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Abstract: As the economic environment becomes more complex, improving supply chain resilience
is critical for the effective operation and long-term sustainability of businesses. Real-world supply
chains, which consist of various components such as goods, warehouses, and plants, often feature
intricate network structures that pose challenges for resilience analysis. This paper addresses these
challenges by proposing a framework for studying supply chains using multi-layer network com-
munity detection. The complex multi-mode supply chain network is transformed into single-mode,
multi-layer weighted networks. A multi-layer weighted community detection method is proposed
for identifying local clusters within these networks, revealing interconnected groups that highlight
flexibility and redundancy in production capabilities across different plants and goods. An empirical
study utilizing real data demonstrates that this clustering method effectively detects indirect capacity
links between plants and goods. The insights derived from this method are useful for strategic
capacity management, allowing businesses to respond more effectively to supply shortages and
unexpected increases in demand.

Keywords: resilience analysis; supply chain; community detection

MSC: 90B06; 05C90; 05C22

1. Introduction

As the socioeconomic environment becomes more complex, supply chains face a
broader range of risks, such as natural disasters, political unrest, fuel shortages, pandemics,
and terrorism [1–5]. A supply chain can be defined as a network of interconnected facilities
that transport goods or services from producers to consumers [6]. These chains function as
intricate systems involving plants, warehouses, and distribution channels, making efficient
and sustainable management of these flows critical for businesses [7]. With rising economic
instability, the likelihood of external shocks disrupting supply chains grows. Unexpected
events, such as the COVID-19 pandemic, have revealed vulnerabilities in these networks,
where disruptions at key nodes can significantly impair production and logistics, resulting
in substantial economic losses, including declines in operating income and stock market
performance [8]. For instance, the pandemic highlighted shortages of critical medical
supplies, demonstrating how disruptions can spread throughout entire systems.

The importance of analyzing supply chain resilience is becoming more widely rec-
ognized. Resilience is defined as the ability to quickly restore supply chains to normal
operations or increase efficiency following disruptions [9]. Ref. [10] emphasized that a com-
pany’s ability to respond to disruptions more effectively than competitors can strengthen
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its market position, making resilience critical for both short-term survival and long-term
success. Similarly, ref. [11] argued that resilience is an important strategy for supply chains
operating in volatile environments. Ref. [12] encapsulated the essence of resilience from two
different perspectives. The first is engineering resilience, which is measured by how quickly
a system returns to equilibrium and how robust it is to disruptions. The second concept is
social–ecological resilience, which is measured by the amount of disruption that a supply
chain can endure before undergoing structural transformation. Ref. [13] viewed supply
chain resilience through two perspectives: stability and adaptation. The stability-based
view focuses on returning to normal states amid known risks, while the adaptation-based
view emphasizes sustained value creation through flexibility and redundancy in the face
of uncertainty. Scholars have also proposed extending risk management practices to in-
clude supply chains [14,15]. From a risk management perspective, resilience analysis
entails identifying, evaluating, controlling, and monitoring risks that could destabilize
supply chains.

However, supply chains are complex, dynamic networks of interconnected entities,
resulting in significant distinctions between managing organizational risk and assessing
supply chain resilience. Ref. [16] argued that resilience analysis should focus on the
systemic properties of supply chains rather than isolated risk factors. Ref. [17] investigated
the relationship between network complexity and supply chain resilience, specifically how
disruptions affect them and how well they recover from such incidents. Their empirical
studies revealed that network complexity is an important factor in determining supply
chain recovery capabilities. Ref. [18] also emphasized the importance of the network
perspective in analyzing supply chain resilience, arguing that tailored resilience strategies
should be considered for different types of collaboration within supply networks. Inspired
by these works, this paper investigates the network structure of supply chains and evaluates
their characteristics using network analysis. By integrating quantitative data, such as
production capacities, into the analysis, we aim to enhance visibility into supply chain
flexibility and redundancy, resulting in greater resilience and the ability to withstand, adapt,
or transform in response to disruptions.

In terms of network analysis, increasing redundancy is often employed to improve
supply chain resilience. Companies can better address supply shortages and demand
fluctuations by incorporating backup facilities or maintaining surplus inventory through
strategic resource reallocation [19]. Ensuring spare capacity at critical points in the supply
chain is critical for maintaining resilience and providing backup plans during disrup-
tions [20]. Redundancy also increases operational flexibility, allowing for faster resource
deployment and minimizing delays [21,22]. However, determining which segments of the
supply chain should be duplicated and where capacity expansion is most effective remains
a difficult task.

To address the complexity of supply chain networks, we represent a supply chain
with diverse types of nodes as a multi-mode network. Here, “mode” refers to the category
of nodes. For example, a supply chain that includes plants, goods, and warehouses can
be modeled as a three-mode network, where each mode represents plants, goods, and
warehouses. By modeling a real supply chain as a multi-mode network, we can treat it
as a graph and apply network analysis techniques, such as community detection, which
is particularly useful for identifying tightly connected groups within networks. Figure 1
illustrates the structure of a multi-mode network. This representation effectively captures
the flow of production and distribution in the supply chain, with the nodes representing
goods playing a central role. In the context of supply chain management, especially in
relation to disruptions, we focus on the flexibility and redundancy in production capabilities
for different goods. To explore the relationships among goods, we extract single-mode
networks based on whether two goods share the same warehouse or can be produced by
the same plant. As shown in the right panel of Figure 1, this results in multiple single-mode
networks of goods, such as plant-based and warehouse-based networks. We then aggregate
these single-mode networks into a multi-layer network, with a plant layer and a warehouse
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layer. This multi-layer network allows for a comprehensive analysis of the flexibility and
redundancy among goods. Furthermore, we extend the analysis to weighted networks
by incorporating quantitative information into the network structure, such as production
capacity and resource availability. This integration enables a deeper understanding of
the relationships between nodes, leading to more robust community detection results. By
analyzing the distribution of nodes within these communities and identifying key bridging
nodes, we can develop targeted redundancy strategies that not only enhance operational
flexibility but also strengthen the overall resilience of the supply chain.

Figure 1. Multi-mode network of supply chain (left) and projected versions of single-mode
networks (right).

In multi-layer networks, such as supply chains, community detection poses distinct
challenges compared to single-layer networks [23]. The primary objective is to discover
a unified community structure across multiple layers, revealing clusters of highly inter-
connected nodes. While methods originally developed for single-layer networks, such as
modularity-based approaches, have been adapted to address the complexities of multi-layer
networks, there is still a significant gap in the existing literature regarding the incorporation
of quantitative information, such as production capacity and inventory levels, into these
analyses. For instance, the modularity metric has been transformed into multi-layer modu-
larity density, which aids in community detection across multiple layers [24]. Ref. [25] tried
to combine connections within and between layers to find communities in multi-layer net-
works and showed that the aggregation of information from multiple layers contributes to
the detection performance. Additionally, ensemble methods [26] combine independently
detected communities from each layer to form a cohesive partition, and spectral clustering
techniques have been improved to ensure consistent detection across layers [27]. Most exist-
ing research focuses on community detection using binary layers, such as binary adjacency
matrices. However, integrating quantitative data, such as production capabilities, into
these weighted multi-layer networks is critical for improving detection performance. By in-
corporating this information, researchers can achieve more accurate and robust community
detection results.

