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Abstract: Cancer-related diseases are some of the major health hazards affecting individuals globally,
especially breast cancer. Cases of breast cancer among women persist, and the early indicators of the
diseases go unnoticed in many cases. Breast cancer can therefore be treated effectively if the detection
is correctly conducted, and the cancer is classified at the preliminary stages. Yet, direct mammogram
and ultrasound image diagnosis is a very intricate, time-consuming process, which can be best
accomplished with the help of a professional. Manual diagnosis based on mammogram images can
be cumbersome, and this often requires the input of professionals. Despite various AI-based strategies
in the literature, similarity in cancer and non-cancer regions, irrelevant feature extraction, and poorly
trained models are persistent problems. This paper presents a new Multi-Feature Attention Network
(MFAN) for breast cancer classification that works well for small lesions and similar contexts. MFAN
has two important modules: the McSCAM and the GLAM for Feature Fusion. During channel fusion,
McSCAM can preserve the spatial characteristics and extract high-order statistical information, while
the GLAM helps reduce the scale differences among the fused features. The global and local attention
branches also help the network to effectively identify small lesion regions by obtaining global and
local information. Based on the experimental results, the proposed MFAN is a powerful classification
model that can classify breast cancer subtypes while providing a solution to the current problems in
breast cancer diagnosis on two public datasets.

Keywords: breast cancer; deep learning; attention module; computer-aided diagnosis; Wiener Filter;
CBIS-DDSM; ultrasound dataset

MSC: 68T07

1. Introduction

Cancer is a disease characterized by rapid and unregulated cell development and
is also a primary cause of death in society. The IARC estimates that one in five people
will be diagnosed with cancer, and one in eight men and one in eleven women will die
from it. Women are most commonly affected by breast cancer, which is a primary cause
of death [1]. Most importantly, emerging countries have more female breast cancer cases
than industrialized ones. Pakistan has 1.38 million cases every year, and one third of them
die. Cancer accounts for 9.6 million annual deaths globally [2], with a survival rate of
1.7 million [3]. Statistics indicate that breast cancer accounts for 24.5% of cancer-related
fatalities in women (GLOBOCAN, 2020). Early-stage cancer must be discovered and treated
soon to prevent breast or other metastases. Correct diagnosis and therapy can boost breast
cancer survival by up to 80% [4]. New diagnostic and therapeutic options for breast cancer
patients are emerging from imaging techniques and biochemical biomarkers targeting
micro RNAs, proteins, DNAs, and mRNAs [5].
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Deep Learning (DL) is a branch of Machine Learning (ML) based on brain neurons.
DL networks are made of artificial neural layers and neurons. Every neuron is coupled
with every neuron in the following layer through weighting factors known as weights.
The recent increase in DL methods has caused several fields to employ this technology
to solve different problems or enhance the outcomes of existing research. DL models
using SVM have recently achieved tremendous success [6–8]. Recently, researchers have
employed DL models in human action recognition [9–11] and statistical models [12,13].
An increase in the utilization of DL approaches in medical fields has yielded optimistic
results, particularly since DL offers more rapid and precise analysis than physicians. We use
two public datasets in our paper. The CBIS-DDSM dataset is a new, standardized version
of the Digital Database for Screening Mammography. Starting with 2620 scanned film
mammography examinations, the DDSM covers a wide spectrum of cases, from benign to
malignant, with well-reviewed pathological data. The CBIS-DDSM dataset, a current breast
imaging standard, updates and refines this repository. The second collection, the Breast
Cancer Ultrasound dataset, includes baseline breast ultrasound images from 25–75-year-old
women. The data were obtained in 2018. There are 600 female patients. The collection
includes 780 photos, averaging 500 by 500 pixels. The images are PNG. Images are classified
as normal, benign, or malignant.

