it to better
handle variability and maintain high accuracy across different categories. This results in
fewer misclassifications and more reliable classification performance overall. In summary,
our method’s confusion matrix highlights its ability to achieve higher accuracy and lower
misclassification rates compared to SRC-MT, demonstrating its enhanced effectiveness in
handling the complexities of the ISIC2018 dataset.

Experimental results of our method on the NCT-CRC-HE dataset. Observing Table 2,
our method outperforms other SSL methods across multiple evaluation metrics. Compared
to FixMatch [44], our approach introduces a dynamic weighting strategy, reducing the
model’s reliance on the accuracy of pseudo-labels, resulting in a 5.5% improvement in
the accuracy metric. Even against the state-of-the-art SimMatch [45], our method remains
superior, as SimMatch is still limited by the impact of noisy data, which leads to incorrect
feature learning and pseudo-label generation. This further highlights the superiority of
our approach, which not only ensures the quality of unlabeled data but also enhances the
model’s ability to differentiate colorectal cancer.
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Figure 9. Confusion matrix of SRC-MT method and this method on ISIC 2018 dataset.

Table 2. Comparison with the latest semi-supervised methods on the NCT-CRC-HE dataset with
100 labeled samples.

Methods
NCT-CRC-HE (100 Labeled Data)

AUC Sensitivity Precision Accuracy F1

Baseline 96.32 74.01 75.98 73.65 73.29
MT [10] 97.15 77.51 78.81 77.97 77.07
FixMatch [44] 97.91 80.59 81.78 80.47 80.28
CoMatch [29] 97.99 84.70 84.58 83.93 84.12
SimMatch [45] 98.03 85.07 84.50 84.24 84.43
Ours 98.21 86.77 86.81 85.97 86.45

Additionally, Figure 10 illustrates the confusion matrices for our method and Sim-
Match on the NCT-CRC-HE dataset, revealing that our approach consistently surpasses
SimMatch in classification accuracy across various categories, particularly in critical areas
such as colorectal cancer. The categories in the NCT-CRC-HE dataset include adipose (ADI),
background (BACK), debris (DEB), lymphocytes (LYM), mucus (MUC), smooth muscle
(MUS), normal colon mucosa (NORM), cancer-associated stroma (STR), and colorectal
adenocarcinoma epithelium (TUM). This enhancement in performance is attributed to
the advanced features of our method, notably, the integration of the Medical Multi-scale
Feature Fusion Network (MedFuseNet) and the Pseudo-Label Guided Contrastive Learn-
ing (PGC) strategy. MedFuseNet improves feature extraction by effectively combining
information from multiple scales, enabling the model to capture intricate details and subtle
differences within the dataset. Simultaneously, the PGC method enhances learning stability
through a momentum-updated feature queue, allowing for better alignment of features
while systematically defining positive and negative sample pairs to refine the model’s
discriminative power. In contrast, SimMatch’s reliance on potentially noisy pseudo-labels
leads to lower accuracy and more misclassifications in key categories. Overall, our method
effectively addresses the challenges posed by noisy and imbalanced data, underscoring its
superior accuracy and robustness compared to SimMatch.

The results in Table 3 demonstrate that our method consistently outperforms all other
models across different levels of labeled data in the Chest X-ray14 dataset. While Pseudo-
Labeling shows the lowest performance, particularly with only 5% labeled data, FixMatch
and MT achieve significant improvements through consistency regularization. However,
our method achieves the highest accuracy at all annotated percentages, showcasing its supe-
riority, likely due to Dynamic Sample Reweighting and medical multi-scale feature fusion,
which enhance the model’s ability to effectively utilize both labeled and unlabeled data.
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Figure 10. Confusion matrix of Simmatch method and this method on NCT-CRC-HE dataset.

Table 3. Classification accuracy with other models under different annotated percentages for the
Chest X-ray14 dataset.

Method 5% 10% 20%

Pseudo-Labeling [17] 57.64% 65.27% 72.46%
FixMatch [44] 68.09% 73.01% 80.34%
MT [10] 67.96% 72.96% 79.07%
Ours 70.03% 75.20% 80.83%

The results in Table 4 demonstrate that our pseudo-labeling strategy effectively bal-
ances accuracy and coverage throughout training. By gradually increasing both metrics
as the model stabilizes, our method selectively incorporates high-confidence unlabeled
data, enhancing feature learning without introducing excessive noise. This adaptive ap-
proach ensures that the model leverages unlabeled data efficiently, leading to improved
classification performance on the ISIC2018 dataset. Integration with our Pseudo-Label
Guided Contrastive Learning (PGC) and Dynamic Sample Reweighting Strategy further
refines the model’s robustness, contributing to more accurate and reliable predictions in
semi-supervised medical image classification. It is worth noting that the model begins at
epoch 80 because the first 80 epochs are dedicated to the warm-up phase.

