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Abstract: In this research work, we developed a fractional-order model for the transmission dynamics
of malaria, incorporating two control strategies: health education campaigns and the use of insecti-
cides. The theoretical analysis of the model is presented, including the computation of disease-free
equilibrium and basic reproduction number. We analyzed the stability of the proposed model using
a well-formulated Lyapunov function. Furthermore, model parameter estimation was carried out
using real data from malaria cases reported in Zimbabwe. We found that the fractional-order model
provided a better fit to the real data compared to the classical integer-order model. Sensitivity analysis
of the basic reproduction number was performed using computed partial rank correlation coefficients
to assess the effect of each parameter on malaria transmission. Additionally, we conducted numerical
simulations to evaluate the impact of memory effects on the spread of malaria. The simulation results
indicated that the order of derivatives significantly influences the dynamics of malaria transmission.
Moreover, we simulated the model to assess the effectiveness of the proposed control strategies.
Overall, the interventions were found to have the potential to significantly reduce the spread of
malaria within the population.

Keywords: Zika virus disease; model formulation; sensitivity analysis; parameter estimation;
numerical simulations

MSC: 92B05; 92-08

1. Introduction

Malaria is a vector-borne disease caused by Plasmodium parasites, which are transmit-
ted to humans through the bites of infected female Anopheles mosquitoes [1]. The primary
mosquito species responsible for malaria transmission are Anopheles gambiae and Anophe-
les funestus, which play a significant role in the malaria transmission cycle [2]. Malaria
was identified as a mosquito-transmitted disease in the early 20th century and remains
a widespread and dangerous infectious disease, especially in tropical and subtropical
regions [3]. Like other vector-borne diseases such as dengue, Zika virus, and yellow fever,
malaria is transmitted when an infected mosquito bites a susceptible individual during a
blood meal [4]. Infected mosquitoes acquire the parasite by biting an infected individual,
though they do not suffer from the disease themselves [5]. Malaria’s incubation period in
humans typically ranges from 7 to 30 days, depending on the specific Plasmodium species [6].
Symptoms include fever, chills, headache, muscle pain, and fatigue; in severe cases, it can
lead to anemia, organ failure, and death [7]. While some malaria vaccines have been
developed with limited success, no universal vaccine exists, making disease management
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reliant on antimalarial medications and preventive measures, such as insecticide-treated
bed nets, indoor residual spraying, and mosquito repellents [8].

Mathematical models are valuable in epidemiology, providing insights into malaria’s
transmission dynamics and supporting public health officials in developing control strate-
gies [9–11]. By using mathematical models, researchers can simulate various intervention
scenarios, study potential control outcomes, and understand malaria’s behavior in different
populations and environments [12–14]. Fractional calculus, which applies non-integer-
order derivatives, has been widely used to model real-world problems, including heat
conduction, control theory, chaotic systems, and biological processes [15–17]. The literature
suggests that non-integer derivatives yield higher accuracy in modeling biological and
physical systems than integer-order derivatives [18]. In disease dynamics, fractional-order
derivatives are particularly advantageous for capturing memory effects and hereditary
properties within biological systems [19]. Given these advantages, fractional-order deriva-
tives have attracted researchers who want to develop more dynamic and efficient mathemat-
ical models [20]. Researchers have applied fractional operators to model various epidemics,
incorporating different scenarios and constraints [10,17,21]. Unlike integer-order deriva-
tives, fractional-order derivatives capture biological systems’ memory effects and hereditary
properties [22], and research indicates that cell membranes possess fractional-order electri-
cal conductance [23], aligning with fractional-order modeling. Moreover, fractional-order
derivatives often provide a better fit to real epidemiological data [24]. The most widely
used fractional derivatives include the Caputo, Riemann-Liouville, and Atangana-Baleanu
derivatives [15].

Recently, mathematical models using fractional derivatives have been explored to
study diseases. For instance, [25] applied the Atangana-Baleanu operator to examine per-
sonal protective measures in malaria transmission. Although the model was not validated
with real data, it suggested that reducing the fractional-order derivative value from 1 to 0
decreased infections in both humans and mosquitoes. In [26], a fractional-order model for
malaria and COVID-19 co-infection was developed, calculating the threshold quantity and
using the fixed-point theorem to analyze the model; this showed that preventive measures
can reduce disease spread. Another fractional-order malaria model was presented in [10],
utilizing the Euler and Adam-Bashforth-Moulton schemes for simulation. The results indi-
cated that fractional-order derivatives significantly influence malaria dynamics. For further
information on vector-borne disease models using fractional derivatives, readers can refer
to [10,16,21,24,27–29] and related references.

