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Abstract: In this paper, a problem of random disturbance attenuation capabilities for linear time-
invariant continuous systems, affected by random disturbances with bounded σ-entropy, is studied.
The σ-entropy norm defines a performance index of the system on the set of the aforementioned input
signals. Two problems are considered. The first is a state-space σ-entropy analysis of linear systems,
and the second is an optimal control design using the σ-entropy norm as an optimization objective.
The state-space solution to the σ-entropy analysis problem is derived from the representation of the
σ-entropy norm in the frequency domain. The formulae of the σ-entropy norm computation in the
state space are presented in the form of coupled matrix equations: one algebraic Riccati equation, one
nonlinear equation over log determinant function, and two Lyapunov equations. Optimal control law
is obtained using game theory and a saddle-point condition of optimality. The optimal state-feedback
control, which minimizes the σ-entropy norm of the closed-loop system, is found from the solution
of two algebraic Riccati equations, one Lyapunov equation, and the log determinant equation.

Keywords: linear systems; spectral entropy; optimal control; robust control; algebraic Riccati equation
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1. Introduction

The main goals of control design are the maintenance of stability of the closed-loop
system and assurance of the desired robustness and fulfillment of the quality criteria such
as rejection of external input disturbances of the predefined class. In linear systems, to solve
disturbance attenuation problems, H2 and H∞ norms have become the most popular quality
criteria. Both norms have a clear physical interpretation: the H2 norm indicates dispersion of
the output in presence of the white Gaussian noise, while the H∞ norm of the system stands
for the maximum error energy gain for the input disturbance with bounded energy. The
mentioned criteria have significant drawbacks [1]. Thus, systems closed by H2 controllers,
lack robustness [2]. Alternatively, H∞ controllers may lead to excessive energy consumption
if external disturbances are slightly correlated noises. These facts gave the researchers an
idea to find compromises between H2 and H∞ optimization approaches [3–6].

In the late 1980s, a so-called entropy H∞ control appeared. The key idea of the mini-
mum entropy H∞ control approach is to find a solution to the LQG control problem with
additional constraints on the system’s entropy. The entropy function, suggested in [7], is an
adaptation of the method of Arov and Krein [8]. The minimum entropy H∞ control theory
has become a simple tradeoff between the (upper bounds on the) H∞ and LQG objectives
and has found a number of applications [7,9–11]. The H∞ objectives reflect both robust
stability and performance requirements, where the noise is taken to be of bounded energy.
One can refer to [12] for more details.

A problem of minimax LQG control, solved in [6], involves the relative entropy
function to describe possible uncertainties in the plant model. The idea of minimax LQG
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control is to find a controller that minimizes linear quadratic functional with respect to the
worst uncertainties in the entropy sense.

Anisotropy-based control theory [13–15], which is closely related to the current re-
search, utilizes relative entropy, i.e., Kullback–Leibler information divergence between the
probability distribution functions of the ergodic signal and the white Gaussian noise. This
makes it possible to consider H2 and H∞ control theories as limiting cases of anisotropy-
based control theory (see [1] for details). Unfortunately, anisotropy-based control theory
operates only in discrete time.

Unlike the anisotropy-based approach, the spectral entropy (σ-entropy) method, pre-
sented in [16–18], allows operation with a wider set of signals, including non-stationary and
fading stochastic signals, both in discrete and continuous time. Similar to the anisotropic
norm, the σ-entropy norm lies between the H2 and H∞ norms of the system. The ax-
iomatics of anisotropy-based and discrete-time spectral entropy approaches are discussed
and compared in [17], showing that spectral entropy analysis has the same solution as
anisotropy-based analysis for the same classes of input signals.

This paper deals with continuous-time σ-entropy analysis and control for linear sys-
tems in the state space. The problem of spectral entropy analysis for continuous-time
linear systems in the frequency domain was solved in [16], where it was mentioned that
the entropy integral convergence in the expression for σ-entropy required considering the
weighting function with the predefined properties. In the current research, this function

is considered as φ(ω) =
ω0

ω2
0 + ω2

, where ω0 is a positive constant, in order for σ-entropy

functional to be dimensionless.
The main contributions of the paper are the following:

1. state-space formulae of σ-entropy norm computation;
2. optimal spectral entropy state-feedback control design for a linear time-invariant

continuous system affected by the random input signal with with bounded σ-entropy.

The rest of the paper is organized as follows. Section 2 provides basic definitions of
spectral entropy control theory: the σ-entropy of the signal, the σ-entropy norm of the
system, and its computation in the frequency domain. Spectral entropy analysis in the
state space is presented in Section 3. The problem of optimal σ-entropy state-feedback
control and its solution are given in Section 4. A numerical example is given in Section 5.
Concluding remarks and future problems are discussed in Sections 6 and 7.

2. Theoretical Background

In this section, basic definitions of σ-entropy analysis and the frequency domain results
are recalled.

Following [16], consider the following linear continuous-time stationary system with
zero initial conditions, and define basic concepts of σ-entropy control theory for this system:{

ẋ(t) = A x(t) + B w(t), x(0) = 0,

z(t) = C x(t) + D w(t),
(1)

where A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m, x(t) ∈ Rn is the system’s state,
z(t) ∈ Rp is an observable output, and w(t) ∈ Rm is a random input signal. Matrix A is
supposed to be Hurwitz, while the system is controllable and observable.

