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Abstract: The theory of multi-source information fusion plays a pivotal role in decision-making,
especially when handling uncertain or imprecise information. Among the existing frameworks,
evidence theory has proven effective for integrating diverse information sources to support informed
decision-making. Recently, Random Permutation Set Theory (RPST), an extension of evidence theory,
has shown significant practical value due to its ability to leverage the additional information inherent
in event permutations. This insight inspires the utilization of permutation data to enhance the
decision-making process. When employing RPST for decision-making and fusion, the order in
which the fusion is performed can substantially influence the final results. To address this issue, we
propose a novel approach that utilizes Fisher Scores to extract additional permutation information to
guide decision-making within the RPST framework. Experimental results on the Iris dataset validate
the feasibility and effectiveness of the proposed method. Compared to fusion methods employing
weighted averaging, our approach, which leverages additional information to determine the fusion
order, demonstrates superior accuracy across various training set proportions, achieving an accuracy
of 96.26% at an 80% training set proportion. This provides an enhanced strategy for decision-making
under uncertainty.

Keywords: decision-making; evidence theory; random permutation set theory; Fisher scores

MSC: 60A86

1. Introduction

Managing uncertain information is a critical component of decision-making, as it
directly influences both the reliability and precision of outcomes [1]. Accurate modeling
and effective utilization of such uncertainty not only enhance decision accuracy but also
improve the overall efficiency of the decision-making process. Driven by practical needs,
particularly in engineering, extensive research has focused on developing robust theoretical
frameworks to address uncertainty. Among these, evidence theory [2,3] and Random
Permutation Set Theory (RPST) [4] have gained prominence due to their effectiveness
in various applications [5,6], including decision-making [7], risk analysis [8], and fault
diagnosis [9].

Random Permutation Set Theory (RPST), as an extension of evidence theory, introduces
a novel approach by expanding the space of combined events to include permutations,
thereby enriching the representation of information through event order [10]. This en-
hanced representation enables more precise decision-making by incorporating additional
layers of information and reducing uncertainty. Similar to evidence theory, RPST excels in
handling incomplete or ambiguous information without requiring predefined probability
distributions. It supports constructing decision models based on available evidence and
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provides clear metrics for plausibility, conflict, and uncertainty, thereby facilitating result
evaluation and transparency. Furthermore, RPST enables the fusion of diverse informa-
tion sources via combination rules, while its sensitivity to event order introduces unique
advantages, allowing for more nuanced and accurate decision-making.

The theoretical foundations of RPST have been steadily advancing, providing a solid
basis for its application in decision-making. Chen et al. [11] introduced the concept of
distance between RPS, drawing parallels with the Jousselme distance in evidence theory,
to quantify divergence between sets. Deng et al. [12,13] proposed the entropy of RPS to
measure the quality of information within permutation sets, while other researchers have
developed multiple divergence measures [14,15] and efficient matrix operations [16] to
enhance computational performance. These advancements lay the groundwork for RPST’s
application in complex engineering scenarios [17]. Furthermore, Deng et al. [18] proposed
a method for generating permutation quality functions by modeling features with Gaussian
distributions, demonstrating the potential of RPST in practical decision-making tasks.

Despite these advancements, challenges remain in using RPST for final decision-
making through fusion. Existing methods, such as the left orthogonal sum (LOS) and right
orthogonal sum (ROS) [4], are highly sensitive to the order of permutations, leading to
significant variability in outcomes depending on the fusion sequence. While weighted
fusion methods based on RPS differences [11,15] have been proposed to mitigate extreme
scenarios, they may compromise RPST’s core advantage of incorporating event permuta-
tions. Exhaustive evaluations of all possible fusion orders can identify optimal sequences
but are computationally prohibitive due to factorial growth in complexity as the number of
RPS sources increases.

To address these limitations, this paper proposes a novel method that leverages Fisher
Scores to evaluate the class sensitivity of information sources, establishing a fusion order
based on this sensitivity ranking. The use of Fisher Scores is particularly suitable, as the
initial RPS construction involves Gaussian distribution models of data features, aligning
well with the method’s characteristics while offering computational efficiency. The fusion
process is further refined by integrating RPS differences to produce the final decision.
Experimental evaluations on the Iris dataset demonstrate the effectiveness and practicality
of the proposed approach, highlighting its advantages over existing techniques in gener-
ating permutation quality functions. This study provides a fresh perspective on utilizing
sensitivity rankings to guide permutation order, thereby enhancing decision accuracy.