In this study, we propose a fractional-order model of malaria transmission to explore
the effects of human awareness on insecticide use. Although many fractional derivatives
are available, our model uses the Caputo derivative due to its advantages, such as being
zero for constant functions (consistent with integer-order derivatives) and allowing for
the inclusion of local initial conditions [15]. Recent studies have shown that increasing
public awareness of insecticide use is crucial for malaria prevention [29]. Health education
campaigns that raise awareness of insecticide application may significantly impact malaria
prevention [30]. To the best of our knowledge, few mathematical models for malaria
transmission have incorporated real reported malaria case data. This study proposes a
fractional-order malaria model incorporating two control strategies—health education
campaigns and insecticide use—to assess their impact on reducing malaria spread in
the population.

The rest of the article is organized as follows: in Section 2, the mathematical model
formulation is presented. In Section 3, the basic properties of the model—the positivity of
the variables and the boundedness of the trajectories—are presented, and the computation
of the reproduction number and the existence of model equilibrium are presented in
Section 4. The results and discussion are presented in Section 5, and our conclusion remarks
complete the paper in Section 6.
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2. Model Formulation

In this study, the fractional-order model of malaria disease dynamics based on Ca-
puto has been formulated and studied. The proposed model demonstrates the interplay
between mosquito and human populations. Throughout the document, the subscripts h
and v, respectively, denote the mosquito and human populations. The human population
is subdivided into four groups based on infection status, namely the susceptible Sh(t),
exposed Eh(t), infectious Ih(t), and recovered Rh(t) classes. Thus, the total population of
humans at time t is denoted by Nh(t), given as

Nh(t) = Sh(t) + Eh(t) + Ih(t) + Rh(t) (1)

Furthermore, the total population of mosquitoes at time t is denoted by Nv(t), which is
subdivided into three groups, namely, the susceptible Sv(t), exposed Ev(t), and infectious
Iv(t) classes. Thus, the total population of mosquitoes at time t is defined as

Nv(t) = Sv(t) + Ev(t) + Iv(t) (2)

All the parameters and variables of the proposed model are considered to be non-
negative, and the parameters are described as follows: Λh and Λv denote the new recruit-
ment rate of humans and vectors, respectively, and they are all considered to be susceptible
whenever coming from either birth or immigrants; µh and µv denote the natural mortality
rate of humans and vectors, respectively; αh and αv denote the transfer rate of humans and
vectors, respectively, from the exposed class to the infectious class; θh represents the natural
recovery rate of exposed individuals; γh denotes the recovery rate of infected humans; we
have assumed that both recovered individuals (from exposed and infected classes) recover
with temporary immunity. Thus, the parameter ρh represents the waning rate of immunity
for recovered humans; dh represents the disease-induced death rate of infected humans;
βh denotes the probability of disease transmission from infected mosquito to suscepti-
ble human due to successful contact between infected vectors and susceptible humans;
βv denotes the probability of disease transmission from infected humans to susceptible
mosquitoes due to successful contact between infected persons and susceptible vectors;
δv denotes the mosquito biting rate on humans. Recently, studies have shown that one of
the possible ways of minimizing the spread of malaria disease in the population is based
on how much the community is aware of the use of prevention measures, such as the
use of mosquito nets and insecticides, that reduce the possibility of human contact with
mosquitoes. Therefore, in this study, we consider two control strategies, namely, the use of
prevention measures such as mosquito nets, denoted by ω, and the use of insecticides, rep-
resented by ϵ. Based on the above assumptions, we have assumed the following flowchart
and nonlinear differential equations.

From the flowchart diagram in Figure 1, the dynamics of the interaction between
humans and mosquitoes is given by the following system of ordinary differential equations:

c
t0

Dϕ
t Sh(t) = Λh + ρhRh − (1 − ω)δvβhSh Iv − µhSh

c
t0

Dϕ
t Eh(t) = (1 − ω)δvβhSh Iv − (µh + αh + θh)Eh,

c
t0

Dϕ
t Ih(t) = αhEh − (µh + dh + γh)Ih,

c
t0

Dα
t Rh(t) = θhEh + γh Ih − (ρh + µh)Rh,

c
t0

Dϕ
t Sv(t) = Λv − (1 − ω)δvβv IhSv − (µv + ϵ)Sv,

c
t0

Dϕ
t Ev(t) = (1 − ω)δvβv IhSv − (µv + αv + ϵ)Ev,

c
t0

Dϕ
t Iv(t) = αvEv − (µv + ϵ)Iv.

(3)
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Figure 1. Model flowchart illustrating the dynamics of malaria transmission.

Preliminaries on the Caputo Fractional Calculus

We begin by introducing the definition of the Caputo fractional derivative and state-
related theorems (see [31–34]) that we utilized to derive important results in this work.

Definition 1. Suppose that ϕ > 0, t > a, ϕ, a, t ∈ R. The Caputo fractional derivative is given by

c
0Dϕ

t f (t)
1

Γ(n − ψ)

∫ t

a

f n(ξ)

(t − ξ)ψ+1−n dξ, n − 1 < ψ, n ∈ N. (4)

Definition 2 (Caputo derivative of a constant [34]). The fractional derivative for a constant
function f (t) = c is zero, that is,

c
0Dϕ

t c = 0, ϕ ∈ (0, 1) (5)

Definition 3. The Caputo-fractional derivative in the Liouvile-Caputo sense is defined as

c
0Dϕ

t f (t) =
M(ϕ)

1 − ϕ

∫ t

0
f
′
(τ)exp

[
ϕ(t − τ)

1 − τ

]
dτ (6)

whereby M(ϕ) is a normalized function, such as M(0) = M(1) = 1.