Table 4. Pseudo-label accuracy and coverage at different training stages on the ISIC2018 dataset.

Epoch Pseudo-label Accuracy (%) Pseudo-Label Coverage (%)

80 60.3 28.7
100 68.9 45.2
120 75.6 57.8
140 81.4 65.3
160 85.2 72.5
180 88.5 78.9

4.3. Ablation Study

The proposed method is built upon three essential components: the Dynamic Sample
Reweighting Strategy, the Medical Multi-scale Feature Fusion Network (MedFuseNet),
and Pseudo-Label Guided Contrastive Learning (PGC). To assess the contribution of each
component to the overall model performance, we conducted ablation experiments. In these
experiments, we systematically remove or modify each component and evaluate how
these changes affect the performance of the model. Ablation experiments are commonly
used to isolate the individual impact of each part of a system, enabling us to understand
the importance of each component in enhancing the model’s accuracy and robustness.
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By conducting these experiments, we can identify which components are most crucial to
the performance improvements observed in our proposed method.

To verify the impact of the Dynamic Sample Reweighting Strategy on model perfor-
mance, we conducted an ablation study. In these experiments, we excluded this strategy
(-/o Dynamic Weight) to evaluate its impact. Observing Figure 11, it is evident that when
the weights of unlabeled data are evenly distributed, key metrics such as AUC and accuracy
are significantly affected, particularly for edge cases or low-confidence samples. The intro-
duction of the Dynamic Sample Reweighting Strategy results in significant improvements
in model performance, with AUC and accuracy increasing by 4.28% and 4.02%, respectively.
This strategy effectively filters out noisy data and addresses class imbalance by adjust-
ing sample weights, thus enhancing the overall training process. When integrated with
Pseudo-Label Guided Contrastive Learning (PGC) and the Medical Multi-scale Feature
Fusion Network (MedFuseNet), the Dynamic Sample Reweighting Strategy synergistically
improves feature representation and classification accuracy by ensuring that high-quality
samples are prioritized during optimization and multi-scale feature integration. These
mechanisms collectively contribute to the model’s enhanced capability to manage diverse
sample enhancement views, thereby significantly boosting performance in semi-supervised
medical image classification tasks.

To assess the effectiveness of the Medical Multi-scale Feature Fusion Network (Med-
FuseNet) in our semi-supervised medical image classification model, we conducted an
ablation study. The results, illustrated in Figure 11, show that removing MedFuseNet
(-/o MedFuseNet) leads to a decline in AUC and accuracy, underscoring its significant
contribution to the model’s overall performance. MedFuseNet enhances the model’s abil-
ity to consolidate features across multiple spatial scales, thereby improving intra-class
compactness and inter-class separability. By integrating features from various scales,
MedFuseNet enables a more cohesive representation of similar samples, simplifying classi-
fication and making different categories more distinguishable in the feature space. Figure 12
highlights how MedFuseNet contributes to feature integration, further enhancing these
properties. This multi-scale feature fusion works in synergy with the Dynamic Sample
Reweighting Strategy, ensuring that high-quality data inform feature extraction. Addi-
tionally, the Pseudo-Label Guided Contrastive Learning (PGC) loss function benefits from
the diverse representations provided by MedFuseNet, enabling more effective sample
pairing. The results from these ablation experiments confirm that MedFuseNet plays a
crucial role in optimizing the utilization of unlabeled data, significantly enhancing the
overall performance of the model in semi-supervised medical image classification tasks.

Figure 11. Ablation experiment results on the ISIC2018 dataset with 20% labeled data.
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Figure 12. t-SNE visualization on the ISIC2018 dataset.

The results in Table 5 clearly highlight the superior performance of the PGC Loss
function across all evaluation metrics. Compared to Contrastive Loss and Cross-Entropy
Loss, the PGC Loss achieves the highest AUC (94.49%), sensitivity (76.85%), specificity
(92.68%), accuracy (93.16%), and F1 score (65.92%). This demonstrates that the PGC Loss not
only improves classification accuracy but also enhances the model’s ability to distinguish
between classes and correctly identify positive samples. The significant improvements
in all metrics emphasize the effectiveness of the PGC Loss in enhancing semi-supervised
medical image classification.

Table 5. Comparison of different loss functions on model performance.

