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Abstract: The paper proposes an approach to solving the inverse epidemiological problem, written in
terms of the “mean-field” theory. Finding the coefficients of an epidemiological SIR mean-field model
is reduced to solving an optimization problem, for the solution of which only zero-order methods can
be used. An algorithm for the solution of the inverse coefficient problem is proposed. Computational
experiments were carried out to compare the obtained solutions with respect to synthetic and real
data. The results of computational experiments have shown the efficiency of this approach. Ways to
further improve the approach have also been determined.
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1. Introduction

The coronavirus epidemic, which spread most in 2020–2022, showed the need to
develop measures to contain the spread of disease to reduce mortality among the population
and burdens on healthcare systems. At the same time, the measures introduced can vary
quite significantly: from the development of a hand-washing culture to complete long-term
isolation. These measures are perceived by society differently [1–4] and have different
effects on the economy and other areas of public life. Methods of mathematical modeling
help assess the consequences of decisions taken at different levels. At present, models of
optimal control of various kinds are being significantly developed, since this approach is
more flexible and allows accounting for the slightest changes in the choice of population
and external planner behavior strategies. Thus, using the basic epidemiological model of
the SIS, in [5], an optimal control model is proposed in which a planner uses tax revenues
as direct funds for preventive measures for the population or for treatment of the infected.
By analyzing the social costs of prevention and treatment, the authors determine the policy
that is most cost-effective in different situations. In [6], a “mean-field model” is proposed,
based on the premise that the selfish actions of each individual maximize personal utility,
in contradiction to a socially optimal strategy that maximizes the total utility for the entire
population. The authors assume that the reduction of contact with infected people should
continue long after an epidemic has subsided.

One approach to modeling the dynamics of epidemic spread is optimal control models
written in terms of “mean-field” (MF) theory. Here, it is assumed that the population is
large enough and the influence of strategy adopted by an individual is negligible and
does not affect the overall behavior of the population. This assumption allows one to
pass the limit in explicit agent-based modeling problems and describe the behavior of
the population with a small number of equations. One of the epidemiological mean-field
models will be discussed in more detail in Section 2.1. We also note the paper with a review
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of the use of various mean-field approaches for modeling the dynamics of epidemics [7].
Previously, studies [8,9] demonstrated the advantage of mean-field predictive models on
real data over commonly used compartmental SIR-type models.

The need to solve inverse problems for various mathematical epidemiological formu-
lations is caused by the presence of statistical data (usually noisy) describing the dynamics
of disease development and a large set of parameters in a mathematical model used for
forecasting. Parameters being reconstructed are usually physical, but difficult to determine,
since they depend on a large number of factors, e.g., the contagiousness parameter (rate of
virus spreading), used in an overwhelming majority of epidemiological models, depends
on infectiousness of virus, frequency of contacts in the population, incubation period, and
compliance with anti-virus restrictions.

The problems of reconstructing the coefficients of different epidemiological models
from real data are the subject of interest to many researchers (see, e.g., studies [10–12]).
But there are only a few papers on solving inverse mean-field problems [13–15]. The
mentioned studies focus on the reconstruction of the Hamiltonian of the system (not a
coefficient problem) and on non-epidemiological models. These papers consider classical
MF formulations in the form of a system of two partial differential equations, used mainly to
solve economic problems. The difficulties in finding solutions to inverse MF problems arise
due to the strict restrictions on the choice of cost functional describing the behavior of the
system to ensure the existence and uniqueness of the solution to the direct problem. Such
conditions for epidemiological MF formulation are discussed in more detail in Section 2.2.1.
To overcome them, in [13], e.g., the continuity equation is considered instead of the Fokker-
Planck one, which is used in mean-field systems to describe the evolution of the population.
This assumption leads to the fact that with zero current costs and a certain type of terminal
conditions, the formulation is similar to a transfer optimization problem, for which the
inverse problem has already been solved. The papers [14,15] consider the reconstruction of
the Hamiltonian based on a limited set of noisy partial observations of population dynamics
with a limited aperture. To achieve this goal, the authors formalize the inverse problem as
an optimization problem with constraints on the residual function using the least-squares
method with appropriate norms. The Chambolle–Pock method (a variation of the gradient
method) is used to solve the inverse problem. The authors note that due to the strong
incorrectness of the formulation, it is very difficult to obtain a high-quality reconstruction.

In this paper, the coefficient inverse MF problem is proposed for epidemiology. The
formulation is based on the intersection of two ideas. First, with the correct choice of pa-
rameters and functionality, epidemiological mean-field models can provide a more accurate
forecast of the virus spread dynamics due to additional assumptions about population
behavior than simple compartmental SIR-type models. Second, researchers in the field of
solving inverse mean-field problems (not epidemiological) note that due to restrictions
on the existence and uniqueness of the solution of direct problems, inverse problems are
incorrect and difficult to implement. Note that for epidemiological mean-field models,
these restrictions are even stricter (see Section 2.2.1). However, the sensitivity analysis of
the epidemiological MF model with respect to epidemiological parameters and the type
of functional (see Section 2.2.2 for details), shows that the model is highly sensitive to
the determination of epidemiological parameters. This allows us to consider the inverse
mean-field epidemiological problem as a coefficient problem and to choose the function
in such a way that it satisfies the specified uniqueness restrictions. This allows one to
consider a simpler formulation in comparison to those proposed in [13–15]. Thus, the
aim of this paper is to propose a formulation of the inverse mean-field epidemiological
problem and to study it on real and synthetic data. In this sense, this paper follows the
same ideas proposed in works [10,11,16] for SIR-based models described in the form of
ordinary differential equation (ODE) systems. Inverse coefficient problems proposed for
more complicated epidemiological models are discussed in [12,17,18] and others.
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This work is also aimed at solving practical problems arising from epidemiological
modeling. The proposed model is applied to real data on COVID-19 incidence in Novosi-
birsk in 2021. The inverse problem is formulated as a multicriterial optimization problem
with constraints, which can only be solved by zero-order methods. Sections 3–5 present
formulations, results, and comments for computational experiments on reconstruction of
model parameters on synthetic and real data.

