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Abstract: Minimal Strong Digraphs (MSDs) can be regarded as a generalization of the concept of tree
to directed graphs. Their cyclic structure and some spectral properties have been studied in several
articles. In this work, we further study some properties of MSDs that have to do with bounding the
length of the longest cycle (regarding the number of linear vertices, or the maximal in- or outdegree of
vertices); studying whatever consequences from the spectral point of view; and giving some insight
about the circumstances in which an efficient algorithm to find the longest cycle contained in an MSD
can be formulated. Among other properties, we show that the number of linear vertices contained
in an MSD is greater than or equal to the maximal (respectively minimal) in- or outdegree of any
vertex of the MSD and that the maximal length of a cycle contained in an MSD is lesser than or equal
to 2n − m where n, m are the order and the size of the MSD, respectively; we find a bound for the
coefficients of the characteristic polynomial of an MSD, and finally, we prove that computing the
longest cycle contained in an MSD is an NP-hard problem.

Keywords: minimal strong digraphs; maximum length directed cycles; linear vertex; external chain;
characteristic polynomial; NP-hard problem

MSC: 68R10

1. Introduction

A Minimal Strong Digraph (MSD) is a strong digraph in which the deletion of any arc
yields a non-strongly connected digraph. In [1,2] a compilation of the properties properties
of MDSs can be found. Additionally, in [2] a comparative analysis between MSDs and non-
directed trees, where a series of the analog properties of both types of graphs, is presented.
In this sense, MSDs gain interest as a counterpart of trees in the context of directed graphs.

There are several other reasons to justify the interest in studying MSDs. One of
them is the relationship between MSDs and nearly reducible (0, 1)-matrices (via the ad-
jacency matrix; see, for instance, [3,4]) and the non-negative inverse eigenvalue problem
(see [5]): given real numbers k1, k2, . . . , kn, find the necessary and sufficient conditions
for the existence of a non-negative matrix A of order n with characteristic polynomial
xn + k1xn−1 + k2xn−2 + · · · + kn. The coefficients of the characteristic polynomial are
closely related to the cycle structure of the weighted digraph with adjacency matrix A by
means of the theorem of the coefficients [6], and the irreducible matricial realizations of
the polynomial (which are identified with strongly connected digraphs [3]) can easily be
reduced to the class of Minimal Strong Digraphs. Hence, a better understanding of the
cyclic structure of MSDs could lead to results on spectral theory.
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Another goal for our work is trying to take advantage of the fact that minimality
among SDs is a very restrictive condition. For instance, it is well known that the size of an
MSD of order n is bounded by 2(n − 1). We think that the fact that the class of MSDs is
comparatively small, together with the properties obtained in [2], pointing out relationships
between the size of the longest cycle in an MSD and the number of linear vertices, could
lead to finding an algorithm of polynomial complexity to find the longest cycle in an MSD.
Note that finding the longest cycle on a SD is an NP-hard problem.

Our work plan is, thus, to further study the properties of MSDs that could give a better
understanding of their cyclic structure, especially those having to do with bounding the
length of the longest cycle (regarding the number of linear vertices, or the maximal in- or
outdegree of vertices); studying whatever consequences from the spectral point of view;
and finally trying to devise an efficient algorithm to find the longest cycle in an MSD. The
first steps are accomplished, but we have to accept that the restrictions we obtain to bound
the length of cycles in an MSD are not enough to simplify the search of the longest cycle.
In fact, we prove that finding the longest cycle in an MSD is NP-hard. Nevertheless, we
think that the new properties of MSDs that we are able to prove are interesting in and of
themselves, insofar as they progress the way of understanding the cyclic structure of MSDs,
and hence they can lead to advances in spectral theory.