The structure of this paper is as follows: Section 2 introduces the foundational concepts
and background of this study. Section 3 discusses the motivation for the study and details
the proposed method for determining fusion order based on Fisher Scores. In Section 4, we
validate the proposed approach through experiments and comparisons with state-of-the-art
RPST-based decision-making methods. Finally, Section 5 summarizes the key contributions
of this study and outlines future research directions.

2. Preliminaries

This section focuses on the basic preparatory knowledge for the understanding of the
paper, mainly the introduction of some concepts and definitions of D-S Evidence Theory,
Random Permutation Set and Fisher Scores.

2.1. D-S Evidence Theory

Evidence Theory (Dempster–Shafer Theory) is a mathematical framework for handling
uncertain information, introduced by Dempster [2] and Shafer [3] in the 1960s and 1970s.
This theory plays a crucial role in multi-source information decision-making, and its
theoretical properties have been extensively studied by numerous scholars, including
aspects such as entropy [19], distance [20], and divergence [21]. Below, we will provide
some important foundational knowledge regarding Evidence Theory.
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Definition 1 (Frame of discernment). Frame of Discernment (FOD) refers to a set in which
the elements satisfy mutually exclusive and exhaustive elements. FOD can be represented by
this formula,

Θ = {θ1, . . . , θM, . . . , θN}. (1)

The power set of Θ refers to all possible subsets of Θ, which can be represented as follows:

2Θ = {∅, {θ1}, . . . , {θN}, {θ1, θ2}, . . . , {θ1, θN}, . . . , Θ}. (2)

In the above formula, ∅ represents the empty set. In classical evidence theory, no
belief is assigned to the empty set, while in generalized evidence theory, belief may be
assigned to the empty set.

Definition 2 (Basic Probability Assignment). Basic Probability Assignment, also known as a
mass function, refers to a function mapping that assigns belief to the power set under a given frame
of discernment. It can be mathematically expressed as,

m : 2Ω → [0, 1]. (3)

And it satisfies the following conditions, where Dn represents the subset of the power set:

m(∅) = 0 and ∑
Dn⊆2Θ

m(Dn) = 1. (4)

In the conditions outlined above, classical evidence theory requires that both sides of the and
condition are satisfied. In contrast, generalized evidence theory only necessitates satisfying the latter
condition. Additionally, Dn is referred to as a focal element if it satisfies m(Dn) > 0.

Definition 3 (Dempster’s combination rule). The mathematical expression for Dempster’s
combination rule for two BPAs under the same frame of discernment is given by,

m(D1) =
∑D2∩D3=D1

m1(D2) ·m2(D3)

1−∑D2∩D3=∅ m1(D2) ·m2(D3)
. (5)

In the formula above, 1− ∑D2∩D3=∅ m1(D2) · m2(D3), often denoted as K, is called the
conflict factor, representing the degree of conflict between the two bodies of evidence. When there is
no conflict between the evidence, K is equal to 0. As the conflict between the evidence increases, the
value of the conflict factor also becomes larger.

By using Dempster’s combination rule, multiple BPAs within the same frame of discernment
can be fused into a single BPA. This fusion result is independent of the fusion order; therefore, in an
ideal scenario, the BPAs used for fusion are assumed to be accurate and reliable.

2.2. Random Permutation Set

The Random Permutation Set (RPS) presents a unique conceptual framework that
incorporates permutations of elements, expanding upon traditional evidence theory. To aid
in understanding this paper, this section will introduce key definitions associated with RPS.

Definition 4 (Permutation Event Space). Consider a predefined set of N elements, denoted as
Y = {Y1, Y2, . . . , YN}, where each element is mutually exclusive and collectively exhaustive. The
permutation event space (PES) of this set is defined as follows,

PES (Y) ={Aij|i = 0, . . ., N; j = 1, . . ., P(N, i)}
=
{

∅, (Y1), (Y2), . . ., (YN), (Y1, Y2), (Y2, Y1), . . ., (YN−1, YN),

(YN , YN−1), . . ., (Y1, Y2, . . ., YN), . . ., (YN , YN−1, . . ., Y1)}.
(6)
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In this framework, P(N, i) denotes the i-th permutation of N, defined by the expression
P(N, i) = N!

(N−i)! . The permutation event, represented by the element Aij within the PES, corre-
sponds to a tuple that signifies a possible permutation of Y. Here, the index i indicates the cardinality
of Aij, while j designates the specific permutation within the set.

