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1. Introduction

Throughout this paper, k is a commutative ring, and all unadorned tensor products
are over k. Let A be the algebra of symmetric functions. It is well known that A is a graded
k-algebra since A = @,,>¢ An, where A, are the homogeneous symmetric functions of
degree n, and @ denotes the usual direct sum of modules [1].

For any partition A, the monomial symmetric function

m, is given by

my = Z XD‘, (1)

IXGG(OO)/\

where G(Oo)/\ is the group of all permutations of the set {1,2,3,...} which leave all but
finite elements invariant [1]. Letting A run through the set Par of all partitions, this gives
the monomial k-basis {m, } of A [1,2]. Letting A run only through the set Par, of partitions
of n gives the monomial k-basis for A, [1,2].

We have (A, i, i, A, €), which is a Hopf algebra [1,2], where

¢  The multiplication is the map

A®A—m>A, my Q My > My My.

*  The unit is the inclusion map
k=Ay -5 A

*  The comultiplication is the map

AL AQA, my Y my @my,
(uv):
ulv=A
in which p U v is the partition obtained by taking the multiset union of the parts of y
and v, and then reordering them to make them weakly decreasing.
*  The counit is the k-linear map

k=Ag -5 A
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with €|A0:k = idy and €‘|1:®n>0 A, = 0.

For the basic notions of symmetric functions, the reader is referred to [1-7].

Let A = (1"™,2™2, ... k™) denote the (nonempty) partition A, where m; is the multi-
plicity of part i in partition A and k is the largest part of A, as opposed to the traditional
additive notation. This notation is called the multiplicative notation or the frequency notation
for A [8].

Let A = (1"1,2™2, .. k™) be a partition written in frequency notation. Following [9],
the partition polynomial f) is defined by

m,»xi. (2)

1=

flx) =

i=1

If we define the partition A = A0) = (1™,2M2, .. k™k), then f)(\l) (x) is the partition
polynomial of the new partition A(1) defined by A(1) = (1272,2%™5_ (k —1)*"«). Contin-
uing in this way, we obtain the following (finite) sequence of partitions (A(d) ) ek whose

<d<

partition polynomials are related by differentiation [9]:
A@ — <1(d+l)!md+1/1!,2(d+2)!md+2/2!,'..,(k_ d)k!mk/(kfd)!> forall0 < d < k. 3)

Explicitly, one has

|
';é\‘
=

=m+ Y. (i+1)miqx’
i=1

= 1my + fio)(x),

where A1) = (12xm2 28xms (1)),

P = ()
d2
= Wf)\(x)
(k-1) '
= Y i+ D) mgx!
i—1
(k-2) |
=2my+ Y, (i+1)(i+2) miox’
i=1
= 2lmy + fA(Z) (x),
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where A(2) = <13x2xm3/24x3><m4,. .., (k o 2)k><(k71)><mk>'

d
10 = he)

(k—@d-1)) ‘ .
= ), (1) (i (d 1)) myygq)x'T
i=1
(k—d) )
=dmg+ Y (i+1)(i+2)---(i+d)mgx
i=1

=dmy + fa (%),
where

/\(d) _ <1(d+1)!md+1/1!’2(d+2)!md+2/2!/ ., (k _ d)k!mk/(kfd)!> forall0 < d < k. (5)

The main goal of this paper is to use partition polynomials to define new combinatorial
structures on A. Explicitly, the paper is organized as follows. In Section 2, we introduce
Stirling partitions and factorial partition polynomials, and we show that every partition
polynomial of a partition A is a factorial partition polynomial of a unique Stirling partition A.
Section 3 is devoted to introducing partition differential equations and their corresponding
partitions using integration as well as giving explicit examples. Section 4 explores new
combinatorial operations on A and investigates an alternative characterization for primitive
elements in A using partition polynomials and calculus tools. The last section of this paper
summarizes the most important consequences and gives some potential future directions
that offer some paths for the next investigation.

2. Stirling Partitions and Factorial Partition Polynomials

Recall that factorial polynomials are defined by
XM =x(x=1)---(x—n+1),
where 1 is a non-negative integer (x(?) = 1 by convention).
Definition 1. Let A = (1,22, ... k™) € Par be a partition.
(i)  The factorial partition polynomial of A is defined by

k
ha(x) = Zmix(i). (6)
i=1

(i) A is called a Stirling partition of the second kind (or simply a Stirling partition) if
S i
m=Y {1}, 7)
where n;s are non-negative integers, and the numbers {i} are the Stirling number of the
second kind.