The input signal w(t) satisfies the following conditions:

E
[
w(t)

]
= 0, (2)

and either L2 norm
∥∥w(t)

∥∥
2
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∥∥w(t)
∥∥

2 =

√√√√√ +∞∫
−∞

E
[∣∣w(t)

∣∣2]dt , (3)

or the power norm
∥∥w(t)

∥∥
P of the input signal

∥∥w(t)
∥∥
P =

√√√√√ lim
T→∞

1
2T

T∫
−T

E
[∣∣w(t)

∣∣2]dt (4)

is finite. Here E[ · ] stands for the mathematical expectation, and |w(t)| is the Euclidean
norm of the vector w(t) ∈ Rm.

Following [16], unify the descriptions of the input signals (3) and (4), introducing the
N norm of the signal in the following form:∥∥w(t)

∥∥2
N

= N
(
wT(t)w(t)

)
, (5)

where N is a linear operator that transforms the Euclidean norm
∣∣w(t)

∣∣2 = w(t)Tw(t) of the
vector w(t) to L2 or power (P) norm of the stochastic signal, operating in the following manner:

N(·) =



+∞∫
−∞

E[ · ] dt for L2 norm,

lim
T→∞

1
2T

T∫
−T

E[ · ] dt for P norm.

The operator N allows for the definition of a correlation convolution, K(τ), of the
input signal w(t) in the following form:

K(τ) = N
(
w(t + τ)wT(t)

)
.

Fourier transform of K(τ) leads to an Hermitian positive definite matrix S(ω) =
S∗(ω) > 0 of spectral density of the input signal w(t):

S(ω) =
1

2π

+∞∫
−∞

K(τ) e−iωτ dτ

where ∗ stands for the Hermitian conjugation. Using the inverse Fourier transform, the
correlation convolution K(τ) can be expressed by the matrix of spectral density S(ω):

K(τ) =
+∞∫

−∞

S(ω) eiωτ dω.

As the N norm of the input signal w(t) equals to∥∥w(t)
∥∥2
N

= tr K(0),

it can be connected with the matrix of spectral density S(ω) as

∥∥w(t)
∥∥2
N

=

+∞∫
−∞

tr S(ω) dω.
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Similarly, the N norm of the output signal z(t) equals to

∥∥z(t)
∥∥2
N

=

+∞∫
−∞

tr Sz(ω) dω,

where Sz(ω) is a spectral density of z(t), which can be presented by the transfer matrix
F(s) = C(sI − A)−1B + D of system (1) and the spectral density S(ω) of the input signal
as follows [19]:

Sz(ω) = F(iω) S(ω) F∗(iω). (6)

Consequently, the N norm of the output z(t) is

∥∥z(t)
∥∥2
N

=

+∞∫
−∞

tr
[
Λ(ω) S(ω)

]
dω,

where Λ(ω) = F∗(iω) F(iω).
Define the gain Θ of system (1) with the input signal w(t), that has a finite N norm (5),

as a relation of N norm of the output z(t) to N norm of the input w(t):

Θ =

∥∥z(t)
∥∥
N∥∥w(t)
∥∥
N

=

√√√√√ +∞∫
−∞

tr
[
Λ(ω) S(ω)

]
dω

√√√√√ +∞∫
−∞

tr S(ω) dω

· (7)

Following [16], find σ-entropy as the integral characteristic of the input signal. Let
S(ω) be a rational function, then its integrability leads to the following asymptotics:

S(ω) ∼ 1
ωα

S∞, ω → ∞

with S∞ being the Hermitian matrix and α ⩾ 2. However, such representation gives a
non-integrable function ln det S(ω), as

ln det S(ω) = ln det S(∞)− αm ln ω + O(ω−1) for ω → ∞.

To get rid of this divergence, introduce σ-entropy as

S(S) = − α

2

+∞∫
−∞

φ(ω) ln det
βS(ω)

+∞∫
−∞

tr S(ω′) dω′

dω, (8)

where function φ(ω)> 0 and
+∞∫

−∞

φ(ω) dω <∞, α = const > 0. In other words, φ(ω) should

provide integrable asymptotics for ω→∞. For the sake of certainty, define φ(ω) in the form

φ(ω) =
ω0

ω2
0 + ω2

· (9)

Finally, define the σ-entropy norm
∣∣∣∣∣∣F∣∣∣∣∣∣s of system (1) as the maximal value of the

gain (7) over all the inputs, whose σ-entropy (8) is not greater than s:
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∣∣∣∣∣∣F∣∣∣∣∣∣2s = sup
S(S)⩽s

Θ2 = sup
S(S)⩽s

+∞∫
−∞

tr
[
Λ(ω)S(ω)

]
dω

+∞∫
−∞

tr S(ω) dω

· (10)

The following theorem shows how σ-entropy norm is calculated in the frequency do-
main and which is the worst-case spectral density of the input signal (for more information,
see [16]).