Definition 5 (Random Permutation Set). In the presence of a defined set of N mutually exclusive
and exhaustive elements, denoted as Y = {Y1, Y2, . . . , YN}, the Random Permutation Set (RPS)
manifests as a grouping of pairs,

RPS(Y) = {⟨A,M(A)⟩ | A ∈ PES(Y)}. (7)

Definition 6 (Permutation Mass Function). A Permutation Mass Function is a functional map-
ping of elements within the space of permutation events, which can be mathematically represented as,

M : PES(Y)→ [0, 1]. (8)

And, similar to evidence theory and probability theory, it satisfies analogous constraint condi-
tions, as outlined below,

M(∅) = 0 and ∑
A∈PES(Y)

M(A) = 1. (9)

Definition 7 (Intersection of Permutation Events). The Left Intersection (LI) and Right Inter-
section (RI) of events A and B, both elements of the Permutation Event Set (PES) of the set Y, are
defined as follows,

A
←
∩B = A\\

⋂
Y∈A,Y/∈B

{Y} (LI). (10)

A
→
∩B = B\\

⋂
Y∈B,Y/∈A

{Y} (RI). (11)

In this context, X1\\X2 denotes the removal of X2 from X1 through the permutation of
elements in X1. Notably, it is evident that |A

→
∩B| is equal to |A

←
∩B|.

Definition 8 (Left Orthogonal Sum of Permutation Mass Functions). For two RPSs defined on

Y,M1 andM2, the left orthogonal sum is denoted byM1
←
⊕M2, and is mathematically expressed

as follows,

ML(A) =


1

1−
←
K

∑
B
←
∩C=A

M1(B)M2(C), A ̸= ∅

0, A = ∅
(12)

In this expression, A, B, C ∈ PES(Y), with
←
∩ representing the left intersection. Furthermore,

the mathematical term
←
K is defined as follows,

←
K = ∑

B
←
∩C=∅

M1(B)M2(C). (13)

Definition 9 (Right Orthogonal Sum of Permutation Mass Functions). For two RPSs defined

on Y,M1 andM2, the right orthogonal sum is denoted byM1
→
⊕M2, and is mathematically

expressed as follows:

MR(A) =


1

1−
→
K

∑
B
→
∩C=A

M1(B)M2(C), A ̸= ∅

0, A = ∅
(14)
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In this context, A, B, C ∈ PES(Y), with
→
∩ representing the right intersection. Furthermore,

the mathematical term
→
K is defined as follows:

→
K = ∑

B
→
∩C=∅

M1(B)M2(C). (15)

Similar to K in evidence theory, both
→
K and

←
K represent the degree of conflict between two

RPSs, with larger values indicating a higher level of conflict.

Definition 10. Ordered degree of permutation events. Given two permutation events A, B ∈
PES(Θ), the ordered degree between A and B is defined as follows:

OD(A, B) = exp
(
−∑θ∈A∩B | rankA(θ)− rankB(θ)|

|A ∪ B|

)
. (16)

∑θ∈A∩B | rankA(θ)−rankB(θ)|
|A∪B| is referred to as the pseudo-deviation distance. Clearly, the range of

OD(A, B) is (0, 1].

Definition 11 (Distance of RPS). Let RPS1 and RPS2 be two RPSs on the same event set Θ. The
distance between RPS1 and RPS2 is defined as,

dRPS(RPS1, RPS2) =

√
1
2
(

RPS1 − RPS2
)

RD
(

RPS1 − RPS2
)T . (17)

where RPS1 and RPS2 are two vectors in the permutation event space with coordinatesM(A).
The matrix RD is a n× n matrix, whose elements are given by,

RD(A, B) =
|A
→
∩B|

|A
→
∩B|
×OD(A, B). (18)

2.3. Fisher Score

The Fisher Score is a feature selection algorithm based on similarity, first proposed
by Fisher. It has advantages such as computational simplicity and no requirement for
additional parameters. In this subsection, we will provide its specific definition.

Definition 12 (Fisher Score). The Fisher Score is a supervised attribute selection algorithm [22].
The core of the algorithm is to evaluate the importance of attributes for classification tasks by
comparing the mean difference and variance of attributes within the target category. Its mathematical
expression is as follows:

Fisher_score( fi) =
∑c

j=1 nj(µij − µi)
2

∑c
j=1 njσ

2
ij

, (19)

where µi represents the mean value of attributes fi and µij represents the mean value of attributes
fi for samples in class j. σ2

ij represents the variance value of attributes fi for samples in class j.
In addition, nj indicates the number of samples in class j, The mean and variance are formulated
as follows:

µij =
1
N

N

∑
k=1

xkij (20)

σij =

√√√√ 1
N − 1

N

∑
k=1

(xkij − µij)2 (21)



Mathematics 2024, 12, 3632 6 of 14

The larger the Fisher Score, the stronger the attribute’s ability to distinguish the target
category. The smaller the Fisher Score, the less powerful the attribute is in distinguishing
the target class. From the point of view of the Fisher Score, a desirable attribute is to have
the smallest within-class variance and the largest out-of-class variance.