Notice that the above definition implies that if A # @, then ny > 0.

Theorem 1. Let A = (1"™,2™2, ... k™k) be a partition.

(i) There exists a unique Stirling partition A with fy = hj.

(ii) Conversely, if A is a Stirling partition, then it gives rise to a unique partition A with
hy = f;. Furthermore, A=A=A
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(ii)
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C

where A = (111,22, .. kfr) and

£ ]

h:ZWL} ®)
=

If A is a Stirling partition, then

= Ji

m=Y {1}, ©)
j=i

where ;s are non-negative integers and the numbers {i } are the Stirling number of

the second kind. Set A = (1m,2™, ... k™). Then, it is quite obvious that 1) = f; and

A = A = A. The uniqueness follows directly from the fact that the set of ordinary

powers of x and the set of factorial powers of x both form a basis for the vector space

of polynomials, and the numbers {i } are simply a “change in basis coefficients” for
these bases.
O

The partition A defined in Theorem (1) is called the Stirling partition of A. It is well

known that {{} = 1 for any positive integer j. Thus, the following proposition is an
obvious consequence.

Proposition 1. Let A = (1™1,2™2, ... k™) be a partition, and let A = (111,2f2, .. kik) be the
Stirling partition of A. Then,

(i)

Ifmj=ifori=1,2---,k, then
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k(k+1)
h=""
(ii) Ifml-:izforizl,2~-,k,then
k(k+1)(2k+1)
= 6
(iii) Ifmi:i3f0ri:1,2~~~,k,then
k(k+1)\?
= >

Example 1.
(i) Let A = (12,29,3% 49 51, Then,
A = (12,20,34,40,51)
<1 = 1”7{} 221 2771{} 32] 3m]{} 42] =4 ]{4} 521 5m]{}>
<1 +4(1)+0(1)+1(1) 90(1)+4(3)+0(7)+1(15) 34(1)+0(6)+1(2 )/40(1)+1(10),51(1)>
(i) To illustrate Proposition (1), let A = (11,28,3%7). Then,

< 28 327>

<1Z]3 1 M {]} 22]3 2 /{]} 3):]3 3 ]{3}>
<1Z]3 iy 22]3 2 P AL 32]3 3] {/}>
): 1] Zz]{]} 233]{3}

= a1/ 2 ,3%i )

3(3+1) \ 2

— <1< p) )’28(1)+27(3),31(27)>
— <136 289 327>.

3. Partition Differential Equations

Definition 2. Let A = (1™,2™2, ... k™) € Par and fix an integer d, where 0 < d < k. A
(A, (x))-partition differential equation is a differential equation of the form

y@ = Mfi(x)=M 2 m;x’, (10)

subject to the initial conditions

]/(dfl)(%) =M; 4,
J/(dfz)(x()) =My »,

() oo
y(l) (xo) = Ml/
v (xo) = My,
where M > 0, xo, Mo, My, - - - , M;_1 and the coefficients of each polynomial of the polynomials
y @1,y 4 ) are non-negative integers. Unless confusion is possible, we will simply say

that (A, x) is a partition differential equation.
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The solutions are completely determined by the given partition A and by the initial
conditions (x).

Remark 1.
(i) In the above definition, y'©) = y,y(V) = —y oyl = dy

dxt”
(i) Ifd=x9o=0and M =1, then M1 =0a ndy = fa(x) = Zﬁ;l mixt.

Let
y(d = Mfy(x Mzm xi,

y@ VU (x) =My_q,
y(d_z)(xo) = M; »,

3/(1) (XO) = Ml/
Y (x) = My,
be a (A, (x))-partition differential equation. We have

.k .
-1) :/MZmixldx
i=1

k
= M/Zmixldx
i=1
k .
=M Z m; / x'dx
i=1

i i1
=M) mi——+Cy1
= i+l

z+1

—Ml;mlw—’—c 1

1+1

k
/Z% - '/'dx—i—/Cd_m?x

: mi i+1

m/‘xz+ dx+/Cd_1dx
i+2

e G

i=1

k

Y m

=1

1

x1+2

zm +Ca1x+ Cy0.

