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Abstract: A class of semilinear elliptic differential equations was investigated in this study. By
constructing the inverse function, using the method of upper and lower solutions and the principle
of comparison, the existence of the maximum positive solution and the minimum positive solution
was explored. Furthermore, the uniqueness of the positive solution and its asymptotic estimation
at the origin were evaluated. The results show that the asymptotic estimation is similar to that of
the corresponding boundary blowup problems. Compared with the conclusions of Wei’s work in
2017, the asymptotic behavior of the solution only depends on the asymptotic behavior of b(x) at the
origin and the asymptotic behavior of g at infinity.
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1. Introduction

In the theoretical and applied research of differential equations, the boundary blowup
problem, or large solution problem, is a hot topic. The problem originated from the research
of Riemannian surface theory and automatic-function theory with negative curvature
constant. Later, it was found that the boundary blowup problem appeared in many fields,
such as stable constrained stochastic control, superdiffusion process in stochastic process,
differential geometry, concentrated wealth effect in ecology, electric potential in hot hollow
metal shells, high-speed diffusion in a chemical reaction, etc. These discoveries have
prompted many mathematicians to turn their attention to the research of boundary blowup,
leading to the continuous development and fine-tuning of the boundary blowup theory.

From the point of view of the research content, the boundary blowup problem mainly
focuses on the existence, asymptotic property, and uniqueness of the solution, as well as
the asymptotic expansion of the solution at the boundary. The research can be traced back
to 1916 by L. Bieberbach [1]. He first studied the following semilinear elliptic equation with
an exponential source, which is expressed as follows:{

∆u = eu, x ∈ Ω,
u = ∞, x ∈ ∂Ω.

Regarding the study of boundary blowup problems, a landmark result should be
attributed to J.B. Keller [2] and R. Osserman [3]. They revealed that a sufficient and
necessary condition for the existence of a solution of the equation{

∆u = f (u), u > 0, x ∈ Ω,
u = ∞, x ∈ ∂Ω.
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is that the inequality 1√
2

∫ ∞
u

[∫ t
s0

f (s)ds
]−1/2

dt < +∞ is true. This condition came to be
known as the Keller–Osserman condition. It played a very important role in subsequent
research on the boundary blowup problem. For research on boundary blowup problems,
we may refer to [4–7], among others.

Later, research mainly focused on the following semilinear elliptic differential equation:

−∆u = a(x)u − b(x)g(u), x ∈ Ω, (1)

where Ω ⊂ RN(N ⩾ 3) is a domain with C2 boundary ∂Ω; a(x) is a continuous function in
Ω0 ⊂ Ω; b(x) is a non-negative continuous function in Ω; and g : R1 → R1 is also assumed
to be a non-negative continuous function.

The classical Logistic equation{
−∆u = λu − b(x)up, x ∈ Ω,
u = 0, x ∈ ∂Ω,

(2)

is a special case of (1); here, λ ∈ R1 can be seen as a parameter, and p > 1 is a constant.
In [8], Professor Du studied (2) thoroughly and obtained the following theorem:

Theorem 1 (Theorem 5.1 [8]). Let λ1 denote the first eigenvalue of the operator −∆ with zero
Dirichlet boundary condition; then, (2) has no positive solution when λ ≤ λ1 and it has a unique
solution when λ > λ1.

Many authors focus their study on (1), and a(x) may be allowed to be unbounded in
Ω, a classical function is 1

|x|2 (usually under this situation, 0 ∈ Ω). As we all know, in this
case, this term is usually called the Hardy potential or inverse square potential. For the
study of semilinear elliptic differential equations with the Hardy potential, one can refer
to [9–16].

