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Abstract: Incomplete Atypical Femoral Fracture (IAFF) is a precursor to Atypical Femoral Fracture
(AFF). If untreated, it progresses to a complete fracture, increasing mortality risk. However, due
to their small and ambiguous features, IAFFs are often misdiagnosed even by specialists. In this
paper, we propose a novel approach for accurately classifying IAFFs in X-ray images across various
radiographic views. We design a Dual Context-aware Complementary Extractor (DCCE) to capture
both the overall femur characteristics and IAFF details with the surrounding context, minimizing
information loss. We also develop a Level-wise Perspective-preserving Fusion Network (LPFN) that
preserves the perspective of features while integrating them at different levels to enhance model
representation and sensitivity by learning complex correlations and features that are difficult to
obtain independently. Additionally, we incorporate the Spatial Anomaly Focus Enhancer (SAFE)
to emphasize anomalous regions, preventing the model bias toward normal regions, and reducing
False Negatives and missed IAFFs. Experimental results show significant improvements across all
evaluation metrics, demonstrating high reliability in terms of accuracy (0.931), F1-score (0.9456), and
AUROC (0.9692), proving the model’s potential for application in real medical settings.

Keywords: Incomplete Atypical Femoral Fracture; Atypical Femoral Fracture; X-ray; feature fusion;
anomaly focus; tiny lesion; image classification; deep learning

MSC: 92C55

1. Introduction

Atypical Femoral Fracture (AFF) is a dangerous fracture type that occurs in the sub-
trochanteric or diaphyseal regions of the femur [1]. It can develop with slight or without
any injury and is characterized by radiographic findings such as a simple transverse or
short oblique fracture [2]. Several factors have been identified as contributing to the occur-
rence of AFF, including excessive femoral curvature [3], vitamin D deficiency [4], and the
use of proton pump inhibitors (PPIs) and corticosteroids [5]. Notably, a strong correlation
has been observed between AFF and the prolonged use of bisphosphonates (BPs) and
denosumab for osteoporosis treatment [6–8], so AFF predominantly occurs in the elderly
population. If an AFF occurs, surgical intervention becomes more challenging and can lead
to functional impairment as well as various complications such as nonunion and femoral
head necrosis [9], leading to an increased mortality risk following AFF [10,11]. For these
reasons, with the increasing aging population, the incidence of AFF is also expected to rise,
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emphasizing the importance of early diagnosis and intervention before AFF occurrence to
mitigate these risks.

In the early stages preceding the occurrence of AFF, cortical buckling will develop in
the lateral cortex of the femur due to repeated cycles of microfracture and healing [12]. This
condition is termed Incomplete Atypical Femoral Fracture (IAFF). IAFF exhibits various
characteristics and is classified based on its location as shown in Figure 1: Diaphyseal IAFF
(D-IAFF), which occurs in the femoral shaft, and Subtrochanteric IAFF (S-IAFF), which
occurs in the subtrochanteric region [13]. Although IAFF is a crucial precursor to AFF, it is
often asymptomatic or presents with vague features, making detection difficult and often
resulting in delayed diagnosis. As a precursor to AFF, the progression process from IAFF
to AFF is illustrated in Figure 2. IAFF is typically diagnosed through bone scans [14] or
Magnetic Resonance Imaging (MRI) [15]. However, these diagnostic methods have notable
drawbacks, including high costs and time consumption. Furthermore, there remains the
risk of misdiagnosis [14], which can lead to either unnecessary or delayed interventions,
ultimately culminating in a complete fracture.

(a) Diaphyseal IAFF (D-IAFF) (b) Subtrochanteric IAFF (S-IAFF)

Figure 1. Types of Incomplete Atypical Femoral Fracture (IAFF) categorized by their anatomical
location of occurrence. The arrow indicates the location of the IAFF.

(a) 8 months (b) 3 months (c) 1 week (d) AFF

Figure 2. Progression process from IAFF to AFF. This image is an AP radiographic view of a case
missed at the hospital due to limited information on IAFF: (a) 8 months prior to AFF occurrence,
(b) 3 months prior to AFF occurrence, (c) 1 week prior to AFF occurrence, (d) AFF occurrence.

To mitigate these problems, the development of a diagnostic support system utilizing
X-rays is essential, but there are several obstacles to be overcome: (1) An IAFF is often
extremely small in size, (2) lacks distinct characteristics, and (3) is similar to normal
anatomical deformations, making it easy to overlook. Additionally, (4) the location and
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features of an IAFF vary depending on the type, and (5) its appearance may differ slightly
depending on the radiographic view, even for the same patient (Figure 3). Due to these
factors, even experienced orthopedic specialists may miss an IAFF if they do not examine
it meticulously.

(a) Anteroposterior (AP) (b) External Rotation (ER) (c) Internal Rotation (IR) (d) Lateral (LT)

Figure 3. Examples of various X-ray radiographic views used for the detection of IAFF. The arrow
indicates the location of the IAFF.

To address these challenges, we propose a universal model, Context-aware Level-
wise Feature Fusion Network with Anomaly Focus (CFNet), inspired by the diagnostic
methods employed by orthopedic specialists for IAFF diagnosis. This model is designed to
be seamlessly integrated into various classification frameworks. When diagnosing IAFF,
specialists typically begin by assessing the overall shape, curvature, and suspicious regions
on a femur X-ray scan. They then carefully examine areas where IAFFs frequently occur
and make the final diagnosis by comparing these regions with other potential conditions or
deformities across all regions. Based on this diagnostic approach, CFNet extracts features at
multiple levels from both a single entire X-ray image and high-resolution images segmented
into four sections, utilizing Dual Context-aware Complementary Extractor (DCCE) blocks
within each input branch of DCCE. This design allows the model to capture the overall
femoral features from the entire X-ray image while simultaneously identifying tiny and
ambiguous IAFF characteristics from the high-resolution sliced images, thus providing
a mutual complement. The features extracted from each DCCE block are fused by the
Level-wise Perspective-preserving Fusion Network (LPFN) to minimize information loss
and ensure that features at the same level are integrated without interference. LPFN
enhances the model’s representational capacity by learning features and correlations that
are difficult to capture independently, thereby improving prediction accuracy. Moreover, we
incorporate a Spatial Anomaly Focus Enhancer (SAFE) to focus on IAFF features and allow
the model to comprehensively capture the correlation between the IAFF, its surrounding
information, and overall image information. This approach prevents the model from
overfitting and ensures effective learning of the scarce and subtle IAFF information. With
these components, CFNet provides a highly accurate solution capable of detecting even tiny
and ambiguous IAFFs while precisely distinguishing subtle differences. In our experiments,
the proposed model demonstrates significant performance improvements over existing
models, with each component effectively minimizing missed IAFFs and achieving accurate
classification. Our main contributions are as follows:

• We propose a novel model inspired by the diagnostic approach employed by specialists
to enhance the classification performance of tiny and ambiguous IAFFs. To the best of
our knowledge, this is the first model capable of effectively identifying all known types
of IAFF features, regardless of prior surgical history or the presence of pathological
fractures, while minimizing False Negatives. Furthermore, we are the first to utilize
all major radiographic views (AP, ER, IR, LT) ensuring high accuracy in recognizing
IAFFs across various imaging conditions.
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• We introduce the DCCE to overcome the challenges of information loss in small
fractures and the limited contextual understanding encountered in conventional
classification models. DCCE comprises two branches: one branch captures the overall
characteristics of the femur and identifies potential IAFF regions across the entire X-ray
image, while the other understands and focuses on IAFF features with surrounding
details in high-resolution images, thereby extracting complementary information.

• We propose the LPFN to effectively learn the subtle features of small and ambiguous
IAFFs and prevent the misclassification of noise and artifacts as IAFFs by leverag-
ing complementary information. This approach preserves the unique meaning and
perspective of the extracted features, integrating them without interference across
different levels. By doing so, the model can utilize information from multiple levels
and learn complex features and correlations that are difficult to capture independently.