The outline of the article is as follows: In Section 2, we introduce some notations and
review several results on MSDs. In Section 3, we study the relationship between the length
of the longest cycle, the number of linear vertices, and the maximal in- or outdegree of
vertices. We also state some MSD properties, regarding chains and its contraction, that
arise from the ear decomposition. In Section 4, we state a bound for the coefficients of the
characteristic polynomial of an MSD, extending the results of [2]. In Section 5, we prove
that the problem of finding the longest cycle in an MSD is NP-hard. Finally, we draw
some conclusions.

2. Notation and Basic Properties

In this paper, we use some concepts and basic results about graphs that are described
below, in order to fix the notation [1,2,7–13].

Let D = (V, A) be a digraph. If (u, v) ∈ A is an arc of D, we say that u is the tail (or
initial vertex) and v the head (or final vertex) of the arc, and we denote the arc by uv. We
shall consider only directed paths and directed cycles. We shall denote by n = |V| and by
m = |A| the order and the size of D, respectively.

In a strongly connected digraph, the indegree d−(v) and the outdegree d+(v) of every
vertex v are greater than or equal to 1. We shall say that v is a linear vertex if it satisfies
d+(v) = d−(v) = 1.

An arc uv in a digraph D is transitive if there exists another uv-path disjoint to the arc
uv. A digraph is called a minimal digraph if it has no transitive arcs.

The contraction of a subdigraph consists in the reduction in the subdigraph to a unique
vertex v̄. Note that the contraction of a cycle of length q in an SD yields another SD. In
such a process, q − 1 vertices and q arcs are eliminated. Given a cycle Cq, let v̄ be the vertex
corresponding to Cq after contraction. We shall denote by d−(Cq) = d−(v̄) (respectively
d+(Cq) = d+(v̄)). Note that d+(Cq) = ∑v∈Cq(d

+(v)− 1) (and the same with d−(v)).
Some basic properties concerning MSDs can be found in [1,2,8,14,15].
We summarize some of them: The size of an MSD digraph D of order n ≥ 2 verifies

n ≤ m ≤ 2(n − 1) [1]. The contraction of a cycle in an MSD preserves the minimality, that
is, it produces another MSD; hence, if we contract a strongly connected subdigraph in a
minimal digraph, the resulting digraph is also minimal, and each MSD of order n ≥ 2 has
at least two linear vertices.

If Cq is a cycle contained in an MSD D, then the number of linear vertices of D is

greater than or equal to
⌊

q+1
2

⌋
. An MSD factors into a rooted spanning tree and a forest of

reversed rooted trees (Theorem 20 [2]). Finally, we will use the next result.
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Lemma 1 ([2]). If an MSD contains a cycle C2, then the vertices on the cycle are linear vertices or
cut points.

3. Lower Bounds of the Number of Linear Vertices of an MSD

Let D be an MSD and Cq a cycle contained in D.
In this section, we show some results obtained through the analysis of the degree of

the vertices, especially those with a high degree.

Proposition 1. Let D = (V, A) be an MSD, λ the number of linear vertices of D, and v ∈ V a
vertex such that v is contained in each cycle of D. Then, λ ≥ max(d−(v), d+(v)).

Proof. If D is a cycle, then d−(v) = d+(v) = 1; therefore, λ ≥ 2 > max(d−(v), d+(v)) = 1,
and the proof is completed.

Otherwise, let Cq = v, u1, . . . , uq−1, v be a cycle contained in D. By definition of MSD,
each arc of D is contained in at least one directed cycle of D, or else D would not be strongly
connected. Since v is contained in each cycle of D, then each arc wui such that w /∈ Cq is
contained in a cycle v, . . . , w, ui, . . . , v for 1 ≤ i ≤ q − 1. In a similar way, each arc uiw such
that w /∈ Cq is contained in a cycle v, . . . , ui, w, . . . , v for 1 ≤ i ≤ q − 1.