Theorem 1. Any s⩾ 0 σ-entropy norm
∣∣∣∣∣∣F∣∣∣∣∣∣s of system (1) that is affected by a stochastic continu-

ous signal with a finite N norm (5) is calculated according to the formula

∣∣∣∣∣∣F∣∣∣∣∣∣2s =

+∞∫
−∞

φ(ω) tr
[
Λ(ω) S⋆(ω)

]
dω

+∞∫
−∞

φ(ω) tr S⋆(ω) dω

, (11)

where
S⋆(ω) =

[
I − qΛ(ω)

]−1

is the worst case spectral density of the input signal, for which the σ-entropy norm of the system is
realized, and the parameter q∈

[
0,
∥∥F
∥∥−2

∞

)
is the unique solution of the equation

− α

2

+∞∫
−∞

φ(ω) ln det
β φ(ω)S⋆(ω)

+∞∫
−∞

φ(ω′) tr S⋆(ω
′) dω′

dω = s, (12)

α = const > 0, β = const > 0.

Theorem 1 provides the formulae of σ-entropy analysis for linear time-invariant
systems in the frequency domain. It is shown that the σ-entropy norm of the system is
defined as a ratio between the weighted H2-norm of the spectral densities of the output and
the worst case input signals under constraint (12), which defines the set of all the possible
input signals with bounded spectral entropy.

In the next section, the conditions for σ-entropy norm computation with the defined

function φ(ω) =
ω0

ω2
0 + ω2

are derived in terms of matrix equations.

3. Spectral Entropy Analysis in the State Space

In this section, a state-space approach to σ-entropy analysis is conducted. The re-
sult is based on Theorem 1 given in the previous section, namely on the calculation of
integrals (11)–(12) in the explicit form. Before calculating the σ-entropy norm of a linear
stochastic continuous-time system in the state space and proving the corresponding theorem,
formulate the conditions of the all-pass system and two original lemmas with their proofs.

Lemma 1 ([20]). System Υ =

[
A B

ineC D

]
∈ RH∞ with a state-space realization (1) is the

all-pass system if and only if
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ATX + XA + CTC = 0,

DTC + BTX = 0,

DTD = I.

Lemma 2. Let G =

[
AG BG

ineCG DG

]
be a transfer matrix of the system G. Then

1
2π

+∞∫
−∞

ω0

ω2
0 + ω2

tr
[

G∗(iω) G(iω)
]

dω = tr

{[
BG

DG

]T
Γ
[

BG

DG

]}
(13)

where matrix Γ is the solution of Lyapunov equation[
AG 0
CG −ω0 I

]T
Γ + Γ

[
AG 0
CG −ω0 I

]
+

[
0 0
0 ω0 I

]
= 0. (14)

Proof. Introduce the transfer matrix Ω(z)

Ω(z) =
[

−ω0 I I
ine ω0 I 0

]
=

ω0

ω0 + z
I. (15)

Multiply the left-hand side of the Equation (13) on ω0

1
2π

+∞∫
−∞

ω2
0

ω2
0 + ω2

tr
[

G∗(iω) G(iω)
]

dω (16)

and represent the integral (16) in the form

+∞∫
−∞

tr
{[

ω0

ω0 + iω
G(iω)

]∗[ ω0

ω0 + iω
G(iω)

]}
dω =

+∞∫
−∞

tr
[
H∗(iω) H(iω)

]
dω (17)

where

H(z) = Ω(z)G(z)= (18)

=

[
−ω0 I I

ine ω0 I 0

][
AG BG

ineCG DG

]

=

 AG 0 BG

CG −ω0 I DG

ine0 ω0 I 0

 (19)

=
[
0 ω0 I

][zI − AG 0
−CG (z + ω0)I

]−1[BG

DG

]

=
[
0 ω0 I

][ (
zI − AG

)−1 0(
z + ω0

)−1CG

(
zI − AG

)−1 (
z + ω0

)−1 I

][
BG

DG

]

=
ω0

ω0 + z

[
DG + CG

(
zI − AG

)−1BG

]
· (20)

The integral on the right-hand side of Equation (17) is connected with the H2 norm of
matrix H

+∞∫
−∞

tr
[
H∗(iω) H(iω)

]
dω = 2π

∥∥H
∥∥2

2 .
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According to (19), the transfer matrix H(z) may be represented as

H(z) =
[

AH BH

ineCH DH

]
=

 AG 0 BG

CG −ω0 I DG

ine0 ω0 I 0

.

Consequently, as DH = 0, the H2 norm of the system H is defined by [21]∥∥H
∥∥2

2 = tr
(

BT
HΓH BH

)
where the observability gramian ΓH is the solution of the Lyapunov equation

AT
HΓH + ΓH AH + CT

HCH = 0.

Hence, the integral (16) equals to

1
2π

+∞∫
−∞

ω2
0

ω2
0 + ω2

tr
[

G∗(iω) G(iω)
]

dω = tr

{[
BG

DG

]T
ΓH

[
BG

DG

]}
,

and the observability gramian ΓH satisfies the following Lyapunov equation:[
AG 0
CG −ω0 I

]T
ΓH + ΓH

[
AG 0
CG −ω0 I

]
+

[
0 0
0 ω2

0 I

]
= 0.

Divide the last two equations by ω0

1
2π

+∞∫
−∞

ω0

ω2
0 + ω2

tr
[

G∗(iω) G(iω)
]

dω = tr

{[
BG

DG

]TΓH

ω0

[
BG

DG

]}
,

[
AG 0
CG −ω0 I

]TΓH

ω0
+

ΓH

ω0

[
AG 0
CG −ω0 I

]
+

[
0 0
0 ω0 I

]
= 0,

and introduce the denotation Γ =
ΓH

ω0
, to finally obtain (13) and (14).

