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Abstract: Association Rule Mining (ARM) relies on concept lattices as an effective knowledge
representation structure. However, classical ARM methods face significant limitations, including
the generation of misleading rules during data-to-formal-context mapping and poor handling of
heterogeneous data types such as linguistic, continuous, and imprecise data. This study aims to
address these limitations by introducing a novel fuzzy data structure called the “fuzzy iceberg lattice”
and its corresponding construction algorithm. The primary objectives of this study are to enhance the
efficiency of extracting and visualizing frequent fuzzy closed item sets and to optimize both execution
time and storage requirements. The necessity of this research stems from the high computational cost
and redundancy associated with traditional fuzzy approaches, which, while capable of managing
quantitative and imprecise data, are often impractical for large-scale applications in real scenarios. The
proposed approach incorporates a ‘fuzzy min-max basis algorithm’ to derive exact and approximate
rule bases from the extracted fuzzy closed item sets, eliminating redundancy while preserving
valuable insights. Experimental results on benchmark datasets demonstrate that the proposed fuzzy
iceberg lattice outperforms traditional fuzzy concept lattices, achieving an average reduction of
74.75% in execution time and 70.53% in memory usage. This efficiency gain, coupled with the lattice’s
ability to handle crisp, quantitative, fuzzy, and heterogeneous data types, underscores its potential to
advance ARM by yielding a manageable number of high-quality fuzzy concepts and rules.

Keywords: concept lattices; knowledge representation; association rule mining; formal fuzzy
concepts; heterogeneous data; fuzzy iceberg lattice

MSC: 68T37; 68P01; 06B35; 68P20

1. Introduction

Association rule mining (ARM) is a fundamental technique in data mining, instru-
mental in uncovering valuable patterns and relationships in large datasets to support
decision-making through the discovery of relevant rules [1]. ARM identifies strong associa-
tion rules (ARs) based on criteria such as support, confidence, and lift and has applications
across multiple domains. In retail, ARM enhances market basket analysis and inventory
management, while in healthcare, it aids in associating symptoms with diseases to improve
diagnosis and treatment [2,3].

To address the limitations of traditional ARM approaches, Formal Concept Analysis
(FCA) has been introduced as a mathematical framework for extracting closed itemsets
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(CIs) via a structured lattice, enabling non-redundant association rule discovery without
data loss [4,5]. However, FCA primarily handles crisp data, which restricts its applica-
tion in contexts involving uncertain or quantitative data. To overcome this limitation,
Fuzzy Formal Concept Analysis (FFCA) extends FCA by integrating fuzzy set theory, thus
broadening its applicability in domains where data may not be purely binary [6]. Despite
its utility, FFCA faces significant challenges, particularly due to the exponential growth
of fuzzy concepts and the resulting rules as datasets scale in size and complexity. This
growth introduces a #P-complete complexity in enumerating fuzzy concepts and leads
to an exponential increase in association rule bases, making their generation and storage
#P-hard [7].

Furthermore, as highlighted in recent ARM studies [8], mining high-dimensional data
often results in an extensive set of rules, many of which may be redundant or irrelevant,
complicating interpretation. The incorporation of fuzzy or uncertain data further adds
complexity, requiring sophisticated methods for defining membership functions and inter-
preting results. These challenges underscore the need for ARM solutions that achieve a
balance between interpretability and computational efficiency.

Numerous studies [9–12] have applied FFCA in ARM, yet they frequently encounter
limitations in computational efficiency and memory consumption. Existing methods
struggle with the exponential complexity of constructing a complete concept lattice and
extracting association rules, especially as the data scale increases. For instance, while
the approach in [11] utilized fuzzy-crisp concepts like our proposed approach, it relied
on constructing a complete fuzzy lattice, which is computationally intensive. On the
other hand, the approach in [10] utilized the crisp-fuzzy concepts that result in a more
extensive number of fuzzy concepts that can result in very similar association rules. These
limitations hinder the application of FFCA-based ARM methods in real-time and large-
scale data processing, where timely and resource-efficient analysis is crucial. While recent
advancements offer some improvements, there is still a gap in achieving a scalable, practical
solution that maintains rule quality while mitigating computational overhead.

The increasing emphasis on handling large-scale data across diverse industries makes
it essential to explore efficient ARM techniques, especially those that can accommodate
complex data types. This research addresses this gap by introducing a novel fuzzy iceberg
lattice, which is tailored to optimize ARM by focusing solely on frequent closed itemsets
that exceed a predefined support threshold. Unlike traditional methods that build a
complete concept lattice, this approach selectively retains only the essential upper portion,
optimizing the process of mining strong association rules. Our method directly responds to
recent calls for scalable approaches that can enhance ARM’s applicability in modern data
environments, making it distinct from previously published studies.

This study aims to address the following research questions:

• How does incorporating a user-centric approach, which considers subjective beliefs
about data, impact the interpretability and effectiveness of the extracted rules?

• How to optimize the process of extracting association rules without losing critical
information?

• What improvements can be achieved in computational efficiency and rule compactness
when using the proposed fuzzy iceberg lattice over conventional methods?