We shall prove that in Cq, there must exist at least one linear vertex. Let us, in fact,
suppose, by contradiction, that ui ∈ Cq is not a linear vertex for 1 ≤ i ≤ q − 1. Hence,
d−(u1) = 1 or else the arc vu1 would be transitive in D. In fact, if d−(u1) > 1, since v
is contained in each cycle, v is a vertex reached by walking in reverse direction from u1
using an arc u′

1u1 different from vu1 (such an arc exists because of d−(u1) > 1), and then a
vu1-path (not containing the arc vu1) can be obtained by concatenation of a vu′

1-path with
the arc u′

1u1.
Then, d+(u1) > 1 since d−(u1) = 1 and we are assuming that u1 is not linear. Let

u′′
1 ̸= u2 be the vertex defined by the corresponding arc u1u′′

1 ∈ D.
Now the following result will be proved for all ui, 2 ≤ i ≤ q − 1: d−(ui) = 1 and

there is an arc uiu′′
i with u′′

i ̸= ui+1. To show this, the following reasoning is applied
iteratively for each vertex, starting from u2. First, we remark that d−(ui) = 1. Otherwise,
the arc ui−1ui would be transitive in D because an ui−1ui-path would exist, not containing
the arc ui−1ui. In fact, since v is contained in each cycle, v is a vertex reached walking
in reverse direction from ui starting with an arc u′

iui different from ui−1ui (such an arc
exists since d−(ui) > 1). Also, v is a vertex reached walking from ui−1 starting with the arc
ui−1u′′

i−1. Then, a ui−1ui-path would be obtained by concatenation of the arc ui−1u′′
i−1 with

the u′′
i−1v-path, the vu′

i-path, and the arc u′
iui.

d+(ui) > 1 also holds because d−(ui) = 1 and, by hypothesis, ui is not a linear vertex.
Let u′′

i ̸= ui+1 be the vertex defined by the arc uiu′′
i belonging to D.

Finally, let us show that the arc uq−1v is transitive. In fact, since v is contained in
each cycle, v is a vertex reached walking from uq−1, starting with the arc uq−1u′′

q−1. The
uq−1v-path obtained by concatenation of the arc uq−1u′′

q−1 with the u′′
q−1v-path proves that

uq−1v is transitive. This fact contradicts the minimality of D.
We have still to prove that the linear vertices reached for each outgoing (respectively,

incoming) arc from (respectively, to) v are all different. Let vu1 and vu′
1 be two arcs in D.

From vu1, as we have seen, we can construct a path v, u1, . . . , uk such that d−(ui) = 1 for
1 ≤ i ≤ k and d+(ui) > 1 for 1 ≤ i ≤ k − 1, and uk is linear (note that k can be 1, but it must
exist) as we have proved previously. Now, in a similar way, we construct a path v, u′

1, . . . , u′
l

such that d−(u′
j) = 1 for 1 ≤ i ≤ l and d+(u′

j) > 1 for 1 ≤ i ≤ l − 1 and u′
l is linear.

The paths v, u1, . . . , uk and v, u′
1, . . . , u′

l cannot rejoin after they leave v since all the
indegrees of their vertices are 1. Hence, uk ̸= u′

l . The proof is completed.

Proposition 2. Let D = (V, A) be an MSD of order n ≥ 2, v ∈ V a vertex of D, and λ the
number of linear vertices contained in D. Then, λ ≥ max(d−(v), d+(v)).
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Proof. If D = Cn then d−(v) = d+(v) = 1, therefore λ = q ≥ 2 and the proof is completed.
Otherwise, we obtain an MSD D′ from D by the contraction of all cycles that do

not contain the vertex v. Note that v is a vertex contained in each cycle of D′. Then, by
Proposition 1 λD′ ≥ max(d−(v), d+(v)) where λD′ is the number of linear vertices of D′.
Note also that v preserves in D′ all its incident arcs. Next we expand the cycles contracted
previously. In this process, the linear vertices are maintained. Indeed, if we expand a linear
vertex corresponding to a cycle of length greater than two, this fact is obvious. And, if we
expand one corresponding to a cycle of length two, the result follows from Lemma 1, since
for cycles of length two, the contracted vertex in D′ will contain at least one existing linear
vertex in D; hence, the number of linear vertices in D is not less than the number of linear
vertices contained in D′. The proof is completed.