• We incorporate SAFE to minimize missed IAFFs and mitigate model bias toward
regions unrelated to IAFFs. This approach captures comprehensive contextual infor-
mation and long-range dependencies within the input, addressing the limitations of
traditional Convolutional Neural Networks (CNNs) [16] and emphasizing anomalous
regions. Consequently, it ensures that even subtle differences are not overlooked while
preventing the model from overfitting to normal regions and backgrounds.

The remainder of this paper is organized as follows. Section 2 reviews related works,
and Section 3 provides a detailed description of our proposed model. Section 4 presents
the dataset utilized for the experiments, experiment details, evaluation metrics, and exper-
imental results. Finally, the discussion and conclusion are provided in Sections 5 and 6,
respectively.

2. Related Works
2.1. AFF and IAFF Classification and Detection

Recent advancements in AI-based medical image processing have shown considerable
potential in aiding doctors, and various studies have been conducted on its applications.
However, there has been very little research conducted on IAFF and AFF. To date, there
are only two deep learning-based studies on AFF and a single study on IAFF. The studies
on AFF aim to classify AFF and Normal Femur Fractures (NFFs) to ensure appropriate
treatment decisions. Ref. [17] compared two approaches: an automated method using
downsampling alone and an intervention method that focuses on fracture features by
manually cropping the fracture region. The effectiveness of these approaches was eval-
uated using VGG [18], ResNet [19], and an Inception Network [20]. Ref. [21] adopted a
multimodal approach by integrating X-ray data with Electronic Health Records (EHR) data
containing AFF risk factors. They explored the impact of probability fusion, feature fusion,
and learned feature fusion methods [22,23] on the features extracted from each datum.

Ref. [12] conducted the only study focused on IAFF, employing an ensemble
method [24] to classify D-IAFF and normal cases. They manually cropped IAFF regions
from the X-ray images and applied a Sobel filter [25] to extract edge information. Sub-
sequently, they utilized pretrained DenseNet [26], EfficientNet [27], and MobileNet [28]
for the ensemble method and achieved promising results. However, they only addressed
D-IAFF with relatively distinct features in the AP view, which may have led to model bias,
and it remained uncertain as to whether this approach is applicable to other radiographic
views or different types of IAFF. Moreover, the manual crop processing is labor intensive
and time-consuming. Additionally, all of the aforementioned studies excluded patients
with a history of surgeries, such as implants or joint replacements, as well as those with
pathological fracture traces. Given that AFF and IAFF predominantly occur in elderly pa-
tients, many who require prediagnosis may have undergone prior surgeries or experienced
fractures. Therefore, these models face significant limitations in their practical use in real
medical settings.
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2.2. Bone Fracture Classification

Numerous automated classification models have been proposed to enhance the re-
liability of bone fracture classification. In machine learning-based approaches, Ref. [29]
utilized Radiomics [30] to extract and analyze mathematical and statistical information from
X-ray images using techniques such as Recursive Feature Elimination (RFE), Sequential
Forward Selection (SFS), Least Absolute Shrinkage and Selection Operator (LASSO), and
Ridge methods. They then compared the performance of these feature selection methods
using XGBoost (XGB) [31], LightGBM [32], and Logistic Regression [33]. Ref. [34] employed
various edge detection methods to extract bone information and classify different types of
fractures and normal cases in X-ray images using Random Forest [35] and AdaBoost [36].
Ref. [37] adopted k-Nearest Neighbors (kNN) [38], Naive Bayes (NB) [39] and Support
Vector Machine (SVM) [40] to evaluate the effectiveness of different machine learning
methods for classifying femoral neck fracture in pelvic X-ray images. Additionally, Ref. [41]
integrated machine learning with deep learning methods to classify tibial and fibula frac-
tures. They extracted features from X-ray images using CNNs and applied the ensemble
method with the results from machine learning models to obtain the final outcome. While
these machine learning approaches demonstrate utility for identifying simple patterns,
they often struggle with noise and data complexity, resulting in insufficient accuracy for
practical application in clinical settings.

In recent years, deep learning-based models have achieved significant advancements
in bone fracture classification, demonstrating promising performance. LSNet [42] pro-
posed a lightweight CNN architecture combined with machine learning algorithms to
classify wrist fractures in X-ray images. They utilized a SqueezeNet-based [43] Siamese
network [44] for feature extraction and a machine learning classifier for the final decision.
SFNet [45] employed an enhanced Canny edge detection algorithm [46] to localize frac-
ture regions and applied multiscale feature fusion, combining both the localized results
and original X-ray images to generate richer features. Ref. [47] introduced a curriculum
learning [48] approach that integrates medical knowledge for proximal femur fracture
classification in X-ray images. They assigned difficulty levels to each training sample based
on discrepancies between medical guidelines and expert annotations. Subsequently, they
enhanced performance by using a CNN to gradually increase the difficulty of training
examples during training. Ref. [49] applied meta-learning with paired image and text data
to classify femur fractures in pelvic X-ray images. They proposed an algorithm using an
encoder–decoder structure to learn features from both image and radiology report modali-
ties, thereby compensating for information that might be missing from the image alone.
Ref. [50] adopted a domain adaptation approach that leveraged information and features
extracted from CT images to enhance the classification of Osteoporotic Vertebral Fracture
(OVF) in X-ray images. They employed a feature-level mix-up module to reduce domain
discrepancies between CT and X-ray images, enabling the model to focus on semantically
consistent features such as outlines and textures across both domains. Compared to conven-
tional machine learning-based methods, most of these models achieved good performance.
However, these studies and approaches do not consider and learn the characteristics of
small and ambiguous fractures, limiting their practical applicability in IAFF classification.

2.3. Tiny Lesion Classification and Detection

In medical imaging, low-resolution and contrast problems can hinder the accurate
identification of tiny lesions, potentially leading to overlooked lesion details due to inaccu-
rate information at the pixel level. In addition, these lesions may resemble the surrounding
tissues, structures, or noise in terms of shape and brightness, making it challenging to
detect and distinguish them. In an attempt to address these problems, several models have
been proposed. Ref. [51] proposed a two-stage model for detecting microaneurysms in
retinal images and microcalcifications in mammograms. The first stage adopted a deep cas-
cade decision tree [52] to eliminate certain background information and mitigate the class
imbalance between small lesions and the backgrounds. In the second stage, a CNN was
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employed to extract and learn features from the remaining portion of the image. Ref. [53]
cropped input images into patches of varying sizes to capture local features of tiny lesions.
They then utilized a multiscale network in combination with an ensemble method to im-
prove detection accuracy. PESA R-CNN [54] proposed a model that utilizes perihematomal
edema (PHE) [55] information to reduce the risk of missing tiny and low-contrast brain
hemorrhages. They developed a semi-supervised Center Surround Difference U-Net to seg-
ment PHE and hemorrhage regions, generating an expanded Region of Interest (RoI) based
on these segmentations. They then gathered information through networks of different
depths corresponding to the RoI size and integrated with equal weight for the final result.
Ref. [56] employed complementary networks to detect and classify Focal Cerebra Ischemia
(FCI) and Lacunar Infarction (LACI). They used a U-Net-based [57] primary network to
detect tiny lesions, and the results were further refined by a correction network to identify
lesion types.

In studies focused on fractures, Fracture R-CNN [58] integrated clinical diagnostic
knowledge into Faster R-CNN [59] to reduce missed tiny skull fractures. They identified
potential fracture regions and selected appropriate anchors for varying fracture sizes using
an adaptive anchoring Region Proposal Network (RPN). Additionally, they improved
detection accuracy by removing skull suture interference with an anti-interference head
(A-Head) module. Ref. [60] proposed a two-stage network to classify triquetral avulsion
fractures and Segond fractures. They identified RoIs using a Deep Convolutional Neural
Network (DCNN), automatically cropped these regions, and subsequently classified them
into different fracture types using pretrained models. Ref. [61] developed an R-CNN-based
model for detecting arm fractures. They adopted a backbone network with a feature
pyramid [62] structure to extract multiscale features, which were subsequently integrated
to generate RoIs. To accommodate tiny fractures, they constrained the minimum RoI
size and expanded it to ensure that small fractures were captured. Ref. [63] introduced a
three-step algorithm for classifying small rib fractures in CT scans. First, they used a U-Net
to segment bones and remove vertebrae and scapula based on their shape and location
information, which interfered with fracture detection. Subsequently, they employed 3D
DenseNet combined with an inception mechanism to capture multiscale features. These
studies are optimized for specific tasks and image types, such as rib fracture classification
in CT images or microaneurysms detection in retinal images, limiting their generalizability
and performance when applied to other tasks. Therefore, it is crucial to develop a model
optimized for X-ray-based IAFF diagnosis to minimize patient risk and provide reliable
support to clinicians in real medical settings.