These questions are addressed through a structured approach that includes the follow-
ing: (1) mapping the dataset to a fuzzy representation using user-centric linguistic labels,
enabling an interpretable transformation to a fuzzy variant without information loss; (2)
constructing a fuzzy iceberg lattice focused on frequent closed itemsets, which leverages
crisp intents and their corresponding fuzzy supports to filter out infrequent concepts early,
thereby optimizing the extraction of association rules; and (3) generating concise fuzzy
implication and association rules through a rule-based extraction algorithm that ensures no
redundant rules are included.

This study contributes to the field in the following ways:
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1. Formalizing the fundamental definitions of single-sided FFCA, in which a fuzzy
concept includes a fuzzy extent and a crisp intent.

2. Presenting a method for mining concise fuzzy association rules from quantitative data,
incorporating user-defined beliefs. The approach includes three main stages, data
mapping, iceberg lattice construction, and association/implication rule generation.

3. Developing a novel algorithm for extracting a fuzzy-crisp iceberg lattice, where
each node represents a crisp intent with fuzzy support values derived from the
corresponding fuzzy extent.

4. Extending the classical algorithm from [13] by introducing fuzzification to extract a
fuzzy association rule basis rather than binary rules.

5. Evaluating the proposed approach in comparison to existing methods [11,12] with
respect to the reduction in the number of fuzzy concepts, rule compactness, and
processing time.

The rest of this paper is organized as follows: Section 2 examines the fundamental
concepts of FCA and FFCA. Section 3 reviews related research in mining association
rules using FCA. Section 4 presents the proposed approach, including the algorithms for
constructing the fuzzy iceberg lattice and extracting association rules. Experimental results
on benchmark datasets are discussed in Section 5. Finally, Section 6 concludes the paper
and outlines future research directions.

2. Classical and Fuzzy Formal Concept Analysis

Formal concept analysis (FCA) is essential for representing conceptual knowledge [14].
This section provides an overview of the classical and fuzzy FCA’s fundamental concepts
and definitions. For those interested in delving deeper into the topic, the works of [5,15]
are some recommended sources.

Definition 1. A formal context
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sub-concept relationships through links. However, only frequent concepts are needed for
strong association rules. On the contrary, an iceberg lattice displays only frequent concepts
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(frequent closed itemsets FCIs) in a sub-lattice satisfying a minimum support threshold [16].
Therefore, the iceberg lattice is suitable for extracting strong association rules.

FCA algorithms need a formal context in binary form. Multi-valued context (MVC)
containing quantitative data then need to be converted into binary context using crisp scaling.
This involves dividing each quantitative attribute into multiple non-overlapping intervals.

Example 1. Table 1 shows a multi-valued context (MVC) with age and experience data for four
instances (O0 to O3). Tables 2 and 3 demonstrate how this MVC is mapped to a binary context
in Table 4. Age is divided into three intervals by the age scale context Table 2, and experience is
divided into junior, middle, and senior categories (Table 3). The transformation into a binary context
is achieved by evaluating each instance against the defined conditions of these scale contexts.

Table 1. Example multi-valued context.

Object ID Age Experience Years

O0 10 0

O1 17 3

O2 45 9

O3 46 15

Table 2. Scale context for the age quantitative attribute.

Age (A) Young Youth Old

A ≤ 16
√

16 < A ≤ 45 √

A > 45 √

Table 3. Scale context for the experience attribute.

Experience (E) Junior Middle Senior

E ≤ 3

3 < E ≤ 5 √

E > 5 √

Table 4. Derived context after crisp scaling.

Object ID
Age A Experience Years E

Young Youth Old Junior Middle Senior

O0 1 0 0 1 0 0

O1 0 1 0 0 1 0

O2 0 1 0 0 0 1

O3 0 0 1 0 0 1

In this example, Table 1 shows that object O0 has an age of 10 years. According to the
age scale in Table 2, the first condition states that any age equal or below 16 is classified as
“young.” Therefore, in the binary context shown in Table 4, O0 is assigned a “1” under the
“young” attribute and “0” under other age categories (“youth” and “old”). Having this will
finally result in a binary relation R between objects (O) and attributes (A), expressed using
“0”s and “1”s to represent the presence or absence of each attribute, facilitating a concise
relationship between attributes across instances.
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Crisp scaling converts multi-valued contexts (MVC) into binary context for FCA algo-
rithms, but it has drawbacks such as information loss and the sharp border problem [6]. As
demonstrated in Example 1, a small age variation can alter object memberships. Further-
more, objects like O1 and O2 are inaccurately classified as identical (e.g., both classified
as middle-aged with a membership of 1) despite actual differences. In contrast, Fuzzy
FCA (FFCA) integrates fuzzy set theory to address these issues by fuzzifying quantitative
attributes. Fuzzification considers an object’s membership across a continuous range [0, 1],
thereby providing a more nuanced representation than crisp scaling.