Computer-Aided Diagnostic (CAD) tools are widely used to identify and characterize
breast USI lesions. Radiotherapists choose these systems to diagnose breast cancer and
determine prognoses. Statistical approaches [14] are commonly used to examine extracted
features such as posterior acoustic attenuation, lesion shape, margins, and homogeneity,
as previously noted in literature surveys. However, assessing the margins and morphol-
ogy of lesions in USIs remains challenging [15]. Furthermore, ML methods have been
commonly used for investigating and categorizing tumors according to lesion-specific
handcrafted texture and morphologic features [16]. However, this source of features is still
very much dependent on medical knowledge for the extraction of the features. Due to the
issues related to handcrafted features, new algorithms have been adopted, including DL
algorithms, which can learn features from data in a more efficient way, especially when
it comes to learning high-order and non-linear features. DL models are equally efficient
in the classification of USIs, especially where feature engineering may be challenging [17].
Other research works have applied DL approaches of different types, including pretrained
CNNs, in classifying tumors in breast USI [18]. The following is a summary of this work’s
main contributions:

• Our Multi-Feature Attention Classification Network (MFAN) makes use of two
ground-breaking modules: the Multi-Scale Spatial Channel Attention Module (Mc-
SCAM) and the Global–Local Attention Module for Feature Fusion. Both of these
modules have unprecedented capabilities. The MFAN method solves the low classifi-
cation accuracy of the NFSC method, which is caused by confined lesion zones and
backdrops that are comparable.

• Concerning information loss in some dimensions during feature extraction, the Mc-
SCAM can perform comprehensive feature extraction. Thus, it learns about the depen-
dency of the channel and allows for the expanding of the perception of depth-wise
convolution to gain a better understanding of the model.

• The GLAM aggregates various scale features in the network and simultaneously
adopts both global and local information by employing the dual attention branches.
This module integrates characteristics from different scales and optimizes the informa-
tion extraction step, improving the capability of the model to focus on subtle lesion
regions, thus enhancing classification capacity.

This article is divided as follows: Section 2 summarizes the past literature; The pro-
posed model is fully detailed in Section 3; Section 4 covers the experimental results and
discussions; and Section 5 concludes the paper.
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2. Literature Review

Previous research has extensively examined the analysis phenomena as an effective
way to improve Convolutional Neural Networks’ (CNNs) representation capacities across
different domains [19–23]. In addition to their application in object recognition [24], CNNs
are also employed for the detection of human movement [25,26], the detection of tar-
gets [27], and the identification of individuals [28]. Advanced computer vision-based
ultrasound breast cancer classification methods have been developed. The new CNN-based
DL model BreastNet classifies breast cancer from histopathology images. Using a hypercol-
umn attention mechanism and residual blocks, this model achieved 98.80% accuracy on
the BreakHis dataset [29]. Using transfer learning, a deep learning model improved breast
cancer detection and prediction in cytology pictures, outperforming current algorithms [30].
For feature selection, the classification technique uses an information gain-directed simu-
lated annealing genetic algorithm wrapper. This method uses information gain to prioritize
features and a cost-sensitive SVM to identify optimal characteristics [31].

An architecture for breast cancer classifier was suggested by incorporating the atten-
tion mechanism into the VGG16 model. These improvements have helped this enhanced
model to effectively distinguish between background features and lesion-specific features
in ultrasound images. A complex ensemble loss function with binary cross-entropy loss
and the logarithm of hyperbolic cosine loss was also introduced. This combination aimed
to improve the distinction between labels and lesion classifications, resulting in a more
detailed classification process [32].

Breast mass classification from ultrasound images utilizes transfer learning (TL) and
deep representation scaling (DRS) layers. The DRS layer settings of this pre-trained CNN
were optimized for breast mass classification, outperforming state-of-the-art approaches
such as Byra [33] during training. Similar to LUPI, a deep doubly supervised transfer
learning network classifies breast cancer using MMD criteria. Stiff improved classification
performance using a unique doubly supervised transfer learning network (DDSTN) using
these strategies [34]. Using ultrasound pictures, image fusion with content representa-
tion, and CNN models, a computerized diagnostic system was created to discriminate
benign from malignant breast cancer. Using BUSI and other datasets, the authors achieved
significant classification accuracy gains [35].