In the face of increasing economic complexity and volatility, the resilience of supply
chains has become a critical area of focus for both academic researchers and industry
practitioners. Despite the growing body of literature on supply chain resilience, there
remains a significant gap in understanding how to effectively leverage network structures
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to enhance resilience, particularly in the context of multi-layer weighted networks that
capture the intricate relationships between various supply chain entities. In this study, we
address this research gap by proposing a novel framework for supply chain analysis that
utilizes community detection methods on multi-layer weighted networks. Our approach
aims to identify local clusters within these networks, revealing interconnected groups that
highlight flexibility and redundancy in production capabilities across different plants and
goods. The supply chain is modeled as a weighted multi-mode network composed of
various node types, allowing for a thorough examination of the underlying community
structures. To achieve this, the multi-mode network of the supply chain is projected into
several multi-layer networks that correspond to different modes, such as a multi-layer
weighted network of production facilities. Using community detection techniques on these
multi-layer weighted networks, critical local structures can be identified, improving supply
chain planning and risk management. A thorough examination of multi-layer networks
reveals global structures that may be overlooked when individual layers are examined
separately. Identifying common patterns across layers significantly improves the accuracy
of inference results. For local communities, the distribution and diversity of each node
type are evaluated, with a focus on redundancy and flexibility across various supply chain
segments. This framework is adaptable to a wide range of supply chain scenarios. Fur-
thermore, by modeling the complex relationships between various supply chain entities
using a multi-layer network structure, we use our proposed community detection methods
to effectively integrate quantitative data, such as production capacity, with network char-
acteristics. This comprehensive approach helps enterprises to recognize the importance
of various node types in supply chain design and management, ultimately strengthening
resilience and improving risk mitigation capabilities. The main contributions of this paper
are threefold: (1) we model complex supply chains with a multi-modal network struc-
ture and thus propose the weighted multi-layer network community detection (WMLCD)
method for analyzing the inherent structure of supply chains; (2) based on WMLCD, we
present a resilience analysis framework that uncovers production capacity linkages among
network nodes, providing valuable references for supply chain maintenance; and (3) we
demonstrate the effectiveness of this method through both simulated and real-world supply
chain data, illustrating how community detection results offer specific decision support for
supply chain recovery. The insights from WMLCD help supply chain managers to make in-
formed decisions. Tested with real-world data, WMLCD uncovers indirect connections that
single-layer analyses may miss, enhancing strategies for capacity management, resource
allocation, and overall resilience in global supply chains.

2. Methodology
2.1. Multi-Mode Weighted Network of Supply Chain

Suppose that a supply chain has N nodes, each indexed by 1 ≤ i ≤ N. These nodes
represent M different types, such as goods, plants, and warehouses. Consequently, the
supply chain can be modeled as a multi-mode network with M modes, each corresponding
to a specific type. For 1 ≤ m ≤ M, let Sm represent the index set of nodes belonging to the
m-th mode. Let Nm = |Sm| denote the cardinality of Sm. Thus, we have N = ∑M

m=1 Nm. To
describe the overall network structure, we define an N × N symmetric weighted adjacency
matrix A = (Aij), where Aij represents the weight of the edge between nodes i and j. If
there is no relationship between nodes i and j, then Aij = 0. For nodes i and j with Aij > 0,
the weight Aij quantifies the strength of their relationship. For instance, if nodes i and j
refer to a good and a plant, respectively, the weight Aij can be determined based on the
production capacity of the plant to produce the good. If node j represents a warehouse,
Aij can be calculated using the percentage of storage allocated for good i in warehouse
j. It is worth noting that there are no direct edges connecting nodes of the same mode;
thus, we have Aij = 0 for any i and j when there exists m such that i, j ∈ Sm. Nevertheless,
indirect relationships among nodes of the same mode can be inferred from the matrix A.
For example, given two nodes representing goods i and j, if there is a plant node k such that
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Aik Ajk > 0, this indicates that these two goods can be produced by the same plant. In this
way, the relationship between the two goods can be captured in terms of the substitutability
of their production capacities.

As a representation of the supply chain, the weighted adjacency matrix A effectively
captures the production and distribution dynamics of the supply chain. Typically, good
nodes play pivotal roles in this network. The matrix A can be represented as a combination
of block matrices as follows:

A =


0 A(12) · · · A(1M)

A(12) 0 · · · A(2M)

...
...

. . .
...

A(1M) A(2M) · · · 0

,

where 0 denotes a zero matrix and A(ml) is an Nm × Nl matrix describing the relations
among nodes from Sm and Sl . For each mode m, the related network information is all
collected in M − 1 block matrices {A(1m), · · · , A(mM)}. It should be noted that the objective
is to recover indirect relations among relationships between nodes of the same nodes.
Therefore, we consider to derive single-mode networks for each mode m through projection
on {A(1m), · · · , A(mM)}. For instance, a single-mode network for goods can be generated,
with edges connecting any two goods that can be produced by the same plant or stored in
the same warehouse.

2.2. Projected Weighted Multi-Layer Network

Direct relationships between nodes of the same type may not always exist. For ex-
ample, two plants in the supply chain may not have a direct connection, such as through
business cooperation. However, if these plants produce the same products, they may
be implicitly related. In such cases, if one plant experiences operational difficulties, the
other can continue production, preventing supply chain disruptions. To investigate these
implicit relationships and increase supply chain redundancy, we project the original net-
work into different configurations, such as single-mode networks of goods. This method
enables us to identify community structures within the supply chain by analyzing projected
single-mode networks.

For each mode m, given the block matrices {A(1m), · · · , A(mM)}, we define a projection
operator f (·) to transform them into adjacency matrices of single-mode networks. Let
W(ml) = f (A(ml)) denote the resulting matrix of the projection operator on A(ml). For
i, j ∈ Sm, we have

W(ml)
ij = ∑

k∈Sl

Ā(ml)
ik Ā(ml)

jk , (1)

where Ā(ml)
ik = A(ml)

ik / ∑i′∈Sm A(ml)
i′k is a normalized version of A(ml)

ik . Intuitively, the weight
in (1) measures the similarity between nodes i and j according to the information from
nodes of the mode l. For instance, if the mode l refers to plants, the similarity indicates
how many production capacities are shared by the two nodes i and j. If the mode l refers
to warehouses, W(ml)

ij will reflect the similarities in terms of storage capabilities. A higher

value of W(ml)
ij indicates that i and j have more implicit relationships in the supply chain.

Therefore, once the production or storage capacities of i are destructed, the manager of the
supply chain can employ capacities related to j to help to restore the supply chain about i.