3. Proposed Model
3.1. Model Overview

The proposed CFNet is a universal approach that can be applied to a wide range of
classification models, inspired by the diagnostic methods used by specialists for identifying
IAFF. The classification performance of the proposed model is majorly enhanced by three
key components, DCEE, LPFN, and SAFE, as illustrated in Figure 4.

CFNet consists of two input branches. Each branch of DCCE is composed of a feature
extractor selected from classification models and is divided into four blocks based on the
level of features being extracted. The first input branch processes the entire X-ray image,
while the second input branch sequentially receives four high-resolution X-ray slices of
equal size, divided from the top to the bottom of the original image. Features at various
levels are then extracted through each block.

These features are integrated at different levels by our LPFN. It fuses the feature maps
extracted from the corresponding blocks of each branch, enabling the model to learn richer
features and correlations that are difficult to obtain individually. The fused results are then
further combined with the output of the subsequent LPFN. Consequently, the classifier
utilizes information that has been aggregated from all LPFN outputs. This approach ensures
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that features from various levels complement each other without interference, making them
effectively utilized for accurate predictions.

Figure 4. The overview of our proposed CFNet model. It is mainly enhanced by DCCE, LPFN, and
SAFE. In the two input branches, DCCE extracts the complementary overall and detailed features
of the X-ray images at different feature levels. The features extracted from DCCE are then fused at
different levels in the LPFN, preserving unique perspectives. Additionally, SAFE is applied to the
results of the first and fourth LPFNs to learn the correlations between positional information within
the features and emphasize anomalous regions.

Despite these advancements, there remains a possibility of missing tiny IAFFs, and
the high proportion of normal regions and background information may limit the model’s
ability to learn the characteristics of IAFF. To address this problem, we incorporate SAFE
into the results of the first and last LPFN to emphasize anomalous regions and comprehen-
sively learn the relationships among positional information. The results from the two SAFE
modules are then combined and fed into the classifier of the selected model to generate the
final classification result. By adopting and integrating these modules, the proposed model
prevents misclassification and minimizes the risk of missing tiny and ambiguous IAFFs,
thereby achieving high classification performance.

3.2. Dual Context-Aware Complementary Extractor (DCCE)

In medical image classification, many models either rely on a single entire image or
crop it into small patches for training. However, since IAFFs are tiny and lack distinct
features, relying solely on a single entire image can lead to a significant loss or even a
complete disappearance of IAFF information as the model deepens. Furthermore, the patch-
based approach only utilizes information from a highly limited region, making it unable
to utilize surrounding contextual information. Additionally, the severe class imbalance
between normal and IAFF patches often leads to a model bias toward the majority class,
hindering the accurate learning of IAFF characteristics. To address these limitations and
effectively extract features across different feature levels, we propose the DCCE.

DCCE serves as the feature extractor of CFNet and is compatible with various classifi-
cation models. It comprises two branches. The first branch processes the entire femoral
X-ray to extract overall features, which emulates the approach specialists use when review-
ing the entire femur. This branch captures the overall structure of the femur, including key
IAFF characteristics such as curvature. It also identifies suspicious regions and distributions
of IAFF, enabling the model to leverage location-based features. The second branch sequen-
tially processes data that have been divided into four equal segments from top to bottom,
based on the height of the entire image. This approach preserves high resolution, enabling
a detailed analysis of IAFF boundaries and patterns. Unlike patch-based approaches, this
strategy enables the utilization of surrounding information related to the IAFF, preserving
contextual information and allowing the model to capture IAFF details more accurately
through comprehensive analysis. This branch simulates how specialists zoom in and iden-
tify areas where IAFFs frequently occur, thereby capturing additional information about
tiny IAFFs that may be missed or insufficiently addressed in the first branch.
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In addition, each DCCE branch is organized into four blocks based on the level of
features being extracted. To define these blocks, we first divide the total number of layers
in the selected feature extractor into four equal groups. Within these divided groups, each
DCCE block is defined using the nearest unit block or stage of the feature extractor as
a division point. The first DCCE block focuses on extracting low-level features such as
the edges and textures of the femur. The second and third blocks capture the shape and
structural characteristics of the femur, extracting intermediate-level features, and the last
block extracts high-level features, including contextual and semantic information.

DCCE overcomes the challenges of information loss and limited contextual under-
standing found in conventional methods by extracting both the overall features of the input
image and IAFF characteristics in conjunction with surrounding context through two sepa-
rate branches. This approach ensures that the model captures even ambiguous and small
critical features without overlooking them. Additionally, the four DCCE block structures
enable level-wise feature extraction at multiple levels and perspectives, allowing the model
to accurately distinguish between IAFFs, anatomical deformities, and normal regions while
recognizing subtle differences. Consequently, DCCE provides complementary and rich
information to LPFN and SAFE, significantly enhancing the accuracy of IAFF detection.

3.3. Level-Wise Perspective-Preserving Fusion Network (LPFN)

The features extracted from different inputs each contain unique meanings and in-
formation. If these features are integrated randomly without considering their respective
levels, their inherent meanings and correlations may be distorted, leading to the loss of
useful patterns and relationships that the model could learn. It can hinder the effective
utilization of key information extracted from each branch, such as the femur’s overall struc-
tural characteristics, IAFF positional information, and detailed IAFF features. Therefore, it
is essential to integrate the features appropriately according to their levels.

To mitigate this challenge, we propose the Level-wise Perspective-preserving Fusion
Network (LPFN), which integrates features extracted from the DCCE at different levels
without interference. LPFN employs 1 × 1 convolution to align the channel dimensions
of feature maps and preserve essential information from the outputs of the DCCE blocks
extracted in the same sequence from each branch. For the second branch, which processes
four inputs per data sample, the feature maps are sequentially merged according to their
order and then consolidated into a single feature map. Subsequently, this result is resized to
match the dimensions of the feature map from the first branch. To minimize information loss
and preserve the unique perspectives of each feature, we fuse the two feature maps through
concatenation. This approach expands the dimensionality of the feature map, allowing the
model to learn from more comprehensive information. The resultant feature map is then
processed with a 3 × 3 convolutional layer, followed by Batch Normalization [64], which
ensures the stable learning of complex relationships and features that would be difficult to
capture independently from each branch’s results alone. Moreover, this process enhances
the model’s representation capabilities and enables the comprehensive use of information
from different levels. The result from each LPFN is then fused with the subsequent LPFN
results, and ultimately, the classifier utilizes the information fused across all levels of LPFN
results. The training procedure of the LPFN is illustrated in Figure 5, and the result of the
nth LPFN is represented in Equation (1):

Bn
1 = Conv1×1

(
Fn

B1
)
,

Bn
2 = Conv1×1

(
Resize

(
Merge

(
Fn,1

B2 , Fn,2
B2 , Fn,3

B2 , Fn,4
B2

)))
LPFN(n) = (Conv3×3

(
Bn

1∥Bn
2
)
)∥LPFN(n−1)

(1)

Fn
B1 represents the feature map extracted from the first branch of the nth DCCE block, while

Fn,i
B2 denotes the feature map extracted from the ith slice (where i = 1, 2, 3, 4) in the second
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branch of the nth DCCE block. Bn
1 and Bn

2 refer to the feature maps from the first and
second branches after processing for fusion, respectively. ∥ represents concatenation, and
LPFN(n) is the output of the nth LPFN.