Using a complex image-processing structure meant for multi-view examination [36]
improved diagnostic outcomes. The first-order local entropy was applied to threshold the
tumor regions from the texture features, and the derived measures were used to decide the
radius and area of possible malignancies. This method provided the detection accuracies
of 88.0% and 80.5% of images obtained with CC and MLO in breast cancer screening.
In [37], the authors proposed a framework based on transfer learning and used several
augmentation techniques to increase the size of the mammogram dataset and reduce over-
fitting, which would lead to more accurate outcomes. Almalki et al. [38] put forward a
multi-stage technique and applied it to a large mammography image base. First, the classi-
fication step was conducted, and afterwards, the pectoral muscle extraction took place at
the second stage. The last approach entailed identifying abnormal regions in the enhanced
images through a segmentation module that yielded a classification accuracy of 92% when
compared with the BI-RADS dataset that has five categories. Further advancement and
optimization are being conducted to make the DL approach the key technology for medical
diagnostics, and deep learning methods have indicated high efficacy in the diverse field of
medical applications. Despite their astounding capabilities, DL algorithms are not perfect.
The quality and diversity of training data determines AI breast cancer detection accuracy.
Diagnostic disparities can result from data biases or training dataset restrictions. AI models
must be validated and refined to reduce errors and ensure consistent outcomes across demo-
graphics and clinical contexts. These invasion approaches have shown potential progress;
however, there is still plenty of room for improvement and development in this area [39,40].
In the next section, the proposed model will try to overcome these identified gaps.
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3. Materials and Methods

The proposed model shown in Figure 1 explains the overall architecture. It starts
with an image fed into the system for processing. Initial feature extraction uses attention
modules. These modules allow the model to focus on the most important parts of the
image, resulting in high-quality, contextually relevant features. The GLAM (Global–Local
Attention Module) modules fuse the extracted features. Fusion creates a more complete
view and improves the model’s capacity to recognize complex nuances. Finally, fused
features provide output labels for input image categorization or recognition. This structured
technique uses attention-based feature extraction and enhanced feature fusion to increase
model accuracy and performance.

Input Image Output Labels
Feature Extraction

 using Attention Modules

Feature Fusion using

GLAM Module

Figure 1. Simplified architecture of the proposed model for breast cancer classification.

3.1. Pre-Processing

In the first step, the images are pre-processed to remove noise via the Wiener Filter
(WF) method. In general, noisy images are pre-processed using the noise removal method
that helps to increase the image features which have been affected by the noise. An adaptive
filter is a more specific approach, within which the denoising process solely relies on the
presence of noise at the local level within that image. Let the noisy image be assessed as
Î(x, y), and the variance of noise throughout the area as σ2

y . The mean of the local window
is represented by the symbol µ̂L, and the variance of the local window is represented by
the symbol σ̂2

y .

Î = I′(x, y)−
σ2

y

σ̂2
y

(
I′(x, y)− µ̂L

)
(1)

At this point, the image has no noise fluctuations; hence, σ2
y = 0 ≥ Î = I′(x, y). This

ratio approaches one when global noise variance diminishes and local variation exceeds
global variance. If σ̂2

y ≫ σ2
y , then Î = I′(x, y). High local variance indicates an edge in

the image window. For equal local and global variance, the formula is adjusted to Î = µ̂L,
with σ̂2

y ≈ σ2
y .

This may indicate average intensity from the average area. Contrast enhancement is
achieved using contrast-limited adaptive histogram equalization (CLAHE) [41]. CLAHE is
a sophisticated form of adaptive histogram equalization that controls contrast amplification
to reduce noise enhancement. The CLAHE increases pixel contrast proportionally to
transfer function slope. Unlike the conventional image, CLAHE works on “tiles”. Using
bilinear interpolation, nearby tiles are merged to eliminate spurious split lines. This
approach boosts visual contrast, making it helpful.