In this way, for mode m, a multi-later network with M − 1 layers can be obtained,
which is denoted as W (m) = {W(m1), · · · , W(mM)}, each of which is a similarity matrix
generated using the projection operator f (·). Then, for each type of node, the objective is to
perform community detection on the projected multi-layer network.
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2.3. Community Detection of Projected Multi-Layer Network

Assume that, for each mode m, 1 ≤ m ≤ M, there are K underlying communities.
The objective of community detection is to divide Nm objects into K non-overlapping
communities according to W (m) = {W(m1), · · · , W(mM)}. To ensure consistency in the
underlying community structure across different layers, we make the following assumption.

Assumption 1. (Structural Consistency) Layers W(m1), · · · , W(mM) share the same commu-
nity structure, i.e., K underlying communities. These communities are represented by K index
sets Ψ(m)

1 , · · · , Ψ(m)
K . For 1 ≤ k ≤ K, the set Ψ(m)

k contains indices of nodes belonging to the
k-th community.

To denote the latent community labels for nodes in Sm, we define an Nm × K member-
ship matrix as Z(m) = (z(m)

ik ), where z(m)
ik = 1 if i ∈ Ψ(m)

k , and z(m)
ik = 0 otherwise. Based on

Assumption 1, in order to perform community detection, it suffices to estimate Z(m) via
aggregating information from layers W(m1), · · · , W(mM).

To model the latent community structure of a multi-layer network, we use a model
setting similar to the stochastic block model (SBM), which has been widely used in theoreti-
cal community detection research. Specifically, the similarity between any two nodes is
modeled via the following assumption.

Assumption 2. (Node Similarity) Given the mode m and the layer l, for any two nodes i and j
with Z(m)

ik1
= Z(m)

jk2
= 1, we assume that W(ml)

ij , where the similarity between these two nodes in
layer l can be denoted by

W(ml)
ij = b(ml)

k1k2
+ ϵ

(l)
ij , (2)

where b(ml)
k1k2

is the group similarity between the latent communities k1 and k2, and ϵ
(ml)
ij is a random

noise with a mean of 0 and finite variance. For the mode m and the layer l, the true parameters of
group similarities compose a K × K symmetric matrix

B(ml) =


b(ml)

11 b(ml)
12 · · · b(ml)

1K
b(ml)

12 b(ml)
22 · · · b(ml)

2K
...

...
. . .

...
b(ml)

1K b(ml)
2K · · · b(ml)

KK

.

According to Assumption 2, the similarity between any two nodes is primarily deter-
mined by their corresponding latent communities. Specifically, for two latent communities
k1 and k2, the expectations of similarities between any two nodes belonging to the k1-th and
k2-th communities are identical. The matrix B(ml) = (b(ml)

k1k2
) represents the true parameter

matrix of similarity among the K communities in layer l. Moreover, we define an Nm × Nm

matrix Σ(ml) = (ϵ
(ml)
ij ) to collect all the noise terms. Then, using (2), the similarity matrix

W(ml) can be decomposed as follows:

W(ml) = Z(m)B(ml)
{

Z(m)
}⊤

∗ Σ(ml), (3)

where ∗ denotes the Hadamard product. Based on (3), Z(m) can be estimated accord-
ing to the observed similarity matrix W(ml). It is worth noting that all of the matrices
{W(m1), · · · , W(mM)} can contribute to the estimation of Z(m). Therefore, we aggregate
information from M − 1 similarity matrices to obtain a comprehensive estimator. To better
explain our framework, the assumptions related to the projected multi-layer network are
shown in the upper panel of Figure 2. In addition, a toy example is provided in the lower
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panel of Figure 2 using the element W(ml)
ij for illustration. In practice, both matrices Z(m)

and B(ml) are unobserved in practice and therefore need to be estimated.

Figure 2. (a) The theoretical framework for the projected multi-layer network. (b) A toy example of

the assumptions related to the element W(ml)
ij .

In terms of community detection in multi-layer networks, our algorithmic principle is
first defining an objective function that measures the quality of community partition and
then optimizing this objective function. Ref. [27] showed that the least-squares estimator
is effective in identifying cohesive community structures across multiple layers with ro-
bust performance. Inspired by [27], we estimate Z(m) with a least-squares estimator that
minimizes the residual sum of squares as follows:

Ẑ(m) = arg min
Z

M

∑
l=1,l ̸=m

∑
i,j∈Sm

{
W(ml)

ij − Zi· B̂(ml)Z⊤
j·

}2
, (4)

where Zi· represents the row vector corresponding to i within Z. The matrix B̂(ml) is
consistent with B(ml), where

B̂(ml)
k1k2

=
∑i,j∈Ck(Z) W(ml)

ij

|Ck(Z)|{|Ck(Z)| − 1} when k1 = k2 = k,

B̂(ml)
k1k2

=
∑i∈Ck1

(Z),j∈Ck2
(Z) W(ml)

ij∣∣Ck1(Z)
∣∣∣∣Ck2(Z)

∣∣ when k1 ̸= k2, (5)

with Ck(Z) = {i : Zik = 1} and | · | denoting the number of elements within a set. The
elements in (5) are used to estimate the parameter matrix B(ml) based on observations.
Given a temporal membership matrix Z and 1 ≤ k1 ̸= k2 ≤ K, B̂(ml)

k1k2
represents the sample

mean of the similarity between communities k1 and k2. For 1 ≤ k ≤ K, B̂(ml)
kk represents

the sample mean of the similarity within the community k. If we have Zik1 = Zjk2 = 1,

the element Zi· B̂(ml)Z⊤
j· in (4) is exactly the estimation of b(ml)

k1k2
in (2), which is the group

similarity between the latent communities k1 and k2.
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By minimizing the least-squares loss function, the sample means of similarities tend
to approximate the true parameters in {B(1m), · · · , B(mM)}. As a result, nodes belonging to
the same underlying community are expected to be assigned to the same communities. To
solve the minimization problem in (4), an approximately equivalent problem is considered,
which is illustrated in Theorem 1.

Theorem 1. Based on Assumption 1 and Assumption 2, for 1 ≤ l ≤ K, assume that
|Ck(Z)|(|Ck(Z)| − 1) ≈ |Ck(Z)|2 for 1 ≤ k ≤ K. Then, the minimization problem in (4) is
equivalent to a maximization problem as follows:

Ẑ(m) = arg max
Z

M

∑
l=1,l ̸=m

∑
1≤k1,k2≤K

|Ck1(Z)||Ck2(Z)|
{

B̂(ml)
k1k2

}2
. (6)

Proof. For any node i ∈ Sm , let ψi(Z) denote the community label of i given a
temporal membership matrix Z. We have ψi(Z) = k if Zik = 1. Then, to prove
this theorem, the objective function in (4) is decomposed into M − 1 components:
{∑i,j∈Sm{W(ml)

i j − B̂(ml)
ψi(Z)ψj(Z)

}2 : l = 1, · · · , M, l ̸= m}. For the l-th component,

we have

∑
i,j∈Sm

{
W(ml)

ij − B̂(ml)
ψi(Z)ψj(Z)