:MZ
_MZ
:M.
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-3) _ / =Dy
xz‘+2

k
= M/Zmlmdx+/Cd_1xdx+/Cd_2dx

MZ (z+2 7 /xi+1dx+/Cd,1xdx+/Cd,2dx

k xz+3 x2
=M) m;— - - Cj1=+Cyrox+Cy_
i; G i+2)(r1) oty T2t Cas

k X3 2

X X
’M;mW+wm+%*E+@4ﬁ+Q*

) _ / y@
xi+d—2 d 3

:A4/Q:W'+d—avﬂ+cd1w 3y G2 g

-+ C3 —i— Cp)dx

xi-3

1+d 2
- 23/ (i+d— 2v””+/cd1d 3y

+~+/QFM+/QM
xi+d71 Xd72 xd*S

::szmu+d—UVﬂ+%1@i2ﬂ+cd%d 3)!
2
+ - +C3 +C2 +C1

xitd=1 xi-2
+Cho1 s

y© :/yuux
Jony

M P m,m
+--- C3 - + Cz —|— Cy)dx
1+d xd*l d—2
= z+dv'+C“Wd—n!
3 2
+C3 +C2 +C11|—|—C0

||
M»

Applying the initial conditions, we have

k
-y Mm; i+ My 4 -1 My, -2

=R RN P d—2)!
i=1
M M
b xS Mo
k4 .
B iMm; g Ma1 g4 My 45
_£%@+@W Ta-nt tu—2*

(11)

My , M
+ - +?X +TX+MO
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(d) M My My_q 1Mmyq
/ (A) = (17,22, (d— 1)@, (d+1)T+0
ktMmy
(k+d) 1)
Theorem 2. Let A = (1"™,2™2, .. k™k) be a partition, and let
k .
W = Mfy(x) = M) mix!, (13)
i=1
be a (A, (x))-partition differential equation subject to the initial conditions
v (x) =My,
v (x0) =My o,
(%) ..o
y (x) = My,
v (xo) = My

Then,

< / ’ (A)) -/ o, (14)

foralll <t <d.

Proof. Using (11), we have

dt dt & ilMm; My
(0) i itd d-1__d—1
Y T (l.; v Ta-ogt Tt
Mz M
+F 79( + T + Mp)
_ i iMmi  iva-t o Mar g
(i+d-t)! (d—t—1)!
M M (15)
g Y20 My
2! 1!
i i'Mm; yitd—t 4 Lxdf(tﬂ)
* (i+d—t)! (d—(t+1))!
M M
goop M2 0 Mg
2! 1!
=y,
which is the solution of the (A, (x))-partition differential equation
24D = Mfy (x MZm xt, (16)

satisfying the initial conditions
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2@ D(xg) =My,

2072 (xg) =My o,
() ..o

2 (xp) = M1,

Z(O) (x()) - Mt/

Thus,
(d) (d—t)
MNlo= A). (17)
( [ >) /( e
O

Theorem 3. Let A be a partition, and let

y' = Mfy(x) (18)

be a (A, (x))-partition differential equation subject to the initial conditions

ya-n(g) = (i
—2)1
ya-2) () = Gerd=2r
()) . oo
]/(1)(0) _ (kz!l)r’
y0©) =0
(i) IfA= (1,27, k™) and M = (k+d)!, then
) k+1 k+2 k+d—1 mq 1! (k+d)!
/ (A) = <1( 1) 203 ),...,(d—l)( i1 >,d0,(d+1) Tl
(%)
mki(e+d)!
e (d k)T,
(i) IfA = (1m,2m, . kme) and M = LKL g,
%) my (k) (K5
[ =002, @ - )EED, a0, @ +1) o

g (k)1 (5

Ak G .

(ii)) IfA = (1m1k(k71),2m2k(k72), . ,kmkk<k7k>) and M = (kJ,;d)!, then we have
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(@) e
/ (/\) = <1(kJ1rl)l2(k;2)"”,(d7 1)( d1 ) dO (d+1) 1;5
(%)

mk(k+d)

L (d 4 k) G,
Proof. (i) Wehave a (A, (x))-partition differential equation

y W = Mf(x), (19)