3.2. Proposed Architecture
3.2.1. Network Overview

The proposed network model is thus an improved version of the EfficientNetB2 [42]
architecture, incorporated with the discussed network optimization techniques. In parsing
the EfficientNet models from EfficientNetB0 to EfficientNetB7, the parameters of depth,
width, and resolution are optimal within this sequence. The proposed MFAN, illustrated
in Figure 2, is designed to support multi-feature and multi-scale classification. The major
components are seven attention modules (AM) for characteristics extraction, two addi-
tional modules, and a classification convolutional layer. The AM block extracts extensive
information with interesting properties. The AM highlights the data that improve model
performance by combining scale features. The SE approach [43] picks features using global
average pooling but overlooks crucial spatial information in feature maps. McSCAM is
used to retain and extract spatial information from feature maps. Initially, the model’s
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discriminability can be improved through the use of multi-scale feature extraction in the
channel attention technique without sacrificing spatial feature details.

In Figure 2, the AM6 block is responsible for the initial expansion of the feature map
channels by a factor of six thousand. Following this, depth-wise convolution (DWC) is
performed in order to keep the channel number consistently the same. Last but not least,
the feature map is subjected to McSCAM in order to capture both channel and spatial
detail. While AM1 is the activation map that has a constant channel number, the size of the
convolution kernel k that is used by DWC in the AM block is the size of the convolution
kernel. The ability to concentrate more intently on minute problematic regions within
an image is made possible through the process of extracting features from photos of
varying sizes.

The features generated from seven AM blocks are given as F1 to F7. The obtained
features are then used to embed the multi-global–local attention module for feature fusion
(GLAM) to achieve global and detailed multi-scale local semantic feature map information.
A dedicated McSCAM is used to enhance these features and determine the final subtype
for breast cancer.

Input Image Conv

Layer
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(k=3)

AM6 x 3

(k=3)

AM6 x 3

(k=5)

AM6 x 4

(k=3)
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Figure 2. Architecture of proposed MFAN model for multi-feature and multi-scale classification.

3.2.2. Multi-Scale Spatial Channel Attention Module

A mechanism known as channel attention concentrates on critical channels while
simultaneously reducing the impact of noise that is unrelated to those channels. Focus-
ing attention on specific channels improves the model’s performance in detecting and
differentiating small subtypes of breast cancer. However, the fusion process of features
basically considers the connection between channels, without considering the spatial data,
and the latter is critical when aiming at localized breast cancer classification. Employing a
multi-layer perceptron while learning features through subtraction hinders the channel’s
independence and has a detrimental effect on learning since it necessitates more parame-
ters. The spatial pyramid pooling employed in visual task detection networks [32] can also
be used for census map features from differently sized maps to sharpen tasks and keep
precise spatial information. In achieving this goal, we design the attention mechanism
and propose the McSCAM framework that considers multi-scale ideas. Thus, we maintain
spatial feature details while learning channels by substituting the global average pooling
layer with multi-scale pooling techniques. Also, the utilization of DWC in feature extraction
tends to maintain distinct and independent channel interactions.

To obtain spatial characteristics, input features are pooled at three scales, as shown
in Figure 3. The DWC approach is used to transform multi-scale spatial input into a
consistent spatial dimension, hence aiding the process of feature learning. After applying
the Sigmoid activation function, the input activation map is multiplied along the channel
dimension. This procedure enables the network to provide priority to the vital channel
by assigning it a greater weight value. Ultimately, the desired outcome is achieved by
concentrating on the output of stored spatial data. The channel attention mechanism is
formulated by incorporating multi-scale spatial information in the following manner:
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C × H × W

C × 3 × 3

C × 2 × 2 C × H × W

C × 1 × 1

Pooling (1 × 1)

Pooling (2 × 2)

Pooling (3 × 3)

Depth-wise

Convolution

Depth-wise

Convolution

Depth-wise

Convolution

Element-wise Summation Element-wise Multiplication

Figure 3. Architecture of the proposed McSCAM module.

gout = Σ

(
∑

S∈scales

1
S × S

DWC(Pool(gin, S))

)
⊗ gin (2)

Assume that the input feature is denoted by gin, the scale pooling is denoted by
Pool(., S), and the scales are denoted by S, with the purpose of preventing larger-scale
pooling from dominating a larger channel weight while neglecting the benefits of small-
scale pooling. Through the utilization of the coefficient as the square of the scale size,
the reciprocal multiplication process allows for the equalization of the unique information
that is obtained by pooling each scale. Both DWC(.) and Sig(.) are activation functions
that are used to perform depth wise convolution and sigmoid activation, respectively.
The symbol ⊗ is used to indicate element-wise multiplication, which results in the output
feature gout while maintaining multi-scale spatial information.

