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Abstract: When researchers conduct surveys seeking sensitive, socially stigmatized information,
respondents, on average, modify their answers to represent themselves favorably. To overcome this
issue, researchers may use Randomized Response Technique (RRT) models. Recently, Parker et al.
proposed a model that incorporates some of the most critical recent quantitative RRT advancements—
mixture, optionality, and enhanced trust—into a single model, which they called a Mixture Optional
Enhanced (MOET) model. We now improve upon the MOET model by incorporating auxiliary infor-
mation into the analysis. Positively correlated auxiliary information can improve the mean response
estimation through use of a ratio estimator. In this study, we propose just such an estimator for the
MOET model. Further, we investigate the conditions under which the ratio estimator outperforms
the basic MOET estimator proposed by Parker et al. in 2024. We also consider the possibility that the
collection of auxiliary information may compromise privacy; and we study the impact of privacy
reduction on the overall model performance as assessed by the unified measure (UM) proposed by
Gupta et al. in 2018.

Keywords: Randomized Response Technique (RRT); respondent privacy; social desirability bias
(SDB); unified measure (UM); ratio estimator; auxiliary variable
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1. Introduction

Researchers in disciplines as far-flung as business, public health, and psychology
need answers to questions that are hard to obtain, because they involve sensitive personal
information. In such scenarios, “social desirability bias” comes into play. Latkin et al. (2017)
describe SDB as the tendency of respondents to underreport socially undesirable attitudes
or behaviors and to overreport more desirable attributes [1].

For example, income level is often perceived to be an indicator of success and status.
Consequently, respondents may falsify their responses if queried directly about their
income. For this reason, a businessperson doing market research, who needs accurate
information about the income level of people in a target market, may be stymied. Similarly,
a public health professional who makes decisions about how to allocate public funds may
need reliable information about the prevalence of sexually transmitted diseases within
a certain population but may have difficulty getting individuals to self-report their STD
history honestly.

Warner (1965) and Greenberg (1969) first proposed a class of models, known as
Randomized Response Technique (RRT) models, that were designed to encourage reliable
responses to yes/no-type survey questions [2,3]. Later, Warner (1971) and Greenberg (1971)
proposed new models designed to study questions which responses were numerical in
nature; these became known as Quantitative RRT models [4,5]. Warner’s model relied on
the “scrambling” of responses based on additive and multiplicative scrambling variables,
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which would keep the respondents’ true answers to a sensitive study question hidden,
freeing them to answer truthfully. Greenberg’s model was entirely different. Rather
than perturbing the response, Greenberg’s methodology involved hiding the question.
Specifically, the question posed to each respondent would be one of two questions—the
sensitive question under study or some unrelated question which response would appear
similar to that of the sensitive question. Since the identity of the question would be
unknown to the researcher, the respondent’s anonymity would be maintained, and the
respondent would be free to answer the question honestly.

Following Warner’s and Greenberg’s models, RRT was studied extensively, and many
innovations and advancements were made. Several statisticians studied the scrambling
that underlay Warner’s quantitative model. Pollock and Beck (1976) studied the attributes
of additive versus multiplicative scrambling [6]. Eichhorn and Hayre (1983) introduced a
scrambling paradigm involving multiplicative scrambling, which Diana and Perri (2011)
explored later in greater detail [7,8]. Singh et al. (2018) compared several of these models
with an added emphasis on considering not only the efficiency of estimation but also the
importance of enhanced privacy protection [9].

Gupta et al. (2002) improved the efficiency of RRT models by introducing the concept
of “optionality”, where survey respondents were instructed to answer the sensitive question
truthfully (with no RRT) if they did not find the question to be sensitive to them [10]. This
advancement also led to a means of assessing the sensitivity level of sensitive questions.
Mehta and Aggarwal (2018) proposed a Bayesian approach to measuring the sensitivity of
binary questions [11]. Sharma and Singh (2015) recognized the importance of nonresponse
and measurement error in RRT scenarios (RRT questions, due to their sensitive nature, are
likely to provoke both nonresponse and measurement error) [12]. They proposed means of
accounting for these issues, thereby avoiding unrealistically favorable statistical inferences.
Statisticians also considered the advantages that may be realized by “mixing” models. Perri
(2008) first proposed a binary blank card RRT model that had interesting theoretical value
in that it incorporated Warner-like features (direct and indirect questions) with Greenberg-
like features (unrelated questions) into a single model [13]. Perri’s model can therefore
be thought of as an early exploration of “mixture” models (an important underpinning
of the MOET model considered in this study). Following the considerable theoretical
advancements over 50 years, Blair et al. (2015), among others, focused on practical design
and technique issues that would facilitate the implementation of advanced models [14].

In Section 2 of this study, a brief review the Mixture Optional Enhanced Trust model
(MOET) model proposed by Parker et al. (2024) is provided [15]. In Section 3, we propose a
mean response ratio estimator for the MOET model, along with estimators that evaluate
the MOET ratio estimator’s bias and efficiency and the MOET model’s privacy. In Section 4,
we consider two characteristics—variance and correlation—that together assess the qual-
ity of auxiliary information, under the standard (but not always valid) assumption that
auxiliary information does not impact model privacy. Under this assumption, we derive a
relationship that assesses whether auxiliary information will improve the estimation of the
mean response to the sensitive question. Then, in Section 5, we consider the possibility that
auxiliary information does, in fact, compromise privacy, and we use the unified measure
(UM) proposed by Gupta et al. (2018) to study the reduction in the ratio estimator’s overall
quality as privacy declines [16]. In Section 6, we provide tabular demonstrations and
empirical model simulations that confirm the accuracy of the estimators developed in
Section 3 of this study, and we consider the behavior of the ratio estimator across different
values of key parameters.

2. MOET Model (2024) Review

As this paper will study the role of auxiliary information in improving the estimation
of mean responses to sensitive questions when using the MOET model, we will begin with
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a brief review of the MOET model itself. Figure 1 presents a diagram of the model, which
appears in the study by Parker et al. (2024) [15].

Z =


Y + S with probability WαA
TY + S with probability W(1 − A)(α+ p − αp)
Y with probability W(1 − α)pA + (1 − W)
R with probability W(1 − α)(1 − p)

. (1)
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Figure 1. MOET model diagram.

Parker et al. (2024) further proposed a mean estimator and derived the expressions
below, according to the MOET model, using a split sample approach [15].

Mean Estimator (Parker et al. 2024)

µ̂Y =
1 − p1

p2 − p1
Z2 −

1 − p2

p2 − p1
Z1. (2)

MSE of Mean Estimator (Parker et al. 2024)

MSE(µ̂Y) =

(
1 − p1

p2 − p1

)2
Var(Z

2
) +

(
1 − p2

p2 − p1

)2
Var

(
Z1

)
, (3)

where

Var
(
Z i

)
= 2

n

{
W[1 − λi − Aϕi]σ

2
S +

[
W(1 − λi)

(
(1 − A)σ2

T + 1
)
+ 1 − W

](
σ

2
Y + µ

2
Y
)
+ Wλi

(
σ

2
R + µ

2
R
)
− [µY + (µR − µY)Wλi]

2
}

,

λi = (1 − α)(1 − pi), i = 1, 2,
ϕi = pi(1 − α), i = 1, 2,
p1 ̸= p2.

In the expressions above, the following symbols are used.

• Y : The true response to the sensitive question. This random variable has mean µY
and variance σ2

Y.
• Zi : The response collected from the respondent in the ith sub-sample, i = 1, 2. This

random variable has mean µZi and variance σ2
Zi.

• S : An additive scrambling variable with mean µS = 0 and variance σ2
S .

• T : A multiplicative scrambling variable with mean µT = 1 and variance σ2
T . T is

independent of S and Y.
• R : Response to unrelated question with mean µR and variance σ2

R.
• n : The sample size. In split sampling, n is split into n1 and n2, where n1 + n2 = n.
• pi : The probability that an individual that has been assigned to the Greenberg sub-

model within sub-sample i is assigned the sensitive question, as opposed to the
unrelated question.
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• A : The probability that a respondent will trust the RRT methodology without addi-
tional scrambling.