}2
= ∑

i,j∈Sm

[{
W(ml)

ij

}2
− 2W(ml)

ij B̂(ml)
ψi(Z)ψj(Z) +

{
B̂(ml)

ψi(Z)ψj(Z)

}2
]

= ∑
i,j∈Sm

{
W(ml)

ij

}2
+ ∑

1≤k1,k2≤K
∑

i∈Ck1
(Z)

j∈Ck2
(Z)

[
−2W(ml)

ij B̂(ml)
k1k2

+
{

B̂(ml)
k1k2

}2
]

= ∑
i,j∈Sm

{
W(ml)

ij

}2
+ ∑

1≤k1,k2≤K
∑

i∈Ck1
(Z)

j∈Ck2
(Z)

{
B̂(ml)

k1k2

}2
− 2 ∑

1≤k1,k2≤K
B̂(ml)

k1k2 ∑
i∈Ck1

(Z)

j∈Ck2
(Z)

W(ml)
ij

= ∑
i,j∈Sm

{
W(ml)

ij

}2
− ∑

1≤k1 ̸=k2≤K
|Ck1(Z)||Ck2(Z)|

{
B̂(ml)

k1k2

}2

− ∑
1≤k≤K

|Ck(Z)|(|Ck(Z)| − 1)
{

B̂(ml)
kk

}2
.

To simplify the analysis, we adopt the approximation that |Ck(Z)|(|Ck(Z)| − 1) ≈
|Ck(Z)|2 for 1 ≤ k ≤ K. This approximation is simple to implement in practice, especially
when the number of nodes is large enough. Then, we have

∑
i,j∈Sm

{
W(ml)

ij − B̂(ml)
ψi(Z)ψj(Z)

}2
≈ ∑

i,j∈Sm

{
W(ml)

ij

}2
− ∑

1≤k1,k2≤K
|Ck1(Z)||Ck2(Z)|

{
B̂(ml)

k1k2

}2
.

Since this conclusion holds for l = 1, · · · , M, we derive that the objective function in
(4) can be approximated as follows:

M

∑
l=1,l ̸=m

∑
i,j∈Sm

{
W(ml)

ij

}2
−

M

∑
l=1,l ̸=m

∑
1≤k1,k2≤K

|Ck1(Z)||Ck2(Z)|
{

B̂(ml)
k1k2

}2
. (7)

It should be noted that maximizing the second term in (7) can achieve the same result as
minimizing (7). Therefore, (4) is solved through the optimization of an approximately equiv-

alent problem, i.e., the maximization of ∑M
l=1,l ̸=m ∑1≤k1,k2≤K |Ck1(Z)||Ck2(Z)|

{
B̂(ml)

k1k2

}2
.
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Then, we investigate the calculation of Ẑ(m) based on (6). Note that, given a temporal
membership matrix Z, we have

B̂(ml)
k1k2

=
∑i∈Ck1

(Z),j∈Ck2
(Z) W(ml)

ij∣∣Ck1(Z)
∣∣∣∣Ck2(Z)

∣∣ =
Z⊤
·k1

W(ml)Z·k2∣∣Ck1(Z)
∣∣∣∣Ck2(Z)

∣∣ , (8)

where Z·k indicates the k-th column vector of Z. Based on (8), (6) can be rewritten as follows:

Ẑ(m) = arg max
Z

M

∑
l=1,l ̸=m

∑
1≤k1,k2≤K

{
Z⊤
·k1

W(ml)Z·k2

}2∣∣Ck1(Z)
∣∣∣∣Ck2(Z)

∣∣
= arg max

Z

M

∑
l=1,l ̸=m

∑
1≤k1,k2≤K

{
Z̃⊤
·k1

W(ml)Z̃·k2

}2
= arg max

Z

M

∑
l=1,l ̸=m

∥∥∥Z̃⊤W(ml)Z̃
∥∥∥2

F
(9)

where Z̃·k = Z·k/
√
|Ck(Z)| and Z̃ = [Z̃·1, · · · , Z̃·K] is an Nm × K matrix. According to (9),

we further conclude that the solution of (6) can be obtained using a spectral clustering
method, as shown in the following theorem.

Theorem 2. The maximization problem in (6) is approximately equivalent to a spectral clustering
problem as follows:

Ẑ(m) = arg max
Z:Z⊤Z=IK

trace

(
Z⊤
[

M

∑
l=1,l ̸=m

{
W(ml)

}2
]

Z

)
, (10)

where IK is a K × K identity matrix.

Proof. Note that, for 1 ≤ k1 ̸= k2 ≤ K, we have Z̃⊤
·k1

Z̃·k2 = 0. For 1 ≤ k ≤ K,

Z̃⊤
·k Z̃·k = 0 = 1. Therefore, {Z̃·1, · · · , Z̃·K} is a group of orthogonal vectors and Z̃ is

an orthogonal matrix with Z̃⊤Z̃ = IK. For the orthogonal matrix Z̃ and the symmetric
matrices {W(m1), · · · , W(mM)}, we have

M

∑
l=1,l ̸=m

∥∥∥Z̃⊤W(ml)Z̃
∥∥∥2

F
=

M

∑
l=1,l ̸=m

trace
(

Z̃⊤W(ml)Z̃Z̃⊤W(ml)Z̃
)

≤ trace
(

Z̃⊤
{

W(ml)
}2

Z̃
)
= trace

(
Z̃⊤
[

M

∑
l=1,l ̸=m

{
W(ml)

}2
]

Z̃

)
(11)

The inequality in (11) becomes an equality when W(m1), · · · , W(mM) share the same
community structure and Z̃ consists of eigenvectors corresponding to the leading K eigenval-
ues of ∑M

l=1,l ̸=m{W(ml)}2. Therefore, the maximization of the objective function in (9) can be
achieved by searching for an estimation Ẑ(m) that maximizes trace(Z̃⊤[∑M

l=1,l ̸=m{W(ml)}2]Z̃).
Nevertheless, due to the constraint that all elements of Ẑ(m) are binary, calculating

the estimation may be costly in practice. To address this issue, we implement community
detection with the restriction relaxed. We initially ignore the restriction on Ẑ(m) and
investigate ∑M

l=1,l ̸=m{W(ml)}2 through eigenvalue decomposition. The decomposition leads
to [∑M

l=1,l ̸=m{W(ml)}2] = U⊤ΣU, where Σ = diag(λ1, · · · , λNm) is a diagonal matrix with
Nm eigenvalues and U is the corresponding Nm × Nm eigenvector matrix. Then, we take
the K largest eigenvalues and corresponding eigenvectors. Let λ(1), · · · , λ(K) denote the K
largest eigenvalues. For λ(k), 1 ≤ k ≤ K, let uk ∈ RNm denote the corresponding eigenvector.
Using these eigenvectors, we create an Nm × K eigenvector matrix. Let UK denote the
eigenvector matrix with UK = [u⊤

1 , · · · , u⊤
K ]. It follows that the estimation Ẑ(m) from (10)
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equals UK. Hence, Ẑ(m) can be viewed as a spectral embedding of ∑M
l=1,l ̸=m{W(ml)}2. Thus,

we directly compute Ẑ(m) using the spectral decomposition of ∑M
l=1,l ̸=m{W(ml)}2.