Figure 5. Training procedure of the n − 1th and nth Level-wise Perspective-preserving Fusion
Network (LPFN). The feature maps extracted from the DCCE blocks of each branch are fused at
different levels without interference, followed by the extraction of complex relationships and features
using a 3 × 3 convolution. The result is then fused into the subsequent LPFN, and this process is
consistently applied to all LPFNs.

LPFN operates analogously to how specialists compare and analyze both the overall
femur information and the details of regions where IAFFs frequently occur. By comprehend-
ing the overall characteristics of the image, LPFN aids in reducing the misinterpretation of
noise and artifacts as IAFFs and provides positional information that indicates a higher
probability of IAFF presence. Based on this guide, the model accurately learns the fine de-
tails of small and ambiguous IAFF from high-resolution information, ultimately enhancing
prediction accuracy and sensitivity through the utilization of complementary information.

3.4. Spatial Anomaly Focus Enhancer (SAFE)

IAFF features are often ambiguous and resemble typical anatomical deformations,
making them easy to overlook. Additionally, due to their small size, the model may be
biased toward normal regions and backgrounds. In such cases, the model may fail to
accurately understand the unique characteristics of IAFF, leading to an increased rate
of False Negatives where IAFF is misclassified as a normal case. Therefore, it is crucial
to emphasize IAFF features and understand their relationships with the surrounding
information. While CNN models are adept at learning local patterns through convolutional
kernels, they are limited in capturing long-range dependencies and broader contextual
information. To overcome this limitation, we propose SAFE, a self-attention mechanism-
based [65] approach.

SAFE treats each position of LPFN(n) as a unique vector and learns the relationships
between positions. To achieve this, spatial information is consolidated into a single dimen-
sion, converting the feature map into a sequence format (Equation (2)). A linear projection
(Equation (3)) is then applied to derive three vectors: query (Q), key (K), and value (V)
(Equation (4)). This reflects the input information directly, preserves the relationships
between positional information, and flexibly transforms the dimensions based on data
complexity and feature characteristics. Subsequently, SAFE is computed as shown in
Equation (5):

LPFN(n)seq = Flatten(LPFN(n)) (2)
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linear(A) = XAT + b (3)

Q = XAT
q + bq, K = XAT

k + bk, V = XAT
v + bv (4)

SAFE(Q, K, V) = LPFN(n)seq + linear
(

Softmax
(

QKT
√

dk

)
V
)

(5)

In Equation (3), X represents the input vector or matrix, A is the weight matrix, and
b denotes the bias vector. In Equation (5), dk refers to the dimensions of K, Q represents
the feature vector of a specific location in the image, and K contains information about
all other locations. The similarity between Q and K is computed using the dot product
to identify their interrelationships, assigning higher weights to more important positions.
Subsequently, by applying the Softmax function [66] with a ‘soft-assignment’ approach,
the values in the output vector are transformed into probabilities ranging from 0 to 1 with
a total sum of 1. This prevents problems of divergence or convergence to 0, enabling
the model to comprehensively learn relationships across multiple regions. V represents
the actual information at each location, and by weighting V according to this probability
distribution, more important information is emphasized with higher weights, allowing
the model to focus on important features. This result is combined with the input sequence
(LPFN(n)seq) after linear transformation to generate the final outcome (SAFE(Q, K, V)),
enabling efficient computation without distortion of the similarity calculation results.

This approach preserves the original input information and enables the model to com-
prehensively understand the relationship between the input image context, surrounding
information of IAFF, and IAFF itself by learning the correlations between each position in
the image and all other positions. In addition, by assigning higher weights to anomalous
regions and emphasizing IAFF, it prevents the model from overfitting to regions unrelated
to IAFF. As a result, CFNet effectively focuses more on relevant regions and enhances the
model’s ability to accurately detect even subtle differences.

Loss

We employ the Cross-Entropy loss function (LCE) to effectively model the mutually
exclusive probability distributions between the IAFF and normal classes. The LCE mea-
sures the difference between the model’s predicted probability distribution and the target
probability distribution, evaluating how closely the model’s output aligns with the target
distribution. The equation is as follows:

LCE = −
C

∑
i=1

yi log(pi) (6)

where C indicates the number of classes, yi denotes the target label, and pi represents
the probability predicted by the model for class i. This loss function ensures that the
predicted distribution aligns with the target distribution during training, thereby enhancing
classification accuracy.

4. Experiments
4.1. Dataset

The University Hospital (UH) dataset was collected at Kyungpook National University
Hospital (KNUH) between August 2010 and November 2022. It comprises 794 X-ray images
from 236 patients, including 430 images from 92 patients with IAFF and 364 images from
144 patients in the normal group. The IAFF cases are further categorized into D-IAFF
and S-IAFF, and three orthopedic specialists reviewed and classified the data into normal
or IAFF types. The dataset comprises images of both the left and right femurs, obtained
from different radiographic views, including Anteroposterior (AP), External Rotation (ER),
Internal Rotation (IR), and Lateral (LT). To ensure data independence for each patient,
reflecting real clinical settings, the training and evaluation sets are split by patient. Among
the 794 collected images, 666 images (IAFF: 354, Normal: 312) were randomly selected for
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5-fold cross-validation training, and the remaining 128 images (IAFF: 76, Normal: 52) were
used for evaluation. This dataset was approved by the KNUH Institutional Review Board
under approval number KNUH202402007-HE001 on 26 February 2024.

4.2. Data Preprocessing

To enhance the data processing efficiency and optimize memory usage, we converted
Digital Imaging and Communication in Medicine (DICOM) files into Numerical Python
(NumPy) format. The data were then preprocessed using two different methods (Figure 6).
(1) Crop (C): To reduce unnecessary information in the image, such as left/right markers
and knee implants, we cropped the images to a size of 2200 × 2200, corresponding to
the smallest data dimension. To preserve S-IAFF characteristics, only the bottom portion
of the images was cropped for height, while both sides were symmetrically cropped for
width. (2) Automated Extraction and Alignment (AEA): We employed a segmentation
model to generate femur masks from the original X-ray images. After evaluating several
models, U-Net++ was selected for its superior performance. To further refine the masks, the
connectivity of pixel values in the generated mask was computed to eliminate noise, and the
inlier set was extracted using the RANdom SAmple Consensus (RANSAC) algorithm [67].
The Hough transform [68] was then applied to determine the rotation angle for vertically
aligning the mask. Additionally, the histogram was analyzed to exclude the knee and
pelvis regions, ensuring that only the RoI of the femur was extracted from the mask. After
preprocessing, the (C) images were resized to 1024 × 1024, and the (AEA) images were
resized to 1024 × 256 using bilinear interpolation. Finally, the pixel values were normalized
to the range [0, 1].

(a) Original (b) Crop (c) AEA

Figure 6. Examples of original X-ray image and preprocessed results. (a) Original input image.
(b) Crop preprocessing result shows that the knee implant, markers, and some noise have been
removed from the original image. (c) AEA preprocessing result indicates that all unnecessary
information has been eliminated, retaining only the femur region essential for training. The arrow
indicates the location of the IAFF.

4.3. Training Details

We conducted experiments using a 5-fold cross-validation approach to evaluate gener-
alization performance and ensure an accurate comparison of results. For the experiments,
We utilized models pretrained on ImageNet [69], fine-tuning each model without freezing
any layers for 300 epochs with a batch size of 16 for each fold. We employed a Stochastic
Gradient Descent (SGD) optimizer [70], with a learning rate set to 0.1 × 10−4 and a momen-
tum of 0.9. To enhance model robustness, flipping and rotation augmentation were applied.
All methods were implemented in PyTorch, and experiments were conducted on a single
NVIDIA RTX A6000 GPU (48 GB).