3.2.3. Multi-Global–Local Attention Module for Feature Fusion

The multi-scale feature fusion module (MSFFM) and global and local attention module
make up GLAM blocks. The MSFFM combines and increases features from different scales,
while the attention module uses two different mechanisms to obtain both global and local
information appropriately. The technique that combines features from a specific scale to
create a new feature space is called multi-scale feature fusion. This module builds on the
popular Fully Convolutional Network (FCN) [44] and PANet [35] used in medical segmen-
tation. Medical image segmentation demands acquiring additional feature information
from images at different sizes to obtain complicated and diversified high-dimensional
information for pixel-by-pixel classification.

This strategy also helps medical imaging subtype classification. The network’s seven
AM blocks’ features are input modules. The output of layers with uneven spatial sizes is
down-sampled to match high-dimensional characteristics. The fused features are obtained
using the convolution in which channel expansion ensures that features are fused and
concatenated along the channel dimension. Thus, after passing through a convolutional
layer, the amount of information in the channel dimension is reduced and is beneficial
for decreasing computational costs to calculate fused features. Down-sampled features
are shown in Figure 3, which illustrates the fusion process for the down-sampled features.
The multi-scale feature fusion process can be mathematically defined by the following
equation. Here, gi ∈ RCi×Hi×Wi , where i ranges from 1 to 7 to symbolize the features
obtained from seven AM blocks. g7 specifically refers to the most profound feature.

gdi = WT
digi, i = 1, 2, . . . , 7, (3)

g f i = WT
e(i−1)gd(i−1) ⊕ gdi, i = 1, 2, . . . , 7, (4)

g f 1 = WT
e1gd1, (5)

where the symbol WT
digi represents the process of down sampling the feature gi to obtain

gdi. The expression WT
ei gdi reflects the result of performing channel expansion on gdi to
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match the size of the next level gd(i−1) and then adding it to gdi to obtain g f i. The symbol
⊗ denotes the operation of element-wise summing between two features. The computation
of the output of the MSFFM is given as

gout = WT
oiC
(
[g f 1, g f 2, . . . , g f 7]

)
. (6)

The function C(.) combines features, while WT
oi convolutions channel compression to

produce the aggregated feature gout.
Integration of the multi-feature attention mechanism is now being implemented on

both the global and the local levels. An individual attention mechanism is capable of
concentrating on certain information; however, it typically only examines information that
is either global or local in scope. To emphasize both global and local features in formation,
it is important to take into consideration a structure that consists of two branches and
includes both global and local attention modules, as depicted in Figure 4. The GLAM is
composed of two branches: the global attention branch involves the utilization of global
average pooling in order to obtain information from the aggregated feature gout that is
provided by MSFFM; a branch of convolution, known as the local attention branch, is
responsible for extracting local information. Both types of data are integrated immediately.
The convolution produces the feature GLAout, emphasizing global and local information.
The computations are detailed below.
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Figure 4. Architecture of the GLAM with global and local attention branches.

GA f = PWC(Re(BN(PWC(GAP(gout))))), (7)

LA f = PWC(Re(BN(PWC(gout)))), (8)

GLA(gout) = Re
(

BN
(

PWC
(

Sig
(

GA f ⊕ LA f

))))
, (9)

where function GA(.) represents a global attention branch, whereas LA(.) represents an-
other local attention branch. The notation GAP(.) represents global average pooling,
whereas PWC(.) represents point-wise convolution with a kernel size of 1 × 1. These oper-
ations are specifically intended to decrease the number of parameters. Batch normalization,
denoted as BA(.), is a technique that is used after the convolution procedure and before
the activation function. The functions ReLU and Sigmoid are denoted by Re(.) and Sig(.),
respectively. The symbol ⊕ is used to denote element-wise summing operations.
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3.3. Loss Function