2. Mathematical Formulation
2.1. Direct Problem

As a direct mean-field problem, the formulation used was first introduced in [19] and
called the SIR Mean-Field Model with Total Control for All Epidemiological Groups (SIR TGC
MF). This formulation differs from the one proposed, e.g., in [20], by the generality of the
chosen strategy for the entire population. Their comparison is given in the work [19]. Here,
the entire population is divided into three groups: susceptible people (S), infected (I), and
recovered (R), who receive immunity after illness or dying. The formulation of a direct
problem is the following: find the minima of the cost functional

J(mSIR, α) =
∫ T

0

∫ 1

0

 ∑
i∈{S,I,R}

Gi(mSIR(t, x), α(t, x))mi(t, x)+

g(t, x, mSIR(t, x))

)
dxdt +

1∫
0

Φ(mSIR(T, x))dx

(1)

with restrictions in the form of the system of convection-diffusion equations
∂tmS +∇(mSα) + βmSmI − σ2

S∆mS/2 = 0,

∂tmI +∇(mIα)− βmSmI + γmI − σ2
I ∆mI/2 = 0,

∂tmR +∇(mRα)− γmI − σ2
R∆mR/2 = 0

(2)

with initial
mi(0, x) = m0i(x) on Ω (3)

and Neumann boundary conditions

∂mi/∂x = 0 ∀t and x ∈ ΓΩ. (4)

Here, the stochastic processes within the population are described using non-negative
parameters σi, i ∈ {S, I, R}; mi(t, x) : [0, T] × Ω → R are the functions presenting the
distribution of individuals in each epidemiological group i ∈ {S, I, R} over the state space
Ω at each time moment t ∈ [0, T]. State variable x indicates the population’s loyalty to
quarantine measures: x = 0 is the agent’s dedication to imposed restriction measures, and
x = 1 is the opposite. Function α(t, x) : [0, T]× [0, 1] → R denotes the representative agent’s
strategy for avoiding infection. Parameters β and γ are epidemiological and describe the
process of virus spreading. Parameter β determines the contagiousness of the virus and γ
is the individual’s transition rate from the infected group to the recovered (recovery rate).

Functional (1) determined by three components. Here, Gi, i = {S, I, R} is called
running cost and denotes the cost for strategy realization for each epidemiological group
of the population. The function g is called current cost and denotes the cost that is not
explicitly dependent on strategy, and Φ is the terminal cost. The subscript ·SIR denotes any
linear combination of functions mS, mI , mR that is appropriate for the description of the
process under research.
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The using of the Lagrange multiplier method for Optimization Problem (1)–(4) leads
to the conjugate system of partial differential equations

∂ψS/∂t + σS
2∆ψS/2 + α · ∂ψS/∂x + βmI(ψI − ψS) =

− ∑
i∈{S,I,R}

mi∂Gi/∂mS − GS − ∂g/∂mS,

∂ψI/∂t + σI
2∆ψI/2 + α · ∂ψI/∂x + βmS(ψI − ψS) + γ(ψR − ψI) =

− ∑
i∈{S,I,R}

mi∂Gi/∂mI − GI − ∂g/∂mI ,

∂ψR/∂t + σR
2∆ψR/2 + α · ∂ψR/∂x =

− ∑
i∈{S,I,R}

mi∂Gi/∂mR − GR − ∂g/∂mR

(5)

with conditions on the time horizon

ψi(T, x) =
∂Φ
∂mi

(T, x) ∀ x ∈ [0, 1], ∀i ∈ {S, I, R} (6)

and the boundary conditions

∂ψi/∂x = 0 ∀t and x ∈ ΓΩ. (7)

In addition to the conjugate system, optimal conditions on α function should be
satisfied for all ᾱ ∈ R ∀(t, x) ∈ [0, T]× [0, 1]

∑
j∈{S,I,R}

mj

(
∂Gj

∂ᾱ
+

∂ψj

∂x

)
= 0. (8)

Note that Systems (5)–(8) are valid when the following conditions are performed:

α(t, 0) = α(t, 1) = 0 ∀t ∈ [0, T]. (9)

Thus, the set of systems of Equations (2)–(9) describes the optimum of a dynamic
system, the evolution of which is determined by Cost Function (1).

For the described computational experiments below, an iterative algorithm is used for
the solution of the epidemiological mean-field problem (2)–(9). This algorithm is described
in [19] in detail. The monotone finite-difference approximation for Systems (2)–(7) is
proposed. Stability and convergence estimates are shown. The optimal value of strategy α
is found iteratively by successive solutions of finite-difference analogs of Equations (2)–(7).
The process usually converges from 4 to 5 to about 20 iterations.

2.2. Motivation for Form of Inverse Problem Formulation Choice
2.2.1. Restriction on Existence and Uniqueness of Direct Problem

The main difficulties of the solution of the direct MF problem used for real-life appli-
cations are based on strict restrictions on the domain of the existence and uniqueness of the
solution. The most general condition for satisfying them is the convexity of the functional
with respect to control variables. In [19], these restrictions are formulated for the SIR MF
problem with individual control for each epidemiological group (see Property 4 in [19]).
Below, a reformulation of these restrictions is proposed for the SIR TGC MF model (2)–(9)
used in this study.
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Property 1 (Reformulation of Property 4 [19]). Conditions for the existence and uniqueness of a
weak solution of the SIR TGC MF model. Assume that running cost function Gi grows quadratically
with respect to control function α, and the following conditions are satisfied:

∃M > 0 :
(

∂Gi
∂α

(mSIR, α)− ∂Gi
∂α̃

(mSIR, α̃)

)
· (α − α̃) > 0

∀α, α̃ : α ̸= α̃, whenever
∣∣∣∣∂Gi

∂α

∣∣∣∣, ∣∣∣∣∂Gi
∂α̃

∣∣∣∣ > M.
(10)

Assume that g, Φ are non-decreasing with respect to m, bounded below and satisfy

∀L > 0 gL := sup
m∈[0,L]

|g(t, x, m)| ∈ L1((0, T)× Ω),

∀L > 0 ΦL := sup
m∈[0,L]

|Φ(T, x)| ∈ L1(Ω),

fi ∈ L1((0, T)× Ω), ∀i ∈ {S, I, R},

(11)

where fi, i ∈ {S, I, R} are the right parts of (2):

fS = −βmSmI ; f I = βmSmI − γmI ; fR = γmI . (12)

Then, for any m0i ∈ L∞(Σ)+ such as log m0i ∈ L1(Ω), there exists a unique weak
solution (mSIR, ψSIR) to the system of (2)–(9).