4.4. Evaluation Metrics

We evaluate the performance of the proposed model using several widely recognized
classification metrics: accuracy, F1-score, AUROC, AUPRC, precision, recall, and specificity.
These metrics provide a comprehensive assessment of the model’s ability to classify IAFF
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and normal cases. In these metrics, True Positive (TP) refers to cases where the model
correctly predicts positive (IAFF) samples, True Negative (TN) represents cases where the
model correctly identifies negative (normal) samples, False Positive (FP) indicates instances
where the model incorrectly predicts negative samples as positive, and False Negative (FN)
denotes cases where positive samples are misclassified as negative. All metrics range from
0 to 1, with values closer to 1 indicating higher performance.

Accuracy: This metric evaluates the overall correctness of the model’s predictions by
calculating the ratio of correctly predicted cases (both TP and TN) to the total number of cases:

Accuracy =
TP + TN

TP + TN + FP + FN
(7)

F1 score: The F1 score is the harmonic mean of precision and recall, providing a
balance between these two metrics. It is particularly useful when precision and recall are
in a trade-off. A value closer to 1 suggests that both precision and recall are high, while a
value closer to 0 indicates a deficiency in one or both metrics:

F1 score = 2 · Precision · Recall
Precision + Recall

(8)

AUROC: AUROC represents the area under the Receiver Operating Characteristic
(ROC) curve, where the x-axis plots the False Positive Rate (FPR), and the y-axis plots the
True Positive Rate (TPR). This metric evaluates the model’s ability to distinguish between
positive and negative classes across various thresholds. A higher AUROC indicates that
the model can effectively reduce False Positives while maximizing True Positives at various
threshold levels.

AUPRC: AUPRC measures the area under the Precision–Recall (PR) curve, where
precision is plotted on the y-axis and recall on the x-axis. This metric focuses on the model’s
ability to identify positive samples, excluding negative class performance. A higher AUPRC
represents a model’s effectiveness in identifying positive cases while minimizing False
Positives. An AUROC or AUPRC value of 1 indicates an ideal model, signifying perfect
classification, while 0.5 suggests performance equivalent to random guessing. Values
below 0.5 indicate the model performs worse than random chance, reflecting a tendency to
misclassify instances.

Precision: Precision measures the proportion of True Positive cases among all cases
predicted as positive, highlighting the significance of False Positives. A high precision
value implies fewer False Positives:

Precision =
TP

TP + FP
(9)

Recall: Recall measures the proportion of True Positive cases among all actual positive
instances, focusing on minimizing False Negatives. A higher recall suggests that the model
is less likely to miss positive cases:

Recall =
TP

TP + FN
(10)

Specificity: Specificity quantifies the model’s ability to correctly identify negative cases,
with a focus on minimizing False Positives. A high specificity indicates that the model
effectively avoids misclassifying negative samples as positive:

Speci f icity =
TN

TN + FP
(11)



Mathematics 2024, 12, 3613 13 of 24

4.5. Comparison of Classification Performance with Other State-of-the-Art Models

We evaluate the performance and suitability of the proposed model for IAFF classifi-
cation by comparing it with state-of-the-art models and also utilizing them as our baseline
models. As shown in Table 1, baseline models with crop preprocessing, ResNet-50, a
widely used CNN model, exhibit relatively poor performance across all metrics, failing
to accurately capture the features of small and ambiguous IAFFs. The latest model, Mo-
bileNetV4 [71], is highly lightweight, making it challenging to adequately capture small and
ambiguous IAFF features. As a result, it shows very low performance, similar to ResNet.
Although DenseNet-121, EfficientNet-B2, ConvNeXt V2 [72], and RDNet [73] show im-
proved performance over traditional CNN models such as ResNet-50 and GoogLeNet [20],
their results are still insufficient. Vision Transformer-based [74] models, such as RepViT [75]
and FastViT [76], despite their recent success and remarkable performance on various tasks,
show similar or even inferior performance compared to traditional CNN models due to the
limited amount of data. In contrast, EdgeNeXt [77], FocalNet [78], and VGG16 outperform
other models, with VGG16 achieving the highest performance among the state-of-the-art
models. However, these baseline models face challenges in distinguishing noise, artifacts,
and common deformations from IAFFs, resulting in high recall but lower precision and
specificity performance.

Even with AEA preprocessing, ResNet-50 and MobileNetV4 still show relatively
lower performance compared to others. In contrast, EfficientNet-B1, EfficientNet-B3, and
FastViT, which perform poorly with crop preprocessing, show improved performance and
achieve results comparable to or surpassing DenseNet-121 and EfficientNet-B2. ConvNeXt
V2 and RDNet also demonstrate enhanced performance, attaining results comparable to
EdgeNeXt, FocalNet, and VGG16. Notably, VGG16 achieves the highest performance
among all models, even with AEA preprocessing. While AEA preprocessing reduces noise
and artifacts, leading to a relatively higher precision due to decreased misclassifications,
these models still struggle to capture IAFF characteristics accurately. Consequently, they
tend to misclassify IAFFs as normal cases or confuse regular deformations and normal
regions with IAFFs, leading to lower recall and specificity.

When comparing the effects of different preprocessing methods, it is observed that
most baseline models, with the exception of EfficientNet-B2, EdgeNeXt, and FocalNet,
achieve approximately 4% to 6% improvement in accuracy and F1-score with AEA prepro-
cessing compared to the crop method. This finding suggests that excessive information from
normal regions and backgrounds can hinder the model’s ability to learn IAFF characteris-
tics. Moreover, the three aforementioned models also demonstrate enhanced performance
in distinguishing between IAFF and normal cases, resulting in increased AUROC and
AUPRC, as well as higher precision and specificity performance compared to crop prepro-
cessing results. Despite these improvements, these models still tend to misclassify small
and ambiguous IAFFs as normal cases, resulting in relatively lower recall performance.

Table 1. Comparison of classification performance of the proposed approach and state-of-the-art methods.

Model Method Accuracy F1 Score AUROC AUPRC Precision Recall Specificity

ResNet-50
C

Baseline 0.6719 0.7145 0.7123 0.7842 0.7395 0.6921 0.6423
Proposed 0.7703 0.8201 0.8012 0.8102 0.7706 0.8816 0.6077

AEA
Baseline 0.7313 0.7765 0.7656 0.7974 0.7709 0.7868 0.6500

Proposed 0.8276 0.8627 0.8158 0.9362 0.8664 0.8606 0.7708

GoogLeNet
C

Baseline 0.7500 0.7909 0.7987 0.8410 0.7924 0.8026 0.6731
Proposed 0.7844 0.8235 0.8028 0.8311 0.8010 0.8474 0.6923

AEA
Baseline 0.7891 0.8191 0.8561 0.8884 0.8343 0.8089 0.7615

Proposed 0.8262 0.8609 0.8272 0.8357 0.8214 0.9046 0.7115
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Table 1. Cont.

Model Method Accuracy F1 Score AUROC AUPRC Precision Recall Specificity

DenseNet-121
C

Baseline 0.7922 0.8284 0.8457 0.8670 0.8147 0.8447 0.7154
Proposed 0.8231 0.8547 0.8751 0.8965 0.8493 0.8640 0.6731

AEA
Baseline 0.7938 0.8139 0.8766 0.9148 0.8764 0.7605 0.8423

Proposed 0.8644 0.8946 0.9027 0.9444 0.8953 0.8982 0.8063

EfficientNet-B1

C
Baseline 0.7672 0.8102 0.7879 0.7971 0.7841 0.8395 0.6615

Proposed 0.7872 0.8346 0.8152 0.8590 0.7963 0.8772 0.6454

AEA
Baseline 0.8156 0.8419 0.8693 0.9046 0.8589 0.8263 0.8000

Proposed 0.8359 0.8615 0.8994 0.9253 0.8670 0.8586 0.8029

EfficientNet-B2

C
Baseline 0.8234 0.8570 0.8584 0.8771 0.8257 0.8921 0.7231

Proposed 0.8448 0.8839 0.8895 0.9200 0.8373 0.9364 0.6875

AEA
Baseline 0.8047 0.8287 0.8657 0.9018 0.8644 0.7974 0.8154

Proposed 0.8216 0.8537 0.8733 0.9063 0.8598 0.8503 0.7697

EfficientNet-B3

C
Baseline 0.7625 0.8083 0.8115 0.8338 0.7760 0.8447 0.6423

Proposed 0.7969 0.8395 0.8232 0.8414 0.7907 0.8947 0.6538

AEA
Baseline 0.8203 0.8525 0.8840 0.9096 0.8328 0.8737 0.7423

Proposed 0.8483 0.8794 0.9170 0.9384 0.8642 0.8955 0.7692

ConvNeXt V2
C

Baseline 0.8000 0.8408 0.8418 0.8773 0.8035 0.8842 0.6769
Proposed 0.8281 0.8599 0.8883 0.9160 0.8317 0.8904 0.7372