To prevent network overfitting, we employ the cross-entropy loss function for label
smoothing [45]. This is crucial when dealing with limited data as the model cannot
adequately represent all sample properties determined by

LSCELossi =

{
−(1 − ε)∑k

i=1 pi log(qi) if (i = y)
−ε ∑k

i=1 pi log(qi) if (i ̸= y).
(10)

k is the number of categories, while ∈ is a smoothing hyperparameter. Actual sample
and model-predicted distribution are pi and qi, respectively. Label smoothing improves
model generalization through regularization. Combining the pi value of one-hot encoding
with the noise softens the version, reducing the relevance of the category corresponding to
the sample label in the loss function:

pi =

{
1 − ε if (i = y)

ε
k−1 if (i ̸= y).

(11)

In the next section, the experimental results are presented, which proves the authentic-
ity of the proposed model.

4. Experiments
4.1. Dataset Description and Experimental Setup

For this purpose, we employed the CBIS-DDSM dataset (D1) [46], which is an en-
hanced version of the DDSM [47], including 2620 mammography cases with associated
pathology. This short subset is managed by an expert mammographer and consists of
6671 images of mammograms in PNG format, with image sizes of 255 × 255 pixels. The data
are split into 80% training and 20% testing, with new ROI segmentation and pathologic di-
agnoses for better CAD systems assessment. The Breast Cancer Ultrasound dataset (D2) [48]
includes a set of images obtained through ultrasound scans of females varying within the
age bracket of 25 to 75 years from the sample data collection year of 2018. The collection in-
cludes 780 PNG photos (about 500 × 500 pixels) from 600 female patients. Photographs are
classified as superficial, benign, or malignant. The dataset includes 133 normal, 437 benign,
and 210 cancerous images.

The experiment is based on the Intel Core i7-11700K CPU, 32 GB DDR4 RAM, and NVIDIA
GeForce RTX 3080 GPU enabler for effective computing and high-performance GPU accelera-
tion. Internal storage uses 1 TB NVMe SSD, and the main OS is Windows 11 Pro. The Python
3.12 environment is fine-tuned with the main libraries and frameworks, including TensorFlow.
Hyperparameters are trained using a learning rate of 0.001 with 32 batches and 50 epochs
using Adam optimizer (Adam Technologies, Islamabad, Pakistan).

4.2. Evaluation Metrics

The confusion matrix proves to be one of the most important metrics for assessing
the performance of a trained classifier since it compares its predictions to the actual results
in the test dataset. This matrix comprises four key metrics. These are referred to as the
true positives (TP), the true negatives (TN), the false positives (FP), and the false negatives
(FN). From these basic measures mentioned above, it is possible to derive other indicators
such as the true positive rate (TPR), false positive rate (FPR), and true negative rate (TNR),
which give a clear picture of how accurate and adhesive the classifier is. In the confusion
matrix, TP and TN are represented by the elements lying on the diagonal, which defines
the correct classifications of the model. On the other hand, FP and FN represent incorrect
classifications; for instance, FN means that a malignant tumor has been classified as benign.
These basic parameters allow for the determination of more specific characteristics of the
model, including Accuracy (Acc), recall, Precision (Pre), and F1-score (F1). A fair basis for
comparison in the current work was ensured by the selection of these evaluation metrics,
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which were chosen to coincide with those utilized by methodologies that are considered to
be state of the art.