2.2.2. Sensitivity Analysis

Thus, we are quite strongly limited by the area in which a unique solution to a direct
problem exists. At the same time, the study of the difference in sensitivity of the modeling
results to the parameters of the model for both formulation [19] in the form of the MF SIR
problem and for the compartmental SIR model shows that the main contribution to the
dispersion of output is made by change in the epidemiological parameters of the model
(parameters of contagiousness β and recovery γ). In Figure 1, the result of the sensitivity
analysis for the MF SIR model is proposed. This result was first presented in the author’s
previous work [19], but will be repeated here because it is important. Here, the modeled
numbers of susceptible (S group) and infected people (I group) were used as outputs. As
input parameters, the following vector was used:

q⃗ = (β, γ, I0, σS, σI , σR, xc
S, xc

I , xc
R, σc

S, σc
I , σc

R). (13)

Here, xc
S, xc

I , xc
R, σc

S, σc
I , σc

R characterize the initial distribution of each epidemiological
part of the population by the following way:

m0i =
Ai
Bi

(
exp

(
−
(x − xc

i )
2

2(σc
i )

2

)
/σc

i

√
2π + aix2 + bi(1 − x)2

)
∀i ∈ {S, I, R}, (14)

where Ai is the proportion of the current group in relation to the total population at the ini-
tial time; Bi is the normalization coefficient equal to the integral over Ω of the expression in

brackets; ai = exp
(
−(1 − xc

i )
2
/

2(σc
i )

2
)
(1 − xc

i )/(2(σ
c
i )

3
√

2π) and

bi = exp
(
−(xc

i )
2
/

2(σc
i )

2
)
· (xc

i )/(2(σ
c
i )

3
√

2π) are expressions that ensure boundary con-

ditions (4) for m(0, x). Physically, this means that we define initial distributions as Gaussian
(though with some small corrections to comply with the boundary conditions). Parameter
I0 is the proportion of the current group in relation to the total population at the initial time
for the infected group. Here, AI coincides with I0. For the estimation of sensitivity, the
Extended Fourier Amplitude Sensitivity Test (eFAST) [21] was used. The eFAST method
allows dividing the total variance of model output into components, corresponding to the
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model’s input parameters. Variance caused by any given parameter and their interaction
is quantified by sensitivity indices being measurable indicators of the model’s sensitiv-
ity to parameter identification. The amplitudes of sensitivity indices are presented in
Figure 1. The inscriptions in the figure correspond to the order in which parameters are
written, defined in (13), so ‘sig_S’, ‘sig_I’, ‘sig_R’ correspond to model parameters σS, σI , σR;
‘E_S’, ‘E_I’, ‘E_R’ for xc

S, xc
I , xc

R and ‘disp_S’, ‘disp_I’, ‘disp_R’ for σc
S, σc

I , σc
R.

beta gamma I_0 sig_S sig_I sig_R E_S E_I E_R disp_S disp_I disp_R
model parameters
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Figure 1. Sensitivity indices for SIR MF model (2)–(9) with set of input parameters (13) for different
simulation times: T = 1, 3, 7, 15, 30, 90, 150 days for S and I outputs.

Let us comment on the results of the sensitivity analysis. The presented model with
constant parameters describes only one outbreak of an epidemic. In the case averaged over
all possible scenarios, the peak of epidemic development occurs at two weeks, which is
reflected by sensitivity indexes on Ith output. After that, the number of infected people falls,
and the variation of the parameter γ responsible for the recovery rate γ, accordingly plays
a smaller role. This explains the changes in sensitivity indices for γ, Ith output. In contrast,
the number of people in the S group is greater than in others and close to the population
size. It implies that the values of sensitivity indices remain at the same level over time. For
a small time period, the initial number of infected people (I0) is a key parameter.

The influence of functional components in formulation (1) on the type of optimal
control and modeling result is presented in the work [19] (Section 5). The main conclusion
is that even for a modeling period of 10 days, the relative difference between the predicted
number of infected people for the MF SIR model and the simple compartmental SIR one
with the same epidemiological parameters can reach 0.1%. For a population size of 1 million
people, this difference is about 1000 people.

2.3. Inverse Problem Formulation

Thus, based on the assumption that the epidemiological parameters are key for
model (2)–(9), for real applications, the inverse coefficient problem is considered, instead
of recovering the functions, as was carried out in [13–15]. The idea here is to put

Gi(mSIR(t, x), α) = ac
α2

2
mi; g(t, x, mSIR(t, x)) = dm2

I (t, x); Φ(mSIR(T, x)) = bcm2
I (T, x)

in direct problem functional (1). Here, the ac, bc ∈ R are unknown parameters, d ∈ R is
known. This choice is made for several reasons. First, assuming that the functions Gi, g, Φ
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are quadratic in control and distribution densities mi, we remain in the domain of existence
and uniqueness of the solution to the direct problem. Second, a very general assumption is
made here about the development of an epidemic, which is that the population acts in such
a way (or is subject to such actions on the part of the government) to reduce the number of
those infected (choice of function g).

Then, the inverse problem is to find the unknown coefficients θ⃗ = {β, γ, ac, bc} that
minimize the following function:

min
θ⃗

L = ∑
q

(∫ 1

0
mI(q, x)dx − Iq

)2

+ ∑
p

(∫ 1

0
mR(p, x)dx − Rp

)2

. (15)

Here, Iq and Rp are known measures of infected and recovered parts of the population
at some time moments, determined by p, q, the number of which is known in advance.
Thus, in the considered formulation, we optimize both the epidemiological component
(through parameters β, γ) and the description of the population (parameters ac, bc).