Lemma 3. Let G =

[
AG BG

ineCG DG

]
be a square m×m transfer matrix. Then

1
2π

+∞∫
−∞

ω0

ω2
0 + ω2

ln det
[

ω2
0

ω2
0 + ω2

G∗(iω) G(iω)

]
dω

= ln det
[

DG + CG

(
ω0 I − AG

)−1BG

]
− m ln 2.

Proof. Using expression (15) for matrix Ω, rewrite the integral from the left-hand side of
the statement in the following form:

1
2π

+∞∫
−∞

ω0

ω2
0 + ω2

ln det

{[
Ω(iω)G(iω)

]∗
Ω(iω)G(iω)

}
dω

=
1
π

+∞∫
−∞

ω0

ω2
0 + ω2

ln
∣∣det H(iω)

∣∣ dω.
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To obtain it, take the definition (18) of H(iω) and the fact that

ln det
[
H∗(iω)H(iω)

]
= 2 ln

∣∣det H(iω)
∣∣

were used.
As H ∈ RH∞, the integral Poisson theorem (see [22]) can be applied, leading to

1
π

+∞∫
−∞

ω0

ω2
0 + ω2

ln det H(iω) dω = ln det H(ω0).

According to (20),

H(ω0) =
1
2

[
DG + CG

(
ω0 I − AG

)−1BG

]
.

Hence,

1
2π

+∞∫
−∞

ω0

ω2
0 + ω2

ln det
[

ω2
0

ω2
0 + ω2

G∗(iω) G(iω)

]
dω

= ln det
[

DG + CG

(
ω0 I − AG

)−1BG

]
− m ln 2,

which completes the proof.

Theorem 2. In the state space, the σ-entropy norm
∣∣∣∣∣∣F∣∣∣∣∣∣s of system (1), which is affected by the

input signal with a finite N norm, is calculated according to the formula

∣∣∣∣∣∣F∣∣∣∣∣∣2s =

tr

M

B
B
D

T

P

B
B
D




tr

{
M
[

B
I

]T
Q
[

B
I

]} , (21)

where the matrices P > 0, Q > 0, R > 0 and a scalar q ∈
[
0,
∥∥F
∥∥−2

∞

)
are the unique solution to

the following system of equations:

ATR + RA + qCTC + LTM−1L = 0, (22)

M
(

BTR + qDTC
)
= L, (23)(

I − qDTD
)−1

= M, (24)

A+BL 0 0
BL A 0
DL C −ω0 I

T

P + P

A+BL 0 0
BL A 0
DL C −ω0 I

+

 0 0 0
0 0 0
0 0 ω0 I

= 0, (25)

[
A+BL 0

L −ω0 I

]T
Q + Q

[
A+BL 0

L −ω0 I

]
+

[
0 0
0 ω0 I

]
= 0, (26)

− 1
2

ln det
mM

2 tr

(
M
[

B
I

]T
Q
[

B
I

])−

ln det
{

I + L
[
ω0 I −

(
A + BL

)]−1
B
}

= s.

(27)
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Proof. Recall that, according to Theorem 1, the σ-entropy norm
∣∣∣∣∣∣F∣∣∣∣∣∣s is realised on the

spectral density S⋆(ω), which equals to

S⋆(ω) =
[
I − qF∗(iω) F(iω)

]−1. (28)

The condition 0⩽ q<
∥∥F
∥∥−2

∞ means that

I − qF∗(iω)F(iω) > 0 for ∀ω ∈ R.

The positive definiteness of the matrix S⋆(ω) guarantees the existence of the matrix
factorization S⋆(ω) in the form S⋆(ω) = G(iω) G∗(iω).

Hence, Equation (28) can be transformed to the form

[√
q F∗(iω) G−∗(iω)

][√q F(iω)
G−1(iω)

]
= I.

where G−∗ =
(
G∗)−1.

Denote Υ(iω) =

[√
q F(iω)

G−1(iω)

]
, then, according to the last equation, Υ∗(iω)Υ(iω) = I,

i.e., Υ(iω) is the all-pass system.
Consider matrix G in the form

G =

[
A + BL BM1/2

ineL M1/2

]
, (29)

where L and M = MT > 0 are random matrices of appropriate dimensions. The inverse
matrix G−1 equals to

G−1 =

[
A B

ine − M−1/2L M−1/2

]
. (30)

Let the following two systems be connected in series:{
ẋ1(t) = A1 x1(t) + B1 w1(t),

z1(t) = C1 x1(t) + D1 w1(t),
and

{
ẋ2(t) = A2 x2(t) + B2 w2(t),

z2(t) = C2 x2(t) + D2 w2(t),

i.e., the output of the first system is the input for the second one w2(t) = z1(t). Then,
d
dt

[
x1
x2

]
=

[
A1 0

B2C1 A2

][
x1
x2

]
+

[
B1

B2D1

]
w1,

z2 =
[
D2C1 C2

][x1
x2

]
+ D2D1 w1.

For systems G and G−1, given as (29) and (30), if the output of G is the input for G−1,
it means that 

d
dt

[
x1
x2

]
=

[
A + BL 0

BL A

][
x1
x2

]
+

[
BM1/2

BM1/2

]
w1,

z2 =
[
M−1/2L −M−1/2L

][x1
x2

]
+ w1 I.