• W : The sensitivity level of the sensitive question. That is, a proportion (1 − W) of the
respondents do not consider the question sensitive and are willing to provide true
responses without scrambling.

The Privacy Intrinsic to the MOET Model is given by:
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Y + µ2

Y

)
σ2

T + σ2
S

]
+ (λ1 + λ2)

[
σ2

Y + σ2
R(µY − µR)

2
]}
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The superscript a in the above expression reminds us that this measure has been
adjusted to reflect the Gupta et al. (2018) assertion that optionality does not undermine
privacy for the proportion of respondents (1 − W) who do not consider the question
sensitive [16].

The Unified Measure Intrinsic to the MOET Model is given by:

δa =
MSE(µ̂Y)
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a are defined by Equations (3) and (4). The unified measure (UM)
proposed by Gupta et al. (2018) enables a quantification of the overall model quality,
taking into account the competing factors of estimator efficiency and model privacy [16].
This measure highlights one of the key features of the MOET model—its mixture capa-
bility. The MOET model is fundamentally a mix between a Greenberg-type model and
a Warner-type model, where the Greenberg model is generally more efficient and less
private, but the Warner model is more private and less efficient. The model is, as detailed
by Parker et al. (2024), sufficiently flexible in that it allows the researcher to choose the
optimal balance between the two factors by strategically setting the “mixture parameter”, α,
according to the researcher’s specific needs [15]. The researcher can also adjust the balance
between privacy and efficiency, selecting a higher or lower scrambling variance. More
scrambling (higher σ2

S and higher σ2
T) will result in a model with more privacy but at a cost

to efficiency.

The Estimator for the Sensitivity Parameter (W) is given by:

Ŵ =
Z1 − Z2

λ1
(
µR − Z2

)
− λ2

(
µR − Z1

) , (6)

λi = (1 − α)(1 − pi),µY ̸= µR, p1 ̸= p2.

Parker et al. (2024) showed that the quantitative MOET model had important ad-
vantages over the OET model, which Gupta et al. (2022) showed was superior to the
basic Warner model, especially with regard to estimator efficiency [15,17]. The mixture
feature of the MOET model enabled blending, which was not a part of the OET model.
Importantly, this feature made MOET superior to both a fully Warner-based or fully
Greenberg-based model.

3. Ratio Estimator

Thompson (2012) [18] showed how auxiliary information that is strongly and positively
correlated with the response to a sensitive question can be used as the basis of a ratio
estimator. Some concrete examples of valuable auxiliary information might include “home
value”, which may assist in the estimation of “personal wealth”, and “frequency of fast-food
credit card purchases”, which may assist in the estimation of “body mass index”.

If auxiliary information is of adequate quality, the estimates achieved through use of a
ratio estimator will be superior to those yielded by a “basic” estimator (in this study, we use
the term “basic” to describe an estimator that does not incorporate auxiliary information).
In this section, we propose just such a ratio estimator, and we derive expressions that
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capture the ratio estimator’s MSE and Bias, the MOET model’s privacy, and the sensitivity
level of the sensitive question.

3.1. Ratio Estimator Development

Ratio estimators are of the form

µ̂YR = µ̂Y

(
µX
µ̂X

)
, (7)

where X is defined as the auxiliary variable with mean µX and variance σ2
X . The covariance

between the auxiliary information (X) and the response to the sensitive question (Y) is σXY,
and the correlation is ρXY.

µ̂Y is an estimate of the mean of Y in the absence of an auxiliary variable, µX is the
known mean of the auxiliary variable, and x is the observed mean of the auxiliary responses
sampled. To the extent that x is smaller than the known mean of X, then the ratio µX

x will
be greater than 1, and the estimator’s estimate will be bumped up to reflect the information
contributed by the auxiliary variable. The reverse will be true when x is larger than µX .

The Parker et al. (2024) mean estimator given in Equation (2) can be transformed into
a ratio estimator [15]:

µ̂YR =

[
1 − p1

p2 − p1
Z2 −

1 − p2

p2 − p1
Z1

][
1
2

(
µX
x1

+
µX
x2

)]
. (8)

The term
[

1
2

(
µX
x1

+ µX
x2

)]
is the average ratio adjustment from the two sub-samples.

Assuming the auxiliary information used is of high quality, it is reasonable to expect that,
while slightly biased, this ratio will yield a “better” (having superior efficiency) estimate of
the mean response to the sensitive question.

3.2. Bias

Unlike the MOET basic estimator in Equation (2), the proposed ratio estimator in
Equation (8) is biased. The following expression represents this bias:

Bias(µ̂YR) = E(µ̂YR)− µY. (9)

Using a first order Taylor expansion, this expression can be approximated by

Bias(µ̂YR) =
µY
2

(
1
n1

+
1
n2

)(
σX

µX

)2
+

σXY
2µX

[
1
n2

(
1 − p1

p1 − p2

)
− 1

n1

(
1 − p2

p1 − p2

)]
, (10)

and under an equally split sample assumption, this expression further simplifies to

Bias(µ̂YR) =
2µY

n

(
σX
µX

)2
− σXY

nµX
. (11)

It is clear that µ̂YR is asymptotically unbiased. Furthermore, Equation (11) can be rewritten as

Bias(µ̂YR) =

(
σX
µX

)(
2µYσX

nµX
− ρXYσY

n

)
, (12)

which reveals that the bias will be small when the variance of the auxiliary variable is small
relative to its mean. Figure 2 reflects on the behavior of bias relative to n and σX/µX .
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The key conclusion of this analysis is that bias remains small, except in extreme
scenarios. In the rear corner of the graph, the bias rises abruptly when, concurrently, n is
small and σX/µX is large. But when either n is large or σX/µX is small, the bias remains
small. For n ≥ 100 and σX

µX
≤ 0.2, the bias is never greater than 0.007 (0.07% of µY).

Bias is further studied numerically in Tables 1 and 2 of Section 6.

3.3. Efficiency of Ratio Estimator

For any mean estimator µ̂,

MSE(µ̂) = E[(µ̂− µ) 2 (13)

It follows that, for the proposed ratio estimator in Equation (8), MSE can be written

MSE(µ̂YR) = E

{[
1
2

(
1 − p1

p2 − p1
Z2 −

1 − p2

p2 − p1
Z1

)(
µX
x1

+
µX
x2

)
− µY

]2
}

. (14)

Assuming bivariate normality of (Y, X) and a first-order Taylor expansion,
Equation (14) becomes

MSE(µ̂YR) =
µ2

Y
4µ2

X

(
σ2

X
)( 1

n1
+ 1

n2

)
+

(
1−p2
p2−p1

)2
(

σ2
Z1

n1

)
+

(
1−p1
p2−p1

)2
(

σ2
Z2

n2

)
+ µYσYX

µX(p2−p1)

(
1−p2

n1
− 1−p1

n2

)
+µY(1−p1)(1−p2)

µX(p2−p1)
W(1 − α)(σYX + µRµX)

(
1

n2
− 1

n1

)
.

(15)

Under the equally split sample assumption, this expression simplifies to

MSE(µ̂YR) =

[(
1 − p1
p2 − p1

)2
Var(Z

2
) +

(
1 − p2
p2 − p1

)2
Var(Z1)

]
+

1
n

(
µY
µX

)2
σ2

X − 2
n

(
µY
µX

)
σXY , (16)

where

Var
(
Zi
)
= 2

n

{
W[1 − λi − Aϕi]σ

2
S +

[
W(1 − λi)

(
(1 − A)σ2

T + 1
)
+ 1 − W

](
σ2

Y + µ2
Y
)
+ Wλi

(
σ2

R + µ2
R
)
− [µY + (µR − µY)Wλi]

2
}

,

λi = (1 − α)(1 − pi), i = 1, 2,
ϕi = pi(1 − α), i = 1, 2,
p1 ̸= p2.