4.3. Classification Results
4.3.1. Comparison with Pretrained Models

To compare with the current advanced DL models, Table 1 shows the performance
of the proposed model following five pretrained models, which are EfficientNetB2, Mo-
bileNetv2, DenseNet201, ShuffleNetv3, and NasNetLarge, on two public datasets: D1 and
D2. The findings reveal that the proposed model yields an outstanding performance, better
than all other models for both datasets. In the case of D1, the proposed architecture of
the DL model obtains an exceptional level of accuracy of 98.67%, which is significantly
higher than the second-best model, namely, EfficientNetB2, which has scored 84.54%. In the
same regard, with respect to recall, the proposed model scores 98.16%, surpassing Effi-
cientNetB2’s 83.13%. Precision and F1-score also behave similarly, and for the proposed
model, it achieved a precision of 99.42% and 97.79%, respectively, compared to Efficient-
NetB2, which achieved and accuracy of 86.12% and 83.84%, respectively. Thus, on D2, the
proposed model sustains it superior performance with an accuracy of 98.21%, which is
higher than that of the MobileNetv2, which scored 83.97%, thereby ranking second on this
dataset. The present model also obtained a recall of 98.06% and a precision of 99.36%, far
exceeding those of NasNetLarge, which scored 76.23% and 77.63% in the same metrics.
This quantitative comparison highlights the proposed model’s exceptional ability to deliver
high accuracy, precision, and recall across different datasets, establishing its effectiveness
in breast cancer image classification tasks. Comparative analysis of evaluation metrics for
the selected pretrained model and the proposed model on D1 is shown in Figure 5, while
same data for D2 are shown in Figure 6.

Figure 5. Comparative analysis of evaluation metrics for selected pretrained model and proposed
model on D1.
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Figure 6. Comparative analysis of evaluation metrics for selected pretrained model and proposed
model on D2.

Table 1. Comparison of pretained models with proposed model on D1 and D2.

Models D1 D2
Acc (%) Re (%) Pre (%) F1 (%) Acc (%) Re (%) Pre (%) F1 (%)

EfficientNetB2 84.54 83.13 86.12 83.84 81.72 80.45 82.67 78.32

MobileNetv2 76.49 74.89 77.56 75.77 83.97 81.77 84.99 80.54

DenseNet201 79.51 79.68 81.39 76.65 73.18 72.34 73.89 70.41

ShuffleNetv3 71.88 70.07 72.77 70.44 77.58 76.58 79.11 75.22

NasNetLarge 82.16 81.84 83.51 80.61 76.88 76.23 77.63 76.39

Proposed 98.67 98.16 99.42 97.79 98.21 98.06 99.36 98.01

Improvement 14.13 15.03 13.30 13.95 14.24 16.29 16.29 17.47

4.3.2. Comparison with Loss Function

Based on the results presented in Table 2, the performances of three loss functions,
including Mean Square Error (MSE), Mean Absolute Error (MAE), and Categorical Cross
Entropy (CCE), have been compared. The performance of CCE is significantly higher than
all the other losses. For CCE on dataset D1, accuracy was found to be 98.67%; on D2,
accuracy reaches 98.21%. However, MSE and MAE indicate low accuracy rates. Specifically,
MSE achieves 97.15% on D1 and 95.89% on D2, while MAE achieves 96.44% on D1 and
97.64% on D2.

Table 2. Comparison of loss function for proposed model on D1 and D2.

Loss Function D1 D2
Acc (%) F1 (%) Acc (%) F1 (%)

Mean Square Error 97.15 95.76 95.89 94.72

Mean Absolute Error 96.44 95.21 97.64 95.99

Categorial Cross Entropy 98.67 97.79 98.21 98.01
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4.3.3. Comparison with Different Scale Size of McSCAM

Table 3 shows variations of scale size for the multi-scale module between two datasets:
D1 and D2. Among all the combinations, the 1,2,3 combination outperforms other com-
binations on both datasets, with an accuracy of 98.67% for D1 and 98.21% for D2. For
other scale sizes, 1,3,5 and 1,3,5,7 reveal drops of 1.55–2.91% on D1 and 1.47–2.38% on D2.
The 1,2,3,4,5 combination has a fairly good performance; however, the difference made is
still insufficient by 2.09% on D1 and 0.93% on D2.

Table 3. Comparison of different scale sizes for McSCAM on D1 and D2.

Scale D1 D2
Acc (%) F1 (%) Acc (%) F1 (%)

1,2,3 98.67 97.79 98.21 98.01

1,3,5 97.12 96.33 96.74 94.72

1,3,5,7 95.76 93.64 95.83 94.18

1,2,3,4,5 96.58 95.21 97.28 95.54

4.3.4. Analysis of Proposed Modules

The results in Table 4 show the performance of the baseline, McSCAM, and GLAM
models for various permutations on two datasets. Even based on the baseline alone, there is
a decrease in performance in both datasets. Therefore, incorporating MsSCAM increases the
outcomes by around 5.66% on D1 and 10.45% on D2. Even incorporating the GLAM alone
also results in improvements of about 4.41% on D1 and 10.69% on D2. The combination
of all three modules (baseline, MsSCAM, and GLAM) achieves the highest performance,
outperforming the baseline by over 11% on D1 and by nearly 14% on D2. This highlights
the substantial impact of combining the MsSCAM and GLAM for superior results.