Left-multiply the first equation on matrix
[

I 0
−I I

]
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
d
dt

[
x1

−x1 + x2

]
=

[
A + BL 0

0 A

][
x1

−x1 + x2

]
+

[
BM1/2

0

]
w1,

z2 =
[
0 −M−1/2L

][ x1
−x1 + x2

]
+ w1,

and check that the transfer matrix of this system equals to a unit one

G−1(s) G(s) =
[
0 −M−1/2L

][sI − A − BL 0
0 sI − A

]−1[BM1/2

0

]
+ I =[

0 −M−1/2L
(
sI − A

)−1
][BM1/2

0

]
+ I = I.

So, it is natural to consider matrix Υ(s) as a transfer matrix of the system, composed
by two parallel subsystems F(s) and G−1(s), and this matrix is equal to [21]:

Υ(s) =
[√

q F(s)
G−1(s)

]
=


A 0 B
0 A B

ine
√

q C 0
√

q D
0 −M−1/2L M−1/2

·
In the state space, this system has the following form:

ẋF(t) = A xF(t) + B w(t),

ẋG(t) = A xG(t) + B w(t),

zF(t) =
√

q C xF(t) +
√

q D w(t),

zG(t) = −M−1/2L xG(t) + M−1/2 w(t).

As the dynamical parts of these subsystems are identical, the last system may be
reduced to 

ẋ(t) = A x(t) + B w(t),

zF(t) =
√

q C x(t) +
√

q D w(t),

zG(t) = −M−1/2L x(t) + M−1/2 w(t).

Consequently, the state-space realization of matrix Υ takes the following form:

Υ =

 A B
ine

√
q C

√
q D

−M−1/2L M−1/2

·
Applying Lemma 1 to system Υ, we get

ATR + RA + qCTC + LTM−1L = 0, (31)

qDTC − M−1L + BTR = 0, (32)

qDTD + M−1 = I. (33)

From Equations (32) and (33), it follows that

M =
(

I − qDTD
)−1,

L = M
(

BTR + qDTC
)
.
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These two equations and Formula (31) form subsystem (22)–(24), and matrix G takes
the following form:

G =

[
AG BG

ineCG DG

]
=

[
A + BL BM1/2

ineL M1/2

]
·

Now, calculate the σ-entropy norm (11) of the system. Consider the numerator of (11):

+∞∫
−∞

φ(ω) tr
[
Λ(ω) S⋆(ω)

]
dω.

As G(iω) factorizes S⋆(ω) in the manner S⋆(ω) = G(iω) G∗(iω), rewrite the integral
in the form

+∞∫
−∞

ω0

ω2
0 + ω2

tr
{[

F(iω) G(iω)
]∗[

F(iω) G(iω)
]}

dω,

applying Lemma 2 and taking into account that the transfer matrix of system FG is equal to

F(z)G(z) =
[

A B
ineC D

][
AG BG

ineCG DG

]
=

 AG 0 BG

BCG A BDG

ineDCG C DDG

,

the numerator of σ-entropy norm takes the following form:

+∞∫
−∞

φ(ω) tr
[
Λ(ω) S⋆(ω)

]
dω = 2π tr


 BG

BDG

DDG

T

P

 BG

BDG

DDG




= 2π tr


BM1/2

BM1/2

DM1/2

T

P

BM1/2

BM1/2

DM1/2


·

Finally, we obtain

+∞∫
−∞

φ(ω) tr
[
Λ(ω) S⋆(ω)

]
dω = 2π tr

M

B
B
D

T

P

B
B
D


, (34)

where, according to Lemma 2, matrix P is the solution to Equation (25).
A similar equation is obtained for the denominator of the σ-entropy norm (11):

+∞∫
−∞

φ(ω) tr S⋆(ω) dω = 2π tr

{
M
[

B
I

]T
Q
[

B
I

]}
, (35)

with matrix Q being a solution to Equation (26). Substitute (34) and (35) into (11) and get
Equation (21).

Now, consider the log-determinant Equation (12) with φ(ω) =
ω0

ω2
0 + ω2

− α

2

+∞∫
−∞

ω0

ω2
0 + ω2

ln det

ω0

ω2
0 + ω2

βS⋆(ω)

+∞∫
−∞

ω0

ω2
0 + (ω′)2

tr S⋆(ω
′) dω′

dω = s
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and transform the left-hand side of this equation:

+∞∫
−∞

ω0

ω2
0 + ω2

ln det

ω2
0

ω2
0 + ω2

G∗(iω) G(iω)

ω0

β

+∞∫
−∞

ω0

ω2
0 + (ω′)2

tr
[

G∗(iω′) G(iω′)
]
dω′

dω

=

+∞∫
−∞

ω0

ω2
0 + ω2

ln det
[

ω2
0

ω2
0 + ω2

G∗(iω) G(iω)

]
dω

− m
+∞∫

−∞

ω0

ω2
0 + ω2

dω ln

 ω0

β

+∞∫
−∞

ω0

ω2
0 + (ω′)2

tr
[

G∗(iω′) G(iω′)
]
dω′

·
Applying Lemma 3 to the first component, Lemma 2 to the second integral of the

second component, and taking into account

+∞∫
−∞

ω0

ω2
0 + ω2

dω = π,

we obtain

mα

2

+∞∫
−∞

ω0

ω2
0 + ω2

dω ln

 ω0

β

+∞∫
−∞

ω0

ω2
0 + (ω′)2

tr
[

G∗(iω′) G(iω′)
]
dω′


− α

2

+∞∫
−∞

ω0

ω2
0 + ω2

ln det
[

ω2
0

ω2
0 + ω2

G∗(iω) G(iω)