Note that
[(

1−p1
p2−p1

)2
Var

(
Z2

)
+

(
1−p2
p2−p1

)2
Var

(
Z1

)]
, the first of three additive terms

in Equation (16), exactly equals the MSE of the basic mean estimator proposed by
Parker et al. (2024); see Equation (3) [15]. This portion of the MSE expression can be
estimated as the weighted sum of the variances of observed Zi values, i = 1, 2. The remain-
ing two terms in Equation (16) quantify the additional MSE attributable to the auxiliary
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variable. µX is assumed to be known, but µY and σXY are not. One can plug in parameter
estimates for these parameters based on the collected data.

Alternatively, one can express the last two additive terms of Equation (16) using
coefficients of variation (CV):

1
n

(
µY
µX

)2
σ2

X − 2
n

(
µY
µX

)
σXY = 1

n

(
CV(X)
CV(Y)

)2
σ2

Y − 2
n

(
CV(X)
CV(Y)

)
ρYXσ2

Y

= 1
n

(
CV(X)
CV(Y)

)
σ2

Y

(
CV(X)
CV(Y) − 2ρYX

)
.

(17)

This representation makes it clear that, under the standard assumption that
CV(X) = CV(Y), the last two terms of Equation (16) will sum to a negative number
if ρYX > 1/2. The circumstance that ρYX > 1/2 is likely, in that auxiliary data are only used
in cases where high correlation exists between auxiliary information and the question under
study. It follows that the first portion of Equation (16) alone can be used to approximate
the MSE of µYR and that this will always be a conservative estimate when ρYX > 1/2 and
CV(X) = CV(Y). Formally,

̂MSE(µ̂YR) = ̂MSE(µ̂Y) =
2
n

[(
1 − p1

p2 − p1

)2
Var(Z2) +

(
1 − p2

p2 − p1

)2
Var(Z1)

]
, (18)

where Var(Zi) can be estimated by the variance of the observed Zi values. Following Table 2
in Section 6, additional discussion of this simplification is provided based on numerical
demonstration.

3.4. Privacy of Ratio Estimator Model (
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)

The concept of privacy is critical to all RRT models, because it is the privacy offered
by a RRT model that removes SDB influences (embarrassment, shame, even illegality)
and allows the respondent to answer truthfully. However, beyond this, there are many
ethical considerations related to privacy. Not only must respondents be educated to under-
stand that their information is made private by RRT, but practitioners must closely follow
procedures to avoid collecting private information in a way that could link an individual re-
spondent to their response, especially as it relates to the proportion of respondents (1 − W)
who elect to answer the sensitive question without any means of RRT perturbation. No
records that could be used to identify individual respondents, including even the scheduled
time of their interview, should be documented along with the response. Institutional review
board approval should be sought before launching any RRT-based study.

Yan et al. (2008) proposed the following measure, which is commonly used to evaluate
the privacy provided by quantitative models [19]:
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= E[(Z − Y) 2
]
, (19)

where Y represents a respondent’s true response to a sensitive question, and Z represents a
respondent’s reported response (which may be scrambled). Parker et al. (2024) showed,
based on Yan’s definition of privacy, that MOET model privacy, under an equally split sub-
sample assumption, can be calculated by Equation (4) [15]. Under the standard assumption
that auxiliary information does not impair model privacy, this expression for privacy will
remain valid for the MOET model even when auxiliary information is collected.

3.5. Sensitivity Estimator (ŴX)

Gupta et al. (2002) showed that, while the primary value of optionality is that it
improves the efficiency of RRT estimates, it also has an important secondary value [10].
Specifically, W ∈ [0, 1] can be used to quantify the sensitivity of a question. W values close
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to one imply that a question is highly sensitive, while W values close to zero imply low
sensitivity. To find an estimator for W that takes advantage of auxiliary information, we let

µYR =
[µX

x

][E[Z]− W(1 − α)(1 − p)µR
1 − W(1 − α)(1 − p)

]
. (20)

This formula can be applied separately to the two splits in a split sample as follows:

[1 − W(1 − α)(1 − pi)]xµYR = µX [E[Zi]− W(1 − α)(1 − pi)µR], i = 1, 2. (21)

Estimating E[Zi] by Zi and µYR by µ̂YR in these expressions yields[
1 − Ŵ(1 − α)(1 − pi)

]
xµ̂YR = µX

[
Zi − Ŵ(1 − α)(1 − pi)µR

]
, i = 1, 2. (22)

Finally, solving the two split sample equations simultaneously and calling this estimator
ŴX, to signify that it takes auxiliary information into account, leads to

ŴX =
xµ̂YR(λ2 + λ1)− µX

(
Z1λ2 + Z2λ1

)
2λ1λ2(xµ̂YR − µRµX)

, (23)

λ1 = (1 − α)(1 − p1),
λ2 = (1 − α)(1 − p2),
µR ̸= µY,
p1 ̸= p2.

Table 4 of Section 6 demonstrates the superiority of this sensitivity estimator to the
basic sensitivity estimator that does not leverage auxiliary information in Equation (6).

4. The Impact of Auxiliary Information Quality on Estimation

Not all auxiliary information is perfect. In fact, frequently, auxiliary information will
be so imperfect that it should not be used. This could be a result of issues like nonresponse
and missing data, which typically plague online and mail-in surveys, but these issues
are rare in RRT surveys, because RRT surveys are based on face-to-face interviews. More
commonly, candidate auxiliary information may be inadequate because it does not correlate
well enough with the sensitive variable and therefore will not assist in the estimation. In this
section, we consider the impact of auxiliary information (with different levels of quality) on
mean estimation by comparing the MOET mean ratio estimator that makes use of auxiliary
information to the basic mean estimator, which does not. Throughout this section, we make
the standard assumption that auxiliary information does not reduce model privacy. Since
the ratio estimator will therefore have the same privacy level as the basic estimator, the
two estimators can be compared based on efficiency alone.

It is intuitively clear that auxiliary information well correlated with the response to a
sensitive question could be used to improve the estimation of the mean response to that
question. It is furthermore reasonable to expect that, the more correlated X and Y are, the
more accurate the estimate will be. That is, higher values of ρXY will always be preferred.

It is also reasonable to expect that an auxiliary variable with very little variability (σX
near zero) will offer little prognostic value, as such auxiliary information will lead to a ratio
estimator which ratio value will be close to 1, yielding no benefit. On the other hand, it
seems logical that wildly variable auxiliary information (high σX) would be chaotic and
would be of little value in estimating µY. Based on these informal ruminations, we suspect
that the ideal σX value will be neither extremely large nor extremely small. To validate
these expectations mathematically, we rewrite Equation (16) above in the format below:

MSE(µ̂YR) = MSE(µ̂Y) +
1
n

(
µY
µX

)2
σ2

X − 2
n

(
µY
µX

)
ρXYσXσY. (24)
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Note that, within the scope of this study, ρXY will always be a positive factor (the case
of negative correlation can be handled using a conceptually analogous product estimator).
As ρXY appears in the final, negative term of Equation (24), we can therefore confirm
that large correlation values will be preferred in that they will reduce MSE (except in the

unlikely scenario when this term is more than double the size of MSE(µ̂Y) +
1
n

(
µY
µX

)2
σ2

X).
It is also clear that, if Equation (24) is considered as a function of σX with fixed ρXY, this
function will be an upward-facing parabola, thereby confirming our expectation that the
ideal σX will neither be extremely large nor extremely small. Basic calculus convinces us
that maximum efficiency will be achieved when

σX(ideal) =

(
µX
µY

)
ρXYσY. (25)

This expression shows that the ideal auxiliary information will have a standard de-
viation σX close to the standard deviation of the response to the sensitive question σY

after adjustment for the relative sizes of the means of X and Y
(
µX
µY

)
and adjustment for

correlation strength ρXY. Note that, in the unique circumstance where µX = µY and where
ρXY = 1, the expression reduces to σX(ideal) = σY.