3. Materials and Methods
3.1. Nelder–Mead Optimization Method

Here, the Nelder–Mead method is used to solve the optimization problem. In 1965 [22],
the Nelder–Mead (N-M) sequential optimization method was proposed as a direct method
for local optimization of unconstrained problems and was a modification of the simplex
method. The idea of the method is to compare values of the target function at (n + 1)
vertices of the simplex and move the simplex towards the optimal point using an iterative
procedure, where n is a number of model parameters to be reconstructed. In the original
simplex method, a regular simplex was used at each stage. Nelder and Mead proposed
several modifications of this method that allow simplices to be irregular. The result was
a very reliable direct search method, which is one of the most effective if n ≤ 6. Its
effectiveness in practical applications has been demonstrated by a rapid initial decrease in
function values [23,24]. Recently, this well-known algorithm has been used in combination
with global search algorithms such as random search [24] and the genetic algorithm [25].

The implementation of the algorithm involves calculating the values of the target
function (defined here as (15)) at vertices of the simplex. Depending on the obtained values,
the simplex changes the worst point from the set to a new one, which is closer to the
local minimum. In a sense, the simplex creeps to the minimum value in the region. The
condition for termination of the iterative process is the smallness of sides or area of the
simplex obtained at the next iteration.

Here, the choice of the Nelder–Mead method is determined by the fact that (a) this
method does not require calculating the derivatives of the target function with respect to the
reconstructed parameters; (b) it is effective at a low speed of objective function calculation.
Recall that to calculate one value of the target function here, to solve the MF direct problem
is required, and the solution to the MF direct problem is found by an iterative algorithm.
Thus, for future works, the N-M method can be replaced by any suitable one for the
considered formulation and constraints. More information about zero-order methods can
be found in the monograph [26].

3.2. The Algorithm for the Solution of the Coefficient Inverse SIR MF Problem

Thus, for the constructed coefficient inverse problem, the following Algorithm 1 can
be used.
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Algorithm 1 Algorithm for the solution of the coefficient inverse SIR MF problem

1. Choose the initial value of vector θ⃗ being reconstructed and restrictions on the search
area of each component of θ⃗. Denote the obtained initial vector as θ⃗0;

2. Put number of iteration k equaled zero (k = 0);
3. Solve direct SIR MF problem (2)–(9), (15) with known parameters θ⃗k;
4. Put k = k + 1;
5. Compute 2 · |⃗θk|+ 1 values of target function (15) on kth iteration at a small deviation

from each vertex of the simplex under study. Do the iteration of N-M algorithm and
find new vector θ⃗k;

6. Check the stopping criterion of optimization method. If it is satisfied, then set θk as
the desired solution to the optimization problem; otherwise, return to step 3.

The solution of the direct problem of SIR MF was carried out using finite-difference
approximation proposed in [19].

3.3. The Description of Computational Experiments

This paper proposes two types of computational experiments on synthetic and real
data. Below is a description of each computational experiment.

Experiment №1
For the first experiment, the recovery possibility of only the β and γ parameters will

be studied on synthetic data. As a set of data, the solution of a simple compartmental SIR
model of the form 

dmS
/

dt = −βmSmI ,

dmI
/

dt = βmSmI − γmI ,

dmR
/

dt = γmI

(16)

will be considered with initial values

mS(0) = S0; mI(0) = I0; mR(0) = R0

and parameters describing the population and epidemiological process by the following
way:

N = 1000, S0 = 800/N, I0 = 200/N, R0 = 0, β = 0.7, γ = 0.3, d = 0.001. (17)

Here, N is the population size. These parameters describe a single outbreak of an
epidemic over a period of T = 10 days with dynamics visually displayed in Figure 2.

0 2 4 6 8 10
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Figure 2. Visual representation of epidemic dynamics described by SIR model (16) with
parameters (17).
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For the inverse SIR MF problem, values of β and γ parameters were reconstructed
only based on 10 daily measurements of the infected part of the population, that is, in target
function (15) we have the measurements I⃗ = (I0, . . . , I9) and do not have any of Rp. The
parameters ac and bc are known here and ac = 1, bc = 0.

Experiment №2
For the second experiment, the same data as in Experiment №1 will be used, but

a “single noise” into the known solutions (I0, . . . , I9) that does not exceed 1 or 5% is
introduced. The noise value is generated the same for each daily measurement and displays
the systematic error of the observer. The term ”single noise” means that for an experiment,
a single value was chosen from a uniform distribution to capture the noise level. This single
value was distributed over the entire set (I0, . . . , I9).

Experiments №3 and №4
Experiments №3 and №4 repeat Experiments №1 and №2, differing only in that all four

parameters will be reconstructed: θ⃗ = (β, γ, ac, bc).
Experiment №5
The fifth experiment is aimed at testing the performance of the algorithm on real data.

As real data, the dynamic of the spread of COVID-19 in Novosibirsk is chosen for the
150 days from 13 April 2021. The data collected in this city and some others can be found
at the link https://covid19-modeling.ru/data (acessed on 13 November 2024). As in the
previous experiment, the full set of parameters θ⃗ = (β, γ, ac, bc) will be reconstructed. For
the target function (15) computation, the daily measurements of the number of infected
people I⃗ = (I0, . . . , I149) will be used. The modeling will be carried out for different time
periods, which is named the window of modeling (w). This means that the parameters are
reconstructed using only data of w days and for the specified period. For the full 150-day
period, gluing of the corresponding number of periods on w days will be made. The
comparison of errors of modeling will be provided for several values of w.

Experiment №6
Experiment №6 repeats Experiment №5, but here, for the parameter reconstruction the

daily measurements of both the infected and recovered parts of the population will be used.
That is, in target function (15), we have the full set of measurements I⃗ = (I0, . . . , I149) and
R⃗ = (R0, . . . , R149).