3. Decision Fusion Based on Fisher Score with Permutation Information

In this section, we will first discuss the two motivations behind the work presented
in this paper. Based on these discussions, we propose our method, which leverages Fisher
Scores to obtain fusion order information and performs the final fusion and decision-making.

3.1. The Motivation of This Study

The primary motivation for this study stems from two considerations. First, in real-
world scenarios, different information sources exhibit varying sensitivities to specific classes
or decisions [23–25]. Thus, an important question is how to incorporate this differential
sensitivity into the final decision-making process. Second, unlike Dempster–Shafer Theory
(DST), Random Permutation Set Theory (RPST) introduces an asymmetry in fusion, which,
if leveraged effectively, could enhance decision outcomes.

In evidence theory, the fusion process typically assumes that all information sources
contribute equally to the final decision. However, this assumption is often unrealistic, as the
reliability and sensitivity of each information source can vary significantly depending on the
context of the decision. For example, both hyperspectral images [26] and LiDAR data [27]
are commonly used to identify remote sensing objects, but their effectiveness differs due
to their unique operational characteristics. LiDAR, for instance, is particularly sensitive
to height information [28,29], making it more accurate for distinguishing topographical
features like “mountains” and “grasslands”. On the other hand, hyperspectral imaging,
which captures subtle variations in color, is more effective for tasks such as assessing
plant maturity, where color distinctions are critical. In the field of computer science, it
is well recognized that information sources are not always equally reliable or relevant to
decision-making. This understanding has spurred the development of various feature
selection algorithms [30] that leverage statistical measures [31], information theory [32],
Sparse-Learning-Based Methods [33], and similarity metrics [34]. While these algorithms
primarily focus on feature selection rather than direct decision-making, they underscore
a crucial insight: the importance of each information source varies depending on the
decision context, and thus, sources should be weighted accordingly. This observation leads
to a central motivation for our study: how to integrate varying levels of reliability and
sensitivity of different information sources into the final decision-making process. The
challenge lies in appropriately accounting for these differences to improve the quality and
accuracy of the final decision. To put it directly, we should prioritize more sensitive data in
more important positions.

The second key consideration is to use Random Permutation Set Theory (RPST) to
reflect this non-equivalence in the contributions of different information sources to the
final decision. From the discussion above, it is clear that different information sources
vary in their influence on decision-making. For each information source, we can attempt
to identify an algorithm that quantifies its ability to differentiate outcomes. However,
one drawback of purely quantitative methods is that different algorithms or evaluation
frameworks often yield varied quantification results. Moreover, using purely quantitative
methods may lead to overfitting in our decision-making model. Quantitative approaches
may inadvertently compromise robustness, so converting this information into a qualitative
format can mitigate overfitting risks and reduce computational complexity. We choose
RPST to encapsulate such qualitative information, enabling us to align the fusion order
with the influence each information source has on decision-making. As suggested in [4],
more reliable information sources should ideally be fused earlier in the process. When
using the LOS, more trusted sources should appear on the left side, with fusion proceeding
sequentially to the right according to their level of reliability. To better understand this
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asymmetric fusion property, we will illustrate the asymmetry of the classic fusion rules in
RPST with an example. This example is also derived from Reference [4].

Example 1. There exist two RPSs defined within the same Permutation Event Space, with their
specific permutation mass functions are given as follows:

RPS1(Y) = {⟨(A), 0.4⟩, ⟨(A, C), 0.3⟩, ⟨(C, A), 0.3⟩}
RPS2(Y) = {⟨(B), 0.4⟩, ⟨(A, C), 0.1⟩, ⟨(A, B, C), 0.15⟩, ⟨(B, C, A), 0.35⟩}

For these two RPSs, if the classic LOS fusion rules are directly applied in different orders, the
results will differ. The specific outcomes are presented in Table 1.

As shown in the above example, the fusion order has a significant impact on the RPS fusion
results. Specifically, when using LOS, RPSs that are positioned closer to the left contribute more to
the final fusion result.

Table 1. The results of fusion using LOS applied in different orders.