The graphical representation shown in Figure 3 demonstrates a concrete scenario and
shows that, indeed, high correlation and “favorable σX” (σX close to ideal) lead to low MSE.
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The MSE when σX = 0 (the MSE value along the ρXY axis of the graph) is exactly the
MSE of the basic estimator, because an auxiliary variable with zero variance will lead to
µX
x = 1, and so, the ratio estimator will “become” the basic estimator. Other points on the

graph’s surface that rise above the basic estimator’s MSE value represent cases where the
ratio estimator has higher MSE than the basic estimator. This happens most significantly
when the correlation is small and σX is large, circumstances represented by the rear corner
of the graph where ρXY is close to 0 and σX is close to 2. This result should not be surprising;
it is obvious that the use of uncorrelated, wildly variable data as the basis of a ratio estimator
would be ineffective. But for a set of data where the correlation is high and σX is favorable
(near the value implied by Equation (25)), the ratio estimator will outperform the basic
estimator. This occurrence is represented by points on the graph’s surface that fall below
the basic estimator’s MSE value. The dark burgundy region represents correlation–variance
combinations that lead to a ratio estimator MSE approximately equal to that of the basic
estimator, implying that the two estimators will have equal efficiency. The light blue and
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peach regions represent circumstances where the ratio estimator is superior to the basic
estimator. For the scenario underlying the graph above, the maximum ratio estimator
efficiency for highly correlated data will be achieved near σX = σY = 1.

We embody the concepts above in the following relationship:

If ρXY > 1
2

(
µY
µX

)2(
σX
σY

)
, then the ratio estimator will be more efficient than the basic

estimator.
Clearly, high-quality auxiliary information may be used to improve the estimator

accuracy. Alternatively, a researcher may use auxiliary information as a means of reducing
the sample size. To calculate this reduction in sample size (∆n), we write the MSE of the
ratio estimator as a function of n − ∆n:

MSEµ̂YR(n − ∆n) =
2

n − ∆n

[(
1 − p1

p2 − p1

)2
σ2

Z2 +

(
1 − p2

p2 − p1

)2
σ2

Z1

]
+

1
n − ∆n

(
µY
µX

)2
σ2

X − 2
n − ∆n

(
µY
µX

)
ρXYσXσY (26)

The MSE of the basic estimator can be written

MSEµ̂Y (n) =
2
n

[(
1 − p1

p2 − p1

)2
σ2

Z2 +

(
1 − p2

p2 − p1

)2
σ2

Z1

]
. (27)

Equating the right-hand sides of Equations (26) and (27) and solving for ∆n, we identify
the reduction in sample size that can be achieved through use of an auxiliary variable:

∆n =

⌊
2µXµYσXY − µ2

Yσ2
X

µ2
XMSE(µ̂Y)

⌋
. (28)

5. The Impact of Auxiliary Information on Privacy

Lanke (1976) recognized the critical importance of privacy to RRT [20], saying that,
formerly, statisticians were “considering matters from the statistician’s point of view only”
and that, from the general public’s point of view, a much more central question would be
“to what extent do the different [RRT] methods protect the privacy of interviewees”. In his
study, Lanke proposed a means of quantifying the level of privacy provided by binary RRT
models. Yan et al. (2008) later proposed a means of measuring quantitative model RRT
privacy in Equation (19) [19].

In Section 4, we relied on the standard assumption that the collection of auxiliary
information does not reduce privacy, but this may not be true. Considering that auxiliary
information is chosen because it correlates with the response to a sensitive question, auxil-
iary information may, in fact, compromise privacy. For example, in a case where X and Y
were perfectly correlated, the knowledge of X would lead directly to knowledge of Y. This
reality further complicates the ethical privacy considerations alluded to in Section 3.4. To
the extent that auxiliary information, along with survey information, can help to identify
individual respondents and therefore expose their answer to the sensitive question, such
auxiliary information should not be collected.

The quantitative MOET RRT model proposed by Parker et al. (2024) [15], which does
not involve the collection of auxiliary information, is represented by the exhibit displayed
at the beginning of Section 2 in Figure 1. The output of that model is the scrambled response
Z, and the model’s privacy is a function of the true response to the sensitive question (Y),
so
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vantages over the OET model, which Gupta et al. (2022) showed was superior to the basic 
Warner model, especially with regard to estimator efficiency [15,17]. The mixture feature 
of the MOET model enabled blending, which was not a part of the OET model. Im-
portantly, this feature made MOET superior to both a fully Warner-based or fully Green-
berg-based model. 

3. Ratio Estimator 
Thompson (2012) [18] showed how auxiliary information that is strongly and posi-

tively correlated with the response to a sensitive question can be used as the basis of a 
ratio estimator. Some concrete examples of valuable auxiliary information might include 
“home value”, which may assist in the estimation of “personal wealth”, and “frequency 
of fast-food credit card purchases”, which may assist in the estimation of “body mass in-
dex”. 

If auxiliary information is of adequate quality, the estimates achieved through use of 
a ratio estimator will be superior to those yielded by a “basic” estimator (in this study, we 
use the term “basic” to describe an estimator that does not incorporate auxiliary infor-
mation). In this section, we propose just such a ratio estimator, and we derive expressions 
that capture the ratio estimator�s MSE and Bias, the MOET model�s privacy, and the sen-
sitivity level of the sensitive question. 

for this model may be represented
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“home value”, which may assist in the estimation of “personal wealth”, and “frequency 
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If auxiliary information is of adequate quality, the estimates achieved through use of 
a ratio estimator will be superior to those yielded by a “basic” estimator (in this study, we 
use the term “basic” to describe an estimator that does not incorporate auxiliary infor-
mation). In this section, we propose just such a ratio estimator, and we derive expressions 
that capture the ratio estimator�s MSE and Bias, the MOET model�s privacy, and the sen-
sitivity level of the sensitive question. 

(Y).
If the collection of auxiliary information is part of the RRT model, then the model can

instead be represented as in Figure 4.
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berg-based model. 

3. Ratio Estimator 
Thompson (2012) [18] showed how auxiliary information that is strongly and posi-

tively correlated with the response to a sensitive question can be used as the basis of a 
ratio estimator. Some concrete examples of valuable auxiliary information might include 
“home value”, which may assist in the estimation of “personal wealth”, and “frequency 
of fast-food credit card purchases”, which may assist in the estimation of “body mass in-
dex”. 

If auxiliary information is of adequate quality, the estimates achieved through use of 
a ratio estimator will be superior to those yielded by a “basic” estimator (in this study, we 
use the term “basic” to describe an estimator that does not incorporate auxiliary infor-
mation). In this section, we propose just such a ratio estimator, and we derive expressions 
that capture the ratio estimator�s MSE and Bias, the MOET model�s privacy, and the sen-
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(X, Y). The exact value of
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(X, Y) is not obvious, but we do know that the
privacy of this model can be no greater than the privacy level of the basic “no auxiliary
information” model, because collecting additional information about a respondent could
not possibly increase the respondent’s privacy. Moreover, privacy is always floored at zero.
Therefore, we have that

0 ≤
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where MSE(µො௒) and 𝛻௔ are defined by Equations (3) and (4). The unified measure (UM) 
proposed by Gupta et al. (2018) enables a quantification of the overall model quality, tak-
ing into account the competing factors of estimator efficiency and model privacy [16]. This 
measure highlights one of the key features of the MOET model—its mixture capability. 
The MOET model is fundamentally a mix between a Greenberg-type model and a Warner-
type model, where the Greenberg model is generally more efficient and less private, but 
the Warner model is more private and less efficient. The model is, as detailed by Parker et 
al. (2024), sufficiently flexible in that it allows the researcher to choose the optimal balance 
between the two factors by strategically setting the “mixture parameter”, α, according to 
the researcher�s specific needs [15]. The researcher can also adjust the balance between 
privacy and efficiency, selecting a higher or lower scrambling variance. More scrambling 
(higher σௌଶ and higher σଶ் ) will result in a model with more privacy but at a cost to effi-
ciency. 
The Estimator for the Sensitivity Parameter (𝑾) is given by: 𝑊෡ =  𝑍̅ଵ − 𝑍̅ଶ𝜆ଵ(µோ − 𝑍̅ଶ) − 𝜆ଶ(µோ − 𝑍̅ଵ),   (6)

𝜆௜ = (1 − α)(1 − 𝑝௜), µ௒ ≠ µோ ,𝑝ଵ  ≠  𝑝ଶ. 
Parker et al. (2024) showed that the quantitative MOET model had important ad-

vantages over the OET model, which Gupta et al. (2022) showed was superior to the basic 
Warner model, especially with regard to estimator efficiency [15,17]. The mixture feature 
of the MOET model enabled blending, which was not a part of the OET model. Im-
portantly, this feature made MOET superior to both a fully Warner-based or fully Green-
berg-based model. 