Experiment №7 and №8
Experiments №7 and №8 estimate the quality of parameter reconstruction with a

limited amount of data. For Experiment №7, it is proposed that the entire set of daily
measurements of infected people is known I⃗ = (I0, . . . , I149), but daily measurements of
recovered people are not full. So, for R⃗, only part of the sample is known. Information
on what days the measurements are known is chosen randomly. The number of known
measurements was chosen as 90, 70, 50, and 30 % of the number of whole measurements.
The solving of the inverse problem was conducted 10 times for w = 10 days. The averaged
parameters β, γ, ac, bc, and their standard deviations will be obtained.

For Experiment №8, the same will be carried out, except that here, daily measurements
of infected people are known partially too.

4. Results

This section presents the results of the computational experiments described above.
Experiment №1 results
For Experiment №1, which was aimed at recovering the main epidemiological param-

eters β, γ from synthetic data without any noise, the recovered parameters are {0.69179788,
0.30081996} versus the true parameter, which equaled {0.7, 0.3}. The initial values of β, γ
for the optimization process were chosen equaled {0.5, 0.5}. Relative errors of recover are
1.2% and 0.3%. The 44 iterations of the algorithm, described in Section 3.2, were required.

Experiment №2 results

https://covid19-modeling.ru/data
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For the second experiment, the noise in measurements was put on a thousand similar
optimization problems, where different generated values of noise were solved. The result
is presented in Figures 3 and 4 for noises, the values of which do not exceed 1% and 5%.

Figure 3 should be interpreted as follows. Experiment №2 was conducted 1000 times
for different noise levels within the specified limits (does not exceed 1 or 5%). The resulting
samples of 1000 reconstructed β and γ values were divided into two parts of 500 elements.
Scatter diagrams were constructed based on the resulting subsamples. Ideally, the points
should be concentrated around the intersection of the red lines, which denotes the true
solution. The location of the ”cloud” of points shows the bias of the estimates obtained
relative to the true value. The same description is true for Figures 4–6.
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Figure 3. Values of reconstructed parameters β (left) and γ (right) for 1000 carried out Experiments
№2 with uniform noise in data under 1%.
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Figure 4. Values of reconstructed parameters β (left) and γ (right) for 1000 carried out Experiments
№2 with uniform noise in data under 5%.

Here and after, metrics rmse and rae are used for estimating the results of computa-
tional experiments. The metrics are explained below.

rmse =

√
1
M ∑

k
(y − yk)2,

rae =
100
M ∑

k

|y − yk|
|y| ,

where y is the true observation; yk is the obtained value from the kth experiment realization;
M is the number of realizations. Thus, rmse represents the root of the mean square error
and rae is relative absolute error.
So, for Experiment №2, when introducing noise does not exceed 1%:

rmse for β: 0.00830; rae for β: 1.17%;
rmse for γ: 0.00103; rae for γ: 0.29%.

When introducing noise does not exceed 5%:
rmse for β is 0.01036; rae for β is 1.22%;
rmse for γ is 0.00320; rae for γ is 0.91%.
Note that the reconstructed β parameters are generally lower than the true value. It

can be explained in the following way. First, the solution to MF problem is also obtained
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with some approximation error due to use of finite-difference approach to solve the system
of partial differential equations. This introduces an additional error into the target function.
Second, due to the choice of the initial value β = 0.5, the simplex comes near the true
solution β = 0.7 from below. Thus, at some value of β falling within the region shown
in Figure 3, the target function reaches its minimum. This can be corrected by increasing
the grid dimension when solving the mean-field problem. However, this leads to a huge
increase in the calculation time, since the algorithm for solving the mean-field problem is
iterative.

Experiment №3 results
The same pattern of computational results can be found for Experiments №3 and №4.

The reconstructed parameters for Experiment №3 are {0.69366844, 0.30132925, 0.58164058,
0.00000000} for β, γ, ac, bc. Thus, the relative absolute errors for β and γ amount to 0.90%
and 0.44% correspondingly. The reconstructed parameter bc equals zero because here as the
true measurements the solution of compartmental SIR model (16) was used. This means
that the optimal strategy α used in SIR MF model should be zero, and this is achieved when
bc = 0 and any value of ac.

Experiment №4 results
For the fourth experiment, where the noise in measurements was added, the three hun-

dred similar optimization problems with different generated values of noise were solved.
The number of similar computations was reduced because of the long computation time
of recovering four parameters. The visual representation of distribution of reconstructed
parameters β and γ is similar to that obtained from Experiment №2 (see Figures 3 and 4).
The rmse and rae values for β and γ parameters are presented below.
When introducing noise does not exceed 1%:

rmse for β: 0.00830; rae for β: 1.17%;
rmse for γ: 0.00103; rae for γ: 0.29%.

When introducing noise does not exceed 5%:
rmse for β is 0.01036; rae for β is 1.22%;
rmse for γ is 0.00320; rae for γ is 0.91%.
The reconstructed parameters ac and bc are presented in Figures 5 and 6.
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Figure 5. Values of reconstructed parameters ac (left) and bc (right) for 300 carried out Experiments
№4 with uniform noise in data under 1%.
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Figure 6. Values of reconstructed parameters ac (left) and bc (right) for the 300 carried out Experiments
№4 with uniform noise in data under 5%.



Mathematics 2024, 12, 3581 12 of 19

Experiments №5 and №6 results
Figures 7 and 8 show the result of computational experiments carried out on real

data. In the case of Figure 7, parameters were reconstructed using only measurements of
the infected part (I group) of the population. After recovering, the obtained parameters
were used for direct modeling to compare the quality of the approximation. For the result
depicted in Figure 8, the same was carried out, but for parameter reconstruction, the
measurements of infected and recovered parts (I and R groups) of the population were
used. Figures 7 and 8 show that the result for modeling window length (w) equaled 10 days.
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Figure 7. Result of direct modeling using SIR MF model in comparison with real data when model
parameters were reconstructed using daily measurements of I group.
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Figure 8. Result of direct modeling using SIR MF model in comparison with real data when model
parameters were reconstructed using daily measurements of I and R groups.