()) .o
yWix) =My,
vy (xo) = M.
where
A= <1m1,2m2,...,kmk>, Xo=My=0, M= (k-l-d)!,
| — )1 — 1)
M, = (k-;c-'l).’ My, — (k+i' 2)./M L (k+il nt
Using (11), we have
k i+d 1)\ 14d—1 k d_z)[ d—2
0 _ ' , X (k+d—1)lx (k+ Ix
y ;m’(k”)‘ Gra)/il T K@= K(d—2)!
(k+2)1x*  (k+1)x
k!2! k1!
i ml k+d> xi+d (k+d_1)lxd71+ (k+d_2)!xd72
= (i+4d)! k!'(d—1)! k!(d —2)!
(k+2)! ,  (k+1)!
R ¥ TR N ¥ FY

il ml' k+d) xi+d+(k'}j‘i;1>xd1+<k";i;2>xd2

k+2 2 [(k+1
+-~+< 5 )x +< 1 )x.
Consequently, we have

() g 1 (k+d)!
[ wy=alatd, @t @+1) "

k! (k+d)!

(d+k) (kA >

(i) We have a (A, (x))-partition differential equation

y W = Mf(x), (20)
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v (x) =My,
YU (x) =My,
() . oo
y(l) (XO) = Ml/
v (xo) = Mp.
where A = (1"1,2™2, .. k™), M = W, x9 = My =0, and
k+1)! k+d—2)! k+d—-1)!
Mlz( k!) ,Mdfzzi( x ),qu:i( iz !
Using (11), we have
JO i mi(kd)!(k+d)!  xitd (k+d—1)x%1  (k+d—2)x?2
= dik! (i+d)/il ki(d—1)! ki(d —2)!
‘e (k+2)x%  (k+1)x
k2! k!1!
i m;(kd)!(k+d)! ¥+ (k4+d -1 (k4+d—2)x832
= d'd'k' (i +d)t/dil ki(d—1)! Ki(d —2)!
L (k+2)!1x*>  (k+1)!x
k12! k!
i m; (kd)! (K19 mikd)!{("5) siq, (ktd =D (ktd - 2)l?
A k(d—1)! ki(d —2)!
. (k—|—2)!x2 (k+1)!x
k2! k!1!
_ i m;(kd)! (k+d)xi+d+ ktd=1\ 4 (ktd—=2) 4o
S 4 d—1
4+ <k;2>x2+ <k_;1>x.
Consequently, we have
@) k+1 k+2 k+d 1 WLW
/ W) = a2 @ - S0 @+ 1) o0 1)
(%)
mk(kdk'(z Vi)
d+k) a9 22)

(ili) We have a (A, (x))-partition differential equation

y(d) = Mf(x).

(23)
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k— k— k—k
where A = <1m1k( 1>,2m2k( 2),...,kmkk( )>, M= (k;;,d) xg = My = 0and

~ (k+1)! (k+d—2)! (k+d—1)
My=-—g— " /Map= iz s Mg = 2
Using (11), we have

imik >(k+d) xitd (k+d—-1)x% 1 (k+d—2)x?2

= (i+d)!/i! ki(d —1)! ki(d —2)!
L (k+mm2 (k+1)x
k12! k1!
:f:mﬂkﬂmk+@!;ﬂd_Fw+d—nu¢4+(k+d—@mﬁz
= k! (i+4d)! ki(d—1)! k!(d —2)!
12 !
T (k —Zé?.x (k;{l—llll).x
ffmwk+d).ﬂﬁ +(k+d—UmW4+jk+d—@m¢Q
= (i+d)! ki(d—1)! k!(d —2)!
‘. (k+2)1x*  (k+1)x

k12! k1!

k
m k+d i+d k‘f“d*l d—1 k+d*2 )
;; Gray © Tl a-1 )Y Tla2 )"

k+2\ 5 (k+1
+...+( : ) +( ! )

Therefore,
(d) my (k+d)!
[ =20, =), @)
(x)
my (k-+d)!
(d+k) kk+d >
O

4. New Algebraic and Coalgebraic Structures for the Algebra of Symmetric Functions
Definition 3. Let y = (1",2%,... k%) and v = <1b1,2h2,. .., tbf> be partitions. Then,
(D) fufv = fuov, where p © v is the partition

pov= (1922, (k+t)%") (24)

where
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i
¢ =) abi_j, i=12--- k+t (25)
j=1
(i) fu+ fv = fumy, where u + v is the partition
pBv = (19,2%2,...,5%) (26)
where
s = max(k,t) (27)
and
ci=ua;+b, i=12,---,s. (28)

We have the following theorem:

Theorem 4. Let A, A, A" € Par. Then,
(i)
ABAN = AuUN.
(i)  The operation © is associative.
(iii)
AeAYD = AeAO@EN AN
(iv)  For any partition differential equations (A, (x)) and (A', (x)), one has

(d)

(d) (d)
/(/\EH/\) - A (A)EE/M ().