Loss Function AUC Sensitivity Specificity Accuracy F1 Score

Contrastive Loss 88.30 64.12 87.97 87.11 57.72
Cross-Entropy Loss 90.74 70.21 90.35 90.01 61.28
PGC Loss 94.49 76.85 92.68 93.16 65.92

To evaluate the effect of Pseudo-Label Guided Contrastive Learning (PGC) on model
performance, we conducted ablation experiments on two datasets. The results, shown
in Figure 13, reveal that excluding the PGC loss module and relying solely on the MT
model led to fluctuating accuracy curves, indicating instability in the learning process.
Additionally, using supervised contrastive learning (SupCon) for unlabeled data resulted
in slow accuracy improvements due to its reliance on large labeled datasets, which presents
a significant challenge in medical image classification. The proposed PGC loss strategy
significantly enhances feature representation by leveraging a momentum-updated feature
queue and optimizing pseudo-label-based sample pairs, improving both intra-class com-
pactness and inter-class separability. Its integration with the Dynamic Sample Reweighting
Strategy allows the model to prioritize reliable samples, reducing noise interference and
ensuring that contrastive learning is guided by high-quality features. Moreover, the syn-
ergy between PGC and the Medical Multi-scale Feature Fusion Network (MedFuseNet)
enriches feature representations across multiple spatial scales, further boosting classifica-
tion performance. Overall, the PGC loss function plays a critical role in refining the model’s
learning objectives and enhancing its overall performance in semi-supervised medical
image classification tasks.

As shown in Table 6, we conducted an ablation study on the ISIC2018 dataset to
investigate the individual contributions of each component in our model. The baseline
model, DenseNet-121, serves as the foundation for comparison. The inclusion of Dynamic
Sample Reweighting (DSR) improves performance by handling uncertain pseudo-labels
more effectively. Adding MedFuseNet, a medical multi-scale feature fusion network,
further enhances the model’s ability to capture and integrate diverse features, leading to
higher accuracy. Finally, the incorporation of Pseudo-Label Guided Contrastive Learning
(PGC) strengthens intra-class compactness and inter-class separability, resulting in even
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better performance. The full model, incorporating all components, outperforms the baseline
and individual components, demonstrating the effectiveness of each contribution.

Figure 13. Classification accuracy of different contrastive learning modules under different datasets.

Table 6. Ablation Study: comparison of different model configurations on the ISIC2018 dataset with
20% labeled data.

Methods AUC Sensitivity Specificity Accuracy F1

Baseline (DenseNet-121) 91.12 68.69 91.82 91.85 58.21
DSR (DenseNet-121 + DSR) 92.34 73.12 92.13 92.07 60.12
MedFuseNet (DenseNet-121 + MedFuseNet) 93.00 74.45 92.34 92.50 61.45
PGC (DenseNet-121 + PGC) 93.30 75.10 92.50 92.65 62.12
Ours (DenseNet-121 + DSR + MedFuseNet + PGC) 94.49 76.92 92.68 93.16 65.82

The results from Table 7 demonstrate the comparison between the performance of
Pseudo-label Generation, Label-Guided Graph Contrastive Learning, and Pseudo-Label
Guided Contrastive Learning (PGC). Among the methods, PGC stands out with the highest
performance across all evaluation metrics. Specifically, PGC achieves an AUC of 94.49%,
sensitivity of 76.85%, specificity of 92.68%, accuracy of 93.16%, and F1-score of 65.92%. This
shows the significant advantages of incorporating the PGC module, which not only im-
proves feature representation but also enhances both intra-class compactness and inter-class
separability. By optimizing pseudo-label-based sample pairs and utilizing a momentum-
updated feature queue, PGC outperforms the other methods, highlighting its robustness
and effectiveness in semi-supervised medical image classification tasks.

Table 7. Comparison of Pseudo-label Generation, Label-Guided Graph Contrastive Learning,
and PGC.

Methods AUC Sensitivity Specificity Accuracy F1

Pseudo-label Generation 92.75 74.62 91.03 91.08 63.90
Label-guided Graph Contrastive Learning 91.23 72.50 90.12 89.45 60.74
PGC 94.49 76.85 92.68 93.16 65.92

To demonstrate the impact of varying proportions of labeled images on model per-
formance, we analyzed the average accuracy at different levels of labeled data. As shown
in Tables 8 and 9, the model’s accuracy increases as the proportion of labeled images
rises. For example, on the ISIC2018 dataset, the model achieves an average accuracy of
89.69% when 5% of the data are labeled. When the labeled data proportion increases to
10%, the average accuracy improves significantly to 91.84%. However, further increasing
the proportion to 20% only marginally improves the average accuracy to 93.16%, suggest-
ing diminishing returns. This trend indicates that our method efficiently utilizes limited
labeled data.
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Table 8. Comparison of average accuracy on the ISIC2018 dataset with different labeled data ra-
tios (%).