Table 1 includes the values of rmse and rae for several values of window length w.
Note that as the window length increases, the modeling error increases. This happens
because the spread of disease in reality is a non-stationary process, but the modeling
parameters are kept constant for the entire modeling period. The longer modeling period,
the worse reconstructed parameters approximate the real epidemiological process.

Table 1. Error values of SIR MF model in comparison with real data depending on chosen window
length (w) for reconstruction of model parameters.

Window Length (w)
(in Days)

rmse (in People) rae (in Percent)

S Group I Group R Group S Group I Group R Group

When using only measurements of infected (I) part of population

3 779.1 5.2 779.0 0.01 0.14 2.01

5 1052.0 9.0 1052.1 0.02 0.31 3.69

10 1124.1 19.5 1124.0 0.02 0.93 3.77

15 1198.5 21.6 1198.2 0.03 1.00 5.15

When using only measurements of infected and recovered (I, R) part of population

3 72.9 36.8 54.9 0.00 1.11 0.21

5 110.7 50.7 79.8 0.00 2.07 0.33

10 89.8 28.3 79.5 0.00 1.49 0.33

15 336.4 147.1 298.8 0.01 5.51 1.15
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Figure 9 shows the difference in the determination of parameters β, γ, ac, bc depending
on whether they were reconstructed using only the measurements of the infected part of
the population or both infected and recovered. Note, that values change non-smooth with
changing time intervals, especially for the ac and bc. The black dots for parameters β, γ
behave quite smoothly. The blue ones change non-smoothly due to the non-uniqueness of
the minimum target function, which takes into account data only for the infected group.
Thus, additional data on the recovered group level out the situation. Parameters ac and bc
determine the growth of components of the cost functional (1). Their values depend on the
chosen optimal population’s strategy in the considered time period of modeling and the
current incidence rate. These values are described by the behavior of both real data and
population on each individual interval independently and should not change smoothly.
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Figure 9. Value of the reconstructed parameters in each 10-day simulation window relative to
real data.

Experiment №7 results
Figure 10 shows the modeling result when the parameters were reconstructed using

a full set of measurements of the infected part (I group) of the population and a limited
number of measurements of recovered one (R group). The length of the simulation window
w was 10 days. The size of the available sample for the R group for reconstruction was cho-
sen to be 30% rounded down. Thus, for computational experiment, the parameters θ⃗ were
recovered over a 10-day period using known daily measurements of number of infected
I⃗ = (I0, . . . , I9) and only three measurements of recovered group R⃗ = (Rp1 , Rp2 , Rp3). The
values p1, p2, p3 ∈ {0, 1, . . . , 9} were chosen randomly. Ten identical runs were conducted
with different choices of p1, p2, p3. The reconstructed parameters were averaged and a
forecast built for them is shown in Figure 10. The rmse and rae for the obtained graph are
32.5 (in people) and 1.6% correspondingly for the I group. Thus, the use of additional data
(in addition to infected measurements), even in small quantities, allows us to significantly
improve the forecast. Table 2 contains the obtained rmse and rae values and their standard
deviations over similar runs for the described above experiment in dependence on the size
of the available sample for R group. The higher the percentage indicated, the more data
from group R were used in simulations.
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Figure 10. Result of direct modeling using SIR MF model in comparison with real data when
model parameters were reconstructed using daily measurements of I group and only 30% of known
measurements of R group.

Table 2. Error values (rmse (in people), rae (in percent)) of SIR MF model in comparison with real
data for w = 10 days depending on percentage of measurements in R group used for modeling of
total number of available ones. Here, daily data of measurements in I group were used. Designation
std denotes standard deviation of depicted error for 10 similar runs.

Percentage
S Group I R

rmse std, rmse rae std, rae rmse std, rmse rae std, rae rmse std, rmse rae std, rae

90 89.7 0.8 0.0021 0.0000 28.4 0.3 1.4916 0.0223 89.7 0.8 0.3319 0.0007

70 92.2 10.5 0.0022 0.0002 31.6 8.7 1.5903 0.1567 92.2 10.5 0.3371 0.0114

50 109.1 39.7 0.0025 0.0008 32.5 10.4 1.6104 0.2386 109.1 39.7 0.3913 0.1008

30 199.8 33.5 0.0045 0.0008 44.1 10.6 1.9892 0.3371 199.8 33.5 0.7151 0.1343

Experiment №8 results
The same was carried out when the limited set of measurements of I and R groups were

used for parameter reconstruction. Figure 11 shows the modeling result when parameters
were reconstructed using a limited set of measurements of the infected part (I group)
of the population and a limited set of measurements of recovered one (R group). The
length of the simulation window w was 10 days. The size of the available sample for
I and R groups for reconstruction was chosen to be 30% rounded down. Thus, for the
computational experiment, parameters θ⃗ were recovered over a 10-day period using known
three measurements of infected I⃗ = (Iq1 , Iq2 , Iq3) and three measurements of the R group
R⃗ = (Rp1 , Rp2 , Rp3) of recovered group. The values q1, q2, q3 ∈ {0, 1, . . . , 9} and p1, p2, p3 ∈
{0, 1, . . . , 9} were chosen randomly. Ten identical runs were conducted with different
choices of p1, p2, p3. The reconstructed parameters were averaged, and a forecast built for
them is shown in Figure 11. The rmse and rae for the obtained graph are 59.8 (in people)
and 2.5% correspondingly for the I group. Thus, even for a limited set of available data on
different groups, reconstruction is performed better than when using complete knowledge
about one group. Table 3 contains the obtained rmse and rae values and their standard
deviations over similar runs for the described above experiment in dependence on the size
of the available sample for I and R groups and modeling period w.
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Figure 11. Result of direct modeling using SIR MF model in comparison with real data when model
parameters were reconstructed using only 30% of known measurements of I and R groups.
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Table 3. Error values (rmse (in people) and rae (in percent)) of SIR MF model in comparison with
real data for several w days depending on percentage of measurements in I and R group used for
modeling of total number of available ones.