Definition 4. The Caputo-fractional integral of order q(0 < ϕ ≤ 1) of the function f (t) is
defined as

c
0 Iϕ

t f (t) =
2(1 − ϕ)

(2 − ϕ)M(ϕ)
f (t) +

2ϕ

(2 − ϕ)M(ϕ)

∫ t

0
f (s)ds, t ≥ 0 (7)

whereby M(ψ) = 2
2−ϕ , 0 < ϕ ≤ 1.

3. Basic Properties
Non-Negativity and Boundness of Model Solutions

Theorem 1. For model system (3), there exists a unique solution in (0, ∞); however, the solution is
always positive for all values of t ≥ 0 and remains in R2

+.
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Proof. From model system (3), we first show that R2
+ ={(Nh, Nv)∈ R2

+ : Nh ≥ 0, Nv ≥ 0}
is a positive invariant. Now, we have to demonstrate that each hyperplane bounding the
positive orthant and the vector field points to R2

+. Let us consider the following cases:

Case 1: Let us assume that there exists a t∗ > t0 such that Nh(t∗) = 0, and Nh(t) < 0 for
t ∈ (t∗, t1), where t1 is sufficiently close to t∗, if Nh(t∗) = 0; then, we see that
c
0Dϕ

t Nh(t∗)− Λh > 0. This implies that c
0Dϕ

t Nh(t) > 0 for all t ∈ [t∗, t1].

Case 2: Let us assume that there exists a t∗ > t0 such that Nv(t∗) = 0, and Nv(t) < 0 for
t ∈ (t∗, t1), where t1 is sufficiently close to t∗, if Nv(t∗) = 0; then, we see that
c
0Dϕ

t Nv(t∗)− Λv > 0. This implies that c
0Dϕ

t Nv(t) > 0 for all t ∈ [t∗, t1].
The above discussion shows that the three hyperplanes bound the orthants, meaning the
vector field points to R2

+. This shows that all the solutions of model system (3) remain
positive for all t ≥ 0.

Theorem 2. Let Φ(t) = (Nh(t), Nv(t)) be the unique solution of model system (3) for all t ≥ 0;
then, the solution Φ(t) is bounded above, that is, Φ(t) ∈ Ω, where Ω is the feasible region defined as

Ω =

{ (
Nh(t)
NV(t)

)
∈ R2

+

∣∣∣∣ 0 ≤ Nh(t) ≤ Ch,
0 ≤ Nv(t) ≤ Cv.

}
the interior of which is denoted by int(Ω) and given by

int(Ω) =

{ (
Nh(t)
Nv(t)

)
∈ R2

+

∣∣∣∣ 0 < Nh(t) < Ch,
0 < Nv(t) < Cv.

}
Proof. Here, we prove that the solutions of model system (3) are bounded for all t ≥ 0.
Biologically, the lowest possible value of each of the states of model system (3) is zero. Next,
we determine the upper bound of the states. Based on this discussion, it is easy to show
that the following conditions hold for the biological relevance of a species. 0 ≤ Nh(t) ≤ Ch,
and 0 ≤ Nv(t) ≤ Cr. From these conditions, we have

c
0Dϕ

t Nh ≤ Λh − µhNh(t)

By using the Laplace transformation conditions, we have

SϕL[Nh(t)]− Sϕ−1Nh(0) ≤
Λϕ

h
S

− µ
ϕ
h L[Nh(t)]

By collecting the likely terms, we have

L[Nh(t)] ≤ Λϕ
h

S−1

Sϕ + µ
ϕ
h

+ Nh(0)
Sϕ−1

Sψ + µ
ψ
h

.

= Λϕ
h

Sϕ−(1+ψ)

Sϕ + µ
ϕ
h

+ Nh(0)
Sϕ−1

Sϕ + µ
ϕ
h

By using the inverse Laplace transform, we have

Nh(t) ≤ L−1
{

Λϕ
h

Sϕ−(1+ϕ)

Sϕ + µ
ϕ
h

}
− Nh(0)L−1

{
Sϕ−1

Sϕ + µ
ϕ
h

}

≤ Λϕ
h tϕEϕ,ϕ+1(−µ

ϕ
h )t

ϕ + Nh(0)Eϕ,1(−µ
ϕ
h )t

ϕ

≤
Λϕ

h

µ
ϕ
h

tϕEϕ,ϕ+1(−µ
ϕ
h )t

ϕ + Nh(0)Eϕ,1(−µ
ϕ
h )t

ϕ
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≤ Max
{

Λϕ
h

µ
ϕ
h

, Nh(0)
}(

tϕEϕ,ϕ+1(−µ
ϕ
h )t

ϕ + Eϕ,1(−µ
ϕ
h )t

ϕ

)

=
C

Γ(1)
= Ch.

where Ch = Max
{

Λϕ
h

µ
ϕ
h

, Nh(0)
}

. Therefore, Nh(t) is bounded above.