FFCA provides a robust framework for handling uncertainty and gradual membership
in data. As shown in Figure 1, FFCA can be approached in the following two main ways:

1. Full-sided FFCA: This approach uses fuzzy concepts where both the extent (the set of
objects) and the intent (the set of attributes) are fuzzy sets [17].

2. Single-sided FFCA: This category includes two variations as follows:
■ Crisp-fuzzy FFCA, where each fuzzy concept consists of a crisp extent (a precise

set of objects) and a fuzzy intent (a set of attributes with varying degrees of
membership) [18].

■ Fuzzy-crisp FFCA, in which the extent is a fuzzy set (with gradual membership
degrees) while the intent is a crisp set (with exact membership) [16].
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This study focuses on fuzzy-crisp FFCA, which is commonly used in association rule
mining and ontology construction [10,19]. In this approach, fuzziness is applied to the
extent, while the intent is treated as a crisp set, simplifying the representation of fuzzy
concepts. This approach reduces complexity by eliminating fuzziness from one side of the
concept, making it easier to analyze and interpret.

Definition 4. A fuzzy context K̂ is denoted as
(
O, A, R̂ : O × A → [0, 1]

)
such that O contains

the objects set, A contains the attributes set, and the fuzzy incident relation R̂ is between O and A.
So, each object o ∈ O has an attribute a ∈ A to some extent degree µR̂(o, a).

FFCA effectively handles quantitative data by fuzzifying each attribute into linguistic
labels using membership functions that map values to a range of [0, 1] [20]. For instance,
Table 1 shows the “age” and “experience years” linguistic variables. Figure 2 illustrates how
these variables are converted to fuzzy contexts, as seen in Table 5, retaining the membership
degree. For instance, in Figure 2, the age linguistic variable is defined by two trapezoidal
membership functions for young and old linguistic labels and one triangular membership
function for the middle-age (youth) linguistic label. Triangular membership function A(x)
is defined using Equation (4).

A(x) =


0 x ≤ a or x ≥ c
x−a
b−a a < x ≤ b
c−x
c−b b ≤ x < c

(4)
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Table 5. Fuzzy context after fuzzifying MVC in Table 1 using membership functions depicted in
Figure 2.

Object ID Age A Experience Years E

Young Youth Old Junior Middle Senior

O0 0.82 0.18 0 1 0 0

O1 0.56 0.44 0 0.75 0.25 0

O2 0 0.55 0.45 0 0.25 0.75

O3 0 0.51 0.49 0 0 1

The triangular function A(x) is a linear function that defines a fuzzy set by the lower
limit a, the middle value b, and the upper limit c, such that a ≤ b ≤ c.

In Figure 2, for example, the middle-aged linguistic label is a triangular membership
function with a = 5, b = 32.5, and c = 60. Given age x = 10, A(x) is evaluated by 10−5

32.5−5 ≃
0.18.; therefore, the object O0 has a value of 0.18 in the youth label in Table 5.

The trapezoidal membership function is defined by Equation (5) and is characterized
by four key points, a, b, c, and d. For example, the “young” trapezoidal function shown in
Figure 2 is specified with parameters a = 0, b = 0, c = 5, and d = 32.5. Thus, for an object O0
with an age of 10, as shown in Table 1, the membership value for the “young” linguistic
label is calculated as T(10) = 32.5−10

32.5−5 ≃ 0.82, which is presented in Table 5.

T(x) =


0 x ≤ a or x ≥ d

x−a
b−a a < x < b

1 b ≤ x ≤ c
d−x
d−c c < x < d

(5)

According to Definition 4, the fuzzy context presented in Table 5 consists of a set
of objects O = {O0, O1, O2, O3}, a set of attributes A = {Young, Youth, Old, Junior,
MiddleExperience, Senior} , and the fuzzy relation R̂ between objects in O and attributes in
A. For instance, the relationship between O1 and young attribute is formally defined as
µR̂(O1, young), which quantifies the degree to which O1 possesses the attribute “young”.
In this case, µR̂(O1, young) = 0.56, indicating that O1 is 56% “young.” Similarly, O2 has
a 55% membership in the “youth” category. This fuzzy representation provides a more
refined and continuous characterization of attributes compared to traditional binary or
crisp scaling, capturing subtle variations in attribute membership.

Definition 5. Given a fuzzy context K̂ =
(
O, A, R̂

)
, a fuzzy concept

(
X̂, Y

)
has a fuzzy extent

X̂ ⊆ O and a crisp intent Y ⊆ A, and X′ = Y and Y′ = X̂, where X̂′ and Y′ are formally given
by Equations (6) and (7), respectively.

X̂′ =
{

y ∈ Y | ∀x ∈ X̂ : µR̂(x, y) ≥ µX̂(x)
}

(6)
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X̂′ is a crisp set of attributes shared by all fuzzy objects in X̂ and µX̂(x) is the member-
ship of object x in the fuzzy extent set X̂.