AEA
Baseline 0.8563 0.8800 0.8999 0.9295 0.8756 0.8868 0.8115

Proposed 0.8750 0.8967 0.9168 0.9381 0.8817 0.9123 0.8205

EdgeNeXt
C

Baseline 0.8625 0.8876 0.9065 0.9237 0.8655 0.9132 0.7885
Proposed 0.8908 0.9131 0.9280 0.9452 0.8913 0.9376 0.8189

AEA
Baseline 0.8625 0.8840 0.9230 0.9465 0.8875 0.8816 0.8346

Proposed 0.9035 0.9241 0.9403 0.9591 0.9201 0.9309 0.8563

FocalNet
C

Baseline 0.8610 0.8853 0.8957 0.9025 0.8649 0.9079 0.7923
Proposed 0.8869 0.9121 0.9091 0.9278 0.8846 0.9422 0.7952

AEA
Baseline 0.8594 0.8817 0.9086 0.9311 0.8778 0.8868 0.8192

Proposed 0.8908 0.9127 0.9264 0.9572 0.9177 0.9091 0.8594

MobileNetV4
C

Baseline 0.7141 0.7463 0.7614 0.8098 0.7902 0.7079 0.7231
Proposed 0.7813 0.8204 0.8030 0.8304 0.7999 0.8421 0.6923

AEA
Baseline 0.7438 0.7929 0.7687 0.8111 0.7654 0.8263 0.6231

Proposed 0.8125 0.8501 0.8234 0.8374 0.8098 0.8947 0.6923

RDNet
C

Baseline 0.8391 0.8658 0.8898 0.9124 0.8561 0.8763 0.7846
Proposed 0.8750 0.8959 0.9251 0.9390 0.8849 0.9079 0.8269

AEA
Baseline 0.8594 0.8824 0.9169 0.9460 0.8802 0.8868 0.8192

Proposed 0.8906 0.9054 0.9241 0.9540 0.9306 0.8816 0.9039

FastViT
C

Baseline 0.7672 0.8136 0.8084 0.8449 0.7778 0.8553 0.6385
Proposed 0.7928 0.8394 0.8215 0.8607 0.9001 0.8841 0.6410

AEA
Baseline 0.8359 0.8636 0.9058 0.9329 0.8549 0.8737 0.7808

Proposed 0.8730 0.8941 0.8300 0.9489 0.8881 0.9013 0.8317

RepViT
C

Baseline 0.7188 0.7635 0.7664 0.8068 0.7626 0.7684 0.6462
Proposed 0.7422 0.7891 0.7743 0.8210 0.7679 0.8132 0.6385

AEA
Baseline 0.7578 0.8000 0.7619 0.7765 0.7848 0.8158 0.6731

Proposed 0.7852 0.8234 0.7874 0.8328 0.8126 0.8421 0.7019

VGG16
C

Baseline 0.8797 0.8990 0.9348 0.9521 0.8959 0.9026 0.8462
Proposed 0.9167 0.9346 0.9584 0.9745 0.9284 0.9409 0.8750

AEA
Baseline 0.9000 0.9146 0.9565 0.9718 0.9246 0.9079 0.8885

Proposed 0.9310 0.9456 0.9694 0.9854 0.9455 0.9455 0.9063
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By integrating our proposed model with these baselines, we observed notable im-
provements across all metrics and models, regardless of the preprocessing method. Notably,
ResNet-50 shows significant improvements, with accuracy and F1-score increasing by ap-
proximately 9% with crop preprocessing and 6% with AEA preprocessing. Specifically,
when integrating CFNet with VGG16 and applying AEA preprocessing, it outperforms all
other models across every metric, achieving accuracy, F1-score, AUROC (Figure 7), and
AUPRC scores of 0.931, 0.9456, 0.9694, and 0.9854, respectively. Additionally, the proposed
method demonstrates a significant improvement in recall performance across all mod-
els compared to the baselines, showing its effectiveness in mitigating the False Negative
problem. Furthermore, even when applying crop preprocessing, the proposed method ac-
curately learns and classifies IAFFs without bias, despite the abundance of normal regions
and background information. The results of this experiment validate that the proposed
method is applicable to various models and significantly enhances performance, thereby
demonstrating the superiority and suitability of our approach for IAFF classification.

Figure 7. Comparison of AUROC results under AEA preprocessing.

4.6. Experiments on DCCE and LPFN Group Configurations

We evaluate the performance of the CFNet across different configurations of the DCCE
and LPFN groups, utilizing VGG16 as the baseline due to its superior performance in
previous experiments. In accordance with our proposed methodology, we first count the
total number of layers and divide them into n (where n = 3, 4, 5) equal groups. Subse-
quently, each DCCE block is defined based on the nearest unit block or stage as a division
point. As shown in Table 2, the 3-group configuration exhibits lower performance across
all metrics for both preprocessing methods compared to the 4-group and 5-group config-
urations, primarily due to the reduced extraction and learning of feature details in the
3-group setup. Nevertheless, due to the effectiveness of the SAFE component, recall shows
excellent performance. The 5-group configuration extracts and integrates features at a more
detailed level, utilizing relatively more information compared to the 4-group configura-
tion. Consequently, while it exhibits slightly higher performance in accuracy and F1-score,
it shows lower performance in AUROC and AUPRC, indicating a lack of robust across
all thresholds. Furthermore, although the increased sensitivity to IAFF in the 5-group
configuration enhances precision and recall performance slightly, it also leads to a rise in
False Positives, thereby reducing specificity, as the model misclassifies more normal cases
as IAFF. Ultimately, while the 5-group configuration demonstrates comparable or better
performance than the 4-group setup, the increased training time and resource consumption
renders it less practical. Therefore, for a more balanced and practical approach, we select
the 4-group configuration for DCCE and LPFN in our final model.
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Table 2. Performance comparison based on the configuration of DCCE and LPFN groups.

# of Groups Accuracy F1-Score AUROC AUPRC Precision Recall Specificity

Crop preprocessing

3 0.9080 0.9275 0.9472 0.9654 0.9242 0.9309 0.8687
4 0.9167 0.9346 0.9584 0.9745 0.9284 0.9409 0.8750
5 0.9177 0.9350 0.9563 0.9710 0.9229 0.9478 0.8659

AEA preprocessing

3 0.9230 0.9404 0.9604 0.9776 0.9406 0.9418 0.8938
4 0.9310 0.9456 0.9692 0.9854 0.9455 0.9455 0.9063
5 0.9354 0.9513 0.9627 0.9834 0.9432 0.9600 0.9000

4.7. Performance Comparison Based on the Number of Input Slices

We evaluate the performance based on the number of image slices fed into the second
branch. Following the approach utilized in our proposed method, we divided the image
into n slices (where n = 3, 4, 5) from top to bottom based on the height of the image prior
to inputting them into the second branch. We utilize VGG16 as the baseline, with all
conditions kept the same as the proposed model, except for the number of input slices.
As shown in Table 3, when using 3 slices, the model can capture a relatively broad range
of context and IAFF characteristics. However, due to the lower resolution of each slice
than n = 4 or 5, it struggles to capture the fine details of IAFF, resulting in slightly lower
overall performance compared to the 4-slice configuration. Moreover, when using 5 slices,
the performance further decreases, showing similar or even lower results compared to
the 3-slice configuration. This decline in performance is likely due to the height of the
sliced images being too short relative to their width, limiting the model’s ability to utilize
contextual information and features surrounding the IAFF in the femur. As a result,
the understanding of the relationship between the IAFF features and the surrounding
information diminishes, making it difficult to distinguish IAFFs from other deformities
or normal regions, which in turn leads to a decline in performance. Based on these
experimental results, we conclude that the optimal configuration for our model is to use
4 DCCE and LPFN groups, along with 4 input slices for the second branch.