Percentage
S I R

rmse std, rmse rae std, rae rmse std, rmse rae std, rae rmse std, rmse rae std, rae

w = 5 days

90 110.3 8.8 0.0026 0.0002 46.8 4.7 1.8558 0.1300 110.3 8.82 0.3502 0.0407

70 103.8 9.3 0.0024 0.0003 45.7 7.8 1.9018 0.2730 103.8 9.3 0.3467 0.0337

50 109.5 6.9 0.0026 0.0001 47.4 6.9 1.8844 0.2189 109.5 6.9 0.3766 0.0291

30 1014.9 101.9 0.0141 0.0023 74.4 8.9 2.5751 0.2320 1014.9 101.9 2.2034 0.3550

w = 10 days

90 89.2 1.1 0.0021 0.0000 28.7 0.4 1.5121 0.0345 89.2 1.1 0.3319 0.0007

70 92.1 12.1 0.0022 0.0002 34.9 10.2 1.7122 0.2827 92.1 12.1 0.3391 0.0123

50 115.3 32.5 0.0026 0.0005 42.4 13.3 1.8706 0.2765 115.3 32.5 0.3853 0.0632

30 171.7 41.4 0.0037 0.0009 59.8 16.5 2.4699 0.4784 171.7 41.4 0.5309 0.0977

w = 15 days

90 349.9 115.8 0.0085 0.0032 130.3 33.5 4.9078 1.0619 349.9 115.8 1.2234 0.4341

70 361.1 80.5 0.0083 0.0025 136.4 21.5 4.9777 0.8437 361.1 80.5 1.1672 0.3440

50 368.6 63.1 0.0084 0.0022 124.4 30.2 4.2193 0.9106 368.6 63.1 1.1692 0.2966

30 423.6 55.4 0.0101 0.0018 125.2 33.5 4.5973 1.3023 423.6 55.4 1.4555 0.2190

w = 30 days

90 1016.1 1.1 0.0271 0.0000 529.0 1.8 19.1277 0.0402 1016.1 1.1 2.4698 0.0057

70 1016.1 1.1 0.0272 0.0000 528.7 4.5 19.1206 0.1014 1016.1 0.0 0.0272 0.0000

50 1016.1 1.1 0.0272 0.0000 527.3 4.3 19.0929 0.0950 1016.1 0.0 2.4750 0.0136

30 917.4 156.1 0.0243 0.0046 458.7 74.7 16.5436 2.5045 917.4 156.1 2.4173 0.5132

5. Discussion

This section is devoted to the analysis of the obtained results of computational experi-
ments, discussion of current and future problems, and ways of their possible solution.

As Section 2.2.1 of this paper shows, the main difficulty in solving the inverse MF
problem lies in the restricted domain of existence and uniqueness of the solution of the
direct problem. This makes the problem of reconstruction of the system’s Hamiltonian
strongly ill-posed. However, the inverse problem for the epidemiological MF model can
be reduced to a coefficient one. Sensitivity analysis of the model [19] shows the greatest
influence on the modeling result is exerted by the choice of epidemiological parameters (for
the SIR model, these are β and γ), and the form of the cost functional can be chosen that
satisfies the restriction, but this growth can be operated by the set of parameters determined
by the inverse problem.

The assertion that it is more important to restore the epidemiological parameters of the
model relative to the general form of the Hamiltonian of the system is indirectly confirmed
by the results of computational Experiments №1–4. Here, the solution of the differential
SIR model with known parameters was chosen as “exact measurements”, and the obtained
restored epidemiological parameters for the mean-field model were similar to those used.
At the same time, parameters ac and bc, describing the population, converged to values
at which the solution of the mean-field model would coincide with the solution of the
differential SIR model. Describe Figures 5 and 6 more detailed. In most cases, the value
of the bc parameter was determined to be close to zero. This is an expected value because
when bc equals zero and ac is any, the solution of the SIR MF system coincides with the
solution of the SIR differential model. This also approves the variation in the determination
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of the ac parameter. But in several cases, the value of the bc parameter is close to 5. This
value was chosen as the initial value of parameters for the optimization problem. Thus, the
simplex method used in the optimization algorithm determines that the initial value of the
parameter is close to the optimal one.

Note that here, for all experiments only, the parameters determining the growth
of costs of implementing the strategy (ac) and the terminal cost (bc) were reconstructed
while the growth rate of current costs remained unchanged, i.e., the function g in the cost
functional was chosen to be reliably known. Such simplification is due to the fact that
there are some relations on the growth rate of all three parts of the cost functional (cost of
implementing the strategy, current costs, and terminal one), which determine the area of
existence of the solution to the direct problem. At present, these relations are unknown and
difficult to evaluate. This is the future direction of studies for our research group.

Another problem related to the reconstruction of the MF model parameters is the
limited availability of measurements in each epidemiological group and the degree of
confidence in such data. Statistical data of this kind are difficult to measure since there is
a large number of asymptotic patients and/or deaths from the consequences of infection,
expressed in the form of exacerbation of chronic diseases. Thus, to recover the model
parameters, it would be desirable to use only the part of the data in which there is strict
confidence. Attempts to implement this in computational experiments with synthetic data,
when the reconstruction was made only by measuring the number of infected people,
gave an encouraging result. However, in real data (Experiments №5 and №6), the use of
such an approach leads to the non-uniqueness of the solution to the problem. An attempt
to reduce the period for which the reconstruction is made also did not give results (see
Table 1). Thus, to reconstruct the model parameters on real data, additional measurements
in other epidemiological groups should be used. Experiments №7 and №8 show that the
reconstruction on even a small number of data, but chosen in different groups, gives an
improvement to the forecast.

Also, it is important to make a remark that any epidemiological model approximates
the existing data set with some physically justified assumptions about the nature of the
virus’s behavior. The main problems associated with the reconstruction of the model
parameters from real data seem to be the following.

