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Abstract: This article introduces the R package pspatreg, which is publicly available for download
from the Comprehensive R Archive Network, for estimating semiparametric spatial econometric
penalized spline (P-Spline) models. These models can incorporate a nonparametric spatiotemporal
trend, a spatial lag of the dependent variable, independent variables, noise, and time-series au-
toregressive noise. The primary functions in this package cover the estimation of P-Spline spatial
econometric models using either Restricted Maximum Likelihood (REML) or Maximum Likelihood
(ML) methods, as well as the computation of marginal impacts for both parametric and nonparametric
terms. Additionally, the package offers methods for the graphical display of estimated nonlinear
functions and spatial or spatiotemporal trend maps. Applications to cross-sectional and panel spatial
data are provided to illustrate the package’s functionality.
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1. Introduction

In recent years, a new research area in spatial econometrics has emerged in which
spatial econometric specifications are combined with semiparametric models [1–4]. These
models are highly flexible, enabling the inclusion of the following components within a
single specification: (i) Spatial autoregressive terms (i.e., spatial lags of dependent and
independent variables as well as spatial error terms) to capture spatial interaction or
network effects; (ii) Parametric and nonparametic (smooth) terms to identify nonlinear
relationships between the response variable and the covariates; (iii) A spatiotemporal trend,
i.e., a smooth interaction between spatial coordinates and the time trend, to capture both
spatial and temporal heterogeneity. Although these models are potentially applicable in
numerous fields, there is, to the best of our knowledge, no comprehensive computational
implementation formally available in the commonly used programming languages. The R
package pspatreg, available on CRAN and GitHub, provides this functionality along with
a user-friendly input/output interface and extensive documentation.

The theoretical background of this package is thoroughly discussed in Mínguez et al. [4]
and Basile et al. [2]. These authors recently proposed an approach that combines penalized
regression spline methods (see [5], for a recent and complete review of these models) with
standard spatial econometric models (such as the Spatial Autoregressive model, or SAR, the
Spatial Error Model, or SEM, the Spatial in X-variables model, or SLX, the Spatial Durbin
Model, or SDM, the Spatial Error Durbin Model, or SDEM, and the SARAR model, a combina-
tion of SAR and SEM); (see LeSage and Pace [6] and Elhorst [7] for a thorough revision). These
models address four main econometric issues crucial to modeling spatiotemporal data: func-
tional form bias, spatial dependence bias, spatial heterogeneity bias, and omitted time-related
factors bias.
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The proposed methodology also enables an Analysis of Variance (ANOVA) decompo-
sition of the spatiotemporal trend into multiple components (spatial and temporal main
effects, and second and third-order interactions between them); this was proposed by Lee
and Durbán [8] and provides further insight into the dynamics of the data. As a result,
the methodology is denoted by the acronym PS-ANOVA-SAR (SEM, SDM, SDEM, SLX,
SARAR). The use of nested B-spline bases for interaction components of the spatiotemporal
trend enhances the efficiency of the fitting procedure without compromising the model’s
accuracy. Additionally, we propose an extension of PS-ANOVA-SAR (SEM, SDM, SLX,
SARAR), which incorporates a first-order autoregressive term process (AR1) in the noise to
account for residual serial correlation. Further theoretical background for the package is
available in the online appendix to this paper.

This paper first reviews the statistical methodology for identifying and estimating
semiparametric spatial econometric models. Then, it introduces the main functions of the
package, covering (a) the estimation and inference of P-Spline regression models, (b) the
computation of marginal impacts for parametric and nonparametric terms, and (c) the
graphical display of estimated nonlinear functions and spatial trend maps. We also compare
pspatreg’s functionalities with those of other statistical software for estimating spatial
semiparametric regression models. Finally, applications to cross-sectional and panel spatial
data demonstrate the usage of these functions.

2. Semiparametric Spatial Econometric Models: A Review

Currently, the prevailing paradigm in spatial econometrics remains largely paramet-
ric. The first generation of spatial econometric models—primarily developed to handle
cross-sectional data—focused on modeling spatial dependence through various linear
specifications, including SAR, SEM, SDM, SLX, and SARAR [6,9]. In the past decade, these
models have been extended to account for spatial panel data (or spatiotemporal data),
which includes time series observations across geographical units. Elhorst [7] designates
these as second generation spatial econometric models. By incorporating region-specific
fixed or random effects, these models are particularly useful for controlling unobserved
spatial heterogeneity—an essential consideration in empirical economic analyses. Ignoring
such heterogeneity can lead to omitted variable biases and obscure causal inferences. More
recent advances have included dynamic spatial panel data models and spatial VAR (Vector-
Autoregressive) models, which address issues of time persistence and reverse causality.

Despite these substantial advancements, it is essential to recognize that any parametric
model is restricted to specific forms of spatial parameter variation, such as spatial regimes.
These models are ill-suited for capturing more generalized forms of spatial heterogeneity
in model parameters, such as when parameter variation is continuous (smooth) over space
or dependent on geographic coordinates and when the functional relationship between
dependent and explanatory variables is unknown or non-monotonic. Departing from a
strictly parametric approach, another branch of spatial econometric literature has intro-
duced semiparametric methods, which offer more flexible estimation frameworks. This
direction follows the recommendations of McMillen [10] to adopt smoother techniques that
account for spatial heterogeneity while accommodating potential nonlinearities.

First, following the work of Brunsdon et al. [11], Cho et al. [12] introduced an approach
combining geographically weighted regression (GWR) with spatial autoregression (SEM),
known as GWR-SEM. In this approach, the spatial autoregressive error term mitigates
spatial dependency, while GWR captures spatial heterogeneity by allowing coefficients
to vary across observations. Similarly, Páez et al. [13] proposed an estimation method for
cross-sectional data in which the covariance varies locally, effectively addressing spatial
autocorrelation in the error terms. Another significant contribution in managing both
spatial autocorrelation and parameter nonstationarity was made by Pace and LeSage [14],
who proposed a spatial autoregressive local estimation based on a recursive maximum-
likelihood estimation approach. This approach enables subsample-based estimation within
each observation’s neighborhood. More recently, Geniaux and Martinetti [15] introduced
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the MGWR-SAR (Mixed Geographically Weighted Regression Simultaneous AutoRegres-
sive Model) by integrating kernel smoothing with standard spatial lag models. This model
allows regression parameters and spatial dependence coefficients to vary across space,
accommodating cases where some parameters remain constant while others vary spatially.

Second, Montero et al. [1], Basile et al. [2], and Hoshino [3] incorporated penalized
regression spline (PS) methods [5] into standard cross-sectional spatial autoregressive
models (e.g., SAR, SEM, SDM, and SLX). These models capture spatial interaction effects
alongside spatially autocorrelated unobserved heterogeneity, and allow for identifying
nonlinear relationships between the dependent variable and the covariates.

Third, Mínguez et al. [4] extended the PS-SAR approach to spatiotemporal data,
particularly suited for datasets with large cross-sectional and time series dimensions. Such
data enable the estimation of both spatial and spatiotemporal trends in a nonparametric
manner [8], capturing region-specific nonlinear time trends while accounting for spatial
autocorrelation. This approach helps address questions such as the following: How do
unobserved, time-related factors (e.g., economy-wide technological or demand shocks)
differentially influence the long-term dynamics across sample units? And how does
their inclusion impact the estimation of spatial interaction effects? In this sense, the PS-
SAR model with spatiotemporal trends offers an alternative to parametric methods for
distinguishing common factors effects (such as shared business cycle influences) from
spatial dependence effects (local interactions generating spillover). Here, the former is
often termed ’strong’ cross-sectional dependence, while the latter represents ’weak’ cross-
sectional dependence [16].

In the following subsection, we provide a concise overview of P-Spaline models both
for cross-sectional and panel data, outlining various model specifications and estima-
tion techniques.