Corollary 1. Let D = (V, A) be an MSD, Cq a cycle contained in D, and µ the number of linear
vertices contained in D but not contained in Cq. Then, µ ≥ max(d−(Cq), d+(Cq)).

Proof. If D = Cq, then µ = d−(Cq) = d+(Cq) = 0, and the proof is completed.
Otherwise, we obtain an MSD D′ from D by contracting Cq in a unique vertex v′. Note

that the number of linear vertices of D′ is precisely µ. The application of Proposition 2 then
implies that µ ≥ max(d−(v′), d+(v′)) = max(d−(Cq), d+(Cq)) and we are finished.

As we mentioned in Section 2, if there is a cycle Cq ∈ D, the number of linear vertices

of D is greater than or equal to
⌊

q+1
2

⌋
; see [8]. We ratify this result with a new, shorter

proof, by using the previous properties.

Corollary 2. Let D = (V, A) be an MSD of order n ≥ 2, Cq a cycle contained in D, and λ the

number of linear vertices contained in D. Then, λ ≥
⌊

q+1
2

⌋
.

Proof. Let ν be the number of linear vertices contained in Cq, and µ the rest of linear
vertices of D. Then, λ = µ + ν, and we know by Corollary 1 that µ ≥ max(d+(Cq), d−(Cq)).
Since d+(Cq) + d−(Cq) ≥ q − ν, we have that

µ ≥ max(d+(Cq), d−(Cq)) ≥
⌈

q − ν

2

⌉
, (1)

and then

λ = µ + ν ≥
⌈

q − ν

2

⌉
+ ν =

⌈
q + ν

2

⌉
≥

⌈ q
2

⌉
=

⌊
q + 1

2

⌋
. (2)

The proof is completed.

As a consequence of Corollary 2, we obtain an upper bound for the maximum length
of a cycle contained in an MSD.

Corollary 3. Let D = (V, A) be an MSD of order n ≥ 2, Cl a cycle with maximal length l
contained in D, and λ the number of linear vertices contained in D. Then, l ≤ 2λ.

Proof. By Corollary 2, we know that

λ ≥
⌊

l + 1
2

⌋
, (3)

then
l ≤ 2λ. (4)

The proof is completed.

Since every vertex contained in an MSD must be contained in at least one directed
cycle, we can obtain two different bounds for the number of linear vertices, one from the
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vertex degree and one from the cycle length. The next result somehow combines the two
aforementioned bounds.

Corollary 4. Let D = (V, A) be an MSD of order n ≥ 2, Cq a directed cycle of length q contained
in D, u ∈ Cq a vertex of D, d(u) = d+(u) + d−(u), and λ the number of linear vertices contained
in D. Then,

λ ≥
⌊

q + d(u)
2

⌋
− 1. (5)

Proof. As we did in the proof of Corollary 2, we call ν the number of linear vertices
contained in Cq and µ the rest of linear vertices of D. The value of ν tends to be smaller, as
there are more paths between the vertices contained in the cycle Cq. Then, for any vertex u
contained in the cycle Cq, we obtain the following inequality:

ν + (d+(Cq)− (d+(u)− 1)) + (d−(Cq)− (d−(u)− 1)) + 1 ≥ q

⇒ d+(Cq) + d−(Cq) ≥ q − ν + d(u)− 3.
(6)

Combining it with Corollary 1 (µ ≥ max(d+(Cq), d−(Cq))), we obtain

µ ≥ max(d+(Cq), d−(Cq)) ≥
⌈

q − ν + d(u)− 3
2

⌉
(7)

and finally

λ = µ + ν ≥
⌈

q − ν + d(u)− 3
2

⌉
+ ν =

⌈
q + ν + d(u)− 1

2

⌉
− 1

≥
⌈

q + d(u)− 1
2

⌉
− 1 =

⌊
q + d(u)

2

⌋
− 1.