– Problem of statistical measurement consistency. For example, incorrect data collection
or interpretation can lead to the inability of a mathematical model to explain the
ongoing epidemiological process. Inconsistent measurements mathematically lead to
the presence of a minimum of the target function that differs from the real observed
value. Reliability of the assessment of such parameters can be increased by using only
those measurements that the researcher trusts (e.g., data on the number of hospitalized
or tested individuals are known with enough reliability). However, as shown in the
paper, this may not be enough. In this case, it is possible to include less reliable data
in the target function, but with a certain weight factor. More details on taking into
account poorly measured indicators, for example, asymptotic patients, are given in
the work [27]. Here, just a part of the epidemiological groups is used to reconstruct
the parameters of the compartmental SEIR-HCD model. Experiments using a limited
set of real data to reconstruct the coefficients are carried out in this work (Experiments
№7 and №8). Comparing the forecast errors obtained for the model with reconstructed
parameters, it can be noted that the use of partially known data is possible.

– Using regularization methods can presumably provide an improvement in reconstruc-
tion. Regularization methods are used in many studies on forecasting the dynamics
of epidemic spread for models in the form of a system of differential equations. For
example, Tikhonov regularization is used to reconstruct parameters of compartmental
SIR-type models, see, e.g., works [10,28]. The point here is to discretize the model and
reduce it to a system of linear algebraic equations, and then use regularization. The
same was carried out in [29]. The authors of [30] propose to use the total variation
regularization method, which is popular in image denoising. Here, for a model with
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available data, the likelihood function is constructed, which is optimized using a
modification of the N-M algorithm. In the work [31], the total variation regularization
method is used directly for the compartmental SIRQ model, where a regularizing
integral term is added to the target function in the form penalty for irregularity. For
the MF model studied here, the issue seems to be more complex, because for one
calculation of the target function value, the iteration procedure for solving the discrete
analog of the mean-field system (2)–(9) is performed. There is an idea of how to use
assumptions about already recovered parameters for regularization. Let the parame-
ters of the model for some relatively short period of modeling, e.g., several days be
known. Then, the epidemiological parameters for the next consecutive period of time
of the same duration will not differ much from those already known. This idea is
indirectly confirmed by the smooth change of black dots in Figure 9 for parameters
β, γ. This assumption can be used as a regularization term. Unfortunately, it has not
been formalized in theory and tested in practice yet. This is a topic for future research.

– Another way to assess the reliability of the parameter’s value being reconstructed
is sensitivity analysis. If the model is not sensitive to the parameter being studied,
then its reconstructed value may differ significantly from that observed in reality.
For the mean-field model studied in this paper, the sensitivity analysis with respect
to the epidemiological parameters is shown in Figure 1. The analysis of the depen-
dence of control behavior on the choice of the type of cost functional is given in the
paper [19]. Its result is described in Section 2.2.2. Note that the sensitivity indices
with respect to the entire set of reconstructed parameters are not estimated here, and
this is quite difficult to do for two reasons. First, the upper limit of the change in
parameters ac and bc is unknown. Note that for a significant change in the “output”
of the model (let’s say, the number of infected people on the time horizon), values
ac and bc can change by several orders. Second, there is some dependence between
the values β, γ, ac, bc, which is difficult to estimate. For example, if the parameters
β > γ > 0.5, then the number of infected people first begins to grow rapidly, and then
sharply falls. If the parameters ac and bc are also large, this will lead to sharp jumps
in the right-hand side of the Hamilton-Jacobi-Bellman equation. This leads to the
inoperability of most numerical methods for solving mean-field problems. Moreover,
there is a dependence between the components of the functional, determined by the
epidemiological situation described in reality. Thus, terminal costs (the third integral
component of the functional) should not be much greater than current and running
costs (the first and second components of functional), but can be significantly less.
We can try to estimate the boundaries of change in parts of the functional, based on
the analysis of real epidemiological data for several outbreaks of the epidemic. Thus,
assuming the isolation function α is known (based on real data), the value of each
component of the functional can be estimated, and identify the ranges of change in
parameters ac and bc. But now this remains an issue for future research.

6. Conclusions

This paper is devoted to a possible formulation of the mean-field epidemiological
problem. Section 2 proposes a formulation of the coefficient inverse problem, and provides
its motivation in the form of sensitivity analysis results. Section 3 describes the algorithm for
solving such a problem and describes the computational experiments. Section 4 is devoted
to the modeling results, and Section 5 is devoted to their discussion and future plans.

Research has shown that the presented formulation can be used to solve real epidemi-
ological problems, but can be refined in two directions: regularization of the model to
overcome the non-uniqueness of the solution to the problem on real data, and evaluation
of the growth rates of cost functional components of the problem.
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Data Availability Statement: Statistical data on COVID-19 incidence in Novosibirsk used for model-
ing are available at the link: https://covid19-modeling.ru/data (accessed on 13 November 2024).
Data aggregated by epidemiological groups (S, I, R), used directly for the software implementation
of the model are available at the link: https://disk.yandex.ru/d/jDVK3xsPwnNvPA (accessed on 13
November 2024). Jupyter notebooks with software implementation of computational experiments
are available at the link: https://drive.google.com/drive/folders/18wLiEpQCo9VrCuOXMy7Q4
vloD6Kl6tDI?usp=sharing (accessed on 13 November 2024).
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Abbreviations
The following abbreviations are used in this manuscript:

SIS Susceptible–Infected–Susceptible (differential model)
MF mean field
ODE ordinary differential equations
SIR Susceptible-Infected-Recovered (differential model)
SIR TGC MF SIR Mean-Field Model with Total Control for All Epidemiological Groups
eFAST Extended Fourier Amplitude Sensitivity Test
SIR MF Susceptible-Infected-Recovered mean field (differential model)
N-M Nelder—Mead (method)
SEIR-HCD Susceptible-Exposed-Infected-Recovered-Hospitalized-Critical-Dead
SIRQ Susceptible-Infected-Recovered-Quarantined (differential model)
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