Permutation Event M1
←
⊕M2 M2

←
⊕M1

(A) 0.4000 0
(B) 0 0

(A,C) 0.3000 0.1667
(C,A) 0.3000 0

(A,B,C) 0 0.2500
(B,C,A) 0 0.5833

3.2. Fusion and Decision-Making Based on Fisher Score and Random Permutation Set Theory

In this subsection, we outline how to utilize the Fisher Score and known Random
Permutation Sets for the final decision-making process. The reason for using the Fisher
Score as our algorithm to distinguish the sensitivity of different information sources to
various decisions is that each RPS originates from a distinct feature. By applying a feature
selection algorithm, we can obtain the relevant support levels, which then provide ordering
information that facilitates the fusion and decision-making process. The specific steps are
as follows:

Step 1. Calculate the Fisher Score for each feature with respect to each category. For
the specific formula, refer to Equation (19).In this step, we calculate the Fisher Score for
each feature with respect to each category. Specifically, for a given class, we compute the
Fisher Score by treating it as a binary problem of “class” vs. “non-class”. This approach
can also be expressed using the following formula:

Fisher_score( fi) =
∑c

j=1 nj(µij − µi)
2

∑c
j=1 njσ

2
ij

. (22)

Although in this step we calculate the specific values of the Fisher Score using an
algorithm, we do not directly utilize these values. Instead, we convert the values into
ranking information based on their relative magnitudes. If average-weighted methods
were employed, the weights would be highly influenced by the training set and feature
selection algorithm. Different feature selection algorithms yield varying relative numerical
results due to their differing theoretical foundations; however, their core approach remains
the same—using the magnitude of the values to determine which features are superior for
obtaining the final result. In our approach, we do not utilize the exact numerical values,
but instead rely on their relative relationships to aid in our final decision-making process.
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Step 2. For each calculated Fisher Score across all features within a specific class, sort
the features in descending order of their Fisher Scores. Repeat this process individually for
each class. This step can be expressed using the following formula,

Sort(Fij) for i ∈ {1, 2, . . . , nfeatures}, j ∈ {1, 2, . . . , nclasses}. (23)

Step 3. Based on the sorting in the previous step, calculate the RPS fusion result for
each class individually. Specifically, employ the left orthogonal sum (LOS) to fuse the
original RPSs, following a left-to-right order based on Fisher Scores sorted in descending
order. This process yields an RPS optimized for identifying each class more effectively. The
specific formula is given as,

Mfusion,j =Mσ(1)
←
⊕Mσ(2)

←
⊕ . . .

←
⊕Mσ(n). (24)

where σ(i) is the index corresponding to descending Fisher Scores. In this step, the RPS we
obtain is theoretically capable of optimally recognizing each category. At this juncture, if
there are originally n categories, there will be n RPSs. However, direct decision-making
remains infeasible at this stage.

Step 4. Calculate the distance between each fused RPS and the RPS corresponding
to its assigned belief value of 1 for the respective category. For specifics, please refer to
Equation (17).

The underlying principle of this step in natural language is that the fused RPS we
obtain is the one that best distinguishes a particular class. At this point, the distance
between the fused RPS corresponding to that class and the ideal RPS for that class most
accurately represents whether the result belongs to that class. For example, the RPS we
obtain is the one that most effectively distinguishes whether it belongs to Class A. At this
point, the smaller the distance between it and the RPS fully assigned with belief to Class A,
the more likely it is to be Class A.

Step 5. By comparing the distances calculated for each category, the class correspond-
ing to the smallest distance is our final decision result. The specific formula is given as,

C = arg min
i

di (25)

Here, arg mini di represents the category i that yields the smallest distance di. Through
the aforementioned steps, we have utilized the Fisher Score and the known RPSs to make
the final decision.

4. Experiment

In this section, we will employ the decision-making method mentioned above to
complete the classification task. Specifically, we use the Iris dataset for the experiment.
Under the condition that the sources of the initial RPS are completely identical, we compare
our method with the results obtained by directly using the LOS method.

The Iris dataset is one of the most famous multivariate datasets in machine learning
and statistics. It was introduced by British statistician and biologist Ronald Fisher in his
1936 paper and is commonly used as an example dataset for statistical learning methods.
This dataset contains 150 samples, each from one of three different species of iris: Setosa,
Versicolor, or Virginica. Four features were recorded for each sample: sepal length, sepal
width, petal length, and petal width, which are continuous variables in centimeters. In
addition, each sample has a corresponding category label, which is the type of flower. The
purpose of using this dataset is to be able to easily present the implementation process of
our method to the reader and demonstrate the effectiveness of our method. The details of
the experiment are as follows.
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4.1. Generation of RPS

In this paper, the generation of RPS is not the main focus. However, to ensure the
completeness of the experiment, we provide the specific steps for generating RPS here.
The detailed content of the algorithm can be referenced in [18]; we will only present the
corresponding calculation steps.