(8)

The proof is completed.

Corollary 4 can be useful when a vertex u with a high degree is contained in the
cycle Cq (see examples in Figures 1 and 2). However, if the vertex u is not contained in
the cycle, the number of linear vertices contained in the MSD could be much higher than
the number of linear vertices obtained with this bound. For instance, in the examples in
Figures 3 and 4), if q = 10 and the vertices in the cycle have degree 2 or less, the bound
given by Corollary 4 would be 5, but the number of linear vertices would be at least 14; an
analogous example is showed in Figure 5.

Cq u

Figure 1. Example 1 for Corollary 4 where Cq contains a vertex u with high in- and out-degree.
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Cq v

Cq u

Figure 2. Example 2 for Corollary 4 where Cq contains a vertex u with high out-degree.

Cq
v

Cq u

Figure 3. Example 1 of an MSD, in which there is a vertex with high degree (input and output) and is
not contained in the cycle Cq.

Cq
v

Cq
u

Figure 4. Example 2 of an MSD, in which there is a vertex with high output degree and is not
contained in the cycle Cq.
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Cq u

Cq
v

Figure 5. Example 3 of an MSD, in which there is a vertex with high degree (input and output) and is
not contained in the cycle Cq.

Proposition 3. Let D = (V, A) be an MSD, and let Cq be a cycle of length q contained in D.
Then, q ≤ 2n − m.

Proof. We obtain an MSD D′ by contraction of Cq in a unique vertex v′, and then
n′ = n − q + 1 and m′ = m − q. Hence, since

m′ ≤ 2(n′ − 1), (9)

we obtain
m − q ≤ 2(n − q), (10)

and finally
q ≤ 2n − m. (11)

The proof is completed.

Other Properties of MSDs

In [2,14], some results about ear decomposition are proved. We use these previous
results to show the next properties of MSDs.

Definition 1. Let D = (V, A) be an MSD of order n ≥ 2, and let v1, . . . , vl be a path contained
in D. We say that the v1vl-path is a chain with length l if d−(vi) = d+(vi) = 1 for all 1 ≤ i ≤ l.

Note that an isolated linear vertex is a chain of length 1.

Definition 2. Let D = (V, A) be an MSD of order n ≥ 2, let v1, . . . , vl be a chain contained in
D, and let D′ be the digraph obtained from D by the elimination of the v1vl-path. We say that the
v1vl-path is an external chain with length l if D′ preserves the strong connection.

Proposition 4. Let D = (V, A) be an MSD of order n ≥ 2 and Cq a cycle contained in D such
that D ̸= Cq. Then, in D, there exists at least one external chain.

Proof. We use the ear decomposition shown in Theorem 20 in [2] in a similar way to how
it was used in the proof of the property that affirms that an MSD factors into a rooted
spanning tree and a forest of reversed rooted trees.
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Let us consider an ear decomposition of D, E = P0, . . . , Pk. Since D is an MSD, each
ear Pj (0 ≤ j ≤ k) contains at least one new vertex and two new arcs, with respect to

⋃j−1
i=0 Vi

and
⋃j−1

i=0 Ai, respectively.
Then, it is clear that the last ear Pk = vk

0 . . . vk
sk

completes the construction of D, and
Qk = vk

1 . . . vk
sk−1 is a chain of linear vertices, whose first and last vertex are joined to

vertices of a minimal and strongly connected digraph D′. Hence, D′ = D − Qk is an MSD,
and therefore Qk is an external chain of length l = sk − 1 ≥ 1. Trivially, we can say that if
D = Cq = P0, then there is no external chain contained in D. The proof is completed.

Note that D′ is an MSD with n − l vertices and m − l − 1 arcs. Note also that if P0 = Cq,
with Cq as a maximal length cycle contained in D, and there exists any external chain with
length l ≥ 1 not contained in Cq, then q ≤ n − l.