Table 3. Performance comparison based on the number of slices input into the second branch of
the DCCE.

# of Slices Accuracy F1-Score AUROC AUPRC Precision Recall Specificity

Crop preprocessing

3 0.9119 0.9307 0.9471 0.9659 0.9231 0.9394 0.8646
4 0.9167 0.9346 0.9584 0.9745 0.9284 0.9409 0.8750
5 0.9057 0.9259 0.9426 0.9642 0.9183 0.9345 0.8564

AEA preprocessing

3 0.9253 0.9413 0.9637 0.9821 0.9379 0.9452 0.8906
4 0.9310 0.9456 0.9692 0.9854 0.9455 0.9455 0.9063
5 0.9218 0.9384 0.9613 0.9807 0.9351 0.9418 0.8875

4.8. Classification Performance Analysis Using Confusion Matrix

To implement the IAFF classification model in real medical settings, achieving high
accuracy is essential; however, it is equally important to conduct a thorough analysis of
False Positives (Type I error) and False Negatives (Type II error). In particular, Type II
errors where an actual IAFF is missed can have severe consequences, as patients may not
receive timely treatment. Therefore, we evaluate these errors and the overall performance
of the model using a confusion matrix. VGG16 is set as the baseline, and its results are
compared with CFNet. As shown in Table 4, VGG16 with crop preprocessing achieves a
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True Positive count of 69 and a True Negative count of 44, indicating overall acceptable
performance. However, with 8 False Positives and 7 False Negatives, it relatively frequently
misses IAFFs or misclassifies normal cases as IAFFs, especially in data with small and
ambiguous IAFF features. This occurs because crop preprocessing includes unnecessary
information outside the femur region, causing the model to misinterpret noise and artifacts
in normal data as IAFF or to overlook IAFF features due to the distraction of irrelevant
details. However, CFNet shows improved performance over the baseline model, with
6 False Positives and 4 False Negatives. As shown in Table 5, using AEA preprocessing,
VGG16 reduces False Positives to 6, but the False Negatives remain unchanged compared to
Table 4. This result indicates that using only the femur region as input reduces extraneous
information, leading to fewer misclassifications. However, small and ambiguous IAFFs
continued to be missed, resulting in a high False Negative rate. In contrast, CFNet improves
overall performance by leveraging complementary, rich features and understanding the
surrounding context. This allows it to better distinguish IAFF from other information
in the input image. Additionally, SAFE emphasizes anomalous regions, enhancing the
identification of these areas and minimizing both False Negatives and False Positives. As a
result, CFNet based on VGG16 achieves the best performance with 5 False Positives and
3 False Negatives, showcasing exceptional accuracy and reliability. These results highlight
the potential of CFNet for practical application in real medical settings.

Table 4. Comparison of the confusion matrix between VGG16 and CFNet under crop preprocessing.
Bold highlights the best performance.

Crop Preprocessing VGG16 CFNet

Predicted class
P N P N

Actual class P 69 7 72 4
N 8 44 6 46

Table 5. Comparison of the confusion matrix between VGG16 and CFNet under AEA preprocessing.
Bold highlights the best performance.

AEA Preprocessing VGG16 CFNet

Predicted class
P N P N

Actual class P 69 7 73 3
N 6 46 5 47

We also analyze the cases in which False Negatives and False Positives occur in CFNet.
Typically, IAFF manifests in the lateral cortex of the femur and exhibits characteristics
of cortical buckling. However, in the LT view, IAFF may present with entirely different
features, such as fine line patterns, or in some instances, no noticeable features at all,
as illustrated in Figure 8a. When no discernible features are present, specialists rely
on information from other radiographic views to make a diagnosis. While the model
accurately classifies data with different features, False Negatives are observed in cases
where no features are visible in the LT direction. Moreover, the femur is susceptible to a
variety of deformities and diseases beyond IAFF, some of which display characteristics
nearly identical to IAFF as shown in Figure 8b. It is observed that False Positives occur in
such cases, where the model mistakenly identifies these deformities as IAFF.
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(a) FN (b) FP

Figure 8. Example of False Negative (FN) and False Positive (FP). FN occurs in image where no
discernible IAFF features are present, while FP appears in the case of femoral deformities that closely
resemble IAFF features. The arrow indicates the location of the IAFF.

4.9. Analysis of Classification Performance and Robustness Across Different X-Ray
Radiographic Views

The shapes and characteristics of IAFFs vary depending on the radiographic view,
with certain views showing nearly absent distinguishing features, making it challenging
for the model to learn, and leading to potential misclassifications. In this experiment,
we evaluate the classification performance and robustness of the model across various
radiographic views. We use VGG16 as the baseline model and compare the performance
using accuracy and F1-score metrics. As shown in Table 6, the baseline results with crop
preprocessing achieve relatively high performance in AP view, where IAFF features are
more distinguishable from normal regions. However, the model shows lower performance
in the LT view, where the distinguishing features are either insufficient or less prominent.
With AEA preprocessing, the removal of irrelevant information allows the model to focus
on essential features, leading to an overall improvement in the baseline performance.
Nonetheless, performance in the LT view remains lower compared to other views due to
the fact that the LT view exhibits completely different characteristics. Additionally, the
limited data make it difficult for the baseline model to learn these features effectively. In
contrast, the proposed method significantly improves performance across all radiographic
views. With crop preprocessing, the proposed method improves accuracy by approximately
6.6% and F1-score by 4.1% in the ER view, where the baseline performance is initially low. In
the LT view, the proposed method achieves notable improvements, with a 5.4% increase in
accuracy and a 6.6% increase in F1-score. Similarly, AEA preprocessing with the proposed
method also demonstrates overall performance enhancements, with the LT view accuracy
increasing by 5.4% and F1-score by 5.7%. These experimental results validate that the
proposed method effectively captures even insufficient and ambiguous features, as well
as very subtle differences. It also demonstrates robustness and high performance across
all radiographic views regardless of the preprocessing method, highlighting the model’s
suitability and superiority.

Table 6. Comparison of classification performance across different X-ray radiographic views. Bold
highlights the best performance.

AP ER IR LT
Model Accuracy F1-Score Accuracy F1-Score Accuracy F1-Score Accuracy F1-Score

Crop preprocessing
Baseline 0.9317 0.9349 0.8383 0.8959 0.9130 0.9418 0.8357 0.8241
CFNet 0.9561 0.9593 0.9043 0.9373 0.9217 0.9517 0.8893 0.8900

AEA preprocessing
Baseline 0.9366 0.9339 0.9217 0.9481 0.8956 0.9317 0.8537 0.8511
CFNet 0.9610 0.9657 0.9391 0.9583 0.9217 0.9504 0.9073 0.9082
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4.10. Performance Analysis Based on Parameter and Execution Time

We apply our proposed CFNet to baseline models to evaluate performance in terms of
the number of parameters, as well as execution (training and inference) times. For compari-
son, we select ResNet-50 as a representative CNN model, VGG16 as a high-performance
model, MobileNetV4 as the latest lightweight model, and FastViT as a Vision Transformer-
based model. All models are compared under AEA preprocessing conditions. The training
time is measured over 300 epochs, including both training and validation phases, while
inference time is measured based on processing a total of 128 test samples. As shown
in Table 7, the ResNet-50-based model requires a relatively large number of parameters
and shows longer execution time, while demonstrating the lowest performance. The
MobileNetV4-based model demonstrates the fewest parameters and shortest execution
time, making it suitable for deployment in medical devices. However, its low parameter
count limits the model representation, reducing its ability to accurately identify small and
ambiguous IAFF features, resulting in low performance similar to ResNet-50-based CFNet.
In contrast, FastViT achieves relatively high performance with roughly half the parameters
of the ResNet-50-based model. Notably, VGG16-based model demonstrated even more
robust and superior performance, with a parameter count and execution time comparable
to FastViT. Additionally, its short inference time allows for prompt assistance to medical
professionals, underscoring its suitability for real clinical application.