P-Spline Models for Spatial and Spatiotemporal Data

Let {(yi, xi1, . . . , xip, zi1, . . . , zik)}N
i=1 be a set of observations from a Gaussian response

variable Y and two collections of p and k covariates X1, . . . , Xp and Z1, . . . , Zk, respectively,
and (s1i, s2i) are the spatial coordinates (latitude and longitude) of individual i.

The first specification of semiparametric models for spatial data implemented in the
pspatreg package is the PS model. In matrix form, it reads as follows:

• PS model

y = f (s1, s2) + Xβ +
k

∑
l=1

gl(zl) + ϵ ϵ ∼ N(0, σ2IN), (1)

where y is a N × 1 vector including the observations of the dependent variable, X is a N × p
matrix of paremetric effects and gl(zl) are smooth functions that account for the non-linear
effects of the covariates z1, . . . , zk. The term f (s1, s2) is a two-dimensional smooth function
of the spatial coordinates s1 and s2 that collects the potential spatial heterogeneity usually
present when working with spatial data.

All the nonparametric terms in this and all subsequent models are modeled using
Penalized-splines (P-Splines), as described in Eilers and Marx [17]. This methodology
assumes that each unknown function to be estimated is smooth and can be represented
as a linear combination of basis functions and a penalty on the coefficients is added to the
likelihood to control the smoothness of the estimated function. A popular choice for the
basis is the use of cubic B-spline [18]:

gl(zl) =
κl

∑
j=1

Bj(zi)θj, l = 1, . . . , k,

where κl is the number of knots used to construct the basis for each covariate. In the case of
P-splines, the selection of the number and position of the knots is not an issue: the idea is
to select a large enough number of equally spaced knots and plet the penalty control for
the smoothness. Ruppert [19] proposes a general rule of thumb for the number of knots:
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use the min(40, n/4), where n is the number of unique values of the covariate. The penalty
can take several forms, depending on the prior knowledge of the curve/surface. The most
common choice is to use second-order differences on adjacent B-spline coefficients (see [4]).
In the case of an univariate function, i.e., gl(zl), the penalty would be:

Penalty = λ ∑
j

(
θj − 2θj−1 + θj−2

)2,

where λ is the smoothing parameter that control the roughness of the function to be esti-
mated and prevents overfitting. This parameter will be estimated via maximum likelihood
as the rest of the parameters in the model.

In the multidimensional setting, i.e., f (s1, s2), the basis is computed as a tensor product
of the marginal basis functions in each dimension, and the penalty is a kronecker sum of
penalties controlled by as many smoothing parameters as the dimension of the function to
be estimated.

The PS model can be seen as the baseline model in the context of semiparametric
spatial autoregressive models and can be extended to include spatial lags of the dependent
or independent variables (both parametric and nonparametric) or the model’s noise in a
way similar to the standard spatial econometric models [6,7]. The semiparametric spatial
econometric models are called PS-SLX, PS-SAR, PS-SEM, PS-SDM, PS-SDEM, and PS-
SARAR to reflect the combination of semiparametric models via P-splines with the most
common spatial econometric models (already mentioned in Section 1).

• PS-SLX model

This specification includes a spatial lag of the parametric and nonparametric covari-
ates. As usual in spatial econometrics, W represents a N × N row-standardized spatial
weights matrix:

y = f (s1, s2) + Xβ + WXβ∗ +
k

∑
i=1

gi(zi) +
k

∑
i=1

g∗i (Wzi) + ϵ ϵ ∼ N(0, σ2IN). (2)

• PS-SAR model (PS-spatial autorregresive model)

In this case, a spatial lag only for the dependent variable (Wy) is added to the PS
model. This term implies that the response variable is influenced by the values of other
observations based on their geographic proximity, and it is controlled by the parameter ρ:

y = f (s1, s2) + ρWy + Xβ +
k

∑
i=1

gi(zi) + ϵ ϵ ∼ N(0, σ2IN). (3)

• PS-SEM model (PS-spatial error model)

The systematic part of the PS-SEM model is the same as the PS model, but the errors
(rather than the response variable) are affected by spatial autocorrelation:

y = f (s1, s2) + Xβ +
k

∑
i=1

gi(zi) + u (4)

u = δWu + ϵ ϵ ∼ N(0, σ2IN).

• PS-SDM model (PS-spatial Durbin model)

A spatial lag of the dependent and independent variables (both parametric and non-
parametric) is included in this case. This specification nests both PS-SAR and PS-SEM
models (the last one as a nonlinear constraint of PS-SDM). A particular case of this model
can be specified when the spatial lag is included only for a subset of the covariates (either
parametric or nonparametric).

y = f (s1, s2) + ρWy + Xβ + WXβ∗ +
k

∑
i=1

gi(zi) +
k

∑
i=1

g∗i (Wzi) + ϵ ϵ ∼ N(0, σ2IN). (5)
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• PS-SDEM model (PS-spatial Durbin error model)

This model includes a spatial lag of the independent covariates (parametric and
nonparametric) and the error model, and it can be seen as a combination of PS-SLX
and PS-SEM:

y = f (s1, s2) + Xβ + WXβ∗ +
k

∑
i=1

gi(zi) +
k

∑
i=1

g∗i (Wzi) + u (6)

u = δWu + ϵ ϵ ∼ N(0, σ2IN).

• PS-SARAR model

This specification allows for the inclusion of a spatial lag of both the dependent
variable and the model noise, combining models PS-SAR and PS-SEM:

y = f (s1, s2) + ρWy + Xβ +
k

∑
i=1

gi(zi) + u (7)

u = δWu + ϵ ϵ ∼ N(0, σ2IN).

All model parameters can be estimated using either Restricted Maximum Likelihood
(REML) or Maximum Likelihood (ML). We exploit the reparameterization of the P-spline
as a mixed model [20] via the singular value decomposition (SVD) of the penalty matrix.
This reparametrization allows us to impose the necessary constraints so that all terms in
the model are identifiable. Furthermore, it will enable us to add spatial (or other) random
effects if needed. Once the nonparametric terms have been reparameterized, REML or ML
is used to obtain estimates of variance components and random effects (for nonparametric
covariates and spatial trends) and β parameters (for parametric covariates). Conditioning
on these estimates, the spatial parameters ρ and δ, which are associated to spatial lags of
the dependent variable or the noise, are estimated using numerical optimization. This
process is iterated until convergence. The algorithm is summarized in the following steps
(see Mínguez et al. [4] for more details):

1. Put the full model as a mixed model [21,22].
2. Use SAP (Separation of Anisotropic Penalties) algorithm [23] to obtain REML (or ML)

estimates of the variance components, random effects, and β parameters of the mixed
model. This algorithm is high-speed and it does not require numerical optimization.

3. Conditioning on previous estimates, use numerical optimization to estimate spatial
parameters, i.e., ρ and/or δ, associated to spatial lags of the dependent variable
and/or the model’s noise. We use the bobyqa() optimizer implemented in minqa
package [24].

4. Iterate 2 and 3 steps until convergence.

At convergence, the standard errors of β̂ are obtained, conditioned on the estimated
variance components, as usual in mixed models (see, for example, pp. 396 in [25]). The
standard errors of ρ̂ and δ̂ are obtained by computing the inverse of the information matrix
at convergence.

When using spatiotemporal data, we can extend the spatial trend incorporating a
temporal coordinate τ with dimensions T × 1. In this way, the spatiotemporal trend is
defined as f (s1, s2, τ). Consequently, the row-dimensions of y, X and zi are NT instead of
N. Additionally, it is necessary to extend the spatial lags over time by using the Kronecker
product of the spatial weighting matrix, WN , and the identity matrix, IT , where N and T
represent the lengths of the spatial and temporal coordinates, respectively. As an example,
the PS-SAR model for spatiotemporal data is the following:

y = f (s1, s2, τ) + (ρWN ⊗ IT)y + Xβ +
k

∑
i=1

gi(zi) + ϵ ϵ ∼ N(0, σ2RTN). (8)
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In this case the error term, ϵ, can be generated either by a white noise (RTN = ITN)
or an autoregressive process, AR(1). The last case is intended to gather the temporal
correlation usually present when working with spatiotemporal data.