(%)

(v)  For any partition differential equations (A, (%)), (A, (x)), and (A", ()), one has

(d) (d)

/ ABA) oA = / (A@A”)Eﬂ/(d)(/\’cax\”).
()

(+) (*)

(vi)
ABN = (ABN)
(vii)
ABN)OA = AN BN o).
(viii)

AL = Aeo)xOBENoAD

(ix) For any partition differential equations (A, (x)) and (A, (%)), one has

(d)

(d) (d)
/ (ABA) = /(*) ()\)EEL) ().

()
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(x)  For any partition differential equations (A, (x)), (A, (x)), and (A", (x)), one has

/(d)(wa)u) O — /

() (%)

(d) (d)
(A©A") B / (M A,
(*)

Proof. (i) This is obvious.
(i) Forany A, A/, A" € Par, we have (fyfar)far = fa(farfar). Thus,
AN = Ao o).

(iii) This follows directly from (f) + fa) far = fafar + farfan.
(iv) This comes immediately from the fact that

%(fAfN) = f)\%f/\’ + fur %fm

and Definition (3).
(v) Forany A, A" € Par, we have

/(fA + fa)dx = /fAdva/fA/dx.

Therefore, we have

(d) (d) (d)
/ (ABA) = /*) (A)B%) ().

(%) (

(vi) Forany A, A/, A" € Par, we have

[+ fifudx = [ ffuds+ [ fufuds.
Accordingly, we have
ABA)YOA = AN BN o).
(vii) This follows directly from Theorem (1) and Definition (3).

Parts (vii)-(x) are immediate consequences of parts (ii)—(vi).
O

Using the convention fp = 1 (the constant polynomial f(x) = 1), we have
AOD = QOA = A
Using Theorem (4), we have the following theorem.

Theorem 5.

(i) The triple (A, n,u) is a k-algebra, where the multiplication is the map
AN 5 A, my @ my > myey,
and the unit is the inclusion map
k=Ay — A.

(i) The triple (A, Y, €) is a k-coalgebra, where the comultiplication is the map
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Y
A—ARN, my — Y my @ my,
(u,v)€ParxPar:
UOV=A

and the counit is the k-linear map
k=Ay— A

with e‘AO:k = idy and €h:®n>0 A, = 0.

Proof. The proof of (i) follows directly from Theorem (4). To prove part (ii), we have to
show that the following diagrams are commutative:

ARARA (29)

\/

Aok-2 A<t kaA (30)

id®eT idT TG@id

A®A$AT>A®A

Here, ® and ¥ are the isomorphisms ® : A®@k - A, my ®1+— myand ¥ : k®A —
A, 1®my — m,. For any A € Par, we have

(Y ®id)Ym) = (Y ®id)( ) My @ ny)
(') €Parx Par:
HOU'=A

= ) Yy @ my
(wu')€Parx Par:

Hou'=A
= ) Y (my @ my) @m,y
(' )EParx Par: (vy')€Parx Par:
pou'=A vov'=p,
= ) 1y @ My @ 1,y
(v,v' ,u")EParx Parx Par:
vov' op'=A
= ) ) My & (my @ m,)
(wp')EParxPar:  (v,v')EParx Par:
Hou'=A vov'=p/
= ) my @ ) (my @ my)
(' )EParx Par: (v,v")EParx Par:
Hou'=A vov'=p
= ) My @ Yy
(wu')€Parx Par:
Hou'=A
(oY) Y meomy)
(') €Parx Par:
pop'=A

= (ld & Y)YWI}L.