For the study of elliptic differential equations with singular coefficients, the method
of upper and lower solutions is usually used. Many scholars choose the corresponding
solution of the boundary blasting problem as the upper solution; then, by constructing
the appropriate lower solution, they investigate the existence of the solution with zero
Dirichlet boundary conditions. In the literature, the asymptotic behavior at the singularity
has been studied, but the relationship between the asymptotic behavior and the corre-
sponding boundary blowup problem has not been specified. In this article, we hope to
make some breakthroughs in this area. In this research, for elliptic equations with singular
coefficients, we determine the relationship between the blowup solutions with zero Dirich-
let boundary conditions at singular points and the blowup solutions at the boundary for
the corresponding boundary blowup problem. Therefore, in the future, when we study
the blowup behavior of solutions at singular points for elliptic equations with singular
coefficients, we may first study the asymptotic behavior of solutions at the boundary for
the corresponding boundary blowup problem and then study the relationship between
them. We believe that many interesting results could be obtained from this kind of research.

Recently, Cîrstea studied the following equation in [12]:

−∆u = λ
u
|x|2 − b(x)h(u), x ∈ Ω\{0}, (3)

where λ is a parameter, and −∞ < λ ≤ (N−2)2

4 and 0 ∈ Ω. Here, b(x) is a positive con-
tinuous function in Ω\{0}, which behaves near the origin as a regularly varying function
at zero with index θ greater than −2. The nonlinearity h is assumed to be continuous on
R1 and positive on (0, ∞) with h(0) = 0 such that h(t)/t is bounded for small t > 0. The
author completely classified the behavior near zero of all positive solutions for (3) when
h is regularly varying at ∞ with index q greater than 1. In particular, as an application of
his main result, he chose h(t) = tq(logt)α1 as t → ∞ and b(x) = |x|θ(−log|x|)α2 as |x| → 0,
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where α1 and α2 are any real numbers. We can easily see that h(t) = tpeαt(p > 1 and α > 0)
does not satisfy the above conditions.

Recently, Wei and Du [17] considered

−∆u = λ
u
|x|2 − |x|σup, x ∈ Ω\{0}, (4)

under the conditions λ > (N−2)2

4 , p > 1, σ > −2 and obtained the following theorem:

Theorem 2. Suppose that u(x) is an arbitrary positive solution of (4) with zero Dirichlet boundary
conditions; then,

lim
|x|→0

|x|
θ+2
p−1 u(x) = l

1
p−1 ,

where

l = λ +
θ + 2
p − 1

(
θ + 2
p − 1

+ 2 − N
)

.

Remark 1. From the proof of Theorem 2 in [17], we can easily see that the asymptotic behavior of
the solution for (4) with zero Dirichlet boundary conditions at the origin depends not only on λ
and N but also on the asymptotic behavior of b(x) at the origin and the asymptotic behavior of g
at infinity.

In this paper, we consider

−∆u = λ
u
|x|2 − b(x)upeαu, x ∈ Ω\{0}, (5)

where Ω ⊂ RN(N ⩾ 3) is a bounded smooth region, and 0 ∈ Ω, λ ∈ R1, b(x) is a positive
continuous function in Ω\{0}; p > 1 and α > 0 are two constants. We want to know
whether the conclusions similar to those in Theorem 1 and Theorem 2 still hold true.

2. Preliminaries

For convenience, we briefly explain the notations and some lemmas, which will be
used hereafter.

As usual, suppose p ≥ 1, k is a non-negative integer, Cm(Ω) denotes the function space
such that U and DαU(|α| ≤ m) are all continuous in Ω, C∞(Ω) = ∩∞

m=0Cm(Ω), C∞
0 (Ω)

denotes all spaces of C∞(Ω) that have compact support sets in Ω, H1
0(Ω) is the closure

of C∞
0 (Ω) in W1,2(Ω). C0,µ(Ω) denotes the space of all µ-Holder continuous functions in

Ω. W1,p
0 (Ω) is the normal Sobolev space, and W1,2

0 (Ω) = H1
0(Ω). The norm in Lq(Ω) is

defined as follows:

∥u∥q =

(∫
Ω
|u|q

)1/q
.

Lemma 1 (Hardy inequality [18]). Suppose 1 < p < N, u ∈ W1,p
0 (Ω). We have

∫
Ω

|u|p

|x|p
dx ≤

(
p

N − p

)p ∫
Ω
|∇u|pdx.