Step 1. Begin by calculating the mean and variance for each attribute across categories.
Use the following equations, where Ni indicates the total number of training samples in
the i-th category, and x(l)ij denotes the j-th sample of that category. The specific formulas
can be referenced in Equations (19) and (20).

Step 2. Construct a Gaussian discriminant model (GDM) for each attribute associated
with its respective category, as defined in the equation below:

fij(x) =
1√

2πσ2
ij

exp

(
−
(x− x̄ij)

2

2σ2
ij

)
. (26)

Step 3. Develop the membership vector for each attribute using the equation below,
where fij refers to the Gaussian distribution model for the j-th attribute of the i-th class:

fj = [ fij | i = 1, 2, . . . , N]. (27)

Step 4. Calculate the degree of membership and normalize the membership vector
using the following equations. Here, x0j represents the j-th attribute value of the test
sample x0:

fij ≜ fij(x)
∣∣
x=x0j

. (28)

f̃ij =
fij

∑i fij
. (29)

The normalized membership vector (NMV) can be expressed as follows:

f̃j = [ f̃ij | i = 1, 2, . . . , N]. (30)

Step 5. Rank the elements of the j-th normalized membership vector in descending
order to create the ordered normalized membership vector (ONMV):

f̃Ord
j = [ f̃ Ord

iu j | u = 1, 2, . . . , N]. (31)

Step 6. Compute the support degree of the u-th GDM for the j-th attribute using the
following formula:

siu j = exp
(
−
∣∣∣x0j − x̄Ord

iu j

∣∣∣). (32)

Step 7. Derive the weight vector wj for the elements ordered in the j-th attribute, as
shown in:

wj =
[

w(i1 ...iu ...iq)j

∣∣∣ q = 1, 2, . . . , N
u = 1, 2, . . . , q

(i1. . .iu. . .iq) ∈ APS(q)
]. (33)

In this equation, w(i1 ...iu ...iq)j serves as the weight factor, reflecting the relative signifi-
cance of the permutation events. The specific expression for w(i1 ...iu ...iq) is given by:

w(i1 ...iu ...iq)j =
q

∏
u=1

siu j

∑
q
t=u sit j

. (34)

Step 8. Calculate the weighted PMF Mw
j based on the weight vector wj and the

ordered normalized membership vector f̃ Ord
j :
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Mw
j

(
θOrd

i1 , . . . , θOrd
iu , . . . , θOrd

iq

)
=

{
w(i1 ...iu ...iq)j · f̃ Ord

iq j , (i1. . .iu. . .iq) ∈ APS(q)

0, (i1. . .iu. . .iq) /∈ APS(q)
(35)

This concludes with the generation of the weighted RPS based on the j-th weighted PMF:

RPSw
j = {⟨A, Mw

j (A)⟩ | A ∈ PES(Θ)}. (36)

4.2. Specific Decision-Making Process

In the previous subsection, we presented the specific method for generating RPSs, and
in Section 3.2, we provided the detailed decision-making steps. To clarify the experimental
process, we will illustrate with examples and present the numerical results for each step,
facilitating further understanding for readers.

Step 1. Determine the Fisher Score of each feature concerning every category. This can
be referenced as Equation (22). For the Iris dataset, the specific calculation results are shown
in Table 2. As shown in Table 2, there is a significant disparity between the calculated Fisher
Scores. In this case, using a weighted approach to incorporate this sensitivity information
may lead to some information sources being assigned excessively high weights, while
others may receive disproportionately low weights. This situation can result in the final
decision being overly dependent on certain information sources, while other sources may
not be effectively utilized. Such an imbalance in weighting can excessively amplify the
importance of a single information source, and relying solely on this source often causes
the model to lose the advantages of multi-source decision-making, leading to overfitting to
certain distributions.

Table 2. Fisher Score results for each feature and each category.

Setosa Versicolor Virginica

Sepal Length 12.697 0.072517 3.0857
Sepal Width 2.0534 1.843 0.13846
Petal Length 393.52 2.561 23.757
Petal Width 178.41 0.93287 20.417

Step 2. Sort the features in descending order of their Fisher Scores for each class.
Repeat for all classes. The computed results can be sorted as shown in Table 3.

Table 3. Results sorted using Fisher Score.