Y′ =

{
x

µX̂(x)
| µX̂(x) = min

y∈Y
(µ R̂(x, y)

) }
(7)

Y′ is a fuzzy set of objects that share all attributes in Y, each with some extent degree.
For instance, consider Example 1

({
O2
0.75 , O3

1

}
, {senior}

)
as an example of a fuzzy-

crisp concept according to Definition 5. In this concept,
{

O2
0.75 , O3

1

}
represents the fuzzy

set defining the concept’s extent, while {senior} denotes the crisp set representing the
concept’s intent. This is a valid fuzzy-crisp concept because the following conditions are

met:
{

O2
0.75 , O3

1

}′
= {senior} and {senior}′ =

{
O2
0.75 , O3

1

}′
, where (′) is the concept-forming

operator known as the derivation operator. As clarified by Equation (6), when the derivation
operator (′) is applied to a fuzzy extent such as

{
O2
0.75 , O3

1

}
, it yields the set of attributes

common to all objects within that fuzzy extent. On the other hand, when the derivation
operator is applied to the crisp intent, e.g., {senior}, it returns a fuzzy set representing
objects that share all attributes in the intent and their associated membership values.

Definition 6. A fuzzy concept
(
X̂1, Y1

)
is a fuzzy sub-concept of

(
X̂2, Y2

)
if X̂1 ⊆X̂2 and

Y2 ⊆ Y1. This is denoted as
(
X̂1, Y1

)
≲

(
X̂2, Y2

)
.

Definition 7. A fuzzy concept
(
X̂1, Y1

)
is a fuzzy direct predecessor of

(
X̂2, Y2

)
>if

(
X̂1, Y1

)
≲(

X̂2, Y2
)
, and there is no fuzzy concept

(
X̂3, Y3

)
such that

(
X̂1, Y1

)
≲

(
X̂3, Y3

)
≲

(
X̂2, Y2

)
.

A fuzzy lattice β
(
O, A, R̂

)
visually organizes fuzzy concepts using the ≲ operator.

Figure 3, derived from Table 5, illustrates this lattice, comprising 12 nodes representing
fuzzy concepts by their fuzzy extent {object_Id, µobject} and crisp intent. Each node
condenses multiple attributes into a combined intent reflecting all superior concepts. For
example, the “Middle_level” node combines attributes from predecessors like {Middle_Age,
Middle_level}.
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To construct the fuzzy concept lattice in Figure 3 from the fuzzy context in Table 5, we
used the attribute-based algorithm provided in [20]. Starting with the top concept, which
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includes all objects and an empty intent, the algorithm derives each subsequent fuzzy
concept by iteratively adding attributes (forming intents) and identifying the objects (fuzzy
extents) that meet the membership criteria for those attributes, using the derivation operator
provided by Equation (7). For instance, the concept with the intent {Senior} includes objects
O2 and O3 in its fuzzy extent, with membership values 0.75 and 1, respectively, as both
objects satisfy the “Senior” attribute to varying degrees. Similarly, the concept with the
intent {Junior} has a fuzzy extent comprising O0 and O1, with membership values 1 and
0.75, respectively. For each concept, the fuzzy extent consists of objects that satisfy the
attributes in the intent, while the crisp intent is formed by attributes shared by all objects
in the extent. By organizing these concepts hierarchically based on subset relationships
between extents and intents (Definition 7), we create a lattice structure, where each concept
is connected to the others with which it shares direct subset relationships.

3. Literature Review

Crisp FCA-based approaches for association rule mining (ARM) excel in binary con-
texts but struggle with quantitative data, as shown in Example 1. In contrast, fuzzy
FCA-based methods adeptly manage quantitative and imprecise data. Therefore, this
section explores the application of fuzzy FCA in extracting association rules. Notable
approaches include those detailed in [11,12,21,22].

The approach by Mguiris et al. [22] employs prime number encoding within a crisp-
fuzzy FFCA framework for fuzzy association rule extraction. This method begins by
encoding the fuzzy context using prime numbers to identify frequent fuzzy minimal gener-
ators (FFMGs) without computing closures directly. Subsequently, a lattice of FFMGs is
constructed to facilitate the extraction of frequent closed itemsets (FCIs), which are then
used to derive fuzzy implications and association rules. Despite its innovative approach
to avoid closure computation, the method faces challenges such as computational com-
plexity due to prime number encoding, potential scalability issues with large datasets, and
interpretability concerns regarding the rules derived from the complex FFMG lattice.

Another crisp-fuzzy FFCA approach is discussed in [12], which extracts a set of
representative association rule groups. These groups drastically reduced the amount
of the extracted association rules (generic bases). An additional validation step checks
how the rule promise impacts the rule conclusion using the structural equations model.
Although this approach aims at reducing the number of rules, it still suffers from an
extensive number of association rules compared to fuzzy-crisp approaches, like in [23].
Mao et al. [21] proposed a novel approach for constructing a crisp-fuzzy concept lattice by
representing the fuzzy context as a weighted-complete graph. The authors demonstrate
that using graph theory in the crisp-fuzzy concept lattice construction results in a more
time-efficient algorithm.