In particular, when p = 2, the inequality is

∫
Ω

|u|2

|x|2
dx ≤

(
2

N − 2

)2 ∫
Ω
|∇u|2dx.
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Denote H as the Hardy constant; that is, H is the best constant to ensure the following
formula holds true: ∫

Ω

u2

|x|2
dx ≤ 1

H

∫
Ω
|∇u|2dx, ∀u ∈ H1

0(Ω).

From Lemma 1, the best Hardy constant is H = (N−2)2

4 , and as we all know, H = (N−2)2

4
could not be obtained in H1

0(Ω), while it can be expressed as follows:

H = inf
u∈H1

0 (Ω)\{0}

∫
Ω|∇u|2dx∫

Ω
u2

|x|2
dx

.

Let ω ⊂ RN(N ⩾ 3) be a bounded and smooth domain and denote λ1[c(x), b(x), ω]
(for short, λ1[c, b, ω]) as the first eigenvalue for the following boundary value problem:{

−∆u + c(x)u = µb(x)u, x ∈ ω,
u = 0, x ∈ ∂ω,

where c(x) is a continuous function on ω, and c(x) > 0, b(x) is a non-negative continuous
function on ω. We denote

λ1[b, ω] = λ1[0, b, ω], λ1(ω) = λ1[0, 1, ω], ωδ = {x|x ∈ ω and |x| > δ for δ > 0}. (6)

From the work of Cheng [19] and Wei [20], we have the following:

Lemma 2 (Proposition 1 [20]). Let λ1[c, b, ω] be defined as above; then,
(i) If b1(x) ≤ b2(x) in ω; then, λ1[c, b2, ω] ≤ λ1[c, b1, ω] and the equality holds if and only

if b1(x) ≡ b2(x);
(ii) If c1(x) ≤ c2(x) in ω; then, λ1[c1, b, ω] ≤ λ1[c2, b, ω] and the equality holds if and only

if c1(x) ≡ c2(x);
(iii) If 0 < δ1 < δ2 in ω; then, λ1[c, b, ωδ1 ] < λ1[c, b, ωδ2 ] and λ1[c, b, ωδ] → λ1[c, b, ω] as

δ → 0+.

Lemma 3 (Proposition 2 [20]). If ε → 0, then λ1[
1

|x|2+ε
, ω] → H.

Lemma 4 ([19]). Let ωδ be defined as in (6); we have

lim
δ→0+

λ1[|x|−2, ωδ] =
(N − 2)2

4
.

From Lemma 2, we know that λ1[|x|−2, ωδ] increases as δ increases.
The following four lemmas and their proofs can be found in [8]:

Lemma 5 (Lemma 5.6 [8]). Suppose ω is a bounded domain in RN(N ⩾ 3), α(x) ∈ C(ω)
and ||α(x)||∞ < +∞, β(x) ∈ C(ω), and β(x) is non-negative and not identically zero. Let
u1, u2 ∈ C1(ω) be positive in ω and satisfy in the weak sense

∆u1 + α(x)u1 − β(x)g1(u1) ≤ 0 ≤ ∆u2 + α(x)u2 − β(x)g1(u2), x ∈ ω,

and
lim

x→∂ω
sup(u2 − u1) ≤ 0,

where g1(u) is continuous and g1(u)
u is strictly increasing for u in the range min{u1, u2} < u <

max{u1, u2}. Then,
u2 < u1.
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Lemma 6 (Theorem 6.6 [8]). Suppose f (u) is continuous on R1; there exists s0 > 0, h(u) is a
non-decreasing continuous function for u ≥ s0 such that

f (u) ≥ h(u) > 0

and ∫ ∞

s0

[∫ t

s0

h(s)ds
]−1/2

dt < ∞.

If Ω is a bounded Lipschitz region and there exists a v∗ ∈ W1,2(Ω) ∩ L∞(Ω) such that

∆v∗ ≥ f (v∗), x ∈ Ω,

then the equation {
∆u = f (u), x ∈ Ω,
u = ∞, x ∈ ∂Ω,

(7)

has at least a solution u ∈ C1(Ω) such that u ≥ v∗ in Ω, and among all such solutions, there are
the largest positive solution u∗ and the smallest positive solution u∗.