3. Ratio Estimator 
Thompson (2012) [18] showed how auxiliary information that is strongly and posi-

tively correlated with the response to a sensitive question can be used as the basis of a 
ratio estimator. Some concrete examples of valuable auxiliary information might include 
“home value”, which may assist in the estimation of “personal wealth”, and “frequency 
of fast-food credit card purchases”, which may assist in the estimation of “body mass in-
dex”. 

If auxiliary information is of adequate quality, the estimates achieved through use of 
a ratio estimator will be superior to those yielded by a “basic” estimator (in this study, we 
use the term “basic” to describe an estimator that does not incorporate auxiliary infor-
mation). In this section, we propose just such a ratio estimator, and we derive expressions 
that capture the ratio estimator�s MSE and Bias, the MOET model�s privacy, and the sen-
sitivity level of the sensitive question. 

(X, Y) ≤
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(Y). (29)

In order to study the role of privacy reduction due to auxiliary data, we define ϕ as the
percentage reduction in privacy that occurs when auxiliary data are collected.

It follows that
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(X, Y) = (1 − ϕ)
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(Y). (30)

At this point, we will make use of the unified measure (UM) proposed by
Gupta et al. (2018) to assess the overall model value, taking into account the opposing
considerations of efficiency and privacy [16]. We represent the UM metric by the symbol δ:

δ(µ̂Y) =
MSE(µ̂Y)

Mathematics 2024, 12, x FOR PEER REVIEW 4 of 17 
 

 

• 𝑊: The sensitivity level of the sensitive question. That is, a proportion (1 −𝑊) of 
the respondents do not consider the question sensitive and are willing to provide true 
responses without scrambling. 

The Privacy Intrinsic to the MOET Model is given by: 𝛻௔ = ଵଶ {2α𝐴𝜎ௌଶ + (2 − 𝜆ଵ − 𝜆ଶ)(1 − 𝐴)ሾ(σ௒ଶ + µ௒ଶ)σଶ் + σௌଶሿ + (𝜆ଵ + 𝜆ଶ)[σ௒ଶ + σோଶ(µ௒ − µோ)ଶ]}.  (4)

The superscript 𝑎 in the above expression reminds us that this measure has been 
adjusted to reflect the Gupta et al. (2018) assertion that optionality does not undermine 
privacy for the proportion of respondents (1 −𝑊) who do not consider the question sen-
sitive [16]. 
The Unified Measure Intrinsic to the MOET Model is given by: 𝛿௔ = ୑ୗ୉(µොೊ)ఇೌ , (5)

where MSE(µො௒) and 𝛻௔ are defined by Equations (3) and (4). The unified measure (UM) 
proposed by Gupta et al. (2018) enables a quantification of the overall model quality, tak-
ing into account the competing factors of estimator efficiency and model privacy [16]. This 
measure highlights one of the key features of the MOET model—its mixture capability. 
The MOET model is fundamentally a mix between a Greenberg-type model and a Warner-
type model, where the Greenberg model is generally more efficient and less private, but 
the Warner model is more private and less efficient. The model is, as detailed by Parker et 
al. (2024), sufficiently flexible in that it allows the researcher to choose the optimal balance 
between the two factors by strategically setting the “mixture parameter”, α, according to 
the researcher�s specific needs [15]. The researcher can also adjust the balance between 
privacy and efficiency, selecting a higher or lower scrambling variance. More scrambling 
(higher σௌଶ and higher σଶ் ) will result in a model with more privacy but at a cost to effi-
ciency. 
The Estimator for the Sensitivity Parameter (𝑾) is given by: 𝑊෡ =  𝑍̅ଵ − 𝑍̅ଶ𝜆ଵ(µோ − 𝑍̅ଶ) − 𝜆ଶ(µோ − 𝑍̅ଵ),   (6)

𝜆௜ = (1 − α)(1 − 𝑝௜), µ௒ ≠ µோ ,𝑝ଵ  ≠  𝑝ଶ. 
Parker et al. (2024) showed that the quantitative MOET model had important ad-

vantages over the OET model, which Gupta et al. (2022) showed was superior to the basic 
Warner model, especially with regard to estimator efficiency [15,17]. The mixture feature 
of the MOET model enabled blending, which was not a part of the OET model. Im-
portantly, this feature made MOET superior to both a fully Warner-based or fully Green-
berg-based model. 

3. Ratio Estimator 
Thompson (2012) [18] showed how auxiliary information that is strongly and posi-

tively correlated with the response to a sensitive question can be used as the basis of a 
ratio estimator. Some concrete examples of valuable auxiliary information might include 
“home value”, which may assist in the estimation of “personal wealth”, and “frequency 
of fast-food credit card purchases”, which may assist in the estimation of “body mass in-
dex”. 

If auxiliary information is of adequate quality, the estimates achieved through use of 
a ratio estimator will be superior to those yielded by a “basic” estimator (in this study, we 
use the term “basic” to describe an estimator that does not incorporate auxiliary infor-
mation). In this section, we propose just such a ratio estimator, and we derive expressions 
that capture the ratio estimator�s MSE and Bias, the MOET model�s privacy, and the sen-
sitivity level of the sensitive question. 

(Y)
. (31)

Similarly, when auxiliary information is collected for ratio estimation:

δ(µ̂YR) =
MSE(µ̂YR)
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(X, Y)
. (32)

As this metric is made small by either small MSE values or large privacy values, smaller
values of UM are preferred. In the illustrative figure labeled Figure 5, we show the UM
calculated across a range of Φ values for both the basic estimator and the ratio estimator.

The parameters underlying Figure 5 were chosen, because they illustrate the concept of
UM “crossover” well. A more extensive numerical analysis across a broad range of values
is provided in Table 3 of Section 6. Figure 5 shows, as expected, that the UM value for the
ratio estimator is best (smallest) when Φ is small (that is, when the collection of auxiliary
information does not reduce privacy a lot). The UM gets worse (higher) from left to right, as
the collection of auxiliary data undermines privacy more and more. The UM of the “basic”
estimator (which does not depend on auxiliary information) is, of course, unaffected by
Φ. In the scenario underlying the figure, the basic estimator will be superior to the ratio
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estimator overall when the collection of auxiliary information reduces respondent privacy
by no more than Φcrossover ≈ 11%. The identity of this crossover point may be conceived as

Φcrossover =
2µYµXσXσYρXY − µ2

Yσ2
X

nµ2
XMSE(µ̂Y)

. (33)

This expression cannot be exactly calculated, as it relies on µY, σY, and MSE(µ̂Y), which are
unknown. However, if reasonable a priori estimates for these values are available and ρXY
is assumed to be less than 1, it follows that

Φcrossover(approx) ≤
2µY_apµXσXσYap − µ2

Yapσ2
X

nµ2
X

(
MSE(µ̂Y)ap

) , (34)

where µYap, σYap, and MSE(µ̂Y)ap are a priori estimates.
Note that Φcrossover will be small when n is large. This means that even small losses of

privacy will undermine the overall estimator quality (UM) if the sample size is large. This
makes sense, as estimates without the help of auxiliary information will generally already
be accurate in these circumstances.
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Figure 5. Overall performance of estimators when auxiliary information reduces privacy.