Typically, estimating the spatiotemporal trend requires a large sample of data. How-
ever, sometimes, there may be data gaps for the combination of spatial and temporal
coordinates. In addition, there may be computing power issues to estimate the spatiotem-
poral trend. To speed up the computational process, we can perform a functional analysis
of variance decomposition (ANOVA) of the spatio-temporal trend into the main func-
tion, second-order interaction, and third-order interaction functions [26]. The ANOVA
decomposition of the spatio-temporal trend is defined as follows:

f (s1, s2, τ) = f1(s1) + f2(s2) + ft(τ) + f12(s1, s2) + f1t(s1, τ) + f2t(s2, τ) + f12t(s1, s2, τ)

where the main and interaction functions are the following:

• Main functions: f1(s1), f2(s2) and ft(τ).
• Second-order interactions: f12(s1, s2), f1t(s1, τ) and f2t(s2, τ).
• Third-order interaction: f12t(s1, s2, τ).

Each function in this ANOVA decomposition can be estimated using P-Splines with
different penalty coefficients. Furthermore, the maximum number of knots can be different
for each term, allowing more degrees of freedom (i.e., more flexibility) for the main functions
and fewer degrees of freedom for the interaction functions. For this purpose, we follow
Lee et al. [26] who proposed that the basis generating the interaction terms is a nested basis
of the main terms in the ANOVA decomposition. Accordingly, the maximum number of
knots in the spline basis generating the interaction terms is a divisor of the number of knots
in the spline basis generating the main terms. Therefore, the space spanned for the splines
basis in the higher interaction terms is a subset of the subspace spanned for the splines
basis generating the lower terms. This is usually a good compromise between flexibility
and simplification of the computations. Of course, the ANOVA decomposition can also be
performed for the pure spatial trend, allowing only two main functions, f1(s1) and f2(s2),
and a second-order interaction function, f12(s1, s1), for the spatial coordinates.

3. Main Functions of the Package Pspatreg
3.1. The Function Pspatfit()

The main function in the pspatreg package is pspatfit(), which estimates spa-
tiotemporal penalized spline spatial regression models using either Restricted Maximum
Likelihood (REML) or Maximum Likelihood (ML) methods. In its generic form pspatfit()
appears as the following:

pspatfit(formula, data, na.action,listw = NULL, type = "sim",
method = "Chebyshev", Durbin = NULL, zero.policy = NULL, interval = NULL,
trs = NULL, cor = "none", dynamic = FALSE, control = list())

The pspatfit() function returns an object of the pspatreg class containing a list
of coefficients of the parametric terms and their standard errors, estimated coefficients
corresponding to random effects in a mixed model and their standard errors, equivalent
degrees of freedom, residuals, fitted values, etc. A wide range of standard methods is also
available for the pspatreg class, including print(), summary(), coef(), vcov(), anova(),
fitted(), residuals() and plot().

3.1.1. The Argument Formula

The argument formula, within the function pspatfit(), is a formula similar to the
GAM specification, including parametric and nonparametric terms. Parametric covariates
are usually included. P-spline smooth terms are specified using pspl() and pspt() for the
nonparametric covariates and spatial or spatiotemporal trends, respectively. For example:
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formula <- y ~ x1 + x2 + pspl(x3, nknots = 15) + pspl(x4, nknots = 20) +
pspt(long, lat, year, nknots = c(18,18,8),

psanova = TRUE, nest_sp1 = c(1, 2, 3),
nest_sp2 = c(1, 2, 3), nest_time = c(1, 2, 2))

In the example above, the model includes two parametric terms (x1 and x2), two
nonparametric terms (x3 and x4), and a spatiotemporal trend (with long and lat as spatial
coordinates, and year as the temporal coordinate). The dimension of the basis function
in both pspl() and pspt() is defined by nknots. This term should not be less than the
dimension of the null space of the penalty for the term (see ?null.space.dimension and
?choose.k in the mgcv package to know how to choose nknots). The default number of
nknots in pspl() is 10. However, in this example, we have chosen 15 nknots for g1(x3)
and 20 nknots for g2(x4). The default number of nknots in pspt() is c(10,10,5), but we
have chosen c(18,18,8).

In this example, we also apply an ANOVA decomposition of the spatiotemporal
trend (choosing psanova = TRUE within pspt()). Each effect has its degree of smoothing,
allowing greater flexibility for the spatiotemporal trend. Calculating up to third-order
interactions can be computationally expensive. To overcome this problem, we can select
subgroups of interaction effects for the second and third-order effects. To define these sub-
groups, we use three parameters available in pspt(): nest_sp1, nest_sp2, and nest_time.
These parameters indicate the divisors of the nknots chosen for the main functions. For
example, if we set nest_sp1 = c(1,2,3), we will have all knots for the s_1 main function,
18/2 for each second-order interaction function with s_1, and 18/3 nots for the third-order
interaction function with s_1 (in most empirical cases, the main functions are more flex-
ible than interaction functions and, therefore, the number of knots in B-Spline bases for
interaction effects need not to be as large as the number of knots for the main functions [26]).

If we want to exclude a function from the ANOVA decomposition, we have to set the
parameters f12_int, f1t_int, f2t_int, f12t_int to FALSE (for interaction functions) or
f1_main, f2_main, ft_main to FALSE for main functions.

3.1.2. Data Structure

The argument data must contain a data.frame or a sf object, including all the vari-
ables for both parametric and nonparametric terms of the model. If a pspt() term is
included in formula, the data must contain the spatial and temporal coordinates speci-
fied in pspt() (e.g., latitude, longitude, and year). In this case, the coordinates must be
ordered in the data.frame or sf, with time as the fast index and spatial coordinates as the
slow index.

Both data.frame (or tbl_df) and sf class objects can be used as data inputs, but sf
objects are highly recommended as they allow the user to map spatial trends.

3.1.3. Spatial Arguments

The argument type allows us to select different spatial econometric model specifica-
tions: "sar", "sem", "sdm", "sdem", "sarar", or "slx". When creating a "slx", "sdem" or
"sdm" model, we need to include the formula of the Durbin part in the Durbin argument
(see ?spsurml in spsur package for more details). In the same spirit as the well-established
standard packages for spatial econometrics (i.e., spatialreg, spdep), the argument listw
is used to include a list of neighbors, and the argument method is used to choose the method
to compute the jacobian of the spatial lag. When dealing with spatiotemporal data, the
argument cor is used to specify temporal correlation in the model’s noise. More specifically,
for spatial panel data, the argument index specifies the indices for cross-sectional (spatial)
units and temporal coordinates. Meanwhile, the arguments demean and eff_demean are
used to demean the panel data, and the argument dynamic is used to specify a dynamic
spatial panel data model. Finally, the control argument contains some options related
to the optimization process and other technical details. The function help (?pspatfit)
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provides extensive documentation on every argument and examples of spatial and spa-
tiotemporal cases.

3.2. Plotting Smooth Terms

Plotting the estimated nonparametric smooth terms is essential in semiparametric
regression analyses. First, once a model has been estimated using pspatfit(), the function
fit_terms() computes fitted nonparametric smooth terms, which can be plotted with the
function plot_terms(). Furthermore, the functions plot_sp2d() and plot_sp3d() are
used to plot maps of spatial and spatiotemporal trends, respectively, while plot_sptime()
is used to plot a different time trend for each spatial unit.