From the vector population, we have

c
0Dϕ

t Nv ≤ Λϕ
v − µ

ϕ
v Nv(t)

By using the Laplace transformation conditions, we have

SψL[Nv(t)]− Sϕ−1Nv(0) ≤
Λϕ

v
S

− µ
ϕ
v L[Nv(t)]

By collecting the likely terms, we have

L[Nv(t)] ≤ Λϕ
v

S−1

Sϕ + µ
ϕ
v
+ Nv(0)

Sϕ−1

Sϕ + µ
ϕ
v

.

= Λϕ
v

Sϕ−(1+ϕ)

Sϕ + µ
ϕ
v

+ Nv(0)
Sϕ−1

Sϕ + µ
ϕ
v

By using the inverse Laplace transform, we have

Nv(t) ≤ L−1
{

Λϕ
v

Sϕ−(1+ϕ)

Sϕ + µ
ϕ
v

}
− Nv(0)L−1

{
Sϕ−1

Sϕ + µ
ϕ
v

}

≤ Λϕ
v tϕEϕ,ϕ+1(−µ

ϕ
v )tϕ + Nv(0)Eϕ,1(−µ

ϕ
v )tϕ

≤ Λϕ
v

µ
ϕ
v

tϕEϕ,ϕ+1(−µ
ϕ
v )tϕ + Nv(0)Eϕ,1(−µ

ϕ
v )tϕ

≤ Max
{

Λϕ
v

µ
ϕ
v

, Nv(0)
}(

tϕEϕ,ϕ+1(−µ
ϕ
v )tϕ + Eϕ,1(−µ

ϕ
v )tϕ

)

=
C

Γ(1)
= Cv.

where Cv = Max
{

(Λϕ
v

µ
ϕ
v

, Nv(0)
}

. Therefore Nv(t) is bounded above, and this completes

the proof.

4. Basic Reproduction Number and Existence of Equilibria

In this section, we use the next-generation method, as presented in [35], to compute
the threshold quantity R0, which determines the persistence and extinction of disease in
the population. It is believed that when the basic reproduction number R0 > 1, the disease
persists in the population, and it dies out when R0 < 1. The model system (3) always has a
disease-free equilibrium, E0, given by
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E0 :

(
S0

h, E0
h, I0

h , R0
h, S0

v, E0
v, I0

v

)
=

(
Λh
µh

, 0, 0, 0,
Λv

µv + ϵ
, 0, 0

)
.

By following the next generation matrix approach as used in [35], the non-negative
matrix F that denotes the generation of new infection and the nonsingular matrix V that
denotes the disease transfer among compartments evaluated at E0 are defined as follows:

F =


0 0 0 (1 − ω)δvβhS∗

h
0 0 0 0
0 (1 − ω)δvβvS∗

v 0 0
0 0 0 0

 (8)

V =


αh + µh + θh 0 0 0

−αh µh + γh + dh 0 0
0 0 µv + αv + ϵ 0
0 0 −αv µv + ϵ

 (9)

By using (8) and (9), the basic reproduction number R0 of model system (3) is given by

R0 =
(1 − ω)δv

µv + ϵ

√
βvβhΛvΛh

(αh + µh + θh)(µh + γh + dh)(µv + ϵ + αv)

The basic reproduction number, R0, is defined as the expected number of secondary
cases (mosquito or human) produced in a completely susceptible population by one infec-
tious individual (mosquito or human, respectively) during its lifetime of being infectious.
The square root here is due to the fact that the generation of secondary cases in malaria
diseases requires two transmission processes.

Theorem 3. If R0 < 1, then the DFE of system (3) is globally asymptotically stable in Ω; otherwise,
it is unstable.

Proof. By considering only the infected compartments from (3), one can write in the
following ways:

c
t0

Dϕ
t x = (F − V)x,

where x = (Eh, Ah, Ih, Ev, Iv)T , with F and V defined as follows:

F =


0 0 0 (1 − ω)δvβhS∗

h
0 0 0 0 0
0 (1 − ω)δvβvS∗

v 0 0
0 0 0 0 0

, (10)

V =


αh + µh + θh 0 0 0

−αh µh + γh + dh 0 0
0 0 µv + αv + ϵ 0
0 0 −αv µv + ϵv

 (11)

We can observe that by using direct calculation, we can verify that V−1F is a non-
negative and irreducible matrix, and ρ(V−1F) = R0. It follows from the Perron-Frobenius
theorem [36] that V−1F has a positive left eigenvector w associated with R0, that is,

wV−1F = R0w.
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Since wV−1 is a positive vector, we propose the following Lyapunov function to study
the global stability of disease-free equilibrium:

L(t) = wV−1x.