Table 7. Performance comparison based on the number of parameters and execution time.

Base Model # of Parameters Training Times Test Times Accuracy F1-Score AUROC AUPRC

ResNet-50 51,084,928 5 h 4 m 3 m 3 s 0.8276 0.8627 0.8847 0.9362
MobileNetV4 19,753,219 2 h 54 m 2 m 20 s 0.8125 0.8501 0.8234 0.8374

FastViT 28,471,936 4 h 1 m 2 m 32 s 0.8730 0.8941 0.8275 0.9489
VGG16 30,173,147 4 h 12 m 2 m 36 s 0.9310 0.9456 0.9692 0.9854

4.11. Ablation Study

We evaluate the contribution of each component of CFNet to the overall classification
performance. Table 8 presents the results of our ablation study based on VGG16, which
achieved the highest performance in previous experiments. As shown in the results, each
of our novel components provides significant performance enhancement to the baseline
model. While the baseline model shows decent performance with both preprocessing meth-
ods, it struggles with noise, artifacts, and deformations, often misclassifying them as IAFF
and failing to capture fine details, resulting in lower precision and specificity. By adding
DCCE and LPFN to the baseline, the model enables to learn both the overall characteristics
of the femur and IAFF features in conjunction with the surrounding contextual information.
This integration reduces errors in misclassifying normal regions as IAFF, leading to an
improvement in precision. However, False Negatives persist, resulting in relatively low
recall performance. When applying SAFE to the baseline, the model effectively learns
long-range dependencies and relationships between IAFF features and broader contextual
information, leading to notable improvements in AUROC and AUPRC. Additionally, SAFE
emphasizes anomalous regions and captures tiny IAFFs, reducing False Negative rates and
improving recall performance. However, False Positives still affect the model’s specificity
performance. In contrast, our proposed model, which integrates the strengths of each
component, accurately learns IAFF characteristics while minimizing the misclassification
of normal cases as IAFFs. Consequently, the proposed method achieves high performance
across precision, recall, and specificity. Furthermore, the proposed approach clearly dis-
tinguishes between IAFF and normal cases, resulting in superior AUROC and AUPRC
performance results, achieving the highest performance across all metrics. These findings
demonstrate that our proposed method offers high reliability in IAFF classification and
holds significant potential for practical application in real clinical settings.
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Table 8. Ablation Study to analyze the impact of each component of the proposed method on overall
performance. Bold highlights the best performance.

Model Accuracy F1-Score AUROC AUPRC Precision Recall Specificity
Crop preprocessing

Baseline 0.8797 0.8990 0.9348 0.9521 0.8959 0.9026 0.8462
Baseline + DCCE + LPFN 0.9004 0.9214 0.9415 0.9631 0.9227 0.9212 0.8646
Baseline + SAFE 0.9080 0.9278 0.9475 0.9667 0.9200 0.9364 0.8594
CFNet 0.9167 0.9346 0.9584 0.9745 0.9284 0.9409 0.8750

AEA preprocessing
Baseline 0.9000 0.9146 0.9565 0.9718 0.9246 0.9079 0.8885
Baseline + DCCE + LPFN 0.9234 0.9391 0.9644 0.9827 0.9451 0.9227 0.9063
Baseline + SAFE 0.9224 0.9385 0.9651 0.9834 0.9410 0.9364 0.8984
CFNet 0.9310 0.9456 0.9692 0.9854 0.9455 0.9455 0.9063

5. Discussion

In this study, we experimentally demonstrate that applying the IAFF diagnostic
method commonly used by specialists to CFNet significantly enhances overall performance.
We also show that integrating DCCE with LPFN, along with applying SAFE, is highly
effective for classifying tiny and ambiguous IAFFs. CFNet can extract features from femoral
X-ray images using various state-of-the-art models. In this process, using only a single
entire image may result in the loss of critical details of tiny IAFFs, while relying exclusively
on small patches can hinder accurate learning due to the restricted context information. To
address these challenges, we propose DCCE, which consists of two branches to capture both
overall features and fine-grained details along with the surrounding context of IAFFs. This
approach mirrors the clinical process, where specialists first review the entire X-ray image
and then focus on regions where IAFFs commonly occur. Additionally, to integrate features
extracted from DCCE at different levels while preserving their unique significance, we
propose LPFN. LPFN prevents the misclassification of noise and artifacts as IAFF, enhances
sensitivity by capturing detailed information from high-resolution images, and provides
complementary information. LPFN operates similarly to how clinicians analyze and
compare overall structures and frequently occurring regions. However, since IAFF features
are often ambiguous and difficult to distinguish from deformations, there remains a risk of
missing IAFF, and their small size can lead to model bias towards normal and background
regions. To address this, we incorporate SAFE, which captures long-range dependencies
that are challenging for CNNs alone and helps understand spatial relationships more
effectively. Furthermore, SAFE assigns higher weights to abnormal regions, emphasizing
IAFF features and preventing the model from overfitting to normal regions.

Despite the promising results, there are still limitations and room for improvement.
Experimental results show that in cases where IAFF features are either entirely absent such
as in some LT images or in a very early stage, the model encounters difficulty accurately
classifying IAFF. As a result, there is a risk of IAFF going unnoticed by both patients and
medical professionals, potentially delaying treatment. This could lead to progression to a
complete fracture or the significant worsening of IAFF, making treatment more complex
and challenging. To prevent this problem, based on previous studies that indicate a close
association between IAFF and conditions such as osteoporosis and femoral curvature,
we plan to collect relevant meta-data and modify CFNet to support multimodal learning
alongside image data, further improving classification accuracy in all cases. Additionally,
the proposed method has demonstrated significantly improved performance with limited
data. However, to ensure the generalizability of our approach, more data are required.
Currently, there are no publicly or privately available IAFF datasets, so we are actively
collecting additional data from KNUH to validate the generalization performance of the
proposed method. Additionally, to demonstrate the model’s robustness through external
validation, we are collecting data from other university hospitals with varying X-ray
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conditions. The goal of the proposed method is to apply it in real medical settings. We will
validate the model’s generalizability and robustness through the collection of additional
data and further experiments.

6. Conclusions

In this article, we propose CFNet, a novel approach to accurately classify even tiny
and ambiguous IAFFs without missing any. In our model, DCCE recognizes contextual
information and extracts complementary information on both the overall femur features
and detailed regions at multiple levels, addressing problems of information loss and limited
contextual understanding. By introducing LPFN, our model preserves the unique meaning
of features at each level, enabling seamless feature fusion without interference. This design
supports the stable learning of complex relationships and enhances classification accuracy
and sensitivity. In addition, SAFE comprehensively captures spatial dependencies and
emphasizes anomalous regions, minimizing missed IAFFs and preventing overfitting
to normal regions. Experimental results demonstrate that each component of CFNet
contributes meaningfully to the model’s improved overall performance.

For future work, the current approach will divide the selected model into four equal
segments based on the number of layers and assign DCCE blocks according to adjacent
unit blocks or stages. We plan to enhance the DCCE module by incorporating techniques
such as receptive field analysis or filter response evaluation. These methods will allow
for a more precise assessment of feature map levels extracted at each layer and enable a
more adaptive assignment of DCCE blocks tailored to each model. Additionally, since
the femur can present with various diseases, deformities, and fractures that may mimic
IAFF characteristics, we aim to incorporate a Large Language Model (LLM) [79] to leverage
extensive domain knowledge, enabling CFNet to analyze predictions and offer insights
into potential conditions beyond IAFF. This approach is expected to increase the model’s
reliability, making it a valuable tool in clinical settings for accurate patient risk assessment
and for guiding preventive measures.
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