]
dω

=
mπα

2
ln

{
2πω0

β
tr

(
M
[

B
I

]T
Q
[

B
I

])}
+ mπα ln 2 − πα ln det

[
DG + CG

(
ω0 I − AG

)−1BG

]
=

mπα

2
ln

{
8πω0

β
tr

(
M
[

B
I

]T
Q
[

B
I

])}

− πα ln det

{
M1/2 + L

[
ω0 I −

(
A + BL

)]−1
BM1/2

}

=
mπα

2
ln

{
8πω0

β
tr

(
M
[

B
I

]T
Q
[

B
I

])}
− πα

2
ln det M

− πα ln det
{

I + L
[
ω0 I −

(
A + BL

)]−1
B
}

= − πα

2
ln det

βM

8πω0 tr

(
M
[

B
I

]T
Q
[

B
I

])

− πα ln det
{

I + L
[
ω0 I −

(
A + BL

)]−1
B
}

.
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Thus, the following log-determinant equation in the state-space is obtained:

− πα

2
ln det

βM

8πω0 tr

(
M
[

B
I

]T
Q
[

B
I

]) (36)

− πα ln det
{

I + L
[
ω0 I −

(
A + BL

)]−1
B
}

= s.

Finally, select the exact values of the constants α and β. Set α > 0 so that it simplifies
the log-determinant expression (36), i.e., α = 1/π. The constant β > 0 can be found from
the requirement that for s = 0 the parameter q from the log-determinant equation in the
frequency domain (12) also equals to 0. Consequently, β = 4πmω0. Substitution of these
values for α and β into(36) leads to Equation (27).

This completes the proof.

The most interesting properties of the σ-entropy norm are

1. ∣∣∣∣∣∣F∣∣∣∣∣∣2s =
∥F∥2

m
when s = 0 and D = 0;

2. ∣∣∣∣∣∣F∣∣∣∣∣∣2s → ∥F∥∞

when s → ∞.

Theorem 2 claims that for the given value of spectral entropy s ⩾ 0, the σ-entropy
norm of the linear system can be found from the solution of the coupled nonlinear matrix
Equations (22)–(27). Distinct from the frequency domain approach, these conditions can be
applied to solve the σ-entropy control design problem, considered in the next section.

4. Spectral Entropy Optimal Control Design

This section is devoted to the σ-entropy optimal control design problem in the state
space. As before, we deal with linear systems affected by random external disturbances
bounded by a scalar value s ⩾ 0 of spectral entropy. The problem is to find an optimal
state-feedback gain which minimizes the σ-entropy norm of the closed-loop system.

4.1. Problem Statement

To formulate and solve the problem, consider the following linear continuous-time
stationary system F:{

ẋ(t) = A x(t) + Bu u(t) + Bw w(t), x(0) = 0,

y(t) = C x(t) + Du u(t) + Dw w(t),
(37)

where A ∈ Rn×n, Bw ∈ Rn×m, C ∈ Rp×n, Dw ∈ Rp×m, Bu ∈ Rn×q, and Du ∈ Rp×q are
constant real matrices.

In addition, x(t) ∈ Rn is the system’s state, y(t) ∈ Rp is the output signal, w(t) ∈ Rm

is a random input signal, and u(t) ∈ Rq is the control input. The input random disturbance
w(t) has bounded σ-entropy s ⩾ 0 defined by (8).

Let system (37) satisfy the following assumptions:

1. Dw = 0.
2. The pair (A, Bu) is stabilizable.
3. DT

uDu is invertible.
4. DT

uC = 0.
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5. The pair (C, A) has no unobservable modes on the imaginary axis, that is required
for the Riccati equations, which characterize the optimal controller, to have stabilizing
solutions.

These assumptions are necessary for existence of the optimal control law which solves
the problem stated below.

The problem is to find such a state-feedback control law u(t) = Kx(t) that minimizes
the σ-entropy norm of the closed-loop system Fcl with Â = A + BuK and Ĉ = C + DuK:{

ẋ(t) = Âx(t) + Bw w(t),

y(t) = Ĉx(t),
(38)

i.e., ∣∣∣∣∣∣Fcl
∣∣∣∣∣∣

s = sup
S(S)⩽s

∥∥y(t)
∥∥
N∥∥w(t)
∥∥
N

−→ inf
K

. (39)

4.2. Problem Solution

We introduce two sets: the set of input signals w(t) with bounded σ-entropy, denoted
by Ss, and the set of stabilizing control laws K(F). The idea of the optimal control problem
solution is based on a saddle point condition that can be formulated as follows:

K⋄
s (S)

.
= Arg min

K∈K(F)
∥Fcl∥2, S ∈ Ss,

S⋄
s (K)

.
= Arg max

S∈Ss

∥∥y(t)
∥∥
N∥∥w(t)
∥∥
N

, K ∈ K(F),

where S is the spectral density of the input signal w(t).
Set K⋄

s (S) consists of the control laws which are the solutions of the weighted H2-
optimization problem. K(F) is a set of all controllers, that make the closed-loop system
stable. The set S⋄

a(K) consists of the input signals w(t) with the worst spectral density for
the closed-loop system.