In this way, we obtain an estimation, Ẑ(m), which is a non-binary matrix. To implement
community detection for Nm nodes, we can adopt classic clustering algorithms, such as
the K-means algorithm, to the rows of Ẑ(m). The resulting partition represents the final
estimation for the membership vector, which directly indicates the estimated community
labels for each node.

Based on Theorem 2, we can implement community detection within multi-layer
networks using the classic spectral clustering algorithm. For the sake of brevity, we refer to
this weighted multi-layer community detection approach as WMLCD. The computational
process of WMLCD is illustrated as follows.
Step 1. Compute an aggregated matrix by summing the squares of all layers. This aggrega-
tion results in a matrix W̃ = ∑M

l=1,l ̸=m{W(ml)}2.
Step 2. Based on Theorem 2, compute the spectral embedding of the aggregated matrix
W̃ for estimating Z(m). We adopt the standard spectral clustering approach to achieve
this goal. More specifically, the calculation of spectral embedding is implemented with
3 sub-steps.

Sub-step 2.1. Compile a Laplacian matrix L = D̃−1/2W̃D̃−1/2, where D̃ is a diagonal
matrix with D̃ii = ∑Nm

j=1 W̃ij for any 1 ≤ i ≤ Nm.
Sub-step 2.2. Find the K largest eigenvalues of the Laplacian matrix L and stack

the corresponding eigenvectors to form an Nm × K matrix V̂. Each row of V̂ refers to an
individual node.

Sub-step 2.3. Apply the K-means method to cluster the Nm rows of V̂ into K clusters.
The clustering result is a partition for Nm nodes. For the i-th row of V̂, let ki denote the
label outputted by the clustering.
Step 3. Output the final estimation, Ẑ(m). For 1 ≤ i ≤ Nm, we have Ẑ(m)

iki
= 1 and Ẑ(m)

ik′ = 0
for all k′ ̸= ki.

The final estimate, Ẑ(m), directly describes the detected community structure. We
summarize the detailed steps of WMLCD in Algorithm 1. Unlike traditional community
detection methods, which are typically designed for single-layer networks, WMLCD in-
tegrates information from multiple layers, making it more comprehensive. This method
relies on spectral clustering of the aggregated network W̃, allowing it to capture community
structures across multiple layers rather than just one. As a result, the outcome is less influ-
enced by noise or bias from any single layer. In addition, a common approach to handling
multi-layer networks is to combine the matrices of multiple layers into an aggregated
matrix, e.g., ∑M

l=1,l ̸=m W(ml), and then apply spectral clustering to this matrix. However,
WMLCD offers advantages over this aggregation method. First, as mentioned above, the
WMLCD approach is equivalent to optimizing the objective function in (4), providing
statistical support for the least squares estimation. Second, the aggregated matrix W̃ in
WMLCD not only accounts for direct relationships between nodes but also incorporates
their indirect similarities. Each element of W̃, such as W̃ij, involves not just the relationship
between nodes i and j but also their common neighbors. This enhances the identification
of node structures. In the following simulation study, we further demonstrate through
experimental results that our method improves community detection performance.

For each mode, we identify distinct clusters using WMLCD, each of which contains
entities with strong implicit relationships. From a supply chain management perspective,
entities within the same community exhibit overlapping production capacities, allowing for
seamless capacity shifts between objects in the same community. To make the application
of WMLCD more understandable, we present a toy example using community detection
for goods, as shown in Figure 3. The detection results indicate that goods A and B belong
to the same local community. They are grouped together because they can be produced
by multiple plants and stored in multiple warehouses simultaneously. As a result, if the
supply of good A is disrupted by external factors, the supply chain manager can quickly
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restore production capacity by reallocating resources from the plants and warehouses that
produce good B. This identified community structure demonstrates potential flexibility and
redundancy across goods, plants, and warehouses.

Algorithm 1 WMLCD algorithm

Input: K: number of communities; W (m) = {W(m1), · · · , W(mM)}: projected multi-layer
network of mode m;
Compute an aggregated matrix W̃ = ∑M

l=1,l ̸=m{W(ml)}2;
Initialize an Nm × Nm zero matrix D̃;
for i ∈ {1, · · · , Nm} do

D̃ii = ∑Nm
j=1 W̃ij;

end for
Compute a Laplacian matrix L = D̃−1/2W̃D̃−1/2;
Find the K largest eigenvalues of L and the corresponding eigenvectors. Stack the
eigenvectors to form an Nm × K matrix V̂;
Apply the K-means method to cluster the Nm rows of V̂ into K clusters. Since each row
of V̂ refers to an individual node, the clustering result leads to an partition for Nm nodes.
For the i-th row of V̂, let ki denote the label outputted by the clustering.
Initialize an Nm × K zero matrix Ẑ(m);
for i ∈ {1, · · · , Nm} do

Set Ẑ(m)
iki

= 1;
end for
Output: An estimation of the membership matrix Ẑ(m).

Figure 3. Relationships in production capacity among objects within the same community.

3. Simulation Study

To evaluate the performance of the multi-layer community detection approach for
supply chain networks, we conduct a simulation study utilizing simulated multi-layer
supply chain networks. We model a supply chain encompassing three distinct types of
nodes: goods, plants, and warehouses. We then focus on the community detection within
the goods. The entire supply chain is mapped onto two single-mode weighted networks,
denoted as W(P) and W(W). These networks correspond to the similarity matrices that are
derived from plant-based and warehouse-based relationships, respectively. The process of
generating the simulated networks W(P) and W(W) involves the following steps:



Mathematics 2024, 12, 3606 12 of 21

Step 1. Specify the number of goods Nm and the number of communities K. Then, randomly
generate an Nm × K membership matrix Z. For each good 1 ≤ i ≤ Nm, we randomly pick k
from {1, · · · , L} as its latent community label. We set Zik = 1 and Zik′ = 1 for k′ ̸= k.
Step 2. Specify two parameter matrices of similarities B(P) and B(W), which correspond to
W(P) and W(W), respectively. To simplify the simulation setting, we use Pinner and Pouter to
denote the strength of the similarity between two nodes within the same community and
that between nodes from different communities. Then, we set B(P) and B(W) as

B(P) = B(W) =

Pinner Pouter Pouter
Pouter Pinner Pouter
Pouter Pouter Pinner

.

Step 3. Generate weighted matrices W(P) and W(W) as W(P) = ZB(P)Z⊤ ∗ Σ(P) and
W(W) = ZB(W)Z⊤ ∗ Σ(W), respectively. Here, Σ(P) and Σ(W) are both Nm × Nm matrices of
noise terms. The elements of Σ(P) and Σ(W) are independently picked from N(0, 0.01).