Proposition 5. Let D = (V, A) be an MSD, and let v1vl-path be a chain contained in D with
length l < n. Then, the contraction of all vertices of the v1vl-path in a unique vertex preserves the
minimality, that is, it produces another MSD D′ with n − l + 1 vertices and m − l + 1 arcs.

Proof. Let D′ be the digraph obtained by the contraction of all vertices of the v1vl-path
in a unique vertex v′. Let n′ be the number of vertices and m′ the number of arcs of D′.
In D′, all vertices of the v1vl-path are suppressed, but it contains the vertex v′ /∈ D, and
then n′ = n − l + 1. Since d−(vi) = d+(vi) = 1 for all 1 ≤ i ≤ l, we have m′ = m − l + 1.
Now, let us assume that there are transitive arcs in D′. If we expand v′, these transitive arcs
would also exist in D, contradicting the minimality of D. Hence, D′ is minimal. Since n > l,
then a vertex w /∈ v1vl-path, exists also in D′, and D′ contains a wv′-path and a v′w-path.
Therefore, D′ is strongly connected. The proof is completed.

Proposition 6. Let D = (V, A) be an MSD such that D is not a cycle. Then, there is not a cycle
in D that contains all linear vertices of D.

Proof. Let us suppose that Cq contains all linear vertices of D. We can obtain an MSD
D′ by contraction of Cq in a unique vertex v′. We know that D′ must contain at least two
linear vertices, and at least one of them is different from v′. Then, it is clear that there exists
at least one linear vertex that is contained in D but is not contained in Cq. The proof is
completed.

Let D be an MSD such that D is not a cycle, and λ be the number of linear vertices
contained in D. From the proposition above, it is trivial to see that a cycle Cq contained in
D will contain at most λ − 1 linear vertices of D.

4. Upper Bounds for the Coefficients of the Characteristic Polynomial of MSDs

In [2], some results about bounds of the coefficients of the characteristic polynomial of
an MSD are proved. In particular, it is shown that the independent term must be 1, 0, or
−1. We follow the lines of that proof to generalize that bound.

Proposition 7. Let D = (V, A) be an MSD, and let xn + k1xn−1 + · · ·+ kixn−i + · · ·+ kn−1x+
kn be the characteristic polynomial of the adjacency matrix of D. Then,

|ki| ≤
(

n
i

)
(12)

Proof. We claim that any subset of i vertices can be covered by disjoint cycles in at most
one manner. In fact, take any subset A ⊂ V, with |A| = i, and consider the subdigraph
D′ to be generated by that A. Now, D′ is a subdigraph of an MSD, so it has no transitive
arcs. If it is not strongly connected, we can add arcs, one by one, until we obtain a strongly
connected digraph D′′ that would be minimal. Therefore, D′′ would be an MSD, and the
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aforementioned result of [2] implies that there is at most one covering of the vertices of D′′

(that is, of A) by disjoint cycles.
The coefficients theorem for digraphs allows us to finish the proof.

5. MSD Properties Associated to Results of Algorithms Complexity

It was well known that minimality is a very strict condition in the family of strong
digraphs implying, for instance, the size limitation n ≤ m ≤ 2(n − 1). As we have seen in
previous sections, MSDs also exhibit strong constraints on the number of linear vertices
and maximum in- and outdegrees of vertices, regarding the length of the longest directed
cycle. Unfortunately, these constraints are not enough to construct an efficient algorithm
finding the longest cycle in an MSD.