Lemma 4. If the control law K is a saddle point of the mapping K⋄
s ◦ S⋄

s , then it is the solution to
problem (39).

Hence, the solution is composed of two steps. The first step is to find the worst case
spectral density S ∈ Ss of the input signal with bounded σ-entropy. The second step deals
with the solving of the weighted H2-control problem.

Step 1. The following highlights are the same. Let the input signal W be generated
from the Gaussian white noise sequence V, i.e., W = GV by the shaping filter G =[

AG BG

ineCG DG

]
. Then, the shaping filter, which generates the signal with bounded σ-

entropy and the worst case spectral density S ∈ Ss, following the proof of Theorem 2, can
be presented in the following form.

Lemma 5. For system (38) and σ-entropy s ≥ 0, the worst-case shaping filter G has the following
state-space representation:

G =

[
Â + BwL Bw

ineL Im

]
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where matrix L satisfies

− 1
2

ln
m

2 tr

([
Bw
Im

]T
Q
[

Bw
Im

])− ln det
{

Im + L
[
ω0 In −

(
Â + BwL

)]−1
Bw

}
= s, (40)

ÂTR + RÂ + qĈTĈ + LTL = 0, (41)

BT
wR = L, (42)[

Â+BwL 0
L −ω0 Im

]T
Q + Q

[
Â+BwL 0

L −ω0 Im

]
+

[
0 0
0 ω0 Im

]
= 0. (43)

Matrices R ∈ Rn×n > 0, Q ∈ R(n+m)×(n+m) > 0, and a positive scalar q are the unique
solution.

Step 2. Consider the weighted system which is affected by the Gaussian white noise.
The transfer matrix of this system is equal to

F(z)G(z) =
[

A Bw
ineC 0

][
AG BG

ineCG DG

]
=

 AG 0 BG

BwCG A BwDG

ine0 C 0

 =

 Â + BwL 0 Bw
BwL A Bw
ine0 C 0

. (44)

The goal is to solve the H2 optimization problem for the system F(z)G(z). To achieve
it, consider an extended system with the state vector X ∈ R2n = [ xF, x ]T where xF and
x are the states of the shaping filter and the system, respectively. Its dynamics can be
described by {

Ẋ(t) = Ã X(t) + B̃u u(t) + B̃v v(t),

y(t) = C̃X(t) + Duu(t)
(45)

where

Ã =

[
Â + BwL 0n×n

BwL A

]
, B̃u =

[
0n×q
Bu

]
, B̃v =

[
Bw
Bw

]
, C̃ =

[
0p×n C

]
.

Here, matrix L satisfies the conditions of Lemma 5.
The optimal state-space control law, which solves the weighted H2-optimization

problem for system (45), can be found in the following form:

uopt(t) = K̃optX(t)

where
K̃opt =

[
K1 K2

]
= −

(
DT

uDu

)−1
B̃T

uS, (46)

and S ∈ R2n×2n is the unique symmetric positive (semi)definite solution of the algebraic
Riccati equation

ÃTS + SÃ − SB̃u

(
DT

uDu

)−1
B̃T

uS + C̃TC̃ = 0. (47)

Theorem 3. Let system (37) satisfy assumptions 1–5. Then for the given σ-entropy level s ≥ 0,
the optimal σ-entropy state-feedback control law is given in the form (48), with K1 and K2 described
by (46), while matrices S ∈ R2n×2n and L ∈ Rm×n can be found from the solution of the set of
coupled Equations (40)–(43) and (47) in the form
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uopt(t) = Koptx(t) = (K1 + K2)x(t). (48)

with matrices R ∈ Rn×n > 0, Q ∈ R(n+m)×(n+m) > 0, and a positive scalar q being the unique
solutions.

Proof. Since the most part of the proof is given above, we will prove only (48). The
solution of the weighted H2 control problem (47) has a dimension equal to 2n. One substate
corresponds to the plant while the other one corresponds to the shaping filter. It can be

shown that system
[

A Bw
ineC 0

]
and

 Â + BwL 0 Bw
BwL A Bw
ine0 C 0

 have the same input-output

operator. This means that the dimension of the control can be reduced as in (48). This
completes the proof.

It is shown that the σ-entropy optimal control problem is a classical minimax problem.
Based on the saddle point condition of optimality, the solution to the stated problem is
divided into two stages: at the first stage, the worst case input disturbance is defined, and
at the second stage, a controller which minimizes the output dispersion is synthesized.
Finally, the solution to the state-feedback optimal control problem is found from the set of
coupled nonlinear equations (40)–(43) and (46)–(48).

5. Numerical Example

Consider a first-order system given by the equation

ẋ(t) = 0.3x(t) + u(t) + 0.1w(t).

The controllable output is selected as

z(t) = Cx(t) + Du(t)

with C = [ 1, 0 ]T, D = [ 0, 1 ]T.
The desired frequency in the expression (40) for σ-entropy computation is selected as

ω0 = 100. In this case, R is a scalar, Q =

[
q11 q12
q12 q22

]
, and S =

[
s11 s12
s12 s22

]
.