Differentiating L along solutions of (3) leads to

c
t0

Dϕ
t L(t) = wV−1 c

t0
Dϕ

t x ≤ wV−1(F − V)x
= (R0 − 1)wx ≤ 0 if R0 ≤ 1.

It can be easily verified that the largest invariant subset of Γ, where c
t0

Dϕ
t L(t) = 0,

is the singleton {E0}. Therefore, according to LaSalle’s invariance principle [37], E0 is
globally asymptotically stable in Ω when R0 ≤ 1.

4.1. Local Stability of the Disease-Free Equilibrium Point

In this section, we analyze the local stability of the disease-free equilibrium (DFE)
point using the Jacobian matrix and the Routh-Hurwitz criterion.

Theorem 4 (Routh-Hurwitz Criterion). Given the polynomial P(λ) = λn + a1λn−1 + ... +
an−1λ + an, where the coefficients ai are the real constants, i = 1, ..., n define the n Hurwitz
matrices using the coefficients ai of the characteristic polynomial: H1 = (a1),

H1 =

(
a1 1
a3 a2

)
(12)

and

H2 =



a1 1 0 . . . 0
a3 a2 a1 . . . 0
a5 a4 a3 . . . 0
. . . . . . .
. . . . . . .
. . . . . . .
0 0 0 0 0 0 an


(13)

where aj = 0 if j > n. All the roots of the polynomial p(λ) are negative or have a negative real part
if and only if the determinants of all Hurwitz matrices are positive: detHj > 0, j = 1, 2, 3, ..., n.
When n = 4, the Routh-Hurwitz criterion simplifies to H1 > 0, H2 > 0, H3 > 0 and

H4 =


a1 1 0 0
a3 a2 1 0
a5 a4 a3 1
a7 a6 a5 a4

 (14)

which gives the conditions that n = 4 : a1 > 0, a3 > 0, a4 > 0 and a1a2a3 > a2
3 + a2

1a4.

Theorem 5. The DFE is locally asymptomatically stable if R0 < 1, and it is unstable if R0 > 1.

Proof. The Jacobian matrix of the system is given by

H4 =



m1 0 0 ρh 0 0 m2
m3 m4 0 0 0 0 m5
0 αh m6 0 0 0 0
0 θh γh m7 0 0 0
0 αh m8 0 m9 0 0
0 0 m10 0 m12 0
0 0 0 0 0 αv −(µv + ϵ)


(15)
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where m1 = −(1 − ω)δvβh Iv − µh, m2 = −(1 − ω)δvβhSh, m3 = (1 − ω)δvβh Iv,
m4 = −(µh + dh + γh), m5 = (1 − ω)δvβhSh, m6 = −(µh + dh + γh), m7 = −(µh + ρh),
m8 = −(1 − ω)δvβvSv, m9 = −(1 − ω)δvβv Ih − (µv + ϵ), m10 = (1 − ω)δvβvSv,
m11 = (1 − ω)δvβv Ih, m12 = −(µv + αv + ϵ).

At the DFE, the Jacobian matrix becomes

J =



−µh 0 0 ρh 0 0 −n1
0 −n2 0 0 0 0 n1
0 αh −n3 0 0 0 0
0 θh γh −(µh + ρh) 0 0 0
0 0 −n4 0 −(µv + ϵ) 0 0
0 0 n4 0 0 −n5 0
0 0 0 0 0 αv −(µv + ϵ)


(16)

where n1 = (1−ω)δv βhΛh
µh

, n2 = (µh + αh + θh), n3 = (µh + dh + γh) n4 = (1−ω)δv βvΛv
µv+ϵ ,

n5 = (µv + αv + ϵ).
The eigenvalues of JDFE − ΛI are given by solving

det



−µh − λ 0 0 ρh 0 0 −n1
0 −n2 − λ 0 0 0 0 n1
0 αh −n3 − λ 0 0 0 0
0 θh γh −(µh + ρh)− λ 0 0 0
0 0 −n4 0 −(µv + ϵ)− λ 0 0
0 0 n4 0 0 −n5 − λ 0
0 0 0 0 0 αv −(µv + ϵ)− λ


(17)

To obtain λ1 = −µh, λ2 = −µv − ϵ, λ3 = −ρh − µh, which are all negative. The other
four eigenvalues are obtained by solving the polynomial:

λ4 +

(
2(µh + µv + ϵ) + αh + αv + dh + θh + γh

)
λ3

+

(
(µh + αh + θh)(µh + dh + γh) +

(
2(µv + ϵ) + αv

)
+ (µv + αv + ϵ)(µv + ϵ)

)
λ2

+

(
(µh + αh + θh)(µh + dh + γh) +

(
2(µv + ϵ) + αv

)
+(2µh + αh + dh + θh + γh)(µv + αv + ϵ)(µv + ϵ)

)
λ

+

(
(µh + αh + θh)(µh + dh + γh)(µv + αv + ϵ)(µv + ϵ)

(
1 −R2

0
))