Methods
Label Percentage

5% 10% 20%

Baseline 85.96 89.62 91.85
SelfMatch 86.39 90.13 91.96
MT 87.59 90.65 92.38
SRC-MT 88.77 91.08 92.59
Ours 89.69 91.84 93.16

Table 9. Comparison of average accuracy on NCT-CRC-HE dataset with different labeled data (%).

Methods
The Number of Labeled Samples

50 100 200

MT 73.89 77.97 81.55
FixMatch 76.24 80.47 84.81
CoMatch 79.96 83.93 86.48
SimMatch 81.23 84.24 88.31
Ours 83.79 85.97 90.19

The five-fold cross-validation results on both the ISIC2018 (Table 10) dataset highlight
the robustness and stability of our proposed approach across different medical image
classification tasks. For the ISIC2018 dataset, using 20% labeled data, our method achieved
an average AUC of 94.49% with a low standard deviation of ±0.07, along with consistently
stable sensitivity and accuracy scores (standard deviations of ±0.08 and ±0.04, respectively).
This demonstrates the model’s effectiveness in handling challenging and imbalanced skin
lesion data. These consistent results confirm the model’s strong generalization capabil-
ity, making it suitable for real-world clinical applications involving noisy and limited
labeled data.

Table 10. Five-fold cross-validation results on the ISIC2018 dataset with 20% labeled data.

Fold AUC Sensitivity Specificity Accuracy F1

Fold 1 94.52 76.98 92.70 93.20 65.89
Fold 2 94.40 77.01 92.62 93.11 65.75
Fold 3 94.60 76.80 92.72 93.17 65.95
Fold 4 94.50 76.85 92.69 93.15 65.80
Fold 5 94.43 76.85 92.65 93.18 65.70

Mean ± Std 94.49 ± 0.07 76.90 ± 0.08 92.68 ± 0.04 93.16 ± 0.04 65.82 ± 0.09

In Figure 14, we present the relationship between training time and AUC for different
model configurations. It can be observed that as the training time increases, the model
performance (AUC) gradually improves. Specifically, the base model (with a training
time of approximately 6 h) achieves an AUC of 90.12%. After incorporating MedFuseNet
(Medical Multi-scale Feature Fusion Network), the AUC increases to 91.23%. This rela-
tively small increase in AUC reflects the enhanced feature representation capability of
MedFuseNet, demonstrating how even slight performance improvements can significantly
enhance the model’s ability to better distinguish between different medical image classes.
In the context of medical image classification, even marginal gains in AUC can directly
translate into more reliable and accurate results, offering substantial benefits for clinical ap-
plications. Although the training time slightly increases with the addition of MedFuseNet,
the AUC improvement justifies this trade-off, as the performance boost is highly valuable
in this domain.
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Figure 14. Training time vs. performance (AUC) on lSlC2018 dataset.

Furthermore, when combining PGC (Pseudo-Label Guided Contrastive Learning) and
data augmentation (MedFuseNet + PGC + Augmentations), the training time increases
to 10 h but the AUC rises to 94.49%. While this represents a more significant increase in
training time, the AUC gain of over three percentage points is considerable, particularly
in the context of medical image classification, where higher diagnostic accuracy can make
a crucial difference in patient outcomes. Notably, this increase in training time is not
excessive given the substantial improvement in performance. The results demonstrate that,
despite the increased computational cost, the method achieves efficient and meaningful
performance gains that are well worth the additional investment in computational resources.
In medical image classification, where every percentage point in accuracy can have a major
impact, such improvements justify the added complexity and time, confirming that the
method is not only effective but also practical for real-world medical applications.

The analysis of the impact of λDSR and λPGC on model accuracy shows that both
hyperparameters significantly affect the model’s performance. As shown in Figure 15, λDSR
achieves the highest accuracy of 93.16% at 0.4, with accuracy decreasing as λDSR increases
beyond this point. Similarly, λPGC reaches its peak accuracy at 0.6, and further increases
lead to a slight decline in performance. These results suggest that the optimal values for
λDSR and λPGC are 0.4 and 0.6, respectively, for maximizing model accuracy.

Figure 15. Impact of λDSR and λPGC on model accuracy.
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5. Discussion

Medical image classification presents significant challenges due to the scarcity of
well-labeled data, high annotation costs, and the variability in imaging techniques and
pathological conditions. This imbalance between abundant unlabeled data and limited
labeled samples, especially for rare diseases, hinders the development of accurate deep
learning models. Additionally, the noise and imbalance in unlabeled data complicate the
generation of reliable pseudo-labels, further challenging model training.