Mathematics 2024, 12, 3621 16 of 18

Therefore, the commutativity of the associativity diagram follows. Checking the
commutativity of the unity diagram can be performed as follows:

Y(e®id)Ym), = ¥(e®id)( Y My @ 1m,y)
(u,u")€Parx Par:
HOW'=A

=9 Y. e(my) @my)

(') €Parx Par:
pOW'=A

= Y. €(my) my
(') € Parx Par:
Hou' ©=A

=m, (since e[y = idy and €|;—g,_, A, = 0)-
= id(m,)
= ) my e(my,)

(u,u')EParx Par:
uop'=A

=d( Z my @ e(my))
(u,pu")€Parx Par:

pop'=A
=d(id®e)( ) My @ iy )
(u,p1")EParx Par:
pop'=A
=®(id®e)Ym,.
It follows that (A, Y, €) is a k-coalgebra. [
Example 2. Let A = (19,22,37,45,51) bea partition. Then,

Ymy = 1300237 45 51) @ 141192 1y @ 11231 95 31y + 11271 93 31y @ 11232 91

+ m<12’27/35/41> ® m<11> + m<11> ® T’I’l<12/27,35,41> +1® m<10’22/37/45151>-

Using the definitions of the polynomials f) and the map A, we end the paper by giving
an explicit description for the primitive elements in the k-coalgebra (A, Y, €).

Theorem 6. Let A = (1™,2"2, .. k™k) be a nonempty partition. Then, m, is a primitive element
in (A, Y, €) if and only if my # 0.

Proof. The case is obvious when the length of A equals 1. If k > 2 and m; = 0, then x?
divides f). Consequently, we have f, = xf,, where y = (1™,2"2,..., (k — 1)™-1), and

where A is defined in Theorem (1). Then, F) is called the partition primitive function of A.

Definition 4. Let

Let

9y
i Uz
ox ay

Ifa fa
Ir (6, y) = OTF - [VTfAl _ a;‘ A
A Ay :
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be the Jacobian matrix of F), where VT fy and V7 f; are the transpose of the gradient of the
first and second component, respectively. The following theorem shows that the partition
primitive functions can be used to characterize the primitive elements in (A, Y, €).

Theorem 7. Let A = (1",2™2, ... k™k) be a nonempty partition, and write A = (1",2"%2, ... k™).

Then,

(i) my and mjy are primitive elements in (A, Y, €) if and only if det(Jr, (0,0)) # 0.

(ii) Foranyk > 2and1 < d <k, let ]g)(x,y) = VdTF(x,y), where V4 = VYV91, Then,
m, ) and mjq) are primitive elements in (A, Y, €) if and only zfdet(]g) (0,0)) # 0.

Proof. We note that the Jacobian matrix of F) is given by

af, 9
Jr, (x,y) = % ai; = [ Ao ® : ]
BR\MT) = b il .
A % % 0 n1 + fio (y)
So,
my + f)(0) 0 m+0 0 ™m0
Jr,(0,0) = ! B - .
0 n1+ f10(0) 0 m+0 0 m

Thus, det(JF, (0,0)) = myny, and myny # 0 if and only if my # 0and ny # 0. It follows
from Theorem (6) that 11, is a primitive element in (A, Y, €) if and only if det(Jr, (0,0)) # 0.
The proof of the other part follows directly from the fact that

ap o
19 (x,y) = 5 o | _ [dmat ) 0 1
" s % 0 d'ng + fr (y)
So,
dim 0
@W,00=|"
5 (00 [ 0 dng|

and det(]g) (0,0)) = (d")?myny. O

5. Brief Conclusions and Future Directions
5.1. Brief Conclusions

(i) Every partition corresponds uniquely to a Stirling partition.

(i) While partitions behave well with integration, the integrand partitions are completely
determined by the initial conditions of the partition differential equations.

(iii) Partition polynomials can be used as extremely useful tools to establish combinatorial
structures on the algebra of symmetric functions.

(iv) Partition primitive functions play a central role in our investigation of characterizing
primitive elements in A.

5.2. Future Directions

A Bayer pattern array can be seen in (Figure 1):

BIG|B|G|B
GR[GIR|G
B[G|B|G|B
GR[G|R|G
B[GIB|G|B

Bayer Filter Mosaic (in terms of colors) Bayer Filter Mosaic (in terms of letters)

Figure 1. Bayer Filter Mosaic.
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Every image can be seen as a basic element for a certain free module generated by
a basis indexed by the set of all partitions or compositions (based on the shape of its
pixels) [10,11]. Consequently, we can apply some digital image processing tools, such as
Bayer’s filter, to define coalgebraic structures in terms of colors using [10]. We can also
extend our research to define composition polynomials and use that to introduce combi-
natorial algebraic or coalgebraic structures using [11]. One can also think of developing
partition primitive functions and using the integral of partitions to define new structures
on the algebra of symmetric functions.
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