3.3. Computing Impact Functions

In the case of a semiparametric model without the spatial lag of the dependent variable
(PS model), when all regressors are manipulated independently of the errors, the Xβ̂ (for
parametric covariates) or ĝ(z) (for nonparametric covariates) can be interpreted as the
conditional expectation (net of the effect of the other regressors) of y given either x or z,
respectively. Blundell and Powell [27] use the term Average Structural Function (ASF) to
refer to these functions. However, in PS-SAR, PS-SDM, and PS-SARAR models, when ρ is
different from zero, the estimated smooth functions for nonparametric covariates cannot be
interpreted as ASF. Taking advantage of the results obtained for parametric covariates in
spatial econometric models (see LeSage and Pace [6]), we can extend the idea of impacts to
nonparametric terms. Specifically, for PS-SAR or PS-SARAR models, we compute the total
impact function of a nonparametric covariate z as follows:

ĝT(z) = [IN − ρ̂W]−1 ∑
k

Bk(z)θ̂k

where Bk(z) are P-spline basis functions, and θ̂k the corresponding estimated parameters.
We can also compute the direct impact function of smooth terms for the PS-SAR or

PS-SARAR cases as follows:

ĝD(z) = diag([IN − ρ̂W]−1)∑
k

Bk(z)θ̂k

where diag(A) is the diagonal matrix, including the elements of the main diagonal in A.
Eventually, the indirect (or spillover) impacts function for the previous cases can be

obtained as follows:
ĝI = ĝT − ĝD

Similar expressions can be provided for the total, direct, and indirect impact functions
of the ps-sdm including ∑k Bk(z)θ̂k + ∑k∗ B∗

k∗(Wz)θ̂k∗ instead of ∑k Bk(z)θ̂k in the previous
expressions. Eventually, the expressions for ps-slx and ps-sdem models are similar to
ps-sdm case but excluding [IN − ρ̂W]−1.

The function impactspar() in the pspatreg package computes direct, indirect, and
total impacts for continuous parametric covariates using the standard procedure (see [6]
for details). On the other hand, the function impactsnopar() computes direct, indirect,
and total impact functions for continuous nonparametric covariates, while the function
plot_impactsnopar() is used to plot these impact functions. It is worth noticing that total,
direct, and indirect impact functions are never smooth over the domain of the variable z
due to the presence of the spatial multiplier matrix in the algorithm for their computation.
Indeed, a wiggly profile of direct, indirect, and total impacts would appear even if the
model were linear. Therefore, in the spirit of the semiparametric approach, we include the
possibility of applying a smoother to obtain smooth curves using the argument smooth =
TRUE (default) in plot_impactsnopar().
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4. What Can Pspatreg Offer More than Other Software?

Several packages have recently been proposed to perform spatial econometrics in R
(see [28], for a survey). Focusing on packages and methods dealing with polygonal (or areal)
spatial data, the first package was spdep [29,30]. It is primarily designed for cross-sectional
spatial data and for modeling spatial dependence (SAR, SEM, or SARAR specifications)
through Maximum Likelihood (ML) or Generalized Method of Moments (GMM). The
estimation functions from spdep have been moved to the spatialreg package [28]. Other
spatial econometric methods for cross-sectional data have been implemented in the follow-
ing packages: sphet [31] for estimating and testing spatial models with heteroskedastic
innovations, spfilteR [32] for filtering out spatial dependence in linear models, spgwr [33]
for estimating geographycally weighted regression models, and spsur [34] for estimating
seemingly unrelated regression equations. Other R packages for spatial econometric analy-
sis have been developed following several theoretical contributions to the literature on static
and dynamic spatial panel data models (see [7], for a review). In particular, splm [35] and
SDPDm [36] implement estimation methods for static and dynamic spatial panel data. All
of these R packages focus on parametric methods (except spgwr, of course), leaving aside
issues related to nonlinearities in functional form and the estimation of spatial or spatiotem-
poral trends. The Appendix to this article reports comparisons of the estimates for pure
parametric models between spatialreg (for spatial data) and splm (for spatial panel data).
As expected, the estimates are practically the same in the case of pure parametric models.

On the other hand, mgcv [22] is the main reference for dealing with semiparametric
and nonparametric models using splines in R. Nevertheless, to our knowledge, neither this
package nor other good alternative packages using splines, such as SpATS [37] or JOPS [38],
allow the treatment of semiparametric models when spatial lags either in dependent or
independent variables or the noise are included in the model. In this sense, our proposal
aims to combine both perspectives, allowing the modeling of semiparametric spatial or
spatiotemporal specifications. However, pspatreg at the moment only allows for the
estimation of models with a Gaussian dependent variable. Additionally, the SDPDm package
allows for the specification of more general dynamic spatial panels than pspatreg and
supports estimation using both ML and Bayesian methods. Finally, the spatialreg package
is more generalist than pspatreg and, consequently, provides a much more extensive
array of functions for handling spatial data. The following table summarizes the models
mentioned in the previous section and the possible packages used to deal with them (see
Table 1).

Table 1. Summary of semiparametric models and R packages to deal with them. In the table, par. (2d)
is used for parametric models dealing with spatial data and par. (panel) is used for parametric models
dealing with spatial panel data. The term full is used when the package can estimate both the full
spatial and spatiotemporal semiparametric models.

Model spatialreg/sphet splm/SDPDm pspatreg mgcv/SpATS/JOPS

ps par. (2d) par. (panel) full full
ps-slx par. (2d) par. (panel) full full
ps-sar par. (2d) par. (panel) full -
ps-sem par. (2d) par. (panel)/- full -
ps-sdm par. (2d) par. (panel) full -
ps-sdem par. (2d) par. (panel)/- full -
ps-sarar par. (2d) par. (panel)/- full -

Other functions and toolboxes to work with spatial econometric models and spatial
panel models are available in Stata [39–41] and Matlab [42–44]. However, as far as we
know, they only deal with purely parametric specifications in the same way as spatialreg
and splm.
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5. Examples for Cross-Sectional Data (2d)

We start our demo by applying pspatreg to the analysis of cross-sectional data (2d).
The purpose of this example is to illustrate the significant advantages of estimating semi-
parametric spatial models over traditional parametric ones. In a cross-sectional setting,
traditional models not only impose linearity in the functional form but also, due to the lack
of a time dimension in the data, fail to account for unobserved heterogeneity. In contrast,
using the pspatreg package, we can address spatial heterogeneity (through a spatial trend
function) and account for nonlinearities in the relationship between the dependent variable
and covariates. We demonstrate that controlling for both sources of model misspecification
allows for more accurate and reliable identification of spatial spillovers.

In particular, we use the dataset ames, included in the AmesHousing package [45], which
contains data on 2930 properties in Ames, Iowa. The dataset includes information on house
characteristics (bedrooms, garages, fireplaces, pools, porches, etc.), location characteristics
(neighborhood), lot information (zoning, shape, size, etc.), ratings of condition and quality,
and sale price (from 2006 to 2010).

5.1. Reading the Data

First, ames should be transformed into a spatial object of class sf:

library(sf)
library(spatialreg)
library(pspatreg)
ames_sf <- st_as_sf(AmesHousing::make_ames(), coords = c("Longitude",
"Latitude"))

The dependent variable in the regression analysis is Sale_Price, while we selected the
following variables as covariates:

- Lot_Area: Lot size in square feet.
- Total_Bsmt_SF: Total square feet of basement area.
- Garage_Cars: Size of garage in car capacity.
- Gr_Liv_Area: Above grade (ground) living area square feet.
- Fireplaces: Number of fireplaces.