Extracting fuzzy association rules using crisp-fuzzy FFCA is effective when the mem-
bership of each item is crucial but generates more FCIs than the corresponding fuzzy-crisp
FFCA approaches. Furthermore, crisp-fuzzy FFCA yields very similar FCIs with a minor
difference. Our proposed approach suggests a fuzzy-crisp iceberg lattice that reduces the
number of generated FCIs by merging similar ones while preserving membership values.
Each node in this lattice represents a crisp intent, and its fuzzy support preserves the
membership values of the contributing objects.

Zou et al. [11] presented a fuzzy-crisp FFCA approach to build the entire fuzzy concept
lattice incrementally by inserting one attribute at a time. This approach best suits fuzzy
contexts prone to continuous attribute insertion. Nevertheless, it generates the entire formal
fuzzy lattice, containing both frequent and infrequent concepts. Therefore, the approach of
Zou et al. is computationally intensive and requires further storage. In addition, it does not
generate implication rules with 100% confidence.

In contrast, our proposed approach utilizes the fuzzy-crisp paradigm to generate the
fuzzy iceberg lattice, considering only the fuzzy FCIs. Therefore, the proposed approach
is more efficient and requires less storage. Furthermore, the fuzzy membership of objects
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is aggregated in the fuzzy support. So, the suggested approach reduces the number of
association rules without information loss and takes real-world quantitative and fuzzy data
into account.

An iceberg lattice is a sub-concept lattice that highlights frequent closed itemsets (FCIs)
above a support threshold, ignoring less frequent patterns. Therefore, it is regarded as
the optimal method for extracting association rules due to its non-redundant and concise
basis [24]. However, it still needs to be effectively applied to fuzzy-crisp FCA. Applying
iceberg lattice to fuzzy FCA enables the effective handling of heterogeneous data (qualita-
tive, quantitative, imprecise, and binary). While there is significant research on building
binary iceberg lattices [24–27], only a few studies have utilized this approach for crisp-fuzzy
FFCA, such as those of Mguiris et al. [16,22]. Crisp-fuzzy-based iceberg lattice suffers from
the extraction of extensive frequent concepts, many of which are very similar in terms
of the membership degrees of the concepts’ intents. On the other hand, the proposed
approach utilizes a fuzzy-crisp-based iceberg lattice that merges similar fuzzy concepts and
combines membership degrees within the fuzzy support. Therefore, the proposed approach
aims to decrease the number of the generated fuzzy rules and enhance performance and
optimization in visualizing crisp intents with fuzzy support.

While notable advancements in FFCA have been achieved, several limitations persist.
Prime number encoding-based methods [22] suffer from computational complexity and
scalability issues in large datasets. Some crisp-fuzzy approaches [12] still generate an
extensive number of rules, posing challenges in interpretability. Techniques involving graph
theory [21] show improvements in time efficiency but may be too complex to implement
on highly dimensional data. Incremental lattice construction approaches [11] generate
comprehensive lattices but are resource-intensive, generating infrequent concepts and
redundant rules. Furthermore, the extraction of numerous similar frequent concepts in
crisp-fuzzy iceberg lattices [16,22] can complicate the analysis and reduce scalability. These
limitations underscore the need for continued optimization, especially for approaches
that handle large-scale or highly dimensional datasets with minimal redundancy and
increased efficiency.

4. Proposed Approach

This section presents the proposed approach for extracting concise association rules
from quantitative data. As depicted in Figure 4, the proposed approach consists of three
stages, mapping quantitative attributes into a fuzzy representation, constructing a one-sided
fuzzy iceberg lattice, and generating a condensed set of implication and association rules.
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4.1. Dataset Mapping Phase

The data mapping phase in our approach defines quantitative attributes using user-
specified linguistic labels. Fuzzy membership functions [6,28], such as triangular and
trapezoidal, are used to quantify degrees of membership in fuzzy sets. The data-sensitive
method is applied for defining these functions [6].

To eliminate infrequent linguistic labels and save processing time, we evaluate the
fuzzy support of each label using Equation (8). As a result, we obtain a reduced fuzzy
context Kr

(
A, O, R̂

)
along with the fuzzy support for each linguistic label (i), which serves

as the input for the second stage of our approach.

Fuzzy Support(i) =
∑xj∈X̂ µi

(
xj
)

|O| (8)

In this context, |O| denotes the total number of objects in the dataset. The membership
function µi

(
xj
)
∈ [0, 1] signifies the degree to which the object xj belongs to the linguistic

label i.

4.2. Fuzzy-Crisp Iceberg Lattice Phase

The proposed FuzzyIceberg algorithm (Algorithm 1) constructs the fuzzy iceberg
lattice using the reduced fuzzy context Kr

(
A, O, R̂

)
.