Lemma 7 (Theorem 6.8 [8]). Suppose Ω and f (u) satisfy the conditions in Lemma 6, then (7) has
a solution u, and if ∂Ω ∈ C2; then,

lim
d(x)→0

Ψ f [u(x)]
d(x)

= 1,

where
d(x) = d(x, ∂Ω)

and

Ψ f [u] =
1√
2

∫ ∞

u

[∫ t

s0

f (s)ds
]−1/2

dt.

Lemma 8 (Theorem 6.10 [8]). Suppose Ω and f (u) satisfy the conditions in Lemma 6; furthermore,

lim
t→+∞

Ψ f (βt)
Ψ f (t)

> 1, ∀β ∈ (0, 1).

f (0) = 0, f (t)
t does not decrease on t > 0; then, Equation (7) has a unique non-negative solution.

3. Main Results

Now, we consider Equation (5) with zero Dirichlet boundary conditions as follows:{
−∆u = λu

|x|2 − b(x)upeαu, x ∈ Ω\{0},
u = 0, x ∈ ∂Ω.

(8)

First, we have

Theorem 3. Let H be defined as in Section 2; then, (8) has no positive solution when λ ≤ H, and
it has at least a minimal positive solution and a maximal positive solution when λ > H.

Proof. Assume that u ∈ C1(Ω) is a positive solution of (8); from the first equation of (8),
we have ∫

Ω
−u∆udx =

∫
Ω

λu2

|x|2 dx −
∫

Ω
b(x)up+1eαudx.
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Using the integration by parts, we deduce

∫
Ω
|∇u|2dx = λ

∫
Ω

u2

|x|2 dx −
∫

Ω
b(x)up+1eαudx,

and therefore,

H ≤
∫

Ω|∇u|2dx∫
Ω

u2

|x|2 dx
= λ −

∫
Ω b(x)up+1eαudx∫

Ω
u2

|x|2 dx
< λ.

From the above inequality, we know if λ ≤ H, then (8) has no positive solution. This
completes the proof of the first part of Theorem 3.

Now, we suppose λ > H. By Lemma 4, ∃δ0 > 0 such that for any δ ≤ δ0, λ1
[
|x|−2, Ωδ

]
<

λ. Let ϕδ > 0 be the solution of{
−∆u = λ1

[
|x|−2, Ωδ

] u
|x|2 , x ∈ Ωδ,

u = 0, x ∈ ∂Ωδ.
(9)

Then, we can easily obtain that for any ε > 0 sufficiently small,{
−∆(εϕδ) = ελ1

[
|x|−2, Ωδ

] ϕδ

|x|2 < ελ
ϕδ

|x|2 − εpb(x)ϕp
δ eαεϕδ , x ∈ Ωδ,

εϕδ = 0, x ∈ ∂Ωδ,

which means that εϕδ is a lower solution of the following equation:{
−∆u = λ u

|x|2 − b(x)upeαu, x ∈ Ωδ,

u = 0, x ∈ ∂Ωδ.
(10)

On the other hand, consider the following equation:{
−∆u = λ u

|x|2 − b(x)upeαu, x ∈ Ωδ,

u = ∞, x ∈ ∂Ωδ.
(11)

Notice that
−∆u = λ

u
|x|2 − b(x)upeαu ≥ λ

u
M2 − buupeαu,

where |x| ≤ M for any x ∈ Ω and bu = maxx∈Ωδ
b(x). Let

f (u) = buupeαu − λ
u

M2 .

Then, by Lemma 6 and Lemma 8, we know that the equation{
−∆u = λ u

M2 − buupeαu, x ∈ Ωδ,
u = ∞, x ∈ ∂Ωδ,

has a unique non-negative solution uδ,∞(x) ∈ C1(Ωδ), which means that uδ,∞(x) is an
upper solution of (10). Then based on the upper and lower theorem, Equation (10)
has at least a maximal positive solution and a minimal positive solution. By Lemma 5,
we know that all solutions of (10), if exist, must be unique. Denote it as uδ(x); then,
0 < εϕδ ≤ uδ(x) ≤ uδ,∞(x). From Lemma 2, we know that uδ(x) decreases as δ decreases,
so u(x) := limδ→0+ uδ(x) is well defined in Ω\{0}. By the regularity of elliptic equations,
u(x) is a solution of (8); now, we prove that u(x) is a minimal positive solution of (8). In
fact, for any positive solution u of (8), u is an upper solution of (10); then, Lemma 5 implies
that u ≥ uδ(x), and thus, u ≥ u(x).
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On the other hand, we consider the following equation:
−∆u = λ u

|x|2 − b(x)upeαu, x ∈ Ωδ,
u = 0, x ∈ ∂Ω,
u = n, |x| = δ.