Due to the skewed distributions of the dependent variable Sale_Price and continuous
covariates, we use the log-transformation of them (except Garage_Cars and Fireplaces):

ames_sf$lnSale_Price <- log(ames_sf$Sale_Price)
ames_sf$lnLot_Area <- log(ames_sf$Lot_Area)
ames_sf$lnTotal_Bsmt_SF <- log(ames_sf$Total_Bsmt_SF + 1)
ames_sf$lnGr_Liv_Area <- log(ames_sf$Gr_Liv_Area)

5.2. Constructing the Spatial Weights Matrix

Creating spatial weights is a necessary step when using areal data. This involves
selecting a criterion to define neighbors and assigning weights to each. In particular, we
have used the criterion of nearest neighbors after eliminating duplicate coordinate values:

coord <- st_coordinates(ames_sf)
ames_sf$Longitude <- coord[, 1]
ames_sf$Latitude <- coord[, 2]
ames_sf1 <- ames_sf[duplicated(ames_sf$Longitude) == FALSE, ]
library(spdep)
nbames <- knn2nb(knearneigh(st_coordinates(ames_sf1), k = 5,

longlat = TRUE), sym = TRUE)
lwames <- nb2listw(nbames, style = "W", zero.policy = FALSE)
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It should be noted that since the argument sym has been set to TRUE, the number of
neighbors differs for each spatial unit (see the output of summary(lwames) for details).

5.3. Estimating Parametric Spatial Linear Models

We first estimate parametric spatial linear models using the function pspatfit()
included in the pspatreg package and compare them with the results obtained using the
functions provided by the spatialreg package.

The linear SAR model for cross-sectional data can be written as follows:

y = ρWy + Xβ + ϵ ϵ ∼ N(0, σ2IN).

To estimate this model, we use pspatfit() with the argument type="sar":

flin <- lnSale_Price ~ lnLot_Area + lnTotal_Bsmt_SF + lnGr_Liv_Area +
Garage_Cars + Fireplaces

linsar <- pspatfit(flin, data = ames_sf1, listw = lwames,
method = "Chebyshev", type = "sar")

summary(linsar)

##
## Call
## pspatfit(formula = flin, data = ames_sf1, listw = lwames, type = "sar",
## method = "Chebyshev")
##
## Parametric Terms
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.4596366 0.0991499 24.8073 < 2.2e-16 ***
## lnLot_Area 0.0296596 0.0071596 4.1427 3.536e-05 ***
## lnTotal_Bsmt_SF 0.0488238 0.0029233 16.7019 < 2.2e-16 ***
## lnGr_Liv_Area 0.3773085 0.0130689 28.8706 < 2.2e-16 ***
## Garage_Cars 0.0943737 0.0051695 18.2559 < 2.2e-16 ***
## Fireplaces 0.0486969 0.0058596 8.3106 < 2.2e-16 ***
## rho 0.5019890 0.0123499 40.6471 < 2.2e-16 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Goodness-of-Fit
##
## EDF Total: 7
## Sigma: 0.201487
## AIC: -6745.73
## BIC: -6704.22

As expected, all β̂′s are significant and positive. The estimated spatial autoregressive
parameter (0.50) is also positive and significant. The output of pspatfit() is an object of
class pspatreg for which the usual methods are defined: coef(), fitted(), residuals(),
loglik(), anova(), vcov() and print().

Once the spatial model has been estimated, the function impactspar() allows the
average direct, indirect, and total impacts to be obtained for the parametric covariates [6]:

Wames <- as(lwames, "CsparseMatrix")
trMatc <- trW(Wames, type="mult")
set.seed(123456)
implinsar <- impactspar(linsar, tr = trMatc)
summary(implinsar)
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##
## Total Parametric Impacts (sar)
## Estimate Std. Error t value Pr(>|t|)
## lnLot_Area 0.0603784 0.0146613 4.1182030 0
## lnTotal_Bsmt_SF 0.0982732 0.0063178 15.5550686 0
## lnGr_Liv_Area 0.7581528 0.0327675 23.1373076 0
## Garage_Cars 0.1896385 0.0114581 16.5505853 0
## Fireplaces 0.0977258 0.0119669 8.1663537 0
##
## Direct Parametric Impacts (sar)
## Estimate Std. Error t value Pr(>|t|)
## lnLot_Area 0.0319102 0.0076702 4.1602840 0
## lnTotal_Bsmt_SF 0.0519511 0.0030954 16.7831818 0
## lnGr_Liv_Area 0.4007849 0.0142408 28.1434593 0
## Garage_Cars 0.1002486 0.0055287 18.1322833 0
## Fireplaces 0.0516534 0.0061226 8.4365332 0
##
## Indirect Parametric Impacts (sar)
## Estimate Std. Error t value Pr(>|t|)
## lnLot_Area 0.0284682 0.0070539 4.0357950 1e-04
## lnTotal_Bsmt_SF 0.0463221 0.0035330 13.1113879 0e+00
## lnGr_Liv_Area 0.3573679 0.0213565 16.7334190 0e+00
## Garage_Cars 0.0893899 0.0065451 13.6575927 0e+00
## Fireplaces 0.0460724 0.0060279 7.6431596 0e+00

As expected, all marginal effects are highly significant, and spillovers are relatively
high. We compare these results with those obtained using ML estimates with the function
lagsarlm() from the package spatialreg:

linsarspt <- lagsarlm(flin, data = ames_sf1, listw = lwames, method = "Chebyshev")
impacts(linsarspt, tr = trMatc)

## Impact measures (lag, trace):
## Direct Indirect Total
## lnLot_Area 0.03148261 0.02804245 0.05952506
## lnTotal_Bsmt_SF 0.05184279 0.04617784 0.09802063
## lnGr_Liv_Area 0.40063291 0.35685505 0.75748796
## Garage_Cars 0.10012298 0.08918237 0.18930535
## Fireplaces 0.05168978 0.04604155 0.09773133

As expected, the marginal impacts obtained with both packages (pspatreg and
spatialreg) are virtually the same for parametric covariates. Minor numerical differ-
ences may be due to the estimation method (REML versus ML) as well as the optimization
algorithms used. Similar comparisons can be checked for the rest of the spatial linear econo-
metric models (SLX, SEM, SDM, and SARAR). The appendix provides some additional
evidence of the SLX, SEM, and SDM models being compared.

The equality of the results obtained with the two packages implies that the new pack-
age pspatreg can be used to compare the performance of parametric and semi-parametric
models without resorting to alternative packages for estimating parametric models. Specif-
ically, comparison tests for parametric and semi-parametric models (via AIC, BIC, and
LR-Test) can be easily conducted using only pspatreg.

5.4. Estimating Semiparametric Nonlinear Models With and Without a Spatial Trend

We now provide examples of the estimation of semiparametric models. Let us start
with a simple semiparametric model without spatial trends and spatially lagged terms that
is, an additive model (or PS model in our terminology):
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y = Xβ +
k

∑
i=1

gi(zi) + ϵ ϵ ∼ N(0, σ2IN),

In particular, we introduce the discrete variables Fireplaces and Garage_Cars as lin-
ear terms and the continuous variables lnLot_Area, lnTotal_Bsmt_SF, and lnGr_Liv_Area
as smooth covariates, adding pspl() terms with 20 knots to the formula:

fps <- lnSale_Price ~ Fireplaces + Garage_Cars +
pspl(lnLot_Area, nknots = 20) + pspl(lnTotal_Bsmt_SF, nknots = 20) +
pspl(lnGr_Liv_Area, nknots = 20)

ps <- pspatfit(fps, data = ames_sf1)
summary(ps)

##
## Call
## pspatfit(formula = fps, data = ames_sf1)
##
## Parametric Terms
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 11.5806060 0.0679093 170.5304 < 2.2e-16 ***
## Fireplaces 0.0709426 0.0069756 10.1700 < 2.2e-16 ***
## Garage_Cars 0.1588650 0.0063789 24.9047 < 2.2e-16 ***
## pspl(lnLot_Area) 0.0156563 0.0122900 1.2739 0.20280
## pspl(lnTotal_Bsmt_SF) 0.1213197 0.0239065 5.0748 4.139e-07 ***
## pspl(lnGr_Liv_Area) 0.0516587 0.0237088 2.1789 0.02943 *
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Non-Parametric Terms
## EDF
## pspl(lnLot_Area) 9.5779
## pspl(lnTotal_Bsmt_SF) 3.6633
## pspl(lnGr_Liv_Area) 12.8471
##
## Goodness-of-Fit
##
## EDF Total: 32.0883
## Sigma: 0.20342
## AIC: -5896.24
## BIC: -5705.98

The EDF numbers suggest that the three continuous variables enter the model nonlin-
early. It should be noted that smooth terms in P-splines modeling also have a linear part
because of the penalty term (in the output, this linear part is included as a parametric term).