Setosa Petal Length > Petal Width > Sepal Length > Sepal Width
Versicolor Petal Length > Sepal Width > Petal Width > Sepal Length
Virginica Petal Length > Petal Width > Sepal Length > Sepal Width

Step 3. Calculate the RPS fused in order. The specific formulas can be referenced
in Equations (12) and (24). To better understand the calculation process intuitively, we
randomly selected RPSs generated during the experiment, with several specific RPS shown
in Table 4, and our calculated fusion results shown in Table 5.

In Table 5, RPS f 1 and RPS f 3 are obtained through the sequential fusion given by

RPS3
←
⊕ RPS4

←
⊕ RPS1

←
⊕ RPS2. Meanwhile, RPS f 2 is obtained through the sequential fusion

given by RPS3
←
⊕ RPS2

←
⊕ RPS4

←
⊕ RPS1.

Step 4. Calculate the distance between each fused RPS and the RPS which assigned a
belief value of 1 for the respective category. Since RPS f 1, RPS f 2, and RPS f 3 are the fused
RPSs sensitive to category 1, category 2, and category 3, respectively, it is sufficient to
calculate the distances three times. The specific calculation results are shown in Table 6.



Mathematics 2024, 12, 3632 11 of 14

Table 4. Original RPSs (only four decimal places are retained).

Permutation Event RPS1 RPS2 RPS3 RPS4

⟨Y1⟩ 0.0000 0.6014 0.0000 0.0000
⟨Y2⟩ 0.5906 0.0000 0.0000 0.0000
⟨Y3⟩ 0.0000 0.0000 0.9484 0.9699
⟨Y1, Y2⟩ 0.0000 0.1424 0.0000 0.0000
⟨Y2, Y1⟩ 0.0000 0.1635 0.0000 0.0000
⟨Y1, Y3⟩ 0.1960 0.0000 0.0000 0.0000
⟨Y3, Y1⟩ 0.2079 0.0000 0.0000 0.0000
⟨Y2, Y3⟩ 0.0010 0.0134 0.0278 0.0164
⟨Y3, Y2⟩ 0.0008 0.0170 0.0237 0.0136
⟨Y1, Y2, Y3⟩ 0.0011 0.0128 0.0000 0.0000
⟨Y1, Y3, Y2⟩ 0.0009 0.0147 0.0000 0.0000
⟨Y2, Y1, Y3⟩ 0.0008 0.0183 0.0000 0.0000
⟨Y2, Y3, Y1⟩ 0.0008 0.0165 0.0000 0.0000
⟨Y3, Y1, Y2⟩ 0.0008 0.0000 0.0000 0.0000
⟨Y3, Y2, Y1⟩ 0.0008 0.0000 0.0000 0.0000

Table 5. RPSs obtained after fusion (only four decimal places are retained).

Permutation Event RPS f 1 RPS f 2 RPS f 3

⟨Y1⟩ 0.0000 0.0000 0.0000
⟨Y2⟩ 0.0000 0.0000 0.0000
⟨Y3⟩ 0.7272 0.7172 0.7272
⟨Y1, Y2⟩ 0.0000 0.0000 0.0000
⟨Y2, Y1⟩ 0.0000 0.0000 0.0000
⟨Y1, Y3⟩ 0.1960 0.0000 0.0000
⟨Y3, Y1⟩ 0.2079 0.0000 0.0000
⟨Y2, Y3⟩ 0.1591 0.1569 0.1591
⟨Y3, Y2⟩ 0.1318 0.1299 0.1318
⟨Y1, Y2, Y3⟩ 0.0000 0.0000 0.0000
⟨Y1, Y3, Y2⟩ 0.0000 0.0000 0.0000
⟨Y2, Y1, Y3⟩ 0.0000 0.0000 0.0000
⟨Y2, Y3, Y1⟩ 0.0000 0.0000 0.0000
⟨Y3, Y1, Y2⟩ 0.0000 0.0000 0.0000
⟨Y3, Y2, Y1⟩ 0.0000 0.0000 0.0000

Table 6. The distances calculated between different category RPSs.

Setosa Versicolor Virginica

dRPS 0.9221 0.9210 0.1608

Step 5. Determine the class corresponding to the minimum distance as the final
decision result. Based on the table above, the minimum distance is with the class Virginica.
Thus, we ultimately conclude that this set of RPS is classified as Virginica. Compared to the
original labels, this decision result matches the sample label.

4.3. Experimental Results and Analysis

In this subsection, we present the specific experimental results. This experiment used
the same dataset, and under the condition of generating identical RPS, we applied different
decision-making methods to obtain the final classification outcomes.