Algorithm 1: FuzzyIceberg
((

X̂, Y
)
, a
)

Input: (1) A reduced fuzzy context Kr
(

A, O, R̂
)
, a minimum support minSupport, and the current

attribute a
Output: Fuzzy closed itemsets in a fuzzy iceberg lattice
Begin
1 For i = a to | A |:
2 If i /∈ Y then
3 If Y = O′ then
4 Fext ⇐ i′
5 Fsupport ⇐ FuzzySupport(i)
6 Else
7 Fext ⇐ tnorm

(
X̂, i′

)
8 Fsupport ⇐ ComputeFSupport(Fext)
9 End If
10 If Fsupport ≥ minSupport
11 Yi ⇐ {1, 2, ....i}
12 If (Yi ∩ Y) = (Yi ∩ F′

ext) then
13 Cnew ⇐ (Fext′, Fsupport)
14 Itemsets f ⇐ Itemsets f ∪ Cnew
15 VisualizeNode (Cnew)
16 Cnew.Preds ⇐ DirectPreds(Y, Cnew)
17 If F′

ext ̸= A then
18 FuzzyIceberg ((Fext, Fext′), i + 1)
19 End If
20 End If
21 End If
22 End If
23 End For
End Procedure

Algorithm 1 utilizes FuzzySupport (i) to represent the fuzzy support of each linguistic
label (i). This algorithm is inspired by the principles of the CbO-type algorithms [29],
focusing on extracting frequent and infrequent fuzzy concepts. In contrast, the FuzzyIceberg
algorithm builds a fuzzy-crisp iceberg lattice where nodes correspond to frequent closed
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itemsets (FCIs) with crisp intents. The lattice’s edges represent the sub-concept relationships
between FCIs, ensuring each node’s fuzzy support meets the minimum support.

The initial invocation of the FuzzyIceberg algorithm is FuzzyIceberg ((O, O′), 1),
where the initial concept is (O, O′), such that O comprises all objects with a membership
degree of one. Equation (6) specifies O′ as the crisp set of attributes that are shared by all
instances. In addition, a is initialized by 1, enabling the gradual processing of attributes
numbered from 1 to the overall count of linguistic labels |A|. Line 12 is regarded as the
canonical test for identifying novel fuzzy concepts, mathematically validated in CBO-based
algorithms [23]. In addition, line 16 involves investigating the antecedents of the recently
revealed concept based on Definition 7.

To further illustrate this, Figure 5 offers a visual representation of the iceberg lattice
created from the fuzzy context in Table 5 with a 25% minimum support. It is evident that
each node encompasses the frequent closed itemset (FCI) along with its corresponding
fuzzy support. Once this lattice has been generated, the process of generating associations
and implications commences.
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4.3. Association and Implication Bases Generation Phase

This stage aims to produce a condensed collection of significant association and
implication rules that are not derivable from other rules. The implications generated are
the association rules with 100% confidence, whereas the remaining rules with less than
100% confidence are referred to as approximate rules or associations [30]. To obtain both
categories of rules, we have proposed Algorithm 2 (FuzzyMinMax algorithm), which
employs the crisp min-max basis approach [31] adapted for our fuzzy case.

Algorithm 2: FuzzyMinMax(FFCIs, MinGen, minConf)

1 For each f ci ∈ FFCIs do
2 For each Mg ∈ MinGen do
3 If f ci ̸= Mg then
4 ImpBasis = ImpBasis ∪

(
Mg ⇒ f ci ∖ Mg

)
, Supp = f ci.Supp, Con f = 100%

5 End If
6 End For
7 For each Pred ∈ f ci.Preds do
8 For each Mp ∈ Pred.MinGen do
9 If f ci.Supp

Mp .Supp ≥ minCon f then

10 ApprBasis = ApprBasis ∪
(

Mp −→ f ci ∖ Mp
)
, Supp = f ci.Supp, Con f =

f ci.Supp
Mp .Supp

11 End If
12 End for
13 End for
14 End For

The proposed FuzzyMinMax algorithm process a comprehensive set of all the fuzzy
frequent closed itemsets (FFCIs) that have been identified using the proposed FuzzyIceberg
algorithm during the iceberg lattice construction stage and the corresponding minimal
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generators Mg for each FCI. The initial phase of the FuzzyMinMax algorithm (lines 1–6)
involves the extraction of the implication basis ImpBasis through an iterative process over
the fuzzy frequent closed itemsets f ci (line 2), during which it is ensured that f ci is distinct
from its minimal generator Mg (line 3). The resulting implication rule is then appended to
the ImpBasis on line 4.

The procedure of acquiring an approximate basis denoted as ApprBasis necessitates
the retrieval of the FFCIs’ predecessors (line 7) and their corresponding minimal generators
denoted by Mp (line 8). An illustration of this process can be observed in Table 6, which
displays the non-redundant rule bases produced from the fuzzy iceberg lattice shown
in Figure 4. Rule 1 serves as the implication basis with a confidence of 100%, with the
remaining rules representing the approximate AR basis, whose confidence is below 100%.

Table 6. Non-redundant concise AR bases generated from fuzzy iceberg lattice in Figure 4.