= 0

For the eigenvalues to be negative, we use the Routh-Hurwitz criterion; then, we

have 2(µv + µh + ϵ) + αh + αv + dh + θhγh > 0,
(
(µh + αh + θh)(µh + dh + γh) +

(
2(µv +

ϵ) + αv
)
+ (µv + αv + ϵ)(µv + ϵ)

)
> 0,

(
(µh + αh + θh)(µh + dh + γh) +

(
2(µv + ϵ) + αv

)
+

(2µh + αh + dh + θh + γh)(µv + αv + ϵ)(µv + ϵ)

)
> 0,

(
(µh + αh + θh)(µh + dh + γh)(µv +

αv + ϵ)(µv + ϵ)
(
1 −R2

0
))

> 0 and a1a2a3 > a2
3 + a2

1a4. Hence, this implies that R0 < 1,

and the DFE is locally asymptotically stable.
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4.2. Endemic Equilibrium Point

The endemic equilibrium point (S∗
h , E∗

h , I∗h , R∗
h, S∗

v , E∗
v , I∗v ) of model system (3) is ob-

tained by simultaneously solving the below system (18) and is implicitly expressed in terms
of I∗h : 

Λh + ρhR∗
h − (1 − ω)δvβhS∗

h I∗v − µhS∗
h = 0,

(1 − ω)δvβhS∗
h I∗v − (µh + αh + θh)E∗

h = 0,
αhE∗

h − (µh + dh + γh)I∗h = 0,
θhE∗

h + γh I∗h − (ρh + µh)R∗
h = 0,

Λv − (1 − ω)δvβv I∗h S∗
v − (µv + ϵ)S∗

v = 0,
(1 − ω)δvβv I∗h S∗

v − (µv + αv + ϵ)E∗
v = 0,

αvE∗
v − (µv + ϵ)I∗v = 0.

(18)

From the second equation of system (18), we have the following:

E∗
h =

(1 − ω)δvβhS∗
h I∗v

µh + αh + θ − h
(19)

By substituting (19) into Equation (4) of system (18) and solving for R∗
h, we obtain

R∗
h =

(1 − ω)δvθh§∗h I∗v + γh(µh + αh + θh)I∗h
(µh + αh + θh)(ρh + µh)

(20)

By substituting Equation (20) in the first equation of system (18) and solving for S∗
h ,

we obtain the following:

S∗
h =

(
Λh(ρh + µh) + γhρh I∗h

)
(µhh + αh + θh)(

(1 − ω)δvβh I∗v + µh
)
(µh + αhh + θh)(ρh + µh)− (1 − ω)δvβhθhρh I∗v

(21)

By substituting (21) with (19), the simplified expression for (19) becomes

E∗
h =

(1 − ω)δvβv I∗v
(
Λh(ρh + µh) + γhρh I∗h

)(
(1 − ω)δvβh I∗v + µh

)
(µh + αh + θh)(ρh + µh)− (1 − ω)δvβhθhρh I∗v

(22)

Similarly, for the vector population from Equation (6) of (18), we have

E∗
v =

(1 − ω)δvβvS∗
v I∗h

µv + αv + ϵ
(23)

From Equation (5) of system (18), we obtain the following:

S∗
v =

Λv

(1 − ω)δvβv I∗h + µv + ϵ
(24)

By substituting (24) with (23), we obtain the simplified expression of E∗
v as

E∗
v =

(1 − ω)Λvδvβv I∗h
(µv + αv + ϵ)

(
(1 − ω)δvβv I∗h + µv + ϵ

) (25)

where, from Equation (7) of system (18) and Equation (25), we have

I∗v =
(1 − ω)Λvαvδvβv I∗h

(µv + αv + ϵ)(µv + ϵ)
(
(1 − ω)δvβv I∗h + µv + ϵ

) (26)

Therefore, Equations (20)–(23), (25), and (26) give the endemic equilibrium point (EEP)
in terms of I∗h .
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5. Results and Discussion

In this section, we present and analyze the numerical solution of the model by utilizing
the Euler and Adam-Bashforth-Moulton scheme. The numerical results provide valuable
insights into the behavior of the mathematical model system and the effects of its fractional
order. Initially, we selected appropriate parameter values along with the initial conditions
for the classes: Sh(0) = 500000, Eh(0) = 1000, Ih(0) = 100, Rh(0) = 20, Sv(0) = 1500,
Ev(0) = 10, and Iv(0) = 10. Some parameters in this model have been fitted with the real
data of the reported cases to align with the realism of the proposed model, as shown in
Table 1.

Table 1. Definition of model parameters and values.