(12)

Notice that uδ(x) is a lower solution of (12) and uδ,∞(x) is an upper solution of (12); then,
the upper and lower theorem and Lemma 5 imply that (12) has a unique positive solution
uδ,n(x) such that

uδ(x) ≤ uδ,n(x) ≤ uδ,∞(x). (13)

It is easy to see that {uδ,n(x)} is increasing in n, so limn→∞uδ,n(x) exists; denote it as Uδ(x),
and Uδ(x) is a solution of (12) with n = ∞. Similarly, limδ→0+Uδ(x) exists; denote it as u(x).
Then, it is a positive solution of (8) and it is also the maximal positive solution of (8). This
completes the proof.

The lemma below will be useful for our study. Since the proof is relatively elementary,
we omit it.

Lemma 9. Let Ψg be defined as in Lemma 7 with f replaced by g; then, we have

(i) Φ′
g(t) = −

√
2G(Φg(t)) and Φ′′

g (t) = g(Φg(t)), where G(t) =
∫ t

s0
g(s)ds;

(ii) Φg(0) = +∞ and Φg(t) > 0 for t > 0.

Theorem 4. Suppose that there exists a constant β ≥ 0 and b(x) satisfies

lim
|x|→0+

b(x)
|x|β

= c, (14)

if λ > H, then (8) has a unique positive solution u such that

lim
|x|→0+

u(x)
Φg(ξ|x|r)

= 1, (15)

where Φg is the inverse of Ψg and g(t) = tpeαt, ξ =
√

c
r , r = β+2

2 .

Proof. Notice that

lim
u→+∞

G(u)
g(u)

=
1
α

, (16)

and thus,

lim
t→0+

t
√

G(Φg(t)) = lim
t→0+

∫ +∞
Φg(t)

ds√
2G(s)[

G(Φg(t))
]−1/2

= lim
t→0+

−
[
2G(Φg(t))

]−1/2

−1/2
[
G(Φg(t))

]−3/2g(Φg(t))

=

√
2

α
, (17)

by Lemma 9(i), (16) and (17), we have

lim
t→0+

tΦ′′
g (t)

Φ′
g(t)

= lim
t→0+

tg(Φg(t))

−
√

2G(Φg(t))
= −1.
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From (17), we have for any α > 0,

lim
t→0+

Φg(t)tα = 0,

and thus,

lim
t→0+

Φg(t)t2/r

tΦ′
g(t)

= 0 and lim
t→0+

Φg(t)
tΦ′

g(t)
= −∞.

Also notice that (14) holds, and we can easily infer that for any 0 < ε < min{ r
1+r2 , c}, there

exists a positive constant δ such that

(c − ε)|x|β ≤ b(x) ≤ (c + ε)|x|β, for 0 < |x| < 2δ, (18)

and

−1 − ε <
tΦ′′

g (t)
Φ′

g(t)
< −1 + ε, (19)

−ε < r(N − 1)t +
λΦg(t)t2/r

tΦ′
g(t)

< ε, (20)

λΦg(t)
tΦ′

g(t)
+ 2r(N − 1) ≤ 0, (21)

for any 0 < t < 2δ and λ > H.
By Lemma 4 and λ > H, we know there exists a positive constant σ1 < 2δ such that

H < λ1

[
|x|−2, Ω2δ

σ1

]
< λ,

where
Ω2δ

σ1
:= {x ∈ Ω|σ1 < |x| < 2δ}.