6. Simulations

In this section, we provide four tables that present theoretical and simulated values
associated with the MOET model when auxiliary information is used. Each row of each
table represents the output for a particular set of parameter values. Except when the
concepts underlying the tables call for unique values (the reasoning for such selections
will be specified along with each table), all four tables are based on a common set of
parameter values and modeling specifications. The value µY = 10 is chosen arbitrarily, as,
in isolation, its value is not important to the results or conclusions. The value of σY = 5
is set relative to µY and was chosen to result in a similar σY/µY value to other recent
related papers such as Gupta et al. (2022) and Parker et al. (2024) [15,17]. We set µX
equal to µY, because, in isolation, the size of µX is unimportant, and setting it equal to
µY facilitates easy comparisons. It is the relationship between σY/µY and σX/µX that is
important, so σX is tested at values below, equal to, and above σY (3, 5, and 7). ρXY is a
key quality of auxiliary information, so it too is calculated across low, medium, and high
values (0.50, 0.75, and 0.95). The values of µR and σR are set equal to the values of µY and
σY, because answers to the Greenberg unrelated question should mimic answers to the
sensitive question. µS = 0, µT = 1, σS = 1, andσT = 1 are standard choices for the additive
and multiplicative scrambling values that facilitate simplified expectation calculations,
and the choices of α = 0.15, p1 = 0.85, andp2 = 0.15 are chosen because they lead to high
model efficiency, per Parker et al. (2024) [15]. When not otherwise specified, W and A are
set to the moderate values of 0.90 and 0.95 respectively.
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Table 1 is provided for two reasons: to demonstrate the fact that the values of the
estimators derived in this study fall close to theoretical values across a wide variety of
simulated scenarios and to show that bias remains small in realistic scenarios. Table 1A
assumes a high sensitivity (W = 0.9) and low trust (A = 0.85) scenario, while Table 1B
reflects low sensitivity (W = 0.5) and high trust (A = 0.98). These values were chosen
because it makes sense that increased question sensitivity would undermine respondent
trust. In addition to running scenarios across ranges of σX and ρXY values (the two factors
that together characterize auxiliary information quality), a range of Y values are considered
(500, 250, and 100) to enable the study of bias across sample sizes. The scenarios in
Table 1A,B are run 100,000 times each to show that the estimation procedure is robust even
for small quantities like bias.

In Table 1A,B, µ̂YR represents the estimated mean response to the sensitive question
based on the ratio estimator. The letters MSE stand for mean squared error (a measurement
of estimator efficiency), the symbol
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vantages over the OET model, which Gupta et al. (2022) showed was superior to the basic 
Warner model, especially with regard to estimator efficiency [15,17]. The mixture feature 
of the MOET model enabled blending, which was not a part of the OET model. Im-
portantly, this feature made MOET superior to both a fully Warner-based or fully Green-
berg-based model. 

3. Ratio Estimator 
Thompson (2012) [18] showed how auxiliary information that is strongly and posi-

tively correlated with the response to a sensitive question can be used as the basis of a 
ratio estimator. Some concrete examples of valuable auxiliary information might include 
“home value”, which may assist in the estimation of “personal wealth”, and “frequency 
of fast-food credit card purchases”, which may assist in the estimation of “body mass in-
dex”. 

If auxiliary information is of adequate quality, the estimates achieved through use of 
a ratio estimator will be superior to those yielded by a “basic” estimator (in this study, we 
use the term “basic” to describe an estimator that does not incorporate auxiliary infor-
mation). In this section, we propose just such a ratio estimator, and we derive expressions 
that capture the ratio estimator�s MSE and Bias, the MOET model�s privacy, and the sen-
sitivity level of the sensitive question. 

represents privacy, and the symbol δ represents
the unified measure. The subscripts T and E indicate theoretical and empirical results,
respectively. In the boxed row of Table 1B above, the theoretical and empirical values of
MSE are 0.1470 and 0.1473, the privacy values are 22.85 and 22.91, the UM values are 0.0064
and 0.0064, and the bias values are 0.0021 and 0.0020. Across the board, Table 1A,B show
that the empirical values match the theoretical values closely.

Table 1A,B also show that the bias of the ratio estimator is generally small. This is
made most clear by the final column of the table (Bias(µ̂YR)T/µY), where bias is shown
to be a small percentage of the mean response to the sensitive question. It is only when,
concurrently, n is small and σX is large that bias becomes more significant. But large σX,
which leads to large CV(X) values that are dissimilar from CV(Y), represent a circumstance
when the superiority of the ratio estimator over the basic mean estimator is not guaranteed.

Table 2 is shown to demonstrate the performance of the MOET ratio estimator relative
to the performance of the MOET basic estimator across a variety of auxiliary information
scenarios. Importantly, σX and ρXY together define the auxiliary information quality, so
all permutations of low, medium, and high values of ρXY were considered, and a broad
range of σX values (1, 3, 5, 7 and 9) were considered. The scenarios in Tables 2–4 are run
10,000 times each.

Table 1. Ratio estimator using MOET—theoretical vs. empirical values. (A)
(A = 0.85, W = 0.90, α = 0.15, p1 = 0.85, p2 = 0.15, µY = 10, µX =

10, µR = 10, µS = 0, µT = 1, σY = 5, σR = 5, σS = 1, and σT = 1). (B)
(A = 0.98, W = 0.50, α = 0.15, p1 = 0.85, p2 = 0.15, µY = 10, µX = 10, µR = 10, µS = 0,
µT = 1, σY = 5, σR = 5, σS = 1, and σT = 1).

(A)

n ρXY σX µ̂YR MSE(µ̂YR) MSE(µ̂YR)E
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(µ̂YR)T
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(µ̂YR)E δ(µ̂YR)T δ(µ̂YR)E Bias(µ̂YR)T Bias(µ̂YR)E
Bias(µ̂YR )T

µY

500 0.95 3 10.0013 0.2021 0.2027 32.25 32.37 0.0063 0.0063 0.0008 0.0007 0.01%
500 0.95 5 10.0038 0.1961 0.1973 32.25 32.37 0.0061 0.0061 0.0053 0.0054 0.05%
500 0.95 7 10.0128 0.2061 0.2079 32.25 32.37 0.0064 0.0064 0.0130 0.0133 0.13%
500 0.75 3 10.0023 0.2141 0.2134 32.25 32.37 0.0066 0.0066 0.0014 0.0005 0.01%
500 0.75 5 10.0056 0.2161 0.2176 32.25 32.37 0.0067 0.0067 0.0063 0.0072 0.06%
500 0.75 7 10.0156 0.2341 0.2355 32.25 32.37 0.0073 0.0073 0.0144 0.0149 0.14%
500 0.50 3 10.0025 0.2291 0.2309 32.25 32.37 0.0071 0.0071 0.0021 0.0020 0.02%
500 0.50 5 10.0073 0.2411 0.2421 32.25 32.37 0.0075 0.0075 0.0075 0.0086 0.08%
500 0.50 7 10.0181 0.2691 0.2709 32.25 32.37 0.0083 0.0084 0.0161 0.0161 0.16%

250 0.95 3 10.0021 0.4043 0.4045 32.25 32.49 0.0125 0.0125 0.0015 0.0024 0.02%
250 0.95 5 10.0130 0.3923 0.3961 32.25 32.49 0.0122 0.0122 0.0105 0.0096 0.11%
250 0.95 7 10.0254 0.4123 0.4204 32.25 32.50 0.0128 0.0129 0.0259 0.0251 0.26%
250 0.75 3 10.0056 0.4283 0.4275 32.25 32.50 0.0133 0.0132 0.0027 0.0026 0.03%
250 0.75 5 10.0092 0.4323 0.4364 32.25 32.49 0.0134 0.0134 0.0125 0.0126 0.13%
250 0.75 7 10.0289 0.4683 0.4779 32.25 32.49 0.0145 0.0147 0.0287 0.0281 0.29%
250 0.50 3 10.0048 0.4583 0.4580 32.25 32.49 0.0142 0.0141 0.0042 0.0042 0.04%
250 0.50 5 10.0124 0.4823 0.4819 32.25 32.49 0.0150 0.0148 0.0150 0.0129 0.15%
250 0.50 7 10.0360 0.5383 0.5499 32.25 32.50 0.0167 0.0169 0.0322 0.0320 0.32%
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50 0.95 3 10.0112 2.0214 2.0241 32.25 33.48 0.0627 0.0605 0.0075 0.0077 0.08%
50 0.95 5 10.0552 1.9614 2.0400 32.25 33.49 0.0608 0.0609 0.0525 0.0519 0.53%
50 0.95 7 10.1353 2.0614 2.2505 32.25 33.49 0.0639 0.0672 0.1295 0.1363 1.30%
50 0.75 3 10.0085 2.1414 2.1604 32.25 33.48 0.0664 0.0645 0.0135 0.0145 0.14%
50 0.75 5 10.0664 2.1614 2.2312 32.25 33.49 0.0670 0.0666 0.0625 0.0613 0.63%
50 0.75 7 10.1432 2.3414 2.5277 32.25 33.48 0.0726 0.0755 0.1435 0.1446 1.44%
50 0.50 3 10.0154 2.2914 2.3177 32.25 33.45 0.0711 0.0693 0.0210 0.0215 0.21%
50 0.50 5 10.0781 2.4114 2.4964 32.25 33.49 0.0748 0.0745 0.0750 0.0758 0.75%
50 0.50 7 10.1580 2.6914 2.9396 32.25 33.46 0.0835 0.0879 0.1610 0.1657 1.61%