Rule Number Rule Bases Support Confidence

1 Young ⇒ Junior 34.50% 100%

2 Junior → Young 34.50% 78.86%

3 MiddleAge → Senior 26.50% 63.1%

4 Senior → MiddleAge 26.50% 60.57%

5. Results and Discussion

All algorithms in the proposed approach are implemented in Java programming
language and carried out on an Intel Core i5 2.30 GHz machine with 8 GB of RAM under
Windows 10. We conducted experiments on crisp, quantitative, and fuzzy datasets to
show the proposed approach’s ability to generalize over different data types. The fuzzy set
theory is an extension of classical set theory. Therefore, the proposed approach can handle
crisp and fuzzy data with no fuzzification step. Nevertheless, the fuzzification step is only
necessary to handle quantitative datasets.

The conducted experiments evaluate the proposed algorithms in comparison with
recent related works, focusing on multiple aspects, including execution time, memory
usage, the number of generated fuzzy concepts, and the quantity of extracted association
rules. Table 7 provides a summary of the datasets used in the experiments. The benchmark
datasets—Abalone, Iris, and Mushroom—were obtained from the UCI Repository. Addi-
tionally, we generated synthetic fuzzy datasets with a non-zero density percentage of 20%,
possessing characteristics like those in [11].

Table 7. Datasets used for experiments.

Datasets Data Type |O| |A|

Abalone Quantitative/nominal 4177 19 after fuzzifying quantitative
attributes with 2 linguistic labels.

Iris Quantitative/nominal 150 15 after fuzzifying quantitative
attributes with 3 linguistic labels.

Synthetic fuzzy
(RandomFuzzy) Fuzzy 20 200, 250, 300, 350, and 450

Mushroom Nominal/crisp 8124 120

The fuzzy-mapped datasets (Abalone, Iris, and the synthetic fuzzy datasets) were used
to assess the proposed iceberg lattice’s performance in terms of processing time and storage
efficiency relative to the fuzzy concept lattice. In contrast, the Mushroom dataset was used
to compare the number of generated fuzzy concepts produced by the proposed approach
against those from the Mguiris et al. approach, which employs the crisp-fuzzy paradigm.
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The proposed approach utilizes the fuzzy-crisp FFCA paradigm, which combines
similar fuzzy concepts while preserving their respective membership degrees. This merging
process is crucial in significantly reducing the overall number of fuzzy concepts, yielding
notable benefits in both time and storage requirements. To illustrate this advantageous char-
acteristic, Figure 6 provides a visual representation of the fuzzy concept counts generated
by the proposed approach in comparison to Mguiris et al. approach [12]. This experiment
is conducted over the Mushroom dataset under various minimum support thresholds.
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Figure 6. Number of fuzzy concepts generated by the proposed approach versus fuzzy concepts
generated by [12,22] approaches over the Mushroom dataset.

The graph demonstrates that, when compared to the related approaches, the proposed
approach generates an exceedingly lower count of fuzzy concepts. The resultant reduction
in the number of fuzzy concepts enables a swifter generation of fuzzy association rules,
thus enhancing the efficiency of the overall process.

Generating a vast number of fuzzy association rules poses a challenge regarding rule
interpretation and practical usability. When faced with many rules, it becomes difficult
for analysts and decision-makers to comprehend and extract meaningful insights from the
rule set effectively. This problem is commonly referred to as the “rule explosion” or “rule
clutter” issue [32,33].

We have experimented with the proposed approach versus the Mguiris approach [12]
over the fuzzified abalone dataset. This experiment showed how the proposed approach
generated a smaller number of association rules. For instance, with a minimum support
of 80%, the proposed approach generated 82 association rules versus 903 rules generated
by the Mguiris approach [12]. The significant reduction is evident because each item’s
membership is not shown in the association rule (intent) but embedded in the fuzzy support.
In addition, the proposed approach manipulates the quantitative attribute as a linguistic
variable defined using a set of linguistic labels which leads to generating human-like rules
and considering the actual membership of the object in the item via fuzzy support.

The work of Zou et al. in [11] represents a fuzzy-crisp FFCA approach for mining and
updating ARs that incrementally builds the entire fuzzy concept lattice. Figure 7 shows
the results of comparing the work in [11] with the proposed approach over synthetic fuzzy
datasets, with a non-zero value percentage of 20%. The comparison result highlighted
a significant reduction in the processing time achieved by the proposed approach. This
reduction occurs due to the proposed fuzzy iceberg lattice rather than the entire fuzzy
concept lattice. Additionally, Figures 8 and 9 depict how much less time (in ms) and
memory consumption (in MB) it takes to make the fuzzy iceberg lattice than the entire
fuzzy concept lattice over different types of datasets.



Mathematics 2024, 12, 3590 14 of 17

Mathematics 2024, 12, x FOR PEER REVIEW 15 of 18 
 

 

 
Figure 7. Processing time comparison between the proposed approach versus the Zou et al. (2018) 
[11] over the fuzzy synthetic datasets. 

 
Figure 8. Memory consumption of constructing the entire fuzzy concept lattice vs. constructing the 
proposed fuzzy iceberg lattice. 

 
Figure 9. Time required to construct the entire fuzzy concept lattice vs. constructing the proposed 
fuzzy iceberg lattice. 