Let ξ =
√

(c+ε)(1+ε)

r−2ε−εr2 , ξ =
√

(c−ε)(1−ε)
r+εr2+2ε

, for any σ ∈ (0, σ1), σ < |x| < 2δ; define

vσ = Φg
(
ξ(|x| − σ)r),

and for any σ ∈ (0, σ1), 2σ < |x|+ σ < 2δ, define

vσ = Φg(ξ(|x|+ σ)r).

Let t = ξ(|x| − σ)r; then,
vσ = Φg

(
ξ(|x| − σ)r) = Φg(t).

Notice that Φ′
g(t) = −

√
2G(Φg(t)), so

∂vσ

∂xi
= Φ′

g(t)ξr(|x| − σ)r−1 xi
|x| ,

∂2vσ

∂x2
i

= Φ′′
g (t)ξ

2r2(|x| − σ)2r−2 x2
i

|x|2 + Φ′
g(t)ξr(r − 1)(|x| − σ)r−2 x2

i
|x|2

+Φ′
g(t)ξr(|x| − σ)r−1 1

|x| − Φ′
g(t)ξr(|x| − σ)r−1 x2

i
|x|3 ;
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thus,

∆vσ = Φ′′
g (t)ξr2(|x| − σ)2r−2 + Φ′

g(t)ξr(r − 1)(|x| − σ)r−2

+Φ′
g(t)ξr(|x| − σ)r−1 N − 1

|x| ,

and therefore, for any σ < |x| < 2δ, we have

−∆vσ −
λ

|x|2 vσ + b(x)g(vσ)

= −Φ′′
g (t)r

2ξ(|x| − σ)2r−2 − Φ′
g(t)r(r − 1)ξ(|x| − σ)r−2

−Φ′
g(t)rξ(|x| − σ)r−1 N − 1

|x| − λ

|x|2 Φg(t) + b(x)g(Φg(t))

≥ −Φ′
g(t)ξ(|x| − σ)r−2

[
r2tΦ′′

g (t)
Φ′

g(t)
+ r(r − 1) + r(N − 1)

|x| − σ

|x| (22)

+
λΦg(t)(|x| − σ)2

tΦ′
g(t)|x|2

−
(c − ε)Φ′′

g (t)(|x| − σ)2|x|β

tΦ′
g(t)

]
.

From β ≥ 0, we have

−
(c − ε)Φ′′

g (t)(|x| − σ)2|x|β

tΦ′
g(t)

≥ −
(c − ε)tΦ′′

g (t)

ξ
2
Φ′

g(t)
.

By (19) and (20), we can obtain

−Φ′
g(t)ξ(|x| − σ)r−2

[
r2tΦ′′

g (t)
Φ′

g(t)
+ r(r − 1) + r(N − 1)

|x| − σ

|x|

+
λΦg(t)(|x| − σ)2

tΦ′
g(t)|x|2

−
(c − ε)tΦ′′

g (t)

ξ
2
Φ′

g(t)


≥ −εΦ′

g(t)ξ(|x| − σ)r−2

≥ 0.

Similarly, notice that 2σ < |x|+ σ < 2δ implies b(x) < (c + ε)|x|β and σ < |x| < 2δ; thus,
by (19)–(21), we have

−∆vσ − λ
|x|2 vσ + b(x)g(vσ)

≤ −Φ′
g(s)ξ(|x|+ σ)r−2

[
r2sΦ′′

g (s)
Φ′

g(s)
+ r(r − 1) + r(N − 1) |x|+σ

|x|

+
λΦg(s)(|x|+σ)2

sΦ′
g(s)|x|2

− (c+ε)Φ′′
g (s)(|x|+σ)2|x|β

sΦ′
g(s)

]
≤ −Φ′

g(s)ξ(|x|+ σ)r−2
[

r2(−1 + ε) + r(r − 1) + 2r(N − 1) + λΦg(s)
sΦ′

g(s)
+ (c+ε)(1+ε)

ξ2

]
≤ εΦ′

g(s)ξ(|x|+ σ)r−2 ≤ 0,

where s = ξ(|x|+ σ)r.
Let u be any positive solution of (8) and consider the equation