Now, we introduce the spatial lag of the dependent variable, thus specifying a semi-
parametric SAR model (PS-SAR):

y = ρWy + Xβ +
k

∑
i=1

gi(zi) + ϵ ϵ ∼ N(0, σ2IN),

The PS-SAR model can be estimated using pspatfit() with the previous formula and
choosing argument type = "sar"·
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ps_sar <- pspatfit(fps, data = ames_sf1, listw = lwames,
method = "Chebyshev", type = "sar")
summary(ps_sar)

##
## Call
## pspatfit(formula = fps, data = ames_sf1, listw = lwames, type = "sar",
## method = "Chebyshev")
##
## Parametric Terms
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 6.1642391 0.0492228 125.2313 < 2.2e-16 ***
## Fireplaces 0.0469980 0.0056748 8.2818 < 2.2e-16 ***
## Garage_Cars 0.0855018 0.0051776 16.5139 < 2.2e-16 ***
## pspl(lnLot_Area) 0.0200760 0.0090734 2.2126 0.02701 *
## pspl(lnTotal_Bsmt_SF) 0.0886416 0.0149158 5.9428 3.155e-09 ***
## pspl(lnGr_Liv_Area) 0.0412042 0.0196408 2.0979 0.03601 *
## rho 0.4652605 0.0125712 37.0099 < 2.2e-16 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Non-Parametric Terms
## EDF
## pspl(lnLot_Area) 6.7873
## pspl(lnTotal_Bsmt_SF) 3.1119
## pspl(lnGr_Liv_Area) 13.8152
##
## Goodness-of-Fit
##
## EDF Total: 30.7144
## Sigma: 0.184702
## AIC: -6927.36
## BIC: -6745.25

The spatial spillover parameter is now 0.46, lower than the one estimated with the lin-
ear SAR (0.50), confirming the trade-off between nonlinearities and spatial dependence [2].

Let us now introduce also a spatial trend 2d (without the ANOVA decomposition) in
order to control for unobserved spatial heterogeneity:

y = f (s1, s2) + ρWy + Xβ +
k

∑
i=1

gi(zi) + ϵ ϵ ∼ N(0, σ2IN),

To estimate this model, it is necessary to introduce a pspt() term in the formula. In
the output, the terms named Xspt correspond to the linear part of the spatial trend:

fpsp2d <- update(fps, . ~ . + pspt(Longitude, Latitude, nknots = c(10, 10),
psanova = FALSE))

psp2d_sar <- pspatfit(fpsp2d, data = ames_sf1, listw = lwames,
method = "Chebyshev", type = "sar")
summary(psp2d_sar)

##
## Call
## pspatfit(formula = fpsp2d, data = ames_sf1, listw = lwames, type ="sar",
## method = "Chebyshev")
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##
## Parametric Terms
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 8.47756924 0.12220364 69.3725 < 2.2e-16 ***
## Fireplaces 0.05454867 0.00579113 9.4193 < 2.2e-16 ***
## Garage_Cars 0.06563134 0.00567565 11.5637 < 2.2e-16 ***
## Xspt.2 -0.10795583 0.11751199 -0.9187 0.3583452
## Xspt.3 -0.00080787 0.11692482 -0.0069 0.9944877
## Xspt.4 -0.02287410 0.11385028 -0.2009 0.8407810
## pspl(lnLot_Area) 0.03139985 0.00943208 3.3290 0.0008831 ***
## pspl(lnTotal_Bsmt_SF) 0.08678510 0.01744709 4.9742 6.962e-07 ***
## pspl(lnGr_Liv_Area) 0.05583719 0.02002986 2.7877 0.0053455 **
## rho 0.29097232 0.01749159 16.6350 < 2.2e-16 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Non-Parametric Terms
## EDF
## pspl(lnLot_Area) 6.6923
## pspl(lnTotal_Bsmt_SF) 3.4601
## pspl(lnGr_Liv_Area) 14.1193
##
## Non-Parametric Spatio-Temporal Trend
## EDF
## f(sp1, sp2) 36.782
##
## Goodness-of-Fit
##
## EDF Total: 71.054
## Sigma: 0.182477
## AIC: -7001.36
## BIC: -6580.08

The estimated spatial spillover parameter ρ̂ (0.29) is much lower than the previous
ones, suggesting that the SAR model without spatial trend (linear and nonlinear) captures
spatial autocorrelated unobserved heterogeneity. Furthermore, the EDF of the spatial trend
(41.105) points out the need to include a nonlinear spatial trend. Later, we compare different
specifications based on information criteria. For semiparametric models, in addition to
calculating the spatial impacts for the parametric covariates (as we have done previously for
the linear SAR model), it is also possible to calculate impact functions for the nonparametric
covariates. We can plot the estimated smooth impact functions using the abovementioned
algorithms for the three nonparametric terms. The function impactsnopar() computes
impact functions for all smooth functions and allows us to obtain the plots. We only show
the impact functions of lnGr_Liv_Area to reduce the size of the output (by default, all the
nonparametric covariates are included) (see Figure 1):

impvnopar <- impactsnopar(psp2d_sar, variables = c("lnGr_Liv_Area"),
listw = lwames, viewplot = TRUE, smooth = TRUE)
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Figure 1. Impact functions of nonparametric covariate lnGr_Liv_Area.

Now, an example with the ANOVA decomposition of the spatial trend:

y = f1(s1) + f2(s2) + f12(s1, s2) + ρWy + Xβ +
k

∑
i=1

gi(zi) + ϵ ϵ ∼ N(0, σ2IN),

In this case, we set the option psanova = TRUE within the term pspt() for the spatial
trend (we omit the output of this model):

fpsp2dan <- update(fps, . ~ . + pspt(Longitude, Latitude,
nknots = c(10, 10), psanova = TRUE))

psp2dan_sar <- pspatfit(fpsp2dan, data = ames_sf1, listw = lwames,
method = "Chebyshev", type = "sar")

summary(psp2dan_sar)
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It is possible to compare the goodness-of-fit of different estimated models using
anova() method for pspatreg class (rlogLik provides the value of Restricted Likelihood in
the optimum). We set the argument textttrlogLik=FALSE because the models are not nested.

anova(linsar, ps_sar, psp2d_sar, psp2dan_sar, lrtest = FALSE)

## logLik rlogLik edf AIC BIC
## linsar 3379.9 3348.4 7.000 -6745.7 -6641.2
## ps_sar 3494.4 3468.0 30.714 -6927.4 -6692.8
## psp2d_sar 3571.7 3539.7 71.054 -7001.4 -6517.9
## psp2dan_sar 3573.3 3541.4 76.311 -6994.1 -6479.9

psp2d_sar model reaches the best AIC, but the best BIC corresponds to ps_sar model.
This is due to the greater penalty for the increase in degrees of freedom by the BIC criterion.
It also seems that the ANOVA decomposition of the trend has a worse performance.