Given simulated weighted matrices W(P) and W(W), we then apply the WMLCD
method to implement community detection for goods. To better simulate the structural
characteristics where nodes within the same community are closely connected and nodes
in different clusters are sparsely connected, we adopt a setting with Pinner = 0.5 and
Pouter = 0.05. In this setting, the connection strength of an edge within a community is
set to be ten times that between different communities. Specifically, we set Pinner = 0.5
and Pouter = 0.05. To compare the performance of WMLCD with traditional methods, we
consider the following baseline methods.

• Single-layer community detection (SLCD): Conduct community detection with
the standard spectral clustering algorithm using only one layer selected from the
project networks.

• Community detection on aggregated network (AN): Aggregate multiple layers by
directly summing the corresponding adjacency matrices. Then, conduct community
detection with the standard spectral clustering algorithm using the aggregated matrix.

Regarding the evaluation criteria, we employ metrics that have been commonly used
for evaluating clustering performance, including normalized mutual information (NMI),
adjusted Rand index (ARI), and accuracy based on the Hungarian algorithm (ACC). To
provide a robust measurement of the clustering performance, we report the average results
obtained from 200 random replications.

The simulation results are shown in Figure 4. We label the single-layer community
detection based on the plant layer and that based on the warehouse layer as SLCD-1 and
SLCD-2, respectively. In Figure 4, we explore the community detection performance with
varying network sizes, which are determined by the number of nodes. Based on Figure 4,
we can draw the following conclusions. Firstly, WMLCD consistently performs better
than other methods across all network sizes, especially in larger networks. Secondly, the
results indicate that the performance of WMLCD improves as the network size grows, with
higher NMI, ARI, and ACC scores. This suggests that WMLCD is a promising solution
for capturing complex interactions within large networks. Thirdly, SLCD-1 and SLCD-2
perform worse compared to WMLCD and AN, showing that relying on only one layer of
the networks will heavily limit the community detection performance. In summary, the
simulation results show that the WMLCD method can significantly enhance the ability
to identify closely connected areas within supply chain networks and thus contribute to
downstream analyses of supply chains.
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Figure 4. Performances of different community detection methods on simulated networks of goods.

4. Empirical Study

In this section, we demonstrate the effectiveness of the proposed method through an
empirical study on a real supply chain dataset. This dataset originates from the central
database system of one of Bangladesh’s largest fast-moving consumer goods companies [28].
Covering the period from January 1, 2023 to August 9, 2023, the dataset includes 221 daily
records related to the production and storage of goods. It contains no missing values or
outliers and anonymizes trade or company names to protect data privacy. All entities
within the supply chain are assigned anonymized identifiers. The dataset includes three
types of nodes: goods, plants, and warehouses. The supply chain consists of 13 warehouses,
25 plants, and 41 goods. Production and storage data are presented in a time-series format,
detailing plants’ daily output and each warehouses’ daily storage related to the goods.
Figure 5 depicts a multi-mode network, demonstrating the supply chain’s resilience through
network density. Nodes represent various commodities, plants, and warehouses, and are
color-coded to differentiate between node types. Edges represent the connections between
these nodes, such as plants producing goods or goods being stored in a warehouse.

Figure 5. Weighted multi-mode supply chain network.

The nodes of goods are pivotal nodes in the multi-mode network shown in Figure 5.
For each good in the records, we calculate the daily production volume, daily storage
capacity, and numbers of associated factories and warehouses. Both production and
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storage capacities are measured in units of goods. Table 1 presents basic statistics about all
products. To study the community structure among goods, we construct weighted multi-
mode networks with goods as nodes based on these records. Specifically, we generate two
matrices, A(P) and A(W), representing the plant–good and warehouse–good relationships,
respectively. We define A(P) = (A(P)ik) as the plant–good relationship matrix, where
each element A(P)ik indicates the average daily production volume of good i at plant k.
Similarly, A(W) = (A(W)

ik ) represents the warehouse–good relationship matrix, where A(W)
ik

denotes the average daily storage capacity for good i at warehouse k. In Figure 5, each line
represents an edge between two nodes, and a thicker line indicates a higher weight for
the edge. Using production volume as the weight of the matrix for spectral clustering of
the supply chain network can more accurately reflect plant production capacity, making
the clustering results more aligned with actual production conditions and improving the
clustering’s interpretability. For instance, nodes with high production volumes may indicate
a more important role in the supply chain. By considering production volume, resources
can be allocated more rationally, and production plans can be optimized to respond to
changes in market demand. Finally, production volume weights can help to identify key
production nodes that are sensitive to market changes, allowing for rapid adjustments in
production strategies during market fluctuations.

Table 1. Basic statistics of all goods.

Min 25% Quantile Median Mean 75 % Quantile Max

Production 1 0 0.066 2.446 12.916 9.717 123.456
Storage 0 0 2.193 12.795 9.655 122.903
#plants 1 1 7 6.805 12 13

#warehouses 0 1 7 6.685 12 13
1 The statistics “Production”, “Storage”, “#plants”, and “#warehouses” denote average daily production, average
daily storage capability, number of associated plants, and number of associated warehouses, respectively.

By analyzing this dataset, we can gain a deeper understanding of the company’s
production and warehousing networks, laying the groundwork for future supply chain
resilience analyses. In the following sections, we will investigate the independent predictive
model networks for goods and plants in order to identify redundancies and flexibilities in
the supply chain.

Projected Network of Goods

To demonstrate the use of the proposed community detection framework, we conduct
a resilience analysis on the projected network of goods. Assessing the network’s resilience
to risks and recovery capabilities allows us to identify potential vulnerabilities and recom-
mend targeted improvement strategies. Goods are at the core of the supply chain, serving
as the primary objects of consumer demand. They are critical in meeting market demands
and easing the transition from production to consumption. Precise inventory management
reduces costs, prevents shortages or overstocking, and improves supply chain responsive-
ness and flexibility. As described in Section 2, indirect relations create single-mode goods
networks with two layers: the plant layer and the warehouse layer.

According to the methodology in Section 2, we project the original three-mode network
with plants, goods, and warehouses into two single-mode networks of goods. Based on A(P)

and A(W), i.e., the matrices of plant–good relationships and warehouse–good relationships,
we generate plant layer W(P) and W(W) according to (1). Specifically, for any two goods i
and j,

W(P)
ij =

NP

∑
k=1

A(P)
ik A(P)

jk{
∑NG

i′=1 A(P)
i′k

}2 , W(W)
ij =

NW

∑
k=1

A(W)
ik A(W)

jk{
∑NG

i′=1 A(W)
i′k

}2 ,
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where NP, NW, NG are the numbers of plants, warehouses, and goods, respectively. Then,
we apply the WMLCD method to implement community detection on {W(P), W(W)}. For
the plant layer, there are 360 edges. The network density of this layer is 0.462, indicating a
moderate level of connectivity and numerous connections between nodes. The warehouse
layer has 665 edges and a network density of 0.853. The results imply that various goods
may share resources, processes, or production lines during the production process.