To address these challenges, we propose the Dynamic Sample Reweighting and
Pseudo-Label Guided Contrastive Learning (DSRPGC) framework. This method utilizes
DenseNet-121 to extract rich image features, capturing intricate patterns and representa-
tions from the input images. By dynamically adjusting the weights of unlabeled samples,
we effectively filter out noisy data, enhancing pseudo-label reliability while significantly
reducing the risk of error propagation. Furthermore, the Medical Multi-scale Feature
Fusion Network (MedFuseNet) captures and integrates information across various scales,
addressing the limitations of traditional methods in handling complex medical images.
Finally, the Pseudo-Label Guided Contrastive Learning mechanism optimizes feature rep-
resentations, reducing dependence on labeled data. Overall, our approach demonstrates
notable improvements in pseudo-label quality, model robustness, and multi-scale feature
processing, offering a more efficient solution for medical image classification.

Despite its strengths, the method has some limitations. While the Dynamic Sam-
ple Reweighting Strategy improves performance by prioritizing reliable samples, it may
overemphasize certain samples, potentially leading to imbalanced class representation.
Additionally, although effective in integrating multi-scale features, the Medical Multi-Scale
Feature Fusion Network (MedFuseNet) may suffer from computational inefficiencies, par-
ticularly when applied to large-scale datasets. This inefficiency arises from the increased
complexity and memory requirements associated with multi-scale feature extraction and
fusion processes, which can significantly slow down the training and inference stages for
large datasets, such as those commonly encountered in clinical settings. To address these
computational challenges, future work could explore model optimization strategies, such
as efficient feature fusion techniques, network pruning, or quantization, to reduce the
computational burden without sacrificing performance.

The reliance on high-quality pseudo-labels also presents a challenge, as inaccurate
labels can negatively impact the model’s performance. Moreover, the complexity of hyper-
parameter tuning in the Pseudo-Label Guided Contrastive Learning (PGC) loss function
complicates model optimization across diverse datasets. These factors highlight the need
for more robust strategies to ensure the accuracy of pseudo-labels and simplify hyperpa-
rameter search processes, particularly in dynamic, real-world environments.

Looking ahead, in future work, we aim to test our method on additional medical
imaging datasets to assess its adaptability across diverse image types and medical con-
ditions. We believe that by refining the algorithm’s scalability and robustness, it can be
effectively applied to a broader range of medical imaging tasks. Furthermore, we aim
to address the four key issues identified in the current method. First, adaptive weight-
ing techniques or class balancing strategies will be explored to optimize the Dynamic
Sample Reweighting process, alleviating class imbalance problems. Second, the compu-
tational efficiency of the Medical Multi-scale Feature Fusion Network (MedFuseNet) will
be improved by investigating model compression and efficient fusion techniques, such as
attention mechanisms and hierarchical feature aggregation. Third, the quality of pseudo-
labels will be enhanced by incorporating self-training, co-training, or class-conditional
optimization methods, particularly in cases of extreme class imbalance. Finally, automated
hyperparameter optimization techniques will be employed to simplify the hyperparameter
tuning process in the Pseudo-Label Guided Contrastive Learning (PGC) loss function,
improving the model’s performance and generalization across diverse datasets. These
improvements will significantly enhance the model’s robustness, computational efficiency,
and adaptability, paving the way for its broader application in real-world clinical settings.
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6. Conclusions

This paper introduces a novel approach to advancing semi-supervised medical image
classification by employing Dynamic Sample Reweighting and Pseudo-Label Guided Con-
trastive Learning (DSRPGC). Our method effectively leverages extensive unlabeled data,
addressing the issue of limited labeled data. The framework integrates a Mean Teacher (MT)
model with a Dynamic Sample Reweighting strategy to enhance the reliability of unlabeled
data. Additionally, we implemented diverse data augmentation strategies to maintain
model consistency and stability across various perturbations. To improve the model’s
capacity to analyze intricate medical images, we present the Medical Multi-Level Feature
Fusion Network (MedFuseNet), which combines multi-level feature information to im-
prove classification accuracy. Furthermore, we propose a Pseudo-Label Guided Contrastive
(PGC) loss function that incorporates a momentum-updated feature queue mechanism,
pseudo-label-guided positive and negative sample pairs, and dynamically weighted con-
trastive learning. This combination not only strengthens the model’s feature representation
capabilities but also optimizes both intra-class compactness and inter-class separability.
Overall, our experimental results on two public datasets validate the effectiveness of our
method and provide valuable insights and directions for future research.
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