In previous literature, the weighted RPS was commonly obtained by calculating the
distances between RPSs and applying weights to achieve a fused result. Studies on such
methods can be referenced in papers [11,14]. Our approach, however, emphasizes lever-
aging the asymmetrical properties of RPS fusion to integrate additional information more
effectively. Under the condition of identical RPS generation, we obtained the experimen-
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tal results shown in Figure 1 and Table 7. In these figures and tables, “Distance” and
“Divergence” correspond to the methods discussed in papers [11] and [14], respectively.
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Figure 1. Comparison of experimental results on the Iris dataset.

Table 7. The specific performance of the three methods on the Iris dataset.

Methods Descriptive Statistics 20% 30% 40% 50% 60% 70% 80%

Distance
Average accuracy 0.9358 0.9411 0.9430 0.9436 0.9398 0.9418 0.9452

Variance of accuracy 0.0004 0.0003 0.0003 0.0004 0.0006 0.0008 0.0015

Divergence
Average accuracy 0.9278 0.9313 0.9373 0.9336 0.9358 0.9373 0.9389

Variance of accuracy 0.0004 0.0004 0.0004 0.0005 0.0008 0.0010 0.0020

our method
Average accuracy 0.9460 0.9487 0.9546 0.9545 0.9555 0.9580 0.9626

Variance of accuracy 0.0007 0.0004 0.0004 0.0004 0.0006 0.0007 0.0013

By comparing the experimental results, it can be observed that our method outper-
forms the other two approaches on the Iris dataset, regardless of whether the training set
proportion is small or large. This is because our approach fully exploits the asymmetric
nature of RPS fusion, leveraging additional information to aid in the final decision. In
contrast, the other two methods both apply weighting to the RPS to obtain a single RPS,
which is then fused with itself. Since there is only one RPS, these methods lack the asym-
metry inherent to fusion. Although such methods can partially address certain issues, such
as conflicts within the RPS sources, their weighting approach also results in some loss
of information. Moreover, for methods that enumerate all possible fusion scenarios, the
computational cost is prohibitive. For the Iris dataset, there are 24 possible fusion outcomes,
which is not only inefficient but also diminishes the interpretability of the model.

Another demonstration that using permutations to represent more detailed informa-
tion can yield better decision results is the comparison between the experimental results of
evidence theory and RPST. Since BPA and the permutation quality function are generated
differently, direct comparison is inappropriate. However, as seen in paper [35], both use
a similar Gaussian distribution model to obtain either a permutation quality function or
a basic probability assignment function. The highest accuracy achieved using evidence
theory is only 95.5%, whereas using RPST, accuracy can exceed 96%. This highlights the
advantage of using permutation information for decision-making.
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In summary, experimental evidence confirms that our method of utilizing additional
information transformed into permutation information for decision-making is effective.
It not only fully leverages the asymmetric fusion properties of the random permutation
set but also enhances the interpretability of the decision model. Compared to the most
commonly used method of weighting based on RPS differences, our approach retains
more information. Furthermore, the experimental results demonstrate a clear advantage
across all training set proportions, proving the effectiveness of our method for real-world
decision-making.

5. Conclusions

In this paper, we proposed a method for converting additional information into
ranking information for multi-source information fusion and decision-making under the
framework of RPS theory. Specifically, we focused on the inequivalence of different infor-
mation sources in decision-making and the asymmetric nature of fusion within RPS. By
utilizing the Fisher Score, we calculated the sensitivity of RPS and decisions from various
information sources. The final RPS fusion was sorted based on the computed Fisher Scores,
followed by calculating the distances between RPS to facilitate the final decision.

Our experimental comparisons demonstrated that our approach offers higher inter-
pretability compared to traditional methods that compute the differences between RPS and
apply weighted averages for decision-making. To our knowledge, there has been no prior
research addressing the fusion order of RPS, and our study contributes to filling this gap,
providing insights for future information fusion and decision-making processes. Given the
inherent imprecision and fuzziness of the real world, leveraging multi-source information
fusion for decision-making holds significant practical value. Our research, grounded in
RPST as a generalization of evidence theory, showcases wide applicability.

However, while our experiments validate the effectiveness of our method, the chal-
lenge of converting additional information into ranking information for decision-making
remains an open question. Additionally, our method is contingent upon knowing the
original distribution of information sources. The generation of RPS remains an area worthy
of further exploration. When the generation of RPS is independent of data features, it
becomes infeasible to use the Fisher Score to assess the sensitivity of different RPSs to
various classes.

In future work, we will continue to explore more effective ways to utilize information
for decision-making and aim to develop broader methods to assist multi-source information
decision-making in uncertain conditions.
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