The detection of communities within the multi-layer network of goods, as shown in
Figure 6, has produced results that can be visually articulated by reordering goods in the
adjacency matrix. This graphical representation clearly distinguishes between two distinct
communities of goods, indicating the presence of separate clusters within the network.

Figure 6. Adjacency matrices of goods in the plant layer and warehouse layer.

Clustering analysis provides valuable insights into the underlying connections be-
tween goods in the supply chain network. Goods from the same community typically share
significant similarities in the plants and warehouses that they interact with. The clustering
results provide valuable insights into the hidden relationships between goods in the supply
chain network. Goods clustered into the same community often share significant overlaps
in the plants and warehouses that they utilize. This finding has substantial implications for
supply chain management, as identifying goods communities can enhance risk manage-
ment and improve supply chain flexibility. By identifying these communities, businesses
can develop backup plans for critical goods to prevent disruptions at specific nodes, such
as plants or warehouses, from affecting the entire supply chain. For example, if goods
A and B belong to the same community and the facility for good A becomes inoperable,
the facilities associated with good B can be used to identify an alternative source. Such
strategic coordination improves capacity management and strengthens the supply chain’s
flexibility and responsiveness to unexpected challenges.

Beyond increasing supply chain resilience, community detection of goods can signif-
icantly improve inventory management by reducing redundant stock and holding costs.
Additionally, it can lead to cost savings by simplifying transportation and distribution
procedures. By grouping and shipping goods that are often together, we can lower shipping
costs and speed up delivery times. Better coordination of plant and warehouse operations
leads to overall operational improvements. By reducing excess inventory, we can save
money on storage. Furthermore, by improving transportation efficiency, we can reduce
shipping costs and deliver goods to customers more quickly.

During the COVID-19 crisis, numerous enterprises experienced significant disruptions
in their supply chains. Those who had a thorough understanding of the shared goods
across multiple plants and warehouses were better able to quickly adapt to the situation by
reallocating stock and resources to meet changing demands. For instance, an enterprise
that is aware of the presence of critical medical supplies at both production facilities and
distribution hubs may be able to maintain a consistent flow of supplies to healthcare
institutions even if some facilities are affected by lockdown measures or experience supply
chain delays.

Figure 7 shows the network structures of the two communities based on the clus-
tering results. The edges represent relationships between plants, such as shared plant
or storage locations, raw material requirements, product interdependencies, and other
influencing factors.
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Figure 7. Cluster 1 (left) and Cluster 2 (right) within the weighted projected network of goods.

After clustering, as shown in Figure 7, Cluster 1 includes 25 goods along with their
associated plants and warehouses, while Cluster 2 contains 16 goods and exhibits a more
evenly distributed network compared to Cluster 1. Structurally, Cluster 2 shows a higher
degree of interconnectivity, with individual goods produced by a larger number of plants
and stored in more warehouses. Examining production data, the thickness of the connecting
lines indicates that production and storage in Cluster 2 are more balanced than in Cluster 1.
In Cluster 2, the production of any single item is less likely to be overly concentrated,
reducing the risk that a single product is exclusively produced by one factory. From a
stability perspective, production data reveal that Cluster 2 is a more stable group, with lower
variance and a smaller coefficient of variation, indicating less fluctuation in production.
By contrast, Cluster 1 shows less stability, with production volumes that fluctuate more
over time. This greater volatility in Cluster 1 may reflect higher levels of uncertainty,
influenced by factors such as environmental shifts or management differences, which can
lead to significant swings in production. These fluctuations introduce challenges in supply
chain management, requiring closer monitoring and response. Conversely, the stability of
Cluster 2 helps to buffer the supply chain against disruptions, mitigating volatility and
enhancing the overall resilience of production and development. This stability complements
the efficiency gains in industrial development by strengthening both production and
operational resilience. Further discussion on the flexibility and stability of these clusters is
provided in the following sections.

(1) Flexibility Analysis of goods
Flexibility in the supply chain is defined as the ability to respond quickly to changes

in market demand or other unforeseen circumstances, demonstrating the system’s agility
and adaptability in a volatile environment.

Producing a product in multiple plants allows for the quick reassignment of pro-
duction tasks to other facilities if problems arise, such as machinery breakdowns or raw
material shortages. This approach ensures consistent production and stability. Conse-
quently, the greater the number of plants and warehouses linked to a product, the more
swiftly production schedules, supply chain tactics, and logistics can be modified to accom-
modate changes in market demand. For instance, in the event of a sudden increase in order
volume, plants can allocate resources quickly, reduce the time and costs associated with
production changes, and accelerate the rate of production response.

Goods nodes located further from the network center are associated with fewer plants
and warehouses, implying less flexibility. As shown in Figure 8, Cluster 2 has an average
association of 14 plants and warehouses per good, with a median of more than 15, indicating
strong production and storage flexibility. The extensive network of production plants and
storage facilities enables broader distribution, allowing for quick adjustments to production
and distribution strategies during crises such as natural disasters, equipment malfunctions,
or logistical disruptions. This ensures the supply chain’s continuity. Furthermore, the
variety of manufacturing and warehousing sites enables goods in this category to respond
quickly to market demand fluctuations and shifts. Goods in Cluster 1, which are associated
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with fewer plants and warehouses, have lower supply chain resilience. The clustering of
production and storage facilities makes the supply chain more susceptible to disruptions
during emergencies, resulting in longer recovery times. At the same time, Cluster 2 has
a lower standard deviation than Cluster 1, indicating a more concentrated distribution
of values.

Figure 8. The total number of plants and warehouses associated with goods for different clusters.

Meanwhile, it should be noted that some plants in Cluster 1 produce only one product.
This singular production model limits the supply chain’s flexibility. When faced with
market changes or emergencies, these plants struggle to quickly adjust their production
schedules, resulting in a significant increase in the time required to respond to critical
situations. Moreover, centralized production may cause critical links in the supply chain
to become overly reliant on certain plants. If any of these plants fail, the entire supply
chain’s stability and responsiveness will suffer significantly. In contrast, Cluster 2 has
a more diverse supply chain structure. This cluster has tighter and more diverse con-
nections between different types of nodes, such as plants and warehouses. This means
that the same product can be manufactured by several plants and stored in a variety of
warehouses. This diversified approach to production and storage significantly improves
the supply chain’s flexibility and robustness. To illustrate the differences in flexibility more
intuitively, we use two local network examples shown in Figure 9. Node MAHS025K is
only connected to 8 nodes, whereas Node SOS001L12P is connected to a total of 24 nodes,
including 12 plants and 12 warehouses, far outnumbering Node MAHS025K. From the
standpoint of supply chain resilience assessment, Node SOS001L12P is relatively more
fragile and may necessitate additional management measures to maintain corresponding
production capacity.