In the previous model comparison, we set lrtest = FALSE because not all models were
nested. It is also possible to perform a likelihood ratio test when the models are nested:

anova(ps_sar, psp2d_sar, lrtest = TRUE)

## logLik rlogLik edf AIC BIC LRtest p.val
## ps_sar 3494.4 3468.0 30.714 -6927.4 -6692.8
## psp2d_sar 3571.7 3539.7 71.054 -7001.4 -6517.9 143.4 1.8124e-13

In this case, the LR test rejects the null, i.e., ps_sar, in favor of psp2d_sar model.

5.5. Examples of Plotting Spatial Trends for Spatial Point Coordinates

Now, we show how to plot spatial trends using spatial coordinates. Notice that the
database is a sf object and excludes duplicated spatial points. We can only plot the 2d
smooth trend of latitude and longitude for the model without the ANOVA decomposition.
Next, we show the spatial trend for psp2d_sar (see Figure 2):

plot_sp2d(psp2d_sar, data = ames_sf1)
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Figure 2. Spatial trend for psp2d_sar model.

For the model with the ANOVA decomposition, we can plot the whole 2d spatial trend
(as previously) or its decomposition in main and interaction effects. We see the full spatial
trend and its ANOVA decomposition for psp2dan_sar (see Figure 3):
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plot_sp2d(psp2dan_sar, data = ames_sf1, addmain = TRUE, addint = TRUE)
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Figure 3. ANOVA decomposition of spatial trend for psp2dan_sar model.
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6. Examples for Spatial Panel Data (3d)

This section focuses on the semiparametric P-Spline model for spatial panel data.
The model may include a smooth spatiotemporal trend, a spatial lag of dependent and
independent variables, a time lag of the dependent variable and its spatial lag, and a time-
series autoregressive noise. Specifically, we consider a spatiotemporal ANOVA model that
decomposes the trend into spatial and temporal main effects and second- and third-order
interactions between them.

The empirical illustration is based on data on regional unemployment in Italy. This
example shows that this model is a valid alternative to parametric methods aimed at
disentangling strong and weak cross-sectional dependence when spatial and temporal
heterogeneity is smoothly distributed (see [4]). In particular, while strong cross-sectional de-
pendence is typically controlled within a parametric framework by including cross-sectional
averages of dependent and independent variables in the model, in a semiparametric frame-
work, this objective can instead be achieved by incorporating a spatiotemporal trend, as
illustrated below. The section is organized as follows:

• Description of the dataset, spatial weights matrix, and model specifications.
• Estimation results of linear spatial models and comparison with those obtained

with splm.
• Estimation results of semiparametric spatial models.

6.1. Dataset, Spatial Weights Matrix, and Model Specifications

The pspatreg provides the panel data unemp_it (a data.frame object) and the spatial
weights matrix Wsp_it (a 103 by 103 square matrix). The raw data—a balanced panel with
103 Italian provinces observed for each year between 1996 and 2019—can be transformed
into a spatial polygonal dataset of class sf after joining the data.frame object with the
shapefile of Italian provinces (also included when loading unemp_it):

data(unemp_it, package = "pspatreg")
unemp_it_sf <- sf::st_as_sf(dplyr::left_join(unemp_it, map_it,

by = c("prov" = "COD_PRO")))

The matrix Wsp_it is a standardized inverse distance W matrix. First, we transform
the matrix into a list of neighbor objects:

lwsp_it <- spdep::mat2listw(Wsp_it)

6.2. Linear Model: Comparison with Splm

We begin by estimating fully parametric spatial linear autoregressive panel models
using the function pspatfit() from the pspatreg package and compare these results with
those obtained from the splm package, commonly used for parametric spatial panels.

In this analysis, we consider a linear SAR model with fixed spatial and temporal
effects. The following equation presents the model in scalar form (a similar approach can
be applied to SDM, SEM, SARAR, and SDEM specifications):

yit = ρ
N

∑
j=1

wijyjt +
K

∑
k=1

βkxk,it + αi + θt + ϵit ϵit ∼ i.i.d.(0, σ2
ϵ )

As usual, the pspatfit() function in pspatreg can be used to estimate the model.
The index argument specifies the spatial and temporal indices, demean adjusts the data
for fixed effects, and setting eff_demean = "twoways" enables both spatial and temporal
fixed effects.
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flin2 <- unrate ~ empgrowth + partrate + agri + cons + serv
plinsar <- pspatfit(formula = flin2, data = unemp_it, listw = lwsp_it,

demean = TRUE, eff_demean ="twoways", type = "sar",
index = c("prov", "year"))

summary(plinsar)

##
## Call
## pspatfit(formula = flin2, data = unemp_it, listw = lwsp_it, type ="sar",
## demean = TRUE, eff_demean = "twoways", index = c("prov",
## "year"))
##
## Parametric Terms
## Estimate Std. Error t value Pr(>|t|)
## empgrowth -0.129739 0.014091 -9.2074 < 2.2e-16 ***
## partrate 0.393087 0.023315 16.8595 < 2.2e-16 ***
## agri -0.036052 0.027267 -1.3222 0.1862167
## cons -0.166196 0.044510 -3.7339 0.0001928 ***
## serv 0.012378 0.020597 0.6009 0.5479300
## rho 0.265671 0.018858 14.0880 < 2.2e-16 ***
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Goodness-of-Fit
##
## EDF Total: 6
## Sigma: 1.86929
## AIC: 5396.53
## BIC: 5431.41

Now, we compare the results obtained using the splm package.

plinsarspml <- splm::spml(flin2, data = unemp_it, index = c("prov","year"),
listw = lwsp_it, model="within", effect = "twoways",
spatial.error = "none", lag = TRUE)

round(data.frame(pspatreg = c(plinsar$rho, plinsar$bfixed),
spml = c(plinsarspml$coefficients1,
plinsarspml$coefficients[-1])),3)

## pspatreg spml
## rho 0.266 0.266
## fixed_empgrowth -0.130 -0.130
## fixed_partrate 0.393 0.392
## fixed_agri -0.036 -0.037
## fixed_cons -0.166 -0.167
## fixed_serv 0.012 0.012

The two packages yield identical results, at least at the third-digit level. Similar
outcomes are observed for other spatial econometric models (SEM, SDM, and SARAR).
Further details are provided in the online appendix.

6.3. Semiparametric Spatial Panel Models

We specify an additive semiparametric model with three parametric linear terms (for
partrate, agri, and cons) and two nonparametric smooth terms (serv and empgrowth).
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fps <- unrate ~ partrate + agri + cons + pspl(serv, nknots = 15) +
pspl(empgrowth, nknots = 20)

In this model, we control for spatiotemporal heterogeneity by including a PS-ANOVA
spatiotemporal trend. The interaction terms in the ANOVA decomposition (f12, f1t, f2t,
and f12t) are incorporated with a nested basis to simplify computations. It is worth
noticing that the arguments nest_sp1, nest_sp2, and nest_time) must be divisors of
nknots. We estimate this model for a SAR specification using the pspatfit() function:

fpsp3dan <- update(fps, . ~ . + pspt(long, lat, year, nknots = c(18,18,8),
psanova = TRUE, nest_sp1 = c(1, 2, 3),
nest_sp2 = c(1, 2, 3), nest_time = c(1, 2, 2)))

ps3dan_sar <- pspatfit(fpsp3dan, data = unemp_it, listw = lwsp_it,
method = "Chebyshev", type = "sar")

summary(ps3dan_sar)