(B)

n ρXY σX µ̂YR MSE(µ̂YR) MSE(µ̂YR)E
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500 0.95 3 10.0018 0.1200 0.1205 22.85 22.92 0.0053 0.0053 0.0008 0.0007 0.01%
500 0.95 5 10.0036 0.1140 0.1146 22.85 22.91 0.0050 0.0050 0.0053 0.0054 0.05%
500 0.95 7 10.0132 0.1240 0.1255 22.85 22.92 0.0054 0.0055 0.0130 0.0133 0.13%
500 0.75 3 10.0017 0.1320 0.1320 22.85 22.92 0.0058 0.0058 0.0014 0.0005 0.01%
500 0.75 5 10.0048 0.1340 0.1349 22.85 22.92 0.0059 0.0059 0.0063 0.0072 0.06%
500 0.75 7 10.0156 0.1520 0.1523 22.85 22.91 0.0067 0.0066 0.0144 0.0149 0.14%
500 0.50 3 10.0021 0.1470 0.1473 22.85 22.91 0.0064 0.0064 0.0021 0.0020 0.02%
500 0.50 5 10.0078 0.1590 0.1596 22.85 22.92 0.0070 0.0070 0.0075 0.0087 0.08%
500 0.50 7 10.0183 0.1870 0.1903 22.85 22.91 0.0082 0.0083 0.0161 0.0161 0.16%

250 0.95 3 10.0009 0.2401 0.2416 22.85 22.98 0.0105 0.0105 0.0015 0.0024 0.02%
250 0.95 5 10.0135 0.2281 0.2297 22.85 22.98 0.0100 0.0100 0.0105 0.0096 0.11%
250 0.95 7 10.0219 0.2481 0.2534 22.85 22.99 0.0109 0.0110 0.0259 0.0251 0.26%
250 0.75 3 10.0035 0.2641 0.2647 22.85 22.99 0.0116 0.0115 0.0027 0.0025 0.03%
250 0.75 5 10.0082 0.2681 0.2715 22.85 22.99 0.0117 0.0118 0.0125 0.0125 0.13%
250 0.75 7 10.0314 0.3041 0.3140 22.85 22.99 0.0133 0.0137 0.0287 0.0282 0.29%
250 0.50 3 10.0044 0.2941 0.2967 22.85 22.99 0.0129 0.0129 0.0042 0.0042 0.04%
250 0.50 5 10.0137 0.3181 0.3195 22.85 22.98 0.0139 0.0139 0.0150 0.0129 0.15%
250 0.50 7 10.0343 0.3741 0.3837 22.85 22.99 0.0164 0.0167 0.0322 0.0319 0.32%

50 0.95 3 10.0083 1.2004 1.2145 22.85 23.54 0.0525 0.0516 0.0075 0.0078 0.08%
50 0.95 5 10.0506 1.1404 1.2113 22.85 23.55 0.0499 0.0514 0.0525 0.0521 0.53%
50 0.95 7 10.1361 1.2404 1.4213 22.85 23.54 0.0543 0.0604 0.1295 0.1373 1.30%
50 0.75 3 10.0133 1.3204 1.3399 22.85 23.55 0.0578 0.0569 0.0135 0.0146 0.14%
50 0.75 5 10.0675 1.3404 1.4083 22.85 23.55 0.0587 0.0598 0.0625 0.0615 0.63%
50 0.75 7 10.1468 1.5204 1.7068 22.85 23.55 0.0665 0.0725 0.1435 0.1451 1.44%
50 0.50 3 10.0192 1.4704 1.4861 22.85 23.53 0.0644 0.0632 0.0210 0.0213 0.21%
50 0.50 5 10.0813 1.5904 1.6685 22.85 23.54 0.0696 0.0709 0.0750 0.0764 0.75%
50 0.50 7 10.1611 1.8704 2.0808 22.85 23.54 0.0819 0.0884 0.1610 0.1650 1.61%

Red border box referenced in following text to demonstrate match between theoretical and empirical values.

Table 2. Comparison between the ratio estimator and basic estimator using MOET. (A = 0.95, W =

0.90, α = 0.15, p1 = 0.85, p2 = 0.15, µY = 10, µX = 10, µR = 10, µS = 0, µT = 1, σY = 5, σR =

5, σS = 1, σT = 1, and n = 500).

Scenario Basic Estimator Ratio Estimator

ρXY σX CV(X) µ̂Y MSE(µ̂Y)T ̂MSE(µ̂YR ) µ̂Y MSE(µ̂YR )T ̂MSE(µ̂YR ) 1
2

( µY
µX

)2( σX
σY

)
ρXY> 1

2

( µY
µX

)2( σX
σY

)
σX(ideal)

MSE(µ̂YR )
MSE(µ̂YR )T

∆n

0.95 1 0.1 10.002 0.1823 0.1823 10.002 0.1653 0.1823 0.10 yes 4.50 91% 46
0.95 3 0.3 10.002 0.1823 0.1822 10.002 0.1433 0.1822 0.30 yes 4.50 79% 106
0.95 5 0.5 9.995 0.1823 0.1819 10.004 0.1373 0.1819 0.50 yes 4.50 75% 123
0.95 7 0.7 10.002 0.1823 0.1819 10.014 0.1473 0.1819 0.70 yes 4.50 81% 96
0.95 9 0.9 10.006 0.1823 0.1823 10.026 0.1733 0.1823 0.90 yes 4.50 95% 24

0.75 1 0.1 9.999 0.1823 0.1821 9.998 0.1693 0.1821 0.10 yes 3.75 93% 35
0.75 3 0.3 10.003 0.1823 0.1827 10.003 0.1553 0.1827 0.30 yes 3.75 85% 74
0.75 5 0.5 10.000 0.1823 0.1818 10.007 0.1573 0.1818 0.50 yes 3.75 86% 68
0.75 7 0.7 10.004 0.1823 0.1816 10.012 0.1753 0.1816 0.70 yes 3.75 96% 19
0.75 9 0.9 10.006 0.1823 0.1820 10.031 0.2093 0.1820 0.90 no 3.75 115% 0

0.50 1 0.1 10.002 0.1823 0.1820 10.002 0.1743 0.1820 0.10 yes 2.50 96% 21
0.50 3 0.3 10.000 0.1823 0.1820 10.002 0.1703 0.1820 0.30 yes 2.50 93% 32
0.50 5 0.5 9.994 0.1823 0.1820 10.002 0.1823 0.1820 0.50 no 2.50 100% 0
0.50 7 0.7 9.996 0.1823 0.1815 10.015 0.2103 0.1815 0.70 no 2.50 115% 0
0.50 9 0.9 9.995 0.1823 0.1820 10.020 0.2543 0.1820 0.90 no 2.50 139% 0

Table 2 compares the ratio estimator performance to the basic mean estimator perfor-
mance. We can see that, unlike the basic estimator, the ratio estimator is slightly biased.
We also see that the ratio estimator should be used only when auxiliary information is of
sufficiently high quality to support its use (see Section 4 for the discussion of high-quality
auxiliary data). The eleven rows of the table where the ratio estimator is superior to the
basic estimator are identified by the word “yes”. These are the scenarios that pass the

superiority condition derived in Section 4: ρXY > 1
2

(
µY
µX

)2(
σX
σY

)
.
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Table 2 further shows that the ratio estimator tends to be most effective when the
correlation is high and σX is “favorable” (close to “σX(ideal)” per Equation (25)). Note, for
example, that when ρXY = 0.95 and σX = 5, the ratio estimator’s MSE is 25% lower than
that of the basic estimator. But when rho is 0.5 and σX = 9, the ratio estimator’s MSE is
139% of that of the basic estimator. The “σX(ideal)” column represents the σX that yields the
lowest MSE for the scenario. The MSE(µ̂YR)T/MSE(µ̂Y)T column shows the ratio estimator
MSE as a percentage of the basic estimator MSE. The ∆n column shows the number of
units by which a researcher could reduce his sample size while retaining a UM equal to
that of this basic estimator.