Table 4. Comparison of performance of baseline, McSCAM, and GLAM models on D1 and D2.

Baseline McSCAM GLAM D1 D2
Acc (%) F1 (%) Acc (%) F1 (%)

✓ 87.46 86.21 84.33 82.73

✓ ✓ 93.12 92.07 94.78 93.11

✓ ✓ 91.87 89.99 95.02 93.46

✓ ✓ ✓ 98.67 97.79 98.21 98.01

4.3.5. Comparison with State-of-the-Art Methods

Table 5 compares different methods for breast cancer classification based on the
CBIS-DDSM and Breast Cancer Ultrasound datasets, focusing on their accuracies. For the
CBIS-DDSM dataset, existing methods demonstrate accuracy ranging from 77.60% to
91.50%, with Method [49] being the highest at 91.50%. However, the proposed method
outperforms others, and it has an accuracy of 98.67%. This significant improvement
demonstrates its enhanced performance in classifying malignant cases from benign ones
in mammographic images. Likewise, current methods for the Breast Cancer Ultrasound
dataset range from 85.83% to 96.69% accuracy, with Method [50] reaching the upper limit
at 96.69%. The proposed method once more establishes a new state of the art, obtaining
98.21% accuracy. The improved overall performance of the system is demonstrated by
the increase in the level of accuracy from 14% to 21%. These results underscore the
proposed method’s strength and innovation, positioning it as a highly reliable and advanced
solution for breast cancer classification across different imaging modalities, surpassing the
performance of existing state-of-the-art techniques.The next section concludes this article
with future directions.
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Table 5. Comparison with state-of-the-art methods on D1 and D2.

Method Dataset Accuracy (%)

DCNN-based multi-class classification [51] D1 88.00

Integrating Segmentation with CNN [52] D1 77.60

Deep features fused with local features [49] D1 91.50

Cross-model semantic mining [53] D1 87.05

Shallow CNN [54] D1 89.20

Proposed D1 98.67

Deep learning-based model [55] D2 85.83

Image enhancement techniques for detection [50] D2 96.69

Proposed D2 98.21

5. Conclusions

This work presents an enhanced approach for breast cancer categorization using
both mammography and ultrasound images, which involves a series of steps, including
image preprocessing and categorization. Preprocessing is utilized for contrast enhance-
ment, and it makes a dramatic difference in the image quality. The images used for
enhancing are employed in training the proposed Multi-Feature Attention Network
(MFAN) and the results obtained from these enhanced images. Evaluation of the pro-
posed MFAN model with respect to mammography and ultrasound data proves that
it has high accuracy and a high generalization ability in different types of imaging.
However, one limitation with of method is that the use of strictly labeled data are limited,
thus reducing the availability of a large volume of mostly unlabeled data that could be
used to improve the model even further. Multiple attention modules and significant
memory utilization from feature maps make the proposed model computationally de-
manding and unsuitable for real-time and resource-constrained applications. Perfect
performance may require huge labeled datasets, risking overfitting on small data and
lowering generalizability. The intricate structure makes hyperparameter adjustment
and interpretability difficult, and scaling to higher-resolution inputs may require large
processing resources. For future work, it is suggested that researchers incorporate MFAN
with unsupervised or weakly supervised learning approaches to utilize more unlabeled
data for frequently overseeing the mentioned constraints and advancing the technology
of breast cancer classification. Techniques such as autoencoders for feature extraction,
contrastive learning for improved representation learning, or clustering algorithms (such
as K-means or hierarchical clustering) could be incorporated into the model in order to
enhance its capacity to recognize subtle patterns within the data. These techniques could
provide valuable insights.
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