Symbol Definition Value Units Source

βh disease transmission from mosquito to human 0.001 day−1 [9,38]
βv disease transmission from human to mosquito 0.0001 day−1 [9,38]
µh natural mortality rate of human 1/(60 ∗ 365) day−1 [9,38]
µv natural mortality rate of vector 1/15 day−1 [9,38]
αh progression rate of human, from incubation to infectious 1/17 day−1 [9,39]
αv progression rate of vector, from incubation to infectious 1/18 day−1 [9,39]
γh progression rate of human, from infectious to recovered class 0.012 day−1 [39]
Λh new recruitment of human 10 day−1 [9,38]
Λv new recruitment of Aedes mosquito 50 day−1 [39]
θh progression rate of exposed human to recovered class [0, 1] day−1 fitted
ϵ Rate of use of insecticides [0, 1] day−1 fitted
ω Proportion of human progress to infectious class [0, 1] day−1 fitted
δv Rate of mosquito biting a human 3 day−1 [39]

5.1. Model Parameter Estimations

In this section, we perform model fitting using the data of malaria disease for 12 years,
as reported in Zimbabwe, to fit the proposed model (3). Some of the parameters used in the
simulations were adopted from the literature, as shown in Table 1, and some parameters
were estimated by using the root mean square error (RMSE) in the following formula:

RMSE =

√√√√ 1
n

12

∑
k=1

(I(k)− Î(k))2, (27)

where n is the number of yearly reported malaria cases for 12 years. We assumed the
initial population to be as follows: Sh(0) = 500000, Eh(0) = 1000, Ih(0) = 100, Rh(0) = 20,
Sv(0) = 1500, Ev(0) = 10, and Iv(0) = 10. In addition, from model (3), the generated
new cases are obtained using the term (1 − ω)δv(βhSh Iv + βvSv Ih), which counts the
detected cases.

Figure 2 presents the reported malaria cases in Zimbabwe over a 12-year period,
showing unpredictable fluctuations, with reductions and increases occurring inconsistently.
Figure 3 illustrates that we simultaneously fitted the malaria case data using both the
classical integer-order and fractional-order models. The results demonstrate that the
fractional-order model aligns more closely with the reported malaria cases compared to the
classical integer-order model.
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Figure 2. Number of reported disease cases over 12 years in Zimbabwe.

Figure 3. Model fit versus reported malaria cases at ϕ = 0.5 and ϕ = 1.

5.2. Sensitivity Analysis

In this section, we used the partial rank correlation coefficient (PRCC) to perform a
global sensitivity analysis of model (3) to identify the most significant parameters that
influence the spread of disease in the population. Figure 4 shows the PRCC results of the R0
related to the number of new cases generated in the population reveal seven key influential
parameters. These include the new recruitment of humans and vectors (Λh and Λv), the
force of infections (βh and βv), vector biting rate (δv), and incubation periods (αh and αv),
both of which are positively correlated with R0. On the other hand, parameters such as
health education (ω), use of insecticides (ϵ), and recovery rate of infected individuals (γh)
have a negative correlation with R0, meaning that whenever these parameters increase,
the magnitude of R0 decreases and, hence, the disease dies in the population.

Figures 5 and 6 shows the global sensitivity analysis of model (3) on Ih regarding
the key parameters that affect the dynamic of disease in the population. Overall, we
noted that an increase in the parameters that represent the rate of insecticides, health
education campaigns, and vector mortality rate leads to a decrease in the number of infected
humans in the population. In contrast, we observed that an increase in the parameters that
represent the rate of infections and vector biting rate leads to an increase in the number
of infected humans. In particular, one can observe that as the rate of insecticides (ϵ) and
vector mortality rate (µv) increase above 0.5, the number of infected humans ceases in
the population.
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Figure 4. Sensitivity analysis of R0 to key model parameters.

Figure 5. Plot of global sensitivity analysis of model (3) on (Ih) to the key parameters that affect the
dynamics of the disease.
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(a) (b)

(c) (d)

(e) (f)

Figure 6. Results of Latin hypercube sampling of R0, varying the key model parameters: (a) βh
(disease transmission probability from mosquito to human), (b) βv (disease transmission probability
from human to mosquito), (c) δv (mosquito biting rate), (d) µv (mosquito mortality rate), (e) ϵ

(effectiveness of insecticides), and (f) ω (effectiveness of preventive measures such as mosquito nets).

Figure 7 shows a contour plot of R0 (a) as a function of ϵ (use of insecticides) and θh
(natural recovery rate of exposed vectors). Overall, one can note that in the presence of
insecticides, only the value of (ϵ) must be greater than 0.3 to reduce R0 to less than a unit.
The results provide the implication that policymakers must implement a 30% reduction
in the use of insecticides to eliminate malaria disease in the population. Figure 7b shows
the contour plot of R0 as the function of ϵ (use of insecticides) and ω (health education
campaigns). We observed that when education campaigns and the use of insecticides are
implemented simultaneously in the population, the rate of insecticides (ϵ) must be 0.05 to
reduce the R0 to less than a unit. This result demonstrates the fact that to minimize the
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spread of malaria in the community, policymakers must put effort into health education
campaigns regarding how people can prevent contact with mosquitoes.

(a)

(b)

Figure 7. Contour plots of R0 (a) as the function of the use of insecticides (ϵ) and the natural recovery
rate of exposed humans θh, as well as (b) the function of the use of insecticides (ϵ) and health
education campaigns (ω).