Figure 9. Local networks of Node MAHS025K (left) and Node SOS001L12P (right).
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Furthermore, the community detection results provide detailed decision-making
support for managing production capacities. Because the community detection results
reflect the implicit connections between two goods in terms of production capacity, if one
good’s production capacity is damaged, it can be restored by using the production capacity
of the other. Figure 10 shows an example based on two good nodes, MAR02K12P and
MAR01K24P. They share three plants and three warehouses in their supply chain. The
figure clearly shows that the good MAR01K24P, represented by the node on the right,
can be produced at more plants and stored in more warehouses. In contrast, the good
MAR02K12, represented by the node on the left, has fewer neighboring nodes, indicating
a sparser production network. Within such a network structure, if the production of
MAR02K12 suffers from plant closures, equipment failures, or similar events, a possible
solution is for those plants shared by the two goods to adjust their production plans in a
timely manner. Nodes with denser connections can support those with sparser connections,
allowing for a more flexible response to emergencies and increasing supply chain resilience.
The ability to support and adjust to each other is critical throughout the supply chain
network. It not only helps to reduce the risk of production interruptions and inventory
shortages but it also ensures that the supply chain is continuous and stable. To achieve more
sustainable development, managers should consider improving emergency response plans,
strengthening supply chain monitoring, and optimizing production plans to continuously
improve the supply chain’s resilience.

Figure 10. Local networks of Node MAR02K12P (left) and MAR01K24P (right).

(2) Stability Analysis of goods
Stability is a key component of supply chain management, indicating that the supply

chain can keep its operations running and its services consistent in the face of market
demand fluctuations, disruptions in raw material supply, natural disasters, political unrest,
or other unpredictable events. A stable supply chain ensures that the production flow,
information flow, and cash flow run smoothly, with fewer interruptions and delays, pro-
tecting the company’s delivery capabilities and customer satisfaction. Moreover, stability
reduces risks, improves the overall efficiency and cost-effectiveness of the supply chain,
and allows businesses to maintain a competitive advantage in the market.

By analyzing plant production output, we can create a line chart displaying the
average output of plants in the two clusters. The chart demonstrates that the orange line
representing Cluster 2 fluctuates less than the blue line representing Cluster 1, indicating
that Cluster 2’s overall production is more stable. Furthermore, we calculated the coefficient
of variation for the average output of the two clusters and found it to be 0.584 for Cluster 1
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and 0.554 for Cluster 2. The coefficient of variation is a statistical measure of data dispersion
that is calculated as the standard deviation divided by the mean. The smaller the coefficient
of variation, the more concentrated and stable the data distribution. Thus, this calculation
also supports the conclusion that Cluster 2 is superior in terms of stability. By analyzing
plant production output, we can create a line chart displaying the average output of plants
in the two clusters. The chart indicates that the orange line representing Cluster 2 fluctuates
less than the blue line representing Cluster 1, indicating that Cluster 2’s overall production
is more stable.

5. Practical Implications for Supply Chain Resilience

This paper proposes the WMLCD method for community detection within complex
supply chains, uncovering the structural information embedded in supply chain networks.
We further discuss how community detection results based on WMLCD can support deci-
sion making in real-world supply chain management, with a particular focus on enhancing
supply chain resilience. The detection results of WMLCD offer significant potential for
enhancing supply chain resilience by providing valuable insights for supply chain net-
work management and optimization. First, applying community detection techniques can
optimize supply chain structures and increase the flexibility of production and logistics.
For instance, by identifying clusters within the supply chain network, organizations can
uncover groups with synergistic strengths. These clusters can facilitate rapid adjustments in
production and mutual support among members in response to supply chain disruptions,
such as those caused by natural disasters or sudden shifts in demand. For example, in the
food and beverage supply chain, community detection could reveal clusters of regional
producers and distributors that, in times of disruption, could quickly shift supply routes to
maintain availability in affected areas.

Furthermore, detection results of WMLCD can guide the standardization of product
designs and processes, making it easier for companies to switch between suppliers or
shift production from one factory to another. This ability to pivot across suppliers or
production sites reduces risks associated with sudden supplier changes, particularly for
industries with complex manufacturing processes like electronics or automotive parts.
By creating interchangeable components and establishing flexible production protocols,
enterprises can reduce downtime and maintain continuity in the face of disruptions, thereby
bolstering resilience.

Lastly, WMLCD can aid in the dynamic monitoring of supply chain data, helping orga-
nizations to anticipate risks and implement proactive interventions. By regularly analyzing
supply chain networks, companies can identify potential bottlenecks or risk points within
the chain—such as suppliers in vulnerable locations or routes susceptible to delays. In the
pharmaceutical supply chain, for instance, where delays in critical component deliveries
can have severe consequences, community detection can help to develop alternative routes
or strategies to pre-emptively address these risks, ensuring uninterrupted access to essential
products. Overall, integrating community detection into supply chain management fosters
an adaptive, resilient network capable of withstanding various external shocks.

6. Conclusions

Analyzing supply chain resilience is critical for efficient production and long-term
growth. In today’s rapidly changing and uncertain economic landscape, a practical ap-
proach to evaluating supply chains is to assess resilience through flexibility and redundancy.
This paper presents a robust framework for analyzing supply chains through a multi-layer
network community detection approach, offering an innovative way to uncover production
capacity linkages between products within complex supply networks. By converting the
complex, multi-modal supply chains into a series of single-mode multi-layer weighted net-
works, we propose the WMLCD method to comprehensively identify interconnected units
within the network. This approach highlights clusters of closely linked components, facili-
tating a deeper understanding of inter-product dependencies and collaborative potential.
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The application of WMLCD reveals critical relationships between network entities
based on production capacities, providing a foundation for informed decision making
in supply chain management. Such insights are particularly valuable in scenarios where
disruptions occur. For example, if the production or supply of a particular item is com-
promised, our results can pinpoint specific factories, warehouses, or other nodes that
should adjust their capacity to help restore the disrupted flow. In this way, the community
detection results support proactive interventions, minimizing the negative impacts of sup-
ply chain interruptions. Utilizing a real-world dataset, our study shows how multi-layer
network community detection effectively brings to light indirect connections between pro-
duction plants and storage facilities. These findings extend beyond immediate production
relationships, capturing subtler yet vital links that traditional single-layer analyses might
overlook. Ultimately, the community-detection-based insights enhance capacity manage-
ment and strategic resource allocation, empowering businesses to respond agilely to both
unexpected demand surges and supply disruptions, and to build resilience into their supply
chain strategies. This framework thus provides crucial support for sustaining operational
continuity and mitigating risks within increasingly interconnected global supply networks.

In addition, we discuss the limitations of WMLCD and potential directions for future
research. This paper does not address large-scale supply chain networks, which involve a
high number of nodes. It is important to note that WMLCD requires projecting network
matrices and performing eigenvalue decomposition for community detection, which can
be computationally demanding when applied to large networks. As a result, WMLCD
may be less efficient compared to multi-layer community detection methods that are based
on local search [29,30]. For future work, we plan to enhance WMLCD’s performance
on large-scale datasets by exploring subsampling methods and distributed computing
solutions. We also aim to test the method on additional supply chain datasets to verify
its effectiveness across different contexts. Furthermore, we intend to integrate multi-layer
network clustering with capacity forecasting to provide more comprehensive insights into
supply chain resilience analysis.
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