−∆w = λ
|x|2 w − b(x)g(w), x ∈ Ω2δ

σ ,
w = ∞, |x| = 2δ,
w = 0, |x| = σ,
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using similar methods as that in Theorem 3 and for any σ ∈ (0, σ1), H < λ1
[
|x|−2, Ω2δ

σ

]
<

λ1
[
|x|−2, Ω2δ

σ1

]
< λ, it is easy to see that the above problem has a minimum positive solution

w. Let v = vσ + w; then,

−∆v ≥ λ

|x|2 v − b(x)g(v), x ∈ Ω2δ
σ ,

here, we use the fact that
g(vσ + w) ≤ g(vσ) + g(w).

In addition, {
v||x|=2δ = ∞ > u||x|=2δ,
v||x|=σ = ∞ > u||x|=σ,

by Lemma 5, we have
w + vσ ≥ u, x ∈ Ω2δ

σ .

Similarly,
u + w ≥ vσ, x ∈ Ω2δ

σ ,

let σ → 0; then, we obtain

Φg
(
ξ(|x|)r)+ 2w ≥ u + w ≥ Φg(ξ(|x|)r), 0 < |x| < 2δ,

and thus,

lim
|x|→0+

Φg
(
ξ(|x|)r)

Φg(ξ(|x|)r)
≥ lim

|x|→0+

u
Φg(ξ(|x|)r)

≥ 1,

on the other hand,
lim

ε→0+
ξ = lim

ε→0+
ξ = ξ;

therefore,
lim

|x|→0+

u
Φg(ξ(|x|)r)

= 1. (23)

Suppose u1 and u2 are two arbitrary positive solutions of (8); then, (23) implies that

lim
|x|→0+

u1(x)
u2(x)

= 1,

which means that for any 0 < ε < 1, there exists δ > 0 small enough such that when |x|
< δ,

(1 − ε)u2(x) < u1(x) < (1 + ε)u2(x), (24)

consider the following equation:
−∆u = λ u

|x|2 − b(x)upeαu, x ∈ Ωδ/2,
u = 0, x ∈ ∂Ω,
u = u1(x), |x| = δ

2 .
(25)

Notice that

−∆[(1 − ε)u2(x)] = λ
(1 − ε)u2(x)

|x|2 − b(x)(1 − ε)[u2(x)]peαu2(x)

≤ λ
(1 − ε)u2(x)

|x|2 − b(x)(1 − ε)p[u2(x)]peα(1−ε)u2(x), x ∈ Ωδ/2,

by (24) and notice that u2(x) is a positive solution of (8); we have
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(1 − ε)u2(x) = 0 ≤ u1(x), x ∈ ∂Ω,

(1 − ε)u2(x) ≤ u1(x), |x| = δ

2
;

then, Lemma 5 implies that

(1 − ε)u2(x) ≤ u1(x), for any x ∈ Ωδ/2.

Similarly, we can obtain

u1(x) ≤ (1 + ε)u2(x), for any x ∈ Ωδ/2.

Let ε → 0+; we have
u2(x) ≡ u1(x), for any x ∈ Ω\{0}.

This completes the proof.

4. Numerical Example

In this section, we give some numerical examples to verify Theorem 4. For simplicity,
we suppose that N = 3, Ω = B(0; 1) and b(x) = c|x|β, which shows that (14) holds
true. According to [21], we know that all the solutions of (8) are radially symmetric. Let
u(x) = u(ρ), ρ = |x|; then, (8) can be transformed to the following second-order ordinary
differential equations with singular coefficients:

−u′′(ρ)− (N−1)
ρ u′(ρ) = λu(ρ)

ρ2 − cρβup(ρ)eαu(ρ), 0 < ρ < 1,
u(ρ) > 0, 0 < ρ < 1,
u(1) = 0.