The set of eight equations with eight variables is equal to the following:

0.5 ln(0.02q11 + 0.4q12 + 2q22)− ln
(

R
100s12 − R + 100s22 + 9970

+ 1
)
− s = 0,

q + q(s12 + s22)
2 + 0.01R2 − 2R(s12 + s22 − 0.3) = 0,

0.2Rq12 + 2q11(0.01R − s12 − s22 + 0.3) = 0,

0.1Rq22 + q12(0.01R − s12 − s22 − 99.7) = 0,

1 − 2q22 = 0,

0.02Rs12 + 2s11(0.01R − s12 − s22 + 0.3)− s2
12 = 0,

0.3s12 + 0.01Rs22 + s12(0.01R − s12 − 2s22 + 0.3) = 0,

−s2
22 + 0.6s22 + 1 = 0.

(49)

The given set of equations was solved numerically using the fsolve function in Matlab
2009b.

The solution to the H2 optimal control problem provides a feedback gain K2 =
−1.3440, while the optimal H∞ controller is equal to K∞ = −6.4272 · 106 with the H∞
norm of the closed-loop system set to ∥Fcl∥∞ = 0.1.

The results of the optimal σ-entropy control design are given in Table 1. It can be seen
that for zero spectral entropy, the solution to the optimal control problem coincides with
H2 optimal controller. When spectral entropy s tends to infinity, the solution to the optimal



Mathematics 2024, 12, 3604 17 of 19

spectral entropy control tends to H∞. However, the feedback gain is much less in the
H∞ case. This means that spectral entropy control provides more smooth and fine-tuned
control with almost the same performance.

Table 1. Optimal controller for different values of spectral entropy.

Spectral Entropy s q Control Gain Kopt

0 0.0036 −1.3441

0.001 26.3386 −1.6415

0.01 54.5381 −2.2832

0.1 81.1253 −4.3866

1 96.4492 −18.4261

10 99.9373 −958.6546

100 99.9630 −1.6255 · 103

1000 99.9659 −1.7611 · 103

6. Discussion

In this paper, a novel approach to the robust control of linear time-invariant systems is
introduced. Based on the induced norm concept, spectral properties of the input distur-
bance as the control design quality criterion were suggested to be used. In this case, the
frequency properties of the disturbance to be rejected are considered. To define a set of
inputs, spectral entropy is introduced. It is a nonnegative scalar value that depends on
the log determinant of the spectral density of the signal. On the one hand, it allows the
construction of a fine tuned controller; on the other hand, it maintains the robustness of the
closed-loop systems.

State space formulae of spectral entropy analysis for linear systems are derived. It is
shown that the optimal state-feedback control problem leads to the set of coupled nonlinear
equations. Assumptions 1–5 guarantee the existence of the unique admissible solution of
these equations.

Similar to the well-known H2 and H∞ approaches, the proposed σ-entropy approach
deals with the operator norm of the system from the disturbance to the controlled output.
The design objective is to find an optimal solution which minimizes the influence of the
disturbances which act on the system and belong to the prescribed set. The set of the
signal is defined by a nonnegative scalar value s. The larger the value of s, the wider
set of possible signals it defines. Note that the case of s = 0 corresponds to the random
signals with unitary spectral density, i.e., standard Gaussian noise. Therefore, the σ-entropy
optimization problem in the case of s = 0 corresponds to the H2 optimal control. In the case
s → ∞, the set of possible signals is extended to the whole range of stochastic signals with
bounded L2 or power norm. Therefore, the σ-entropy optimization problem for the case of
s → ∞ corresponds to the H∞ optimal control. These facts are clearly demonstrated in the
numerical problem. Thus, it became possible to unify both well-known control strategies
within the common framework and to improve the properties of the closed-loop systems
by better tuning of the controller.

7. Conclusions

In this research, the problem of analysis and optimal state-feedback spectral entropy
control for linear continuous-time systems is considered. The analysis problem is to find
the system’s gain from external random disturbances with the bounded spectral entropy to
the controllable output, while the control problem is to find a state-feedback gain which
minimizes the spectral entropy norm of the closed-loop system. Analytical solutions to
both considered problems are derived in the paper. The suggested approach unifies H2
and H∞ control theories within the common framework as limiting cases. The numerical
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example illustrates benefits of the suggested optimization criterion over the well-known H2
and H∞ approaches. The application of the derived method can be found in linear control
systems with H2 and H∞ controllers to refine the control strategy, taking into account the
frequency properties of the disturbance.

Future research will be conducted considering several directions. The first direction
is the extension of this theory to a wider class of control plants. It is planned to derive
an output feedback optimal σ-entropy control strategy. The second direction is the devel-
opment of numerical tools for solving σ-entropy analysis and control design problems.
As conditions are given as a set of nonlinear matrix equations, homotopy methods will
be applied.
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Notations
The following list of notations is used throughout the paper:

E[w] is the mathematical expectation of signal w;
|w| is Euclidean norm of the vector w;
Rn×m is a set of n × m matrices with real values;
Rn is a set of n–dimensional vectors with real values;
∥w∥2 is the L2 norm of signal w;
∥w∥P is the power norm of signal w;
|||F|||s is σ-entropy norm of system F;
z is a complex variable in Laplace transform;
i is the imaginary unit;
G∗(iω) is Hermitian conjugation of matrix G;
tr(A) is the trace of matrix A;
det(A) is the determinant of matrix A;
S⋆(ω) is the matrix of the worst case spectral density of the signal;
Fcl denotes the closed-loop system.
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