To investigate the role of memory effects on the spread of malaria disease, we nu-
merically performed the simulation of system (3) for R0 < 1 and R0 > 1, as presented in
Figures 8 and 9, respectively. The order of derivative ϕ was varied within the reasonable
range and was set to (ϕ = 0.5, 0.7, 0.9, 1), as mentioned in the literature, where the frac-
tional order ϕ = 1.0 is the fractional-order model based on the Caputo derivative and
becomes a classical ordinary differential model. Based on the numerical illustrations, one
can note that as the order of derivatives, ϕ, decreased from 1, the memory effects of the
system increased, and the model solution increased quickly, peaking earlier and converging
with the unique equilibrium point. In particular, for R0 < 1, the model solution converges
to the disease-free equilibrium after 20 days, and for R0 > 1, the model solutions converge
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to a unique endemic equilibrium. Furthermore, we observed that when the fractional order
approaches 0, the memory effects become strong, and the model solutions converge to their
respective equilibrium point earlier than when the order of the derivatives approaches 1.
This result was also observed in previous studies.

Figure 8. Simulations of model system (3) at R0 < 1 with ϕ = 0.1, 0.3, 0.5, 0.7. Simulations were
carried out using the parameter values shown in Table 1.
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Figure 9. Simulations of model system (3) at R0 < 1 with ϕ = 0.1, 0.3, 0.5, 0.7. Simulations were
carried out using the parameter values shown in Table 1.

5.3. Effects of Insecticide Use on the Disease Dynamics

Figure 10 shows the effect of insecticides on the spread of malaria disease; we simulated
system (3) using different values of ϵ, and the other parameter values are presented in
Table 1. From the numerical results, we observe that the use of insecticides has the potential
to reduce the spread of malaria in the population. In particular, one can note that for ϵ = 0,
the disease persists in the population, and when ϵ ≥ 0.9, the magnitude of R0 is less than a
unit. Thus, the disease decreases in the population. Additionally, the results in Figure 11
demonstrate the effects of insecticides on a reduction in new cases of malaria reported in
the population; one can observe that implementing insecticides at 90% in the community
leads to a high reduction in the reported number of cases of the disease in the population.

5.4. Effects of Health Education Campaigns on the Disease Dynamics

In Figure 12, we simulate system (3) to show the effect of health education campaigns
(ω) on malaria disease transmission. The effectiveness of health education campaigns
can be enhanced by utilizing various media platforms, such as newspapers, television,
and social media, to inform the public on how to protect themselves from mosquitoes that
transmit the malaria disease. Based on this assertion, we numerically simulated system (3)
at ω = 0, ω = 0.5, and ω = 0.9 to demonstrate the effect of health education on minimizing
the spread of disease in the population (Figure 13). From the numerical illustrations, one
can note that as ω increases, the number of infections generated decreases. Additionally,
we observed that implementing health education campaigns alone can not reduce the
magnitude of transmission potential (R0) to less than a unit.
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Figure 10. Simulation of system (3) to investigate the effect of insecticide on the spread of malaria disease.

Figure 11. Effects of varying ϵ on reductions in new cases of malaria infection generated in the population.
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Figure 12. Simulation of system (3) to investigate the effect of insecticide on the spread of malaria disease.

Figure 13. Effects of varying ω on reductions in new malaria cases generated in the population.

6. Concluding Remarks

In this study, we developed and analyzed a novel model for malaria transmission
and assessed the impact of health education campaigns and insecticide use on disease
spread within the population. We computed the disease-free equilibrium and derived the
reproduction number of the model using this next-generation method. A sensitivity analysis
of the basic reproduction number was conducted using partial rank correlation coefficients
to examine the relationship between the reproduction number and model parameters. Our
results show that parameters with negative indices decrease the reproduction number when
increased, while parameters with positive indices cause an increase in the reproduction
number. Furthermore, we fitted model system (3) with the real data from malaria cases
reported in Zimbabwe over 12 years. We observed that the fractional-order model (ϕ = 0.5)
had a better fit compared to the classical model (ϕ = 1). To investigate the impact of
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memory effects, we simulated system (3) at various orders of derivatives: ϕ : 0.5, 0.7, 0.9,
and 1. Overall, we found that the order of derivatives significantly influences disease
dynamics in the population. Specifically, as the order of the derivative decreases from 1,
the system’s behavior converges to the unique equilibrium more rapidly, highlighting the
importance of memory effects in disease modeling. Finally, we simulated the model to
assess the effects of the proposed interventions (health education campaigns and insecticide
use). Our numerical results indicate that implementing insecticides at a 90% convergence
rate in the population can lead to disease eradication. Conversely, we observed that
implementing health education campaigns alone does not achieve disease eradication. The
model formulated in this study could be improved in future work by incorporating delays
in certain model parameters to assess their effects on disease spread. Additionally, this
model could be improved by considering migration dynamics in both human and vector
populations, which may further refine our understanding of malaria transmission and
control strategies.
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