Figure 10 illustrates a comparison between the total number of fuzzy concepts in the 
full fuzzy concept lattice and the reduced number of concepts in the fuzzy iceberg lattice 
(FFCI) for various datasets—Abalone, Iris, RandomFuzzy200, and RandomFuzzy250. The 

Figure 7. Processing time comparison between the proposed approach versus the Zou et al. (2018) [11]
over the fuzzy synthetic datasets.

Mathematics 2024, 12, x FOR PEER REVIEW 15 of 18 
 

 

 
Figure 7. Processing time comparison between the proposed approach versus the Zou et al. (2018) 
[11] over the fuzzy synthetic datasets. 

 
Figure 8. Memory consumption of constructing the entire fuzzy concept lattice vs. constructing the 
proposed fuzzy iceberg lattice. 

 
Figure 9. Time required to construct the entire fuzzy concept lattice vs. constructing the proposed 
fuzzy iceberg lattice. 

Figure 10 illustrates a comparison between the total number of fuzzy concepts in the 
full fuzzy concept lattice and the reduced number of concepts in the fuzzy iceberg lattice 
(FFCI) for various datasets—Abalone, Iris, RandomFuzzy200, and RandomFuzzy250. The 

Figure 8. Memory consumption of constructing the entire fuzzy concept lattice vs. constructing the
proposed fuzzy iceberg lattice.

Mathematics 2024, 12, x FOR PEER REVIEW 15 of 18 
 

 

 
Figure 7. Processing time comparison between the proposed approach versus the Zou et al. (2018) 
[11] over the fuzzy synthetic datasets. 

 
Figure 8. Memory consumption of constructing the entire fuzzy concept lattice vs. constructing the 
proposed fuzzy iceberg lattice. 

 
Figure 9. Time required to construct the entire fuzzy concept lattice vs. constructing the proposed 
fuzzy iceberg lattice. 

Figure 10 illustrates a comparison between the total number of fuzzy concepts in the 
full fuzzy concept lattice and the reduced number of concepts in the fuzzy iceberg lattice 
(FFCI) for various datasets—Abalone, Iris, RandomFuzzy200, and RandomFuzzy250. The 

Figure 9. Time required to construct the entire fuzzy concept lattice vs. constructing the proposed
fuzzy iceberg lattice.

Figure 10 illustrates a comparison between the total number of fuzzy concepts in the
full fuzzy concept lattice and the reduced number of concepts in the fuzzy iceberg lattice
(FFCI) for various datasets—Abalone, Iris, RandomFuzzy200, and RandomFuzzy250. The
fuzzy iceberg lattice, which includes only the strong fuzzy concepts meeting a specified
minimum support, has a notable reduction in the extracted concept count. This reduc-
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tion, quantified by the reduction ratio, ranges from 45.18% for Abalone to over 90% for
the Iris and synthetic datasets (RandomFuzzy200 and RandomFuzzy250). These results
highlight the efficiency of the fuzzy iceberg lattice in simplifying the concept structure, sig-
nificantly lowering the computational and memory requirements while retaining essential
information for the association rule mining.
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6. Conclusions

This study addresses key limitations in traditional association rule mining (ARM)
techniques, particularly the challenges of handling heterogeneous data and minimizing
redundant rule generation. By introducing a novel fuzzy-crisp iceberg lattice structure
based on Fuzzy Formal Concept Analysis (FFCA), the approach presented here successfully
handles diverse data types, including binary, uncertain, and quantitative data. The fuzzy-
crisp iceberg lattice algorithm effectively extracts frequent closed itemsets (FCIs) with their
fuzzy supports while representing parent–child relationships among FCIs, providing a
clear and efficient visualization of associations.

Our experimental results on benchmark datasets confirm that the proposed approach
significantly reduces computational time and memory usage, achieving an average reduc-
tion of 74.75% in execution time and 70.53% in memory usage compared to traditional
methods. The fuzzy min-max basis algorithm further refines the rule set by generating a
concise, non-redundant collection of association and implication rules, which is crucial for
improving both interpretability and practical application in ARM. These findings under-
score the potential of the fuzzy-crisp iceberg lattice to enhance ARM by yielding a compact,
high-quality set of fuzzy concepts and rules.

However, despite these advancements, the proposed approach has limitations. The
current method does not support incremental updates, which restricts its performance
when applied to dynamic datasets that evolve over time. Future research could explore the
incremental construction of the fuzzy-crisp iceberg lattice, potentially improving processing
efficiency and adaptability in real-time data environments. This enhancement would make
the approach even more suitable for large-scale, continuously updated datasets, further
advancing the practical applicability of ARM in diverse, data-rich domains.
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Abbreviations
The following table provides a list of the abbreviations used throughout the paper as a quick reference.

Abbreviation Full Term
FCA Formal Concept Analysis
FFCA Fuzzy Formal Concept Analysis
ARM Association Rule Mining
ARs Association Rules
CIs Closed Itemsets
MVC Multi-Valued Context
FCIs Frequent Closed Itemsets
FFMGs Frequent Fuzzy Minimal Generators
FFCIs Fuzzy Frequent Closed Itemsets
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