##
## Call
## pspatfit(formula = fpsp3dan, data = unemp_it, listw = lwsp_it,
## type = "sar", method = "Chebyshev")
##
## Parametric Terms
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.9757174 8.4450367 0.4708 0.6378
## partrate 0.1495539 0.0219457 6.8147 1.206e-11 ***
## agri -0.0205019 0.0197572 -1.0377 0.2995
## cons -0.0387163 0.0404494 -0.9572 0.3386
## f1_main.1 -1.8380455 13.2621302 -0.1386 0.8898
## f2_main.1 -15.5414740 10.9648616 -1.4174 0.1565
## ft_main.1 2.4143619 4.8934373 0.4934 0.6218
## f12_int.1 -8.7938027 12.3559132 -0.7117 0.4767
## f1t_int.1 4.1090210 6.4688949 0.6352 0.5254
## f2t_int.1 -2.1236074 6.7774834 -0.3133 0.7541
## f12t_int.1 1.4150889 7.6549475 0.1849 0.8534
## pspl(serv) 0.0915770 0.1681959 0.5445 0.5862
## pspl(empgrowth) -0.2880005 0.0655609 -4.3929 1.170e-05 ***
## rho 0.0064252 0.0193087 0.3328 0.7393
## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Non-Parametric Terms
## EDF
## pspl(serv) 5.6796
## pspl(empgrowth) 2.6253
##
## Non-Parametric Spatio-Temporal Trend
## EDF
## f1 10.667
## f2 9.733
## ft 7.782
## f12 45.421
## f1t 4.239
## f2t 21.480
## f12t 82.057
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##
## Goodness-of-Fit
##
## EDF Total: 203.683
## Sigma: 1.54113
## AIC: 5977.69
## BIC: 7161.65

The included trend effectively captures the spatiotemporal heterogeneity, resulting in
a significantly smaller estimate of the spatial parameter (0.0064) than the previous estimate
from the model without the trend (0.266).

In some applications, it might be convenient to exclude some terms in the ANOVA
decomposition of the spatiotemporal trend to speed up computations. For example, to
specify a model excluding the second-order interaction between spatial and temporal
coordinates, we have to write the following formula:

fpsp3danr <- update(fps, . ~ . + pspt(long, lat, year, nknots = c(18,18,8),
psanova = TRUE, nest_sp1 = c(1, 2, 3),
nest_sp2 = c(1, 2, 3), nest_time = c(1, 2, 2),
f1t = FALSE, f2t = FALSE))

In the context of spatial panel models, it is also possible to account for temporal
autocorrelation by incorporating an AR(1) autoregressive error term. To do so, we need to
set the argument cor = "ar1" within the pspatfit() function:

ps3dan_sarar1 <- pspatfit(fpsp3dan, data = unemp_it, listw = lwsp_it,
method = "Chebyshev", type = "sar", cor = "ar1")

## Error in .solve.checkCond(a, tol) :
## ’a’ is computationally singular, rcond(a)=3.71105e-17

summary(ps3dan_sarar1)

##
## Call
## pspatfit(formula = fpsp3dan, data = unemp_it, listw = lwsp_it,
## type = "sar", method = "Chebyshev", cor = "ar1")
##
## Parametric Terms
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 3.9738e+00 8.2602e-05 4.8107e+04 < 2.2e-16 ***
## partrate 1.5220e-01 1.5408e-03 9.8783e+01 < 2.2e-16 ***
## agri -2.9875e-02 6.5566e-03 -4.5565e+00 5.472e-06 ***
## cons -3.2782e-02 1.1767e-03 -2.7858e+01 < 2.2e-16 ***
## f1_main.1 -1.2531e-01 5.8191e-04 -2.1535e+02 < 2.2e-16 ***
## f2_main.1 -1.2409e+01 7.1853e-04 -1.7271e+04 < 2.2e-16 ***
## ft_main.1 2.0255e+00 4.2745e-04 4.7385e+03 < 2.2e-16 ***
## f12_int.1 -6.1988e+00 3.7017e-04 -1.6746e+04 < 2.2e-16 ***
## f1t_int.1 1.7009e+00 5.9376e-06 2.8645e+05 < 2.2e-16 ***
## f2t_int.1 -3.8990e+00 2.0340e-05 -1.9169e+05 < 2.2e-16 ***
## f12t_int.1 2.5620e+00 2.4928e-04 1.0278e+04 < 2.2e-16 ***
## pspl(serv) 1.3822e-01 2.7308e-04 5.0615e+02 < 2.2e-16 ***
## pspl(empgrowth) -3.1413e-01 7.0032e-05 -4.4855e+03 < 2.2e-16 ***
## rho 5.0744e-02 2.1664e-02 2.3423e+00 0.01925 *
## phi 3.2957e-01 1.3700e-02 2.4056e+01 < 2.2e-16 ***
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## ---
## Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1
##
## Non-Parametric Terms
## EDF
## pspl(serv) 4.3076
## pspl(empgrowth) 2.4433
##
## Non-Parametric Spatio-Temporal Trend
## EDF
## f1 10.190
## f2 9.808
## ft 7.900
## f12 42.240
## f1t 3.605
## f2t 22.766
## f12t 45.466
##
## Goodness-of-Fit
##
## EDF Total: 162.726
## Sigma: 1.61722
## AIC: 5446.93
## BIC: 6392.82

As expected, the temporal correlation parameter (0.31) is positive and significant.
Incorporating the AR(1) term into the model has resulted in a substantial reduction in the
EDFs of the spatiotemporal trend, particularly for the f12t interaction term. Notably, in
this specification, the spatial parameter (0.044) has increased and is now nearly signifi-
cant. When comparing the goodness-of-fit of the two models, it appears that the model
incorporating temporal correlation performs better in terms of both AIC and BIC:

anova(ps3dan_sar, ps3dan_sarar1, lrtest = FALSE)

## logLik rlogLik edf AIC BIC
## ps3dan_sar -2785.2 -2785.9 203.68 5977.7 7145.6
## ps3dan_sarar1 -2560.7 -2565.1 162.73 5446.9 6390.4

We can compute marginal impacts for either parametric or nonparametric covariates
in the same way as in the 2d spatial case using impactspar() or impactsnopar() functions.
See the online appendix for more details.

6.4. Plot of Spatial and Temporal Trends (3d)

Once we have estimated the model, we can plot spatial trend maps for different years.
As an example, we plot the spatial trend for the first and last years (1996 and 2019) using
the plot_sp3d() function for the ps3dan_sarar1 object (see Figure 4):

plot_sp3d(ps3dan_sarar1, data = unemp_it_sf, time_var = "year",
time_index = c(1996, 2019), addmain = FALSE, addint = FALSE)
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Figure 4. Spatial trends for ps3dan_sarar1 model in 1996 and 2019.

With the ANOVA decomposition, it is also possible to plot the spatial maps of the
main effects (latitude and longitude) and second-order spatial effects setting arguments
addmain and addint to TRUE, i.e., (we do not include the output for the sake of brevity):

plot_sp3d(ps3dan_sarar1, data = unemp_it_sf, time_var = "year",
time_index = c(1996, 2019), addmain = TRUE, addint = TRUE)

On the other hand, it is also possible to plot distinct temporal trends for each province
using the function plot_sptime() (see Figure 5):
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plot_sptime(ps3dan_sarar1, data = unemp_it, time_var = "year", reg_var = "prov")
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Figure 5. Temporal trend for each region for ps3dan_sarar1 model.

The figure suggests that, although a common cycle exists in the temporal pattern, the
time trend varies heterogeneously across different provinces.

7. Summary

This paper presents pspatreg, a package for estimating and inferencing semipara-
metric spatial econometric models using P-splines. The package includes functions for
various spatial econometric specifications (SLX, SAR, SEM, SDM, SDEM, and SARAR),
which incorporate parametric and nonparametric (smooth) terms, as well as spatial or
spatiotemporal trends. For illustrative purposes, the paper provides empirical cases that
encompass both spatial data (2d) and spatial panel data (3d).

In addition to the estimation functions and common methodologies associated with
the pspatreg class, the examples include calculations of both parametric and nonparamet-
ric spatial effects, along with presentations of spatial and temporal trends. Furthermore,
for purely parametric spatial econometric models, the empirical cases compare with nu-
merical estimates obtained from the pspatreg package and with the well-known spatial
econometric packages, namely spatialreg and splm.
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