A proof that an MSD can be converted into a directed cycle by successively eliminating
external chains is given in [16]. However, this process does not guarantee that the resulting
directed cycle will have a maximum length. Figure 6 shows an MSD where the longest
directed cycle is given by u1, u2, u3, u4, u5, u1, but this cycle will be obtained only in the
case that the external chains eliminated are those formed by the u6-path and u7-path.
Nevertheless, there is no an efficient algorithm that can determine the deletion of these
chains and the non-deletion of the external chain formed by the vertex u5-path because if
this chain is deleted, then the longest cycle of the MSD will also have been eliminated.

u7

u1 u2

u3 u4

u6

u5

Figure 6. Example of an MSD that contains three external chains.

Theorem 1. Computing a cycle with maximal length in an MSD is an NP-hard problem.

Proof. We can reduce the problem of computing a cycle with maximal length in a strongly
connected digraph to the problem of computing a cycle with maximal length in an MSD.

Let D′ = (V′, A′) be a strong digraph. We can build an MSD D = (V, A) from D′ as
follows. For each arc v′iv

′
j ∈ A′, we add an intermediate vertex vij. We thus obtain

V = V′ ∪ {vij | v′iv
′
j ∈ A′} (13)

A = {v′ivij | v′iv
′
j ∈ A′} ∪ {vijv′j | v′iv

′
j ∈ A′} (14)

Note that the strong connection of D′ implies that D is trivially strongly connected.
Note also that no arc of D can be transitive since every arc has a linear vertex vij as start- or
endpoint. Hence, D is in fact an MSD.

Now, we remark that there is a one-to-one correspondence between cycles in D and
cycles in D′: for every cycle C′

q in D′, a cycle C2q arises in D, and all the cycles in D are
generated in this way.

We conclude that any algorithm allowing us to compute the longest cycle of an MSD
would then be able to compute the longest cycle of any SD, too. Since the problem of
computing the longest cycle in a strongly connected digraph is NP-hard [14], then the
theorem is proved.

Theorem 2. Let D = (V, A) be an MSD. Finding a cycle contained in D with length 2n − m is
an NP-complete problem.
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Proof. We can reduce the problem of determining if a digraph is Hamiltonian to the
problem of determining if an MSD has a cycle of length 2n − m.

Let D′ = (V′, A′) be a digraph. If D′ is strongly connected, the same procedure used
in the previous proof yields an MSD D = (V, A) (if D′ is not strongly connected, then it
cannot be Hamiltonian). The order of D verifies n = n′ + m′, and the size holds m = 2m′.
Hence, finding a cycle in D with length 2n − m = 2(n′ + m′)− 2m′ = 2n′ would imply
finding a n′-cycle in D′, that is, determining if D is Hamiltonian. Since determining whether
a digraph is Hamiltonian is an NP-complete problem, the theorem is proved.

6. Conclusions

In this work, we have found some new properties regarding MSDs. The first set of
properties has to do with the number of linear vertices in an MSD. We have seen that
the existence of a vertex with a high in- or outdegree implies a high number of linear
vertices. Furthermore, we have used this fact to give a simpler proof of the lower bound
of linear vertices that we obtained in [8], where the existence of a q cycle implies at least
⌊(q + 1)/2⌋ linear vertices. We have also proved that chains of consecutive linear vertices
in an MSD can be contracted without loss of minimality. We feel that further research along
these lines could give, from one side, a result linking maximal cycle lengths, maximal in-
or outdegrees, and improved estimations of the number of linear vertices, as well as a
better understanding of the cycle properties that can lead to spectral properties, such as the
characterization of polynomials that can be realized as characteristic polynomials of MSDs.
In this regard, we have proved a bound for the coefficients of such polynomials, advancing
along the lines given in [2].

Since the number of linear vertices in an MSD is easily computed, we wanted to
explore the possibility that the maximal length of a cycle could be bounded so as to allow to
construct a polynomial complexity algorithm to find the longest cycle. Unfortunately, that
is not the case, and we have proved that the search of a maximal length cycle in an MSD is
NP-hard. Still, it can be interesting to look for a subset of MSDs for which the search for
maximal length cycles can be performed efficiently. This kind of result could arise, also, by
further study of the properties that we pointed out in the paragraph above.
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