(26)

In order to use the numerical computation method for the ordinary differential equa-
tion, we assume that ρ = 1 − t and set u(ρ) = y1(t), u′(ρ) = −y′1(t) = −y2(t); then, (26)
can be transformed into

y′1(t) = y2(t)
y′2(t) =

N−1
1−t y2(t)−

λy1(t)
(1−t)2 + c(1 − t)βyp

1 (t)e
αy1(t), 0 < t < 1,

y1(0) = 0.
(27)

Example 1. Assume that β = 1, p = 2, α = 1, c = 4 and λ = 1. It is easy to verify that all
conditions in Theorem 4 hold. Then, by Theorem 4, we have

lim
t→1−

y1(t)
Φg(ξ(1 − t)r)

= 1,

where ξ =
√

8
3 , r = 3

2 .

Because the function Φg can not be easily obtained from the inverse of Ψg, we consider
the numerical solution of the function Φg; notice that the function Φg satisfies{

Φ′
g(t) = −

√
2G(Φg(t)),

Φg(0) = +∞.

Let Φg(ξ(1 − t)r) = z(t) and s = ξ(1 − t)r; then, we have

z′(t) = ξr(1 − t)r−1
√

2G(z(t)), z(1) = +∞, (28)
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where
G(u) = eu(u2 − 2u + 2)− 2.

The graph of numerical boundary blowup solutions for Equations (27) and (28) is
presented in Figure 1.
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Figure 1. Contrast diagram of boundary blowup solution, y1(t) = u(ρ), z(t) = Φg(ξρr), ρ = |x|,
t = 1− ρ. The initial condition for Equation (27) is [0 0.6175], and the initial condition for Equation (28)
is 0.4282.

5. Conclusions

In this paper, a class of semilinear elliptic differential equations was investigated. By
constructing the inverse function and using the method of upper and lower solutions and
the principle of comparison, the existence of maximum positive solution and minimum
positive solution was explored. Furthermore, the uniqueness of the positive solution and its
asymptotic estimation at the origin were investigated. The results show that the asymptotic
estimation is similar to that of the corresponding boundary blowup problems. It is worth
mentioning that the above methods can also be used to deal with the case of α = 0.

From Theorem 4 and its proof, we can easily see that the asymptotic behavior of the
solution for (8) at the origin does not depend on λ and N; it only depends on the asymptotic
behavior of b(x) at the origin and the asymptotic behavior of g at infinity. Comparing
Theorem 4 with Theorem 2, we see that the asymptotic behavior of the solution at the origin
when α = 0 is fundamentally different from that when α ̸= 0. From this point of view, we
believe that α = 0 is a branch point. On the other hand, we only consider the case of β ≥ 0;
compared with the work of Wei [17] and Du [8], we have

Conjecture. The conclusion of Theorem 4 is also true when −2 < β < 0.
In fact, the following numerical examples (see Figure 2) also support this conjecture:

Example 2. Consider (27) and (28) again. Assume that β = −1, p = 2, α = 1, c = 4 and λ = 1.
Then, ξ = 2

√
2, r = 1

2 .

Now, we discuss how the solution of Equation (8) changes at the origin as the parame-
ters βand c change. We only consider the single-parameter variation case. By Theorem 4,
we have

∂u
∂c

≈ Φ′
g(s)

|x|r
2
√

cr
,

∂u
∂β

≈ Φ′
g(s)

[
−

√
c

4r3/2 + ln |x|
]
|x|r, 0 < |x| << 1,

notice that Φ′
g(s) < 0, for s > 0; then,

∂u
∂c

< 0,
∂u
∂β

> 0, 0 < |x| << 1,
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which shows that c can reduce the blowup rate of the solution, while β, on the contrary,
can accelerate the blowup of the solution. The numerical results also support these results
(see Figures 3 and 4).

Let p = 2, α = 1, λ = 1. When c changes, we assume β = 1; when β changes, we
assume c = 4.
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Figure 2. Contrast diagram of boundary blowup solution when β = −1, y1(t) = u(ρ), z(t) =

Φg(ξρr), ρ = |x|, t = 1 − ρ. The initial condition for Equation (27) is [0 0.14], and the initial condition
for Equation (28) is 0.25.
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Figure 3. Boundary blowup solution when c = 1, 2, 3, 4, respectively. The initial condition for
Equation (27) is [0 1].
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Figure 4. Boundary blowup solution when β = 1, 2, 3, 4, respectively. The initial condition for
Equation (27) is [0 3].
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