Lastly, based on Table 2, we can consider the performance of the MSE approximation
suggested in Section 3.3. The estimator of the ratio estimator’s MSE was represented by

̂MSE(µ̂YR), per Equation (18), and we can observe the conservative nature of this estimator
by comparing ̂MSE(µ̂YR) to MSE(µ̂YR)T (that is, comparing the simplified estimation of
MSE to its true value). As expected, it is specifically in the circumstances where ρYX > 1/2
and CV(X) is close to CV(Y) = 0.50 that ̂MSE(µ̂YR) provides a reliably conservative
estimate of the ratio estimator’s MSE. The estimator becomes less precise and more
conservative for higher values of ρYX . When the correlation is low and CV(X) is not close
to CV(Y), the simplified estimator is no longer reliable. But these are circumstances when
ratio estimation should not be used in the first place.

Table 3. Overall (UM) performance of mean estimators when the collection of auxiliary information
reduces privacy. (A = 0.95, W = 0.90, α = 0.15, p1 = 0.85, p2 = 0.15, µY = 10, µX = 10,
µR = 10, µS = 0, µT = 1, σY = 5, σR = 5, σS = 1, σT = 1, and n = 500).

Scenario Basic Estimator Ratio Estimator

ρXY σX ϕ µ̂Y ̂MSE(µY )T
̂MSE(µ̂Y )
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δ(µ̂YR )T δ(µ̂YR )<δ(µ̂Y)

0.95 7 0% 10.001 0.1823 0.1819 25.0 0.0073 10.013 0.1473 0.1819 25.0 0.0059 yes
0.95 7 5% 9.996 0.1823 0.1818 25.0 0.0073 10.011 0.1473 0.1818 23.8 0.0062 yes
0.95 7 10% 9.994 0.1823 0.1818 25.0 0.0073 10.009 0.1473 0.1818 22.5 0.0065 yes
0.95 7 15% 10.002 0.1823 0.1820 25.0 0.0073 10.013 0.1473 0.1820 21.3 0.0069 yes
0.95 7 20% 10.001 0.1823 0.1820 25.0 0.0073 10.018 0.1473 0.1820 20.0 0.0074 no

0.75 5 0% 9.998 0.1823 0.1818 25.0 0.0073 10.003 0.1573 0.1818 25.0 0.0063 yes
0.75 5 5% 10.000 0.1823 0.1820 25.0 0.0073 10.004 0.1573 0.1820 23.8 0.0066 yes
0.75 5 10% 9.993 0.1823 0.1818 25.0 0.0073 10.001 0.1573 0.1818 22.5 0.0070 yes
0.75 5 15% 9.994 0.1823 0.1819 25.0 0.0073 9.999 0.1573 0.1819 21.3 0.0074 no
0.75 5 20% 10.002 0.1823 0.1820 25.0 0.0073 10.008 0.1573 0.1820 20.0 0.0079 no

0.50 3 0% 9.995 0.1823 0.1814 25.0 0.0073 9.997 0.1703 0.1814 25.0 0.0068 yes
0.50 3 5% 10.004 0.1823 0.1822 25.0 0.0073 10.006 0.1703 0.1822 23.8 0.0072 yes
0.50 3 10% 9.995 0.1823 0.1813 25.0 0.0073 9.997 0.1703 0.1813 22.5 0.0076 no
0.50 3 15% 10.001 0.1823 0.1817 25.0 0.0073 10.003 0.1703 0.1817 21.3 0.0080 no
0.50 3 20% 9.998 0.1823 0.1825 25.0 0.0073 10.002 0.1703 0.1825 20.0 0.0085 no

Table 3 studies the behavior of the basic and ratio estimators in the possible real-life
scenario where the collection of auxiliary information does reduce privacy (see Section 5 of
this study). As usual, we consider a range of ρXY and σX values as a means of studying
auxiliary data with various levels of quality. We also consider a range of percentage
reductions in privacy (Φ), as privacy reduction is the focus of this table, and we calculate
UM for all scenarios to quantify the overall model quality. While the basic estimator is
indifferent to the collection of auxiliary information (UM is constant across all scenarios),
the privacy associated with the ratio estimator declines as Φ rises, causing the UM (δ) to
become ever less favorable (higher). Whenever the reduction in privacy is less than the
Φcrossover value per Equation (33), the UM for the ratio estimator is greater than the UM for
the basic estimator, and we can claim that the ratio estimator is superior overall.

For Table 4, µR = 8 rather than the usual assumption µR = µY = 10. This was done
because the estimators Ŵ in Equation (6) and ŴX in Equation (23) become unstable when
µR = µY, as can be seen by observing their formulas. The sensitivity estimator proposed in
this paper that incorporates auxiliary information outperforms the estimator proposed by
Parker et al. (2024) given in every scenario (relative error is smaller) [15]. Note that both Ŵ
and ŴX are most accurate when the sensitivity levels are high; these are the circumstances
when RRT is most valuable.
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Table 4. Sensitivity estimation—compare the basic estimator to the estimator that incorporates
auxiliary information. (A = 0.95, α = 0.15, p1 = 0.85, p2 = 0.15, µY = 10, µX = 10, µR = 8, µS =

0, µT = 1, σY = 5, σR = 5, σS = 1, and σT = 1).

Scenario Basic Sensitivity Estimator Sensitivity Estimator that Incorporates
Auxiliary Information

n W Ŵ Absolute Error Relative Error ŴX Absolute Error Relative Error

500 0.90 0.8630 −0.037 4.1% 0.8732 −0.027 3.0%
500 0.70 0.6554 −0.045 6.4% 0.6667 −0.033 4.8%
500 0.30 0.2374 −0.063 20.9% 0.2499 −0.050 16.7%

250 0.90 0.8172 −0.083 9.2% 0.8357 −0.064 7.1%
250 0.70 0.5746 −0.125 17.9% 0.6165 −0.083 11.9%
250 0.30 0.1483 −0.152 50.6% 0.2473 −0.053 17.6%

50 0.90 0.8305 −0.070 7.7% 1.4627 0.563 62.5%
50 0.70 36.6184 35.918 5131.2% 2.1976 1.498 213.9%
50 0.30 8.3543 8.054 2684.8% 1.8016 1.502 500.5%

7. Conclusions

The use of auxiliary information, through the implementation of a ratio estimator,
will improve the efficiency of mean estimation, provided the auxiliary information is of
sufficiently high quality. In some scenarios shown in this study, efficiency improvements of
25% were observed.

In Section 3.3, we showed that, in the expected circumstances, ρYX > 1/2 and
CV(X) = CV(Y), the efficiency of the ratio mean estimator can be conservatively esti-
mated using the MSE estimator for the basic mean estimator in Equation (3), because the
incremental MSE associated with auxiliary data will be negative.

In Section 5, we used the unified measure (which takes both efficiency and privacy
into account) to show that the overall quality of the ratio mean estimator is greater than
that of the basic mean estimator, provided the auxiliary information used does not impair
respondent privacy. But we also noted that, in some cases, auxiliary information does
undermine privacy. In such cases, the use of auxiliary information should be considered
carefully from an ethical standpoint before being collected. Even when no ethical breaches
are identified, it is possible that privacy loss can undermine UM to the point that the overall
quality of the ratio estimator is